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Abstract—Scientific data has traditionally been distributed via downloads from data server to
local computer. This way of working suffers from limitations as scientific datasets grow towards
the petabyte scale. A “cloud-native data repository,” as defined in this paper, offers several
advantages over traditional data repositories—performance, reliability, cost-effectiveness,
collaboration, reproducibility, creativity, downstream impacts, and access & inclusion. These
objectives motivate a set of best practices for cloud-native data repositories: analysis-ready
data, cloud-optimized (ARCO) formats, and loose coupling with data-proximate computing. The
Pangeo Project has developed a prototype implementation of these principles by using
open-source scientific Python tools. By providing an ARCO data catalog together with
on-demand, scalable distributed computing, Pangeo enables users to process big data at rates
exceeding 10 GB/s. Several challenges must be resolved in order to realize cloud computing’s
full potential for scientific research, such as organizing funding, training users, and enforcing
data privacy requirements.



B CONTEMPORARY SCIENCE abounds with
large, complex datasets used by many researchers.
For example, thousands of climate scientists do
research using the same multi-petabyte Climate
Model Intercomparison Project (CMIP) simula-
tion datasets [1]. The Human Cell Atlas and the
Sloan Digital Sky Survey play similar roles in bi-
ology and astronomy respectively. These datasets
offer exciting potential for new discoveries on im-
portant scientific problems and also represent an
ideal target for exploitation by emerging machine-
learning approaches. The science community’s
approach to infrastructure, however, may be hold-
ing us back from realizing this potential.

Traditionally, scientific data has been dis-
tributed via a “download model”, wherein sci-
entists download individual data files to local
computers for analysis. This model requires that
datasets be relatively small, or that users only
want to look at a small piece of a larger dataset.
But many of the most exciting scientific prob-
lems involve looking at the entirety of very large
datasets in order to identify universal patterns and
answer grand challenges. The download model
poses several challenges for this mode of analysis.
After downloading many files, scientists typically
have to do extensive processing and organizing to
make them useful for data analysis; this creates
a barrier to reproducibility, since a scientist’s
analysis code must account for this unique “local”
organization. Furthermore, the sheer size of the
datasets (many terabytes to petabytes) can make
downloading effectively impossible. Analysis of
such data volumes also can benefit from parallel
/ distributed computing, which is not always
readily available on local computers. Finally, this
model reinforces inequality between privileged
institutions that have the resources to host local
copies of the data and those that don’t. This
restricts who can participate in science.

Cloud computing, with its ability to place
large datasets and massive computational re-
sources in close proximity, seems to offer an
ideal solution to these problems. However, there
are many different possible ways to organize
and structure cloud computing for data-driven
science. Proprietary platforms, like Google Earth
Engine [2], are one-stop-shop solutions that pro-
vide both data and computing. They are powerful
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but generally controlled by a single company,
with limited flexibility and modularity. In con-
trast, open architectures assume data will be dis-
tributed over the Internet and seek interoperability
between different data catalogs and computational
tools [3]. We contend that open architectures
are the best path forward for big-data scientific
infrastructure.

Cloud-based science platforms built on open
architecture require many elements: software for
interactive data analysis, machine learning, and
visualization; elastically scaled computing re-
sources; and access to data—not to mention ex-
amples and documentation, and resources for
maintenance. As with any good system archi-
tecture, these components should be as modular
as possible. While cloud computing frameworks
are fairly well established, we feel that the data
component is a missing link which is holding
back adoption of cloud computing in multiple
scientific domains.

In this article, we attempt to define a cloud-
native data repository and explain how it is
different from a traditional data repository. We put
forward a set of objectives motivating the need for
such repositories and outline an opinionated set of
best practices for implementing cloud-native data
repositories. We then describe a specific imple-
mentation by the Pangeo Project and conclude by
enumerating some future challenges for building
and maintaining cloud-native data repositories.

