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Abstract

Bacillus anthracis, the causative agent of anthrax disease, is a worldwide threat to livestock,
wildlife and public health. While analyses of genetic data from across the globe have increased
our understanding of this bacterium’s population genomic structure, the influence of selective
pressures on this successful pathogen is not well understood. In this study, we investigate the
effects of antimicrobial resistance, phage diversity, geography and isolation source in shaping
population genomic structure. We also identify a suite of candidate genes potentially under
selection, driving patterns of diversity across 356 globally extant B. anthracis genomes. We
report ten antimicrobial resistance genes and eleven different prophage sequences, resulting in
the first large-scale documentation of these genetic anomalies for this pathogen. Results of
random forest classification suggest genomic structure may be driven by a combination of
antimicrobial resistance, geography and isolation source, specific to the population cluster
examined. We found strong evidence that a recombination event linked to a gene involved in
protein synthesis may be responsible for phenotypic differences between comparatively disparate
populations. We also offer a list of genes for further examination of B. anthracis evolution, based
on high-impact single nucleotide polymorphisms and clustered mutations. The information
presented here sheds new light on the factors driving genomic structure in this notorious
pathogen and may act as a road map for future studies aimed at understanding functional

differences in terms of B. anthracis biogeography, virulence, and evolution.

Impact statement

Understanding the drivers of pathogen genomic structure allows for targeted disease

management based on factors contributing to virulence and host susceptibility. Despite the large
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range of published information on B. anthracis genetic structure, little work has been done to
understand the factors shaping its global genetic constitution. The presented data allows for the
first large-scale accounting of antimicrobial resistance and phage sequence diversity for this
species. These results suggest that antibiotic resistance genes and isolation source may be driving
aspects of population structure and emphasizes the importance of examining multiple factors

dictating pathogen evolution and genotypic persistence.

Data Summary

- All NCBI accession numbers related to sequence reads and bioproject data used in this study
are listed in Supplemental File 1.

- R script used for the random forest classification and code used for identifying clustered
mutations can be found at the following GitHub repository:

https://github.com/spencer411/B_anthracis_adaptation.

Introduction

For pathogens, consideration of intraspecific variation is central to understanding the evolution
of virulence and genotypic persistence (Ernst et al., 2020; Patel, 2016; Buckee et al., 2008).
Phenotypic and genetic variation in a population may influence ecological composition and
function, leading to increased or decreased evolutionary capacity under altered habitat regimes
(Gagneux, 2018; Myers & Cory, 2016). Incorporating intraspecific diversity into effective
management strategies demands the identification of factors influencing ecological plasticity and
reproductive success (King, 2019; Brown et al., 2012). A wide range of genomic analyses have

revealed genetic anomalies supporting ecologically variable phenotypes, suggesting a
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consequential role for genomic architecture in driving intraspecific heterogeneity (Kumar et al.,
2015; Brockhurst et al., 2005). For example, single nucleotide polymorphisms (SNPs) may
facilitate the evolution of new phenotypes through the formation of novel proteins in regions that
code for spore formation in B. anthracis or virulence factors in Clostridium difficile (Collery et
al., 2017; Liang et al., 2017). By evaluating the relationship between whole genome architecture
and ecologically relevant sequence variation, we can gain an acute understanding of how
biocomplexity drives genomic structure in pathogenic bacterium (Ekblom & Galindo, 2011).
Nevertheless, the relationship between genomic variation and adaptive relevance remains largely
unknown for the vast majority of pathogenic species (Pfeilmeier et al., 2016; Varela & Manaia,
2013).

Bacillus anthracis has been extensively studied given its ability to cause anthrax, a
disease that can be fatal to wildlife, livestock, and humans (De Vos et al., 2018). Studies that
have examined the integration of bacteriophage DNA into the B. anthracis genome have
suggested that these sequences may influence gene expression, potentially driving increased
sporulation and observable phenotypic differences (Schuch & Fischetti, 2009; Schuch &
Fischetti, 2006). In addition, antimicrobial resistance (AMR) has recently garnered a great deal
of attention given the wide range of antibiotics administered to both humans and livestock
throughout the world, driving selective resistance in a myriad of bacterium including B.
anthracis (White et al., 2002; Doganay & Aydin, 1991). Therefore, when examining B.
anthracis genomic architecture in light of selection, the use of classification methodologies that
incorporate potentially ecologically relevant differences in phage diversity and AMR may shed
light on the drivers of modern population genomic structure in this species. This in turn will

allow us to better forecast what genomic clusters or clades may pose the greatest risk of disease
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emergence and reemergence in animals and humans (Morgan et al., 2018). Nevertheless, it
should be noted that the detection of an AMR gene does not always translate to conferred
resistance (Chen et al., 2004).