Related Work

Most related work on this topic has focused
on data-proximate computing tightly coupled to
data. Google Earth Engine was a pioneering effort
in the field of geospatial analytics and remains a
highly influential product in this space [2]. SciS-
erver is a popular general-purpose data-proximate
computing environment, and its deployment at
Johns Hopkins provides large datasets from as-
tronomy, cosmology, turbulence, genomics, and
oceanography, together with a range of computing
tools [4]. Also relevant are so-called “analytical
databases”—tools that enable users to run com-
plex server-side queries on multidimensional ar-
ray datasets. Prominent examples include SciDB
[5] and Rasdaman [6]. These tools are powerful
and effective; however, they suffer from a struc-
tural problem: the same provider is responsible
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for both data and computing. Our approach is
somewhat unique in that we argue for decoupling
of data storage from the computing platform, but
without sacrificing performance.

Objectives for Cloud-Native Data
Repositories

Cloud-native data repositories offer many ad-
vantages over the download model. Here we
enumerate the objectives that motivate the need
for such repositories. These objectives inform the
best practices of the next section.

Performance: The initial motivation for mov-
ing analysis to the cloud is often to overcome
performance bottlenecks associated with a local
computing environment. These bottlenecks can
be in the form of storage (limited disk space),
1/0 throughput, network bandwidth, and CPU, all
of which can limit the speed of data analysis.
Cloud computing offers the opportunity to scale
resources to overcome performance bottlenecks,
and cloud-native data repositories should first-
and-foremost aim to enable high-performance
data analysis.

Reliability: Traditional methods of data ac-
cess often rely on custom servers that must be
maintained by data providers and can crash un-
der heavy loads. Cloud-native data repositories
should shift the reliability burden to the cloud
provider and take advantage of industry-driven
innovation in this area.

Cost-Effectiveness: A clear cost inefficiency
in the status-quo download model is that the same
datasets are stored many times over on local
hard drives. However, the personal computers
used to analyze them are likely only active for
a small fraction of the day; when they are ac-
tive, they suffer from the performance limitations
described above. Cloud-native data repositories
should overcome these inefficiencies by storing
only one copy of the data, where it is accessi-
ble to on-demand, elastically scaled computing.
System architecture should also make it possible
for different entities to shoulder costs of data and
computing respectively.

Collaboration: One limitation for collabora-
tive data science workflows on personal com-
puters is the dependence on the local filesytem
paths for data access. This dependence creates
friction when collaborators attempt to exchange

code and find that they don’t have the same data
or have organized their files differently. Cloud
data generally uses a global namespace (absolute
URLs with https:// or s3:// prefix) which
renders analysis code portable. As a result, cloud-
native data repositories should enable scientists to
share functional code snippets, creating a faster
and more fluid collaboration workflow.

Reproducibility: Reproducibility of data sci-
ence projects requires open access to at least three
elements: the code, the software environment,
and the data. Local-filesystem data dependencies
therefore also limit reproducibility, in the same
way they limit collaboration. Cloud-native data
repositories should complement reproducibility
tools like Binder (https://mybinder.readthedocs.
io/), which provides cloud-based code execu-
tion in a user-specified environment, allowing for
compute-proximate data access.

Creativity: The download model limits sci-
entists’ creativity by locking them in to working
with the data they have already downloaded and
cleaned. In contrast, cloud-native data repositories
should enable scientists to quickly pivot to new
datasets as their work evolves organically.

Downstream Impacts: Many data providers,
particularly in geospatial fields, are eager to help
businesses leverage their data for economic gain.
Modern technology companies, particularly star-
tups, overwhelmingly use cloud computing to
deploy their products. Cloud-native data reposito-
ries should enable and encourage a downstream
ecosystem of commercial exploitation.

Access & Inclusion: The download model
presumes that scientists have funding and infras-
tructure at their institutions to purchase powerful
personal workstations and disk drives, plus suffi-
cient bandwidth to download big datasets. This is
not the case in many countries in the developing
world, or even within parts of the United States in
historically excluded communities. Cloud-native
data repositories should help reduce these in-
equities by shifting the infrastructure burden to
the cloud, where costs can be borne by centralized
data and infrastructure providers.

Some of these objectives can be realized by
moving analysis to traditional high-performance-
computing (HPC) platforms, such as the su-
percomputers sponsored by NSF’s XSEDE pro-
gram. HPC can undoubtedly achieve excellent


https://mybinder.readthedocs.io/
https://mybinder.readthedocs.io/

Department Head

performance for data-intensive workflows, and
many HPC centers host vast volumes of scientific
data precisely for this purpose. However, because
access to HPC systems is heavily limited, the
more social objectives on our list (collaboration,
reproducibility, downstream impacts, access &
inclusion) remain harder to realize in an HPC
environment. In this article we focus on public
clouds, while recognizing that HPC will remain
an important tool for many data-intensive applica-
tions. HPC centers are also increasingly adopting
cloud-style technologies, so this distinction will
likely blur in the future.

Best Practices

Motivated by the above objectives, in this sec-
tion we put forth some best practices for cloud-
native scientific data repositories. These practices
are informed by several years of experimentation
and development, drawn from our experience in
data-intensive scientific fields, including Earth-
system science, neuroscience, and astronomy.

FAIR Data

The starting point for cloud-native data repos-
itories is the widely lauded FAIR Principles: data
should be Findable, Accessible, Interoperable,
and Reuseable [7]. Adoption of these principles
is growing within many scientific fields. Cloud-
native repositories should build on these success-
ful principles by providing persistent identifiers,
rich metadata, machine-readable catalogs and
metadata, and standards-compliant formats and
protocols. At the same time, the motivations for
moving to cloud computing pose some challenges
to the FAIR lexicon. How do you make a petabyte
of data “accessible?” Answering this question
requires going beyond the FAIR framework and
considering the full scientific workflow.

Analysis-Ready Data

We like to imagine that a scientist’s job
is to conceive new hypotheses, design instru-
ments, build models, analyze and visualize data
in interesting ways, contemplate results deeply,
draw conclusions, and communicate findings.
The reality is that many data-driven scientific
disciplines are bogged down with the work
of data downloading, cleaning, and prepara-
tion. This is a form of scientific toil, de-

fined here as work that is “manual, repetitive,
automatable” (from https://landing.google.com/
sre/sre-book/chapters/eliminating-toil/). The out-
come of this effort is analysis-ready data (ARD),
which is ready for immediate exploration, visual-
ization, and analysis. These ARDs are extremely
valuable when shared openly, acting to accelerate
research. The term ARD was coined in reference
to geospatial imagery [8], where making data
ready for analysis means acquiring a stack of
images from a specific location, aligning them
precisely at a pixel level, and performing various
corrections to account for atmospheric distortion.
We find that the concept of ARD generalizes well
to many different fields; computational oceanog-
raphers, astronomers, and genomicists all have
similar problems wrangling data. While the de-
tails of ARD production vary, the existence of
this toil, and the resulting drain on scientists’
productivity, is ubiquitous.

Traditionally, the toil of producing ARD has
occurred in the margins of science, rarely ac-
knowledged or described in publications but nev-
ertheless a vital step in many workflows. ARD
production has not been an area for collaboration;
rather, it is a private activity, undertaken on a one-
off basis for each project. As such, this effort
is repeated every time the data is used, rather
than once when it is generated. However, as
data volumes grow into the “big data” regime
(many terabytes to petabytes), the task of cre-
ating ARD becomes increasingly onerous. We
recommend that cloud-native repositories seek to
publish ARD. Doing so requires working closely
with scientists from the community, who under-
stand how to create ARD for their discipline.
Publishing ARD does not mean abandoning the
raw, primary data; instead the provenance chain
between primary data and ARD must be carefully
documented.

A key general attribute of ARD is a focus on
meaningful, complete datasets, rather than indi-
vidual data files (a.k.a. “granules”). This lightens
the cognitive load for the data user. With ARD,
scientists should be able to “open” a complete
dataset which contains the full range of data
needed for their analysis, rather than manually
looping over many files. There are many ways
to achieve this goal from a technical standpoint.
For example, many files can be pre-concatenated
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into a single massive file; however, such files
can be cumbersome to move around. A more
scalable approach involves tighter integration be-
tween software and data, allowing many individ-
ual files to be addressed as a single virtual ob-
ject. Many modern data analysis tools implement
such functionality; in the following section, we
will describe a specific Python implementation in
detail.