Individual and regional genetic diversity that differentiates B. anthracis populations by
SNP architecture has been identified on a global scale (Zhang et al., 2020; Rondinone et al.,
2020; Khmaladze et al., 2017; Van Ert et al. 2007). Recent work has refined our understanding
of population genomic structure for this species (Bruce et al., 2020; Sahl et al., 2016). Work by
Sahl et al. sought to expand on the original B. anthracis classification system, and generated a
SNP database used to characterize the branching structure of isolates based on 193 genomes
(Sahl et al., 2016). More recent genomic analyses that comprises the largest global phylogeny of
B. anthracis to date (356 genomes) has redefined B. anthracis population genomic structure,
resulting in six primary clusters and eighteen nested clades. This new classification system uses
an intuitive, simplified naming system and allows for linkable, rapid classification (Bruce et al.,
2020). Two of the major genotype clusters, cluster 1 (C Branch) and cluster 2 (B Branch) are
vastly underrepresented in terms of prevalence and have been hypothesized to be less fit than the
majority of B. anthracis specimens isolated and sequenced (Van Ert et al., 2007; Pearson et al.,
2004; Smith et al., 2000). However, the link between genomic architecture, and the scarcity of
these genotypes remains largely unexamined. In addition, some of the individual clades
identified are geographically specific, whereas others seem to be widely distributed, raising
numerous questions about what factors are driving evolutionary success in this species (Bruce et
al., 2020; Sahl et al., 2016; Van Ert et al., 2007). Understanding the relationships among spatial
variation, population stability, and genomic architectural variation is particularly important for B.

anthracis, as it is a major threat to wildlife, livestock, and public health globally (Carlson et al.,
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2019). In this study, we explore genomic variation and selection in a global whole-genome
dataset of B. anthracis isolates spanning thirty-nine countries and six continents. In addition, we
apply an ensemble machine learning method (random forest) to elucidate the ways in which
isolation source, geography, phage diversity, and AMR genes may be shaping genomic diversity
and genotypic persistence. Random forest (RF) operates by constructing decision trees on
various sub-samples of the dataset, allowing for predictions regarding evolutionary potential at

the population level.

Methods

Whole genome mapping and assembly

The population genomic dataset used in these analyses was previously developed and published
in Bruce et al. 2020 consisting of 356 B. anthracis whole genomes collected from the NCBI
sequence read archive (Bruce et al., 2020; Supplemental File 1). Each read pair was mapped to
the fully annotated Ames Ancestor genome (accession AE017334.2), using the RedDog pipeline

(https://github.com/katholt/RedDog). Mapped reads were then subjected to extensive post-

processing to remove calls (a) found in regions with large “inexact” repeats, (b) within prophage
regions of the reference genome, (c) from regions that were found to be invariable in all but the
outgroup, (d) from regions potentially resulting from recombination, and (e) potentially related to
stutter. Full details relating to methods for mapping, SNP calling, and determination of
population genomic structure can be found in Bruce et al. 2020.

For the purpose of this study, the same trimmed sequence reads were also subjected to De
Novo assemblies using SPAdes version 3.13.0, a genome assembly algorithm specifically

developed for single cell and multi-cell bacterial isolates (Bankevich et al., 2012). De novo
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assemblies allow for the identification of unique sequences in each isolate not identifiable using

the mapping method described above.

Identification of AMR genes and phage sequence variation

We screened each assembly for AMR genes employing The Resistance Gene Identifier (RGI)
tool provided by the Comprehensive Antibiotic Resistance Database (CARD) (McArthur et al.,
2013). RGI can be used to predict resistomes from protein or nucleotide data based on homology
and SNP models. In addition to identifying AMR genes, we identified prophage sequences
within the contigs of each assembled genome using the Phage Search Tool Enhanced Release
(PHASTER) (Arndt et al., 2016). PHASTER is a web-based application that is designed to
rapidly and accurately identify, annotate and graphically display prophage sequences within
bacterial genomes or plasmids. The full phylogenetic tree of B. anthracis isolates from Bruce et
al. 2020 was then annotated using iTOL (Letunic & Bork, 2007) with both phage sequence
variation (scored as either intact, questionable, or incomplete; see Table S1 for details), and
presence (or absence) of AMR genes. AMR gene data was then plotted geographically to

understand patterns of resistance on a global scale using Adobe Illustrator (Adobe Inc., 2019).