An example display of ARD is shown in
figure 1.

Cloud-Optimized Data

The single greatest technical difference be-
tween local and cloud-based data environments
is the reliance on object storage. Personal com-
puters and HPC systems use POSIX filesystems
to store data, and the expectation that data will
be accessed via filesystem calls is often baked
in to analysis software. In contrast, all modern
public cloud platforms provide an object storage
service as the cheapest and most scalable way
to store massive amounts of data (for example,
Amazon S3, Google Cloud Storage [GCS], and
Azure Blob Storage). With object storage, data
are read and written via HTTP calls. While
cloud computing environments can certainly be
configured with local hard disks, we argue that
the objectives of performance, cost-effectiveness,
and reproducibility can only truly be achieved
when data access bypasses the filesystem and
goes straight for the object store.

One approach to the data access problem is to
fool the analysis environment into thinking that
it is dealing with files, when in fact it is dealing
with object storage. This trick can be played at
the operating system level, by using Filesystem
in Userspace (FUSE), or at the application level,
e.g. by creating compatibility layers that wrap ob-
ject storage with filesystem-friendly Application
Programming Interface (APIs; e.g. fsspec https:
/Milesystem-spec.readthedocs.io/en/latest/). In our
experience, such approaches may work but usu-
ally fail to achieve optimal performance, due to
both the the added complexity and the reliance
on legacy, non-cloud-optimized file formats.

To understand why, it is crucial to recognize
that local filesystems and object storage have very
different performance characteristics. Local disks
and filesystems offer low latency (in the order of

milliseconds), but their throughput is limited by
the physics of the device: roughly 100 MB/s for
HDDs and 500 MB/s for SSDs. Because object
storage services rely on HTTP calls, latency is
relatively high (100 ms or more), but because
they allow efficient parallel access, the throughput
on large cloud platforms is essentially unlimited
when coupled with distributed computing. (Ex-
periments using the PyWren (http://pywren.io/)
distributed serverless computing framework re-
ported read / write throughputs in excess of 50
GB/s on S3 [9].)

While in principle the access protocol is
independent of the file format itself, in prac-
tice, scientific data formats, and accompanying
access libraries, often assume a certain access
protocol. Many prevalent scientific data formats
were developed only with POSIX filesystem ac-
cess in mind, before object storage was preva-
lent. Examples include the popular Hierarchi-
cal Data Format 5 (HDF5) format as well as
domain-specific formats like Network Common
Data Form (NetCDF; geoscience), Flexible Image
Transport System (FITS; astronomy) and ROOT
(high-energy physics). Many of these formats,
and their accompanying access libraries, perform
numerous small seek / read operations when
opening files and reading data. Therefore, even
if the application can be tricked into thinking
that it is accessing a filesystem when really it
is talking to object storage, the accrued latency
associated with these operations translates into
very slow performance. Mitigating these chal-
lenges may require substantial refactoring of the
access libraries, and this work is underway in
several communities.

However, an attractive alternative to refactor-
ing legacy data formats is to adopt more modern
cloud-optimized formats that were designed from
inception for use with object storage. Example
cloud-optimized formats include AVRO, ORC,
and Parquet for tabular data and TileDB Embed-
ded and Zarr for multi-dimensional array data.
Cloud-optimized GeoTIFF is a popular solution
for geospatial raster data which extends a popular
format with cloud-friendly features. These for-
mats all share certain fundamental characteristics:

1) The metadata describing structure and con-
tent can be read quickly, allowing client-
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Figure 1. Example of ARD from the Pangeo Data Catalog. The high-level data model and rich visual presenta-
tion of the dataset are provided by Xarray. Under the hood, the data are stored in the Zarr format in cloud object
storage. Use of the Dask framework allows for “lazy loading,” meaning that we can view a very large dataset
without loading it into memory. From https://catalog.pangeo.io/browse/master/ocean/sea_surface_height/.

side code to construct virtual representa-
tions of large, complex datasets.

2) Data can be read using the HTTP protocol,
without the assumption of filesystem paths.

3) Data are organized in internal groupings
(e.g. shards / chunks / tiles) that allow for
efficient subsetting and distributed process-
ing.

Combining cloud-optimized formats with object
storage essentially transforms the object storage
service into a high-performance REST API for
data access, but without the burden of operating
any additional infrastructure. Cloud-optimized
formats are thus essential to achieving perfor-
mance and cost-effectiveness. Taking full advan-
tage of chunked data formats also requires co-
operation from the analysis software, and indeed
many distributed computing frameworks couple
well with cloud-optimized formats.

As much as practical, we recommend that
cloud-native data repositories adopt cloud-
optimized formats. This may require transforming
legacy formats upon ingestion. This activity can
often be coupled with the process of making
data analysis-ready, resulting in analysis-ready,

cloud-optimized (ARCO) data. ARCO data is the
gold standard of cloud-native data repositories.
However, such transcoding can be expensive, time
consuming, and fragile; the open question of how
to best serve legacy formats from cloud-native
repositories is taken up later in the section on
future challenges.

Data-Proximate Computing

With traditional data repositories, users bring
the data to their computer (the download model).
In cloud-native data repositories, users bring
their computing to the data; this is called data-
proximate computing [10]. In contrast to the
vertically integrated proprietary cloud platforms
for data analysis, open-access cloud-native data
repositories should not be coupled directly to a
specific computing solution; instead they should
seek maximum interoperability with a federation
of computing services and access paradigms. This
will foster an organic and evolving ecosystem be-
tween data providers and consumers, a federation
of data and computing providers. Below we enu-
merate a few specific data-proximate computing
approaches to consider.
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Interactive computing is an essential ele-
ment of modern data science. Interactive com-
puting allows a data scientist to explore com-
plex datasets, test ideas, receive visual feedback
in the form of figures, and iterate rapidly to
refine their analysis. Effective interactive com-
puting requires a rich, dynamic user interface,
which is easy to achieve in a local environ-
ment but more difficult with remote (e.g. cloud-
based) computing systems. The Jupyter project
has emerged as a leading tool for interactive
computing in recent years [11], allowing users
to interact with remote systems through a web
browser. Jupyter in the cloud pairs very well with
cloud-native data repositories as a solution for in-
teractive, data-proximate computing. Many cloud
platforms and third-party service providers offer
managed Jupyter hosting. The Jupyter project
also provides a comprehensive recipe for deploy-
ing your own cloud-based Jupyter Hub environ-
ment (https://zero-to-jupyterhub.readthedocs.io/).
RStudio Server provides a comparable experience
for R users.

Cloud-based Jupyter / RStudio environments
run inside virtual machines that can be cus-
tomized with different levels of computing re-
sources (RAM, CPUs, GPUs) depending on the
nature of the analysis and data. However, for
truly big data, the cloud offers the opportunity
to provision large numbers of compute nodes for
a very short time for parallel distributed comput-
ing. Coupled with “spot pricing” (discounts for
preemptable nodes), this creates a cost-effective
way to process huge volumes of data. Popular
distributed computing frameworks that can be
deployed in the cloud include Hadoop, Spark,
Dask, and Ray. Serverless computing (e.g. Ama-
zon Web Services [AWS] Lambda) offers an even
more scalable solution for distributed processing
[9]. Cloud-native data repositories should seek to
make their data accessible to and performant with
these frameworks, which is mostly achieved by
adopting cloud-optimized formats.

A final important application for cloud-native
data repositories is training machine learning
models. Machine learning, and deep learning in
particular, benefit from very large, clean, homoge-
neous datasets on which to train their models—
precisely the sorts of datasets that cloud-native
data repositories will be providing. Cloud com-

puting environments can provide the sorts of
specialized hardware (e.g. GPUs, TPUs) that
high-performance machine learning requires, and
frameworks such as Kubeflow or Dask-ML can
help coordinate complex machine learning experi-
ments in the cloud. Cloud-native data repositories
should strive to support machine learning applica-
tions such as these through high-throughput data
access.