Classifying population genomic architecture using random forest

To understand how various factors may be influencing the genomic architecture of B. anthracis
we used a random forest approach (Liaw & Wiener, 2002), incorporating AMR gene data, phage
diversity data, and isolate metadata (continent of isolation and source) accessed through the
NCBI biosample database (Barret et al., 2012). RF has gained increased attention over the past

several decades given its ability to produce excellent classification results while also being



162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

computationally inexpensive (Lind & Anderson, 2019; Chuang & Kuo, 2017). The RF classifier
produces valid classifications using predictions derived from a group of decision trees and can
also be used to select and rank those variables, allowing the user to successfully discriminate
between the target classes (Breiman, 2002). RF was carried out using the R package
randomForest (Liaw & Wiener, 2002) to construct a multitude of decision trees and determine
the mean prediction of each individual tree pertaining to the 6 primary population clusters (Bruce
et al., 2020). The R package SPM was then used to carry out a 5-fold cross validation (Li, 2018).
We first removed samples with missing values for independent variables, and
additionally removed three variables (AMR gene mphL, and phage sequence Bacillus virus 1 and
Bacillus phage PfEFR-5) which exhibited no variation across the dataset. The final dataset
resulted in 20 independent variables (Table S2). We divided the dataset into a training dataset
including 75% of the samples and a validation dataset including the other 25%. To determine
Mtry and Ntree, we used a 5-fold cross validation and grid search. To carry out 5-fold cross
validation, we randomly assigned each sample to one of five groups. For each pass of cross
validation, RF classifiers were trained with a test dataset of which one group was held out
(Svetnik et al., 2004). The model with the highest correct classification rate and Kappa index of
the classification was selected for determining values of Mtry and Ntree. We used the best
combination of the Mtry and Ntree for the final random forest model. To assess the model fit of
the random forest we subjected the model to the validation dataset and estimated the accuracy. In
order to determine the contribution of the variables to the classification in the model, the
importance of variables was evaluated by the mean decrease in accuracy. The mean decrease in

accuracy was computed with the difference between the OOB error (training observations not
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included in the bootstrap) from a dataset with the selected variable permuted and the OOB error

from the original dataset (Breiman, 2002).

Recombination, high impact SNPs, and candidate genes for selection

To determine how recombination may be influencing population genomic structure across our
dataset we first used the program Gubbins to iteratively identify loci containing elevated
densities of base substitutions in the SNP dataset (prior to removal of recombinant sequences)
(Croucher et al., 2015).

To analyze selection in non-recombining regions, we analyzed SNPs (post-removal of
recombinant sequences) using the program SnpEff (Cingolani et al., 2012). SnpEff annotates and
predicts the effects of genetic variants on genes and proteins (such as amino acid changes). To
assess “high impact” SNPs influencing population genomic structure, we compiled a list of SNPs
that produce significant changes to protein structure in the B. anthracis chromosome and
plasmids, specific to each primary cluster and groups of primary clusters, such as mutations that
result in the gain of a stop codon, the loss of a start codon, and splice region variants. We also
looked for clustered SNPs across each of the aforementioned groups to identify genes that were
possibly associated with selection using a modified version of the algorithm developed by Cui et
al. 2020 (Cui et al., 2020), classifying genes that showed 3 or more mutations within an 2000bp
range, as well as genes that showed 2 or more SNPs within a 50bp range. Clustered mutations
have a low probability of occurring under a neutral substitution model, in which variations are
assumed to be randomly distributed across the genome (Zhou et al., 2008). Examining the ratio
of nonsynonymous to synonymous SNPs at the gene level was problematic given the clonal

nature of B. anthracis and reduced variability at the level of the gene, and was therefore not
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included in our analysis. We then compiled a list of candidate genes for selection that were
identified using both methods above. Finally, we examined differences in SNP variation across
the B. anthracis virulence genes (in the plasmids), again using SNPeff to identify SNPs

potentially leading to functional differences across the different population genomic clusters.