Data-proximate computing should ideally be
deployed in the same cloud region as the data it-
self, as this will maximize performance and elim-
inate network egress charges. However, budgets
permitting, cloud-native data repositories should
also enable their data to be accessed openly over
the internet, enabling multi-cloud workflows and
integration with on-premises computing. A key
point is that, while making their data accessible
to data-proximate computing, the data provider
itself need not shoulder the computing costs; these
costs can be borne by individual research groups,
private companies, or research funding agencies.

Open-Source and Portability

Beyond the technical best practices described
above, we also encourage cloud-native data repos-
itories to employ open-source software in a way
that renders their underlying data and software
portable across cloud platforms. Open-source
software facilitates maximum transparency and
reproducibility, increasing trust in a system. Par-
ticularly for publicly funded projects, releasing
open-source software also enables the broadest
possible access and impact by permitting others
to reuse and adapt the tool; for this reason, many
funding agencies now encourage or require open-
source development. However, the definition of
open-source can become ambiguous for infras-
tructure deployed in the cloud, since commercial
cloud providers rely on many custom, proprietary
tools to operate their cloud platforms.

To resolve this dilemma, we cite the open-
source cloud user’s “bill of rights”, defined
concisely by Yuvi Panda, core developer of
the Jupyter project (https://words.yuvi.in/post/
oss-in-the-cloud/). Operators of open cloud ar-
chitecture should be able to

1) Run their software on any cloud provider
they choose to
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2) Run their software on a bunch of computers
they physically own, with the help of other
open-source software only

Adopting these principles can mitigate a major
concern for institutions seeking to migrate their
data infrastructure to the cloud: the fear of lock-
in to a specific cloud provider. These principles
constrain architectural choices. For example, the
principles dictate that an open cloud-native data
repository should probably not use a tool like
Google BigQuery as its primary mechanism for
storing data, since BigQuery is only available
in Google Cloud Platform (GCP). In contrast,
a data repository built around a generic object
storage service is transferable to virtually any
cloud provider.

An Implementation by Pangeo

The Pangeo Project (https://pangeo.io/) is
a community organization aimed at advancing
open-source software and infrastructure for the
analysis of large, complex Earth system data.
While initially focused on HPC environments,
the Pangeo Project received NSF support for
credits in GCP in 2017 and began deploying
data analysis environments in the cloud. The
best practices defined above emerged from that
effort. Here we summarize our implementation of
those practices achieved by integrating different
open-source software tools from the scientific
Python ecosystem. We emphasize that the best
practices are general and could be implemented
many different ways; the cloud-based genomics
community uses a very different technology stack
but follows broadly similar architectural princi-
ples [12].

Architecture

The Pangeo Cloud Data Catalog consists of
ARCO datasets stored in the Zarr format. These
datasets are multidimensional arrays, originating
from satellite observations and numerical simula-
tions, which conform to the NetCDF data model
and the Climate-Forecast (CF) metadata conven-
tions. The Zarr datasets are produced by aggre-
gating many individual NetCDF files (e.g. all
the temporal granules from a satellite product),
setting an appropriate chunk size (approximately
100 MB), and writing the data to Zarr format
directly to GCS in the US-CENTRAL region.

The majority of these datasets are cata-
loged with the Intake Python library (https:
/fintake.readthedocs.io/) using Intake’s YAML
catalog format. These catalogs are stored
in a GitHub repository (https://github.com/
pangeo-data/pangeo-datastore), which uses con-
tinuous integration to validate new catalog en-
tries. The Intake catalog can be used directly by
Python users to interactively browse, search, and
open datasets. It is also used to power a Flask-
based web application that allows for brows-
ing of the catalog via a public website (https:
/[catalog.pangeo.io/). The data and catalogs are all
public, allowing anyone to deploy data-proximate
computing; however the “requester pays” setting
is enabled. This requires users to pay the egress
charges associated with transferring data out of
the cloud region. (There are no egress fees for
in-region access.)

The Pangeo Project also operates a data-
proximate computing service, called Pangeo
Cloud, for about 100 scientists. This service,
described at https://pangeo.io/cloud.html, is de-
ployed on both GCP and AWS. All computing
services are managed within Kubernetes clusters,
which are configured to scale capacity elastically
up and down depending on system usage. The
infrastructure is based on JupyterHub, and users
connect via their web browser. After authentica-
tion (via GitHub), the JupyterHub service spawns
a Jupyter server for each user, providing a private,
interactive Python computing environments pre-
loaded with commonly used packages for data
access, analysis, and visualization. The user can
choose different levels of computing resources
(RAM, CPU) depending on their needs.

Users interact with the Data Catalog using
the Intake library. Most of the datasets are op-
timized to be opened and analyzed with Xarray,
a Python library that provides a high-level data
model and computational API for working with
labeled multi-dimensional datasets. Xarray sup-
ports “lazy” operations, in which data is not actu-
ally loaded from the storage device until explic-
itly required for computation and visualization.
Xarray integrates closely with Dask to enable
automatic parallelization of analysis operations.
Interactive visualization of Big Data is enabled by
the HoloViz (formerly PyViz) tools, which allow
dynamic re-rendering on zoom [13].
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Figure 2. Pangeo architecture diagram. The data repository is hosted in cloud object storage (left), in the
Zarr format. Compute nodes inside a Kubernetes cluster (right) fetch data and metadata from the object store.
Users connect to the system via Jupyter and write interactive data analysis code in Xarray, which dispatches

computations on an adaptively scaling Dask cluster.

To facilitate distributed computing, Pangeo
Cloud also includes a deployment of Dask Gate-
way (https://gateway.dask.org/), a secure, multi-
tenant server for managing Dask clusters. Users
can provision personal Dask clusters which can
be used to parallelize processing of data. Pangeo
workloads tend to be heavily I/O bound, and this
parallelization enables users to take advantage
of high throughput of cloud object storage; each
worker pulls its data directly from object storage,
with Zarr chunks providing a natural unit of
parallelization. The various components of this
configuration are illustrated in figure 2. Typically
users will scale up a Dask cluster, perform a
reduction operation (e.g. mean or standard de-
viation) on a large dataset, and then switch to
local analysis mode for the final visualization and
interpretation steps.

Measuring Data Throughput

A central motivation for creating cloud-native
data repositories is the desire to overcome the per-
formance limitations of the download model. In
Pangeo Cloud, data are not downloaded but rather
streamed directly from object storage to compute
nodes within the same cloud region. To quantify
the speedup this architecture provides, in figure 3
we show results from a benchmarking exercise,
adopted from https://github.com/earthcube2020/

ec20_abernathey_etal. We measured the rate, in
MB/s, at which data can be transferred from
storage services to the Dask compute cluster,
as a function of the number of distributed read
processes. All benchmarking was performed in
the GCP US-CENTRALI1 region. We compared
four modes of data access:

1) Loading data from an ESGF Open-source
Project for a Network Data Access Protocol
(OPeNDAP) server. OPeNDAP is a mature
and widely used data exchange API in
the geosciences [14]. However, this is not
a cloud-based service, so it serves as a
baseline against which to compare newer
technologies.

2) NetCDF-4 (HDFS) files placed directly in
Cloud Object Storage. This option is useful
to quantify how a legacy format performs
in the cloud.

3) Zarr stored in GCS

4) Zarr stored in the Open Storage Network
(OSN) S3-compatible object storage ser-
vice.

First we note that the OPeNDAP server was
both the slowest and the least scalable, saturat-
ing throughput at just over 100 MB/s. This is
unsurprising, given the fact that the OPeNDAP
service is likely backed by a single server and
fixed network pipe. The fastest throughputs were
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Figure 3. Read throughput of different data
access methods. Source data available at

https://zenodo.org/record/3829032. Code available at
http://gallery.pangeo.io/repos/earthcube2020/ec20_
abernathey_etal/cloud_storage.html.

obtained with the cloud-optimized format Zarr on
OSN and GCS, both achieving throughputs in ex-
cess of 1 GB/s. Interestingly, for modest levels of
parallelism (< 50 cores), OSN was actually faster
than GCS, despite the data living outside of GCP.
However, OSN eventually saturated, while GCS
continued to scale, albeit at a slower rate, as more
nodes were added. The legacy format (NetCDF-
4/HDF5) on object storage also displayed decent
scaling within the measured range, but overall
speeds were an order of magnitude slower than
Zarr. This highlights the value of cloud-optimized
formats when working with object storage.