Results

Global variation in AMR and phage diversity

We identified a total of ten AMR genes across the global collection of 356 B. anthracis genomes
analyzed (Fig. 1, Table 1). Additional information regarding the AMR genes and their frequency
are provided in Table S3. A key linking the classification framework shown here to the
previously established branch labels outlined by Sahl et al. 2016 are provided in Fig. S1. Five
AMR genes (mphL, blal, fosB, bla2, and vm/R) were found across the majority of isolates
tested. AMR gene mphL was identified in every isolate examined. AMR gene blal was absent in
two unrelated isolates, one collected in South Carolina of the United States (clade 4.3 (Vollum),
NCBI Sequence Read Archive: SRR5811007), and the other collected in Morioka, Japan (clade
5.2 (Sterne), NCBI Sequence Read Archive: DRR128181). AMR gene fosB was absent from a
single isolate collected in South Carolina (clade 4.2 (Vollum), NCBI Sequence Read Archive:
SRR5811063), and all isolates that comprise primary cluster 1 (C Branch) from the United States
(N =5). bla2 was absent from a number of other disparate samples (N = 11) and was completely
absent from all isolates that comprise clade 3.1 (Ancient A; N =4). AMR gene vm/R was present
in all isolates with the exception of a handful of closely related isolates collected in the United
States between 1956 and 1978 from clade 4.1 (Vollum, N = 3), as well as the entirety of isolates

that comprise primary cluster 5 (V770, Ames, Sterne, Aust94; N = 72). All other AMR genes
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were far rarer. AMR gene bcll was present in only 6 samples, including one isolate from
Alabama (clade 4.2 (Vollum), NCBI Sequence Read Archive: SRR1739961), one isolate from
Akita, Japan (clade 5.2 (Sterne), NCBI Sequence Read Archive: DRR128182), one isolate from
Argentina (clade 5.2 (Sterne), NCBI Sequence Read Archive: SRR5810989), and three isolates
from Albania (clade 6.1 (TEABr008/011), NCBI Sequence Read Archive: SRR2968139,
SRR2968140, and SRR2968213). AMR gene fem-116 was present in only 3 isolates all collected
in Zambia between 2012 and 2013 (clade 3.3 (Ancient A), NCBI Sequence Read Archive:
DRRO014736, DRR014737, and DRR125655). AMR gene ¢frC was present in a single isolate
from Germany (clade 5.3 (Aust94), NCBI Sequence Read Archive: SRR2968155), dfrG was
present in a single isolate from Zambia (clade 3.3 (Ancient A), NCBI Sequence Read Archive:
DRR125655), and oxa-59 was present in a single isolate from Italy (clade 6.1 (TEABr008/011),
NCBI Sequence Read Archive: SRR2968209).

In addition to AMR genes, we also identified eleven prophage sequences across our
global dataset (Fig. 2, Table S4). Prophage sequences were scored as intact, questionable, or
incomplete. Criteria related to this categorization can be found in Table S1. Additional
information regarding the phage sequences and their lineages are provided in Table S5. Bacillus
virus 1, Bacillus phage PfEFR-5, and Staphylococcus phage vB_SepS_SEP9 sequences were
detected across all of our samples. Bacillus virus 1 was determined to be intact in all isolates
examined. Bacillus phage PfEFR-5 was determined to be questionable across most isolates, but
incomplete for all isolates comprising primary cluster 1 (C Branch, N = 5), while Staphylococcus
phage vB_SepS_SEP9 was determined to be questionable across all isolates, but incomplete for
all isolates comprising primary cluster 1 and 2 (C and B Branches; N = 18). The 8 remaining

prophage sequences were scattered in comparatively minimal amounts across the global dataset,
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with the exception of Bacillus phage phBC6AS52 which was intact in a large number of the

isolates examined (N = 91), with seemingly no link to relatedness or geography among isolates.