Overall, these results show how Pangeo’s im-
plementation of a cloud-native data repository
and data-proximate computing has the potential to
process data at much faster rates than workflows
confined to personal computers. The fastest SSDs
on personal computers can deliver throughputs
of around 500 MB/s. With a modest number of
distributed compute nodes, Pangeo Cloud users
can process data at many GB/s. Moreover, with
this approach, no data need be downloaded and
only one copy of the data need be stored.

Conclusions and Future Challenges

The success of cloud public dataset programs,
and the potential of nascent efforts such as Pan-
geo’s cloud data library, shows that cloud-native
data repositories can be a viable path forward to
help data-intensive scientific fields overcome cur-
rent infrastructure challenges. Cloud-native scien-
tific platforms require both ARCO data as well as
scalable data-proximate computing. However, one
service provider need not be responsible for both.
We argue for decoupling the storage of ARCO
data from the data-proximate computing compo-
nents. These services should be interoperable yet
independent.

Despite the potential of cloud-native data
repositories to accelerate scientific discovery, we
see several challenges that will limit their adop-
tion in the near future. A central challenge
is funding. Academic research institutions and
funding systems are not accustomed to paying
for cloud computing. Structural factors, such as
indirect cost policies and the three-year grant
funding cycle, favor capital expenditure for equip-
ment over the operational expenditure of cloud
computing. Moreover, the potential cost sav-
ings associated with cloud-native repositories—
namely, the elimination of duplicate local copies
of big datasets and associated local computing
resources—can only be realized by aggregating
over many research groups. The process of mov-
ing to the cloud-native model can therefore be
thought of as a phase transition to a lower-
cost, higher-productivity state for an entire field.
Overcoming the activation energy to catalyze this
phase transition, however, may require substantial
long-term investments and encouragement from
funding agencies. We believe that the separation
of concerns between cloud-native data reposito-
ries and data-proximate computing services will
help simplify this transition.

Another challenge is user education and train-
ing. A truly cloud-native data science workflow
will not look exactly like a local one. While
novices can learn cloud-native practices from
the beginning of their training, more experienced
users will have to unlearn certain familiar pat-
terns, such as reliance on local filesystem paths
for data storage. Distributed computing tools like
Dask can be extremely powerful, but efficient
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use of these tools requires learning new con-
cepts. Even experienced HPC users, accustomed
to working with parallel processing, may feel
confused by the cloud-native concepts of elas-
tic scaling and serverless computing. Likewise,
university and lab IT staff are relatively unfa-
miliar with the administration and management
of cloud computing (in comparison to running
local servers), and this too requires new training.
Coordinated efforts are required to address these
educational needs in order to realize the potential
of cloud computing for science.

Finally, cloud-native data repositories will
have to contend with special challenges around
data access and privacy. It is perhaps unsurpris-
ing that fields like climate science and astronomy
have been early adopters of cloud-based data
sharing; the data in these fields are mostly open
access and without privacy restrictions. There-
fore, data can simply be made public and open
to all. Without flexible open tools for access con-
trol management of cloud-based data, fields with
strong privacy concerns will likely be driven to-
wards proprietary, vertically-integrated solutions
that are not modular or portable. While cloud
providers have powerful permissions functional-
ity, some technical development (and commensu-
rate agency funding) will be required to extend
the approaches described here for managing ac-
cess to less open data sets.

Despite these challenges, we remain very en-
thusiastic about the potential of cloud computing
to transform scientific research in data-intensive
fields. We hope that, by helping to define best
practices for cloud-native data repositories, we
have made a small contribution towards building
the infrastructure we need to tackle the some of
the great scientific challenges of the future.
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