Explaining global genomic clusters with random forest

The RF model was trained using 5-fold cross validation with a training dataset. The best model
parameter (where number of trees (Ntree) and number of variables (Mtry) equaled 400 and 9
respectively) produced a cross correlation rate that showed a high value of 83.6, while kappa
equaled 0.764. Variables examined include presence of AMR genes and phage sequences, as
well as sample source (details provided in Table S2). With this combination of Ntree and Mtry,
the out-of-bag (OOB) error based on the confusion matrix was 16.89%. Applying the model to
the validation dataset and comparing the observations and predictions, the overall accuracy was
0.861. The model always failed to predict primary cluster 1 (C Branch) for the validation dataset
(N=1), and primary cluster 2 (B Branch) for both the training set (N =9) and validation dataset
(N = 2), likely due to the reduced number of representatives comprising these clusters. The AMR
gene vmlR, the isolation source (host, environment, or industry), and the continent of isolation
were the most important variables in explaining genomic clusters across the entire dataset (Fig.
3a). The variable importance based on the mean decrease in accuracy for each individual cluster
is shown in Fig. 3b. The absence of AMR gene fosB was the strongest predictor for primary
cluster 1 (C Branch), whereas the vm/R gene in primary cluster 2 (B Branch) acted as the
strongest predictor. Nevertheless, both of these models exhibited negligible accuracy in the
confusion matrix, suggesting more data is needed for accurate classification for these two
clusters (Table S6). In cluster 3 (Ancient A) the continent of isolation was the strongest predictor

by a large margin, as the vast majority of the samples that make up this population were isolated
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in Africa. For cluster 4 (Vollum) isolation source was the strongest predictor, followed by
continent, as the majority of the isolates from this cluster were collected from industry (textile
factories, animal processing plants, etc.) in North America. For cluster 5 (V770, Ames, Sterne,
Aust94) the absence of the vin/R gene was the strongest, lone overall predictor. Finally, in cluster
6 (TEA) isolation source, presence of the vim/R gene and continent all showed comparatively
strong power in classifying this cluster as the majority of isolates from this cluster were isolated

from animal hosts in North America and Europe.

Selection’s role in shaping the B. anthracis genome

The program Gubbins predicted two instances of recombination, the first in a single isolate from
Thailand (clade 5.2 (Ames), NCBI Sequence Read Archive: SRR5811219), based on 26 SNPs,
and the second encompassing 13 isolates (comprising all of primary cluster 2 (B Branch)), based
on 24 SNPs. Both instances of predicted recombination were specific to the rrsA rRNA gene
(positions 9335-10841 in the Ames Ancestor reference genome (NCBI accession: AE017334.2),
which encodes the 16S ribosomal RNA, essential to translating messenger RNA into proteins.
After removing SNPs associated with recombination, SNP calls were split by primary
cluster designations using a hierarchical approach, grouping primary clusters based on their
nested structure, while filtering at a minimum allele frequency of 0.10 to avoid the identification
of relatively rare alleles that were not necessarily indicative of their respective population
genomic cluster. High impact SNPs were then identified using the program snpEff. A detailed
accounting of all 62 high impact SNPs identified (including their predicted effect) can be found
in Table S7. We also looked at clustered mutations in the same hierarchical manner, leading to

the identification of 122 candidate genes potentially influencing selection (Table S8). Comparing
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both methodologies, five genes that spanned clustered mutations also contained a high impact
SNP (Table 2). These include genes coding for a DNA-binding response regulator and stage 0
sporulation regulatory protein (both specific to primary cluster 1), a tetratricopeptide repeat
(TPR) domain protein (specific to primary cluster 2 (B Branch)), as well as a chlorohydrolase
family protein and a hypothetical protein (both specific to primary clusters 5 (V770, Ames,
Sterne, Aust94) through 6 (TEA)).

Lastly, we looked at non-synonymous mutations across the B. anthracis virulence genes
(in the pXO1 and pXO2 plasmids), again using a minimum allele frequency of 0.10 to avoid the
identification of relatively rare alleles that were not necessarily indicative of a group. All of the
non-synonymous SNPs identified were on the pXO1 plasmid and spanned two toxin genes; the
cya (calmodulin-sensitive adenylate cyclase) and the pagA (protective antigen) genes (Table 3).
Both of the mutations in the cya gene were specific to clade 6.3 (WNA/TEABr011) for which all
isolates were collected in western North America. In the pagA gene, one missense mutation was
specific to the genetically and geographically diverse primary cluster 4 (Vollum), and the other
to cluster 5 (V770, Ames, Sterne, Aust94), for which most of the isolates were collected in Asia

and Europe.

Discussion

Understanding the drivers of population genomic structure in pathogens is essential for making
informed decisions related to wildlife management, disease control, and public health. The data
presented in this study offers the first detailed, global accounting of AMR genes and phage

diversity in this bacterium. In addition, our findings suggest that the 6 primary clusters defining

population genomic structure in this species are consistent with differences in both AMR genes,

14



322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

geography, and the source from which they were isolated. We also demonstrate that a
recombination event linked to protein translation may take part in determining the persistence of
certain B. anthracis strains. Finally, we offer a wealth of information on genomic diversity
potentially associated with functional differences driving selection, allowing for further
investigations into B. anthracis persistence, biogeography and evolution.

AMR has gained increased attention as a major threat to public health throughout the
world (Lehtinen et al., 2019; Sekyere & Asante 2018). By documenting AMR genes on a global
scale, we can gain a better understanding of how biogeography and persistence is transforming
the genomic constitution of dangerous pathogens at both regional and wider scales (Sandulescu,
2016; Agerso et al, 2013). Based on our analysis of over 350 whole genomes we have identified
ten AMR genes present in B. anthracis isolates collected from over 35 countries, many
consistent with the different population clusters examined in this study. Five of these genes are
commonplace and can be found in the majority of isolates examined, whereas the other five are
comparatively rare across the dataset. Given the application of commonly used antibiotic drugs,
such as penicillin, doxycycline, and ciprofloxacin to treat B. anthracis infections, the regions
where rare antibiotic resistant gene isolates were sampled may benefit from monitoring, in order
to document the persistence of these novel, resistant population clusters and modify antibiotic
treatments for effectiveness (Heine et al., 2017; Kelly et al., 1992). The resistance gene bcll for
example, which was found in only six samples is known to hydrolyze a large number of
penicillins (Table 1). Rarer antibiotic resistant gene strains such as these may be indicative of a
larger problem with antibiotic resistance in other dangerous pathogens as well, especially if the
overuse of certain antibiotics is driving resistance in those regions where novel resistance genes

reside (Mather et al., 2016).
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The influence of bacteriophage sequences on population genomic structure across the
global dataset is less clear. As with AMR genes, several phage sequences were commonplace
across isolates examined, while others were rarer or without pattern. Phage diversity was the
least important factor in predicting population genomic structure based on the random forest
technique applied in this study. This is in contrast to studies of other pathogens, where phage
sequence variation has been consistent with population genomic structure and therefore used for
strain typing (Uelze et al., 2020; Neufeld et al., 2003). Although previous studies have suggested
some phage sequences may affect certain bacterial processes in B. anthracis, such as sporulation
(Schuch & Fischetti, 2009; Schuch & Fischetti, 2006), there was not an observable example of
this leading to any advantage reflected in the form of genetically similar population clusters.

Applying the random forest model, population genomic structure was most readily
described by a combination of AMR genes, isolation location and source. The strongest predictor
of population genomic structure when examining the dataset in its entirety was the presence of
the AMR gene vm/R, which was completely absent in primary cluster 5 (which was A.Br.001 —
A.Br.004 (Ames, Sterne, Aust94, V770) in the original classification system), the most
genetically diverse population cluster examined in this study from which isolates were collected
across Europe, Asia, Africa and the Americas. Interestingly, isolation source (host, environment,
or industry) was the second strongest predictor, suggesting that some strains of B. anthracis may
be better suited to different environmental circumstances (or at least more readily cultured within
them). Previous work that has examined population genomic structure has suggested that
environmental growth outside of the host is possible (Sahl et al., 2016). Additionally, strains
collected from industry may represent geographic consistencies in raw wool procural rather than

a niche associated with this type of artificial environment (Pilo & Frey 2018; Irenge & Gala,
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2012). Nevertheless, long latent periods in the spore phase may be hindering our ability to detect
environmental consistencies with population genomic structure. Not surprisingly the continent of
isolation was also a strong predictor in terms of population genomic structure, consistent with
expected biogeographic patterns based on centuries of dispersal, complex trading patterns and
global commerce. These findings are largely consistent with past work that has examined the
population genetics and ubiquitous dissemination of this bacterium (Pilo & Frey 2018; Sahl et
al., 2016; Van Ert et al., 2007). These combined forces—AMR genes, isolation source and
biogeography—all seem to play a role in defining modern population structure in this bacterium.

Using random forest models to look at the factors influencing each primary cluster
individually, we found that varying circumstances seem to act as predictors for each individual
cluster. The most underrepresented group, primary cluster 1, previously referred to as the C
Branch in the B. anthracis literature and viewed as a rarely occurring clade (Sahl et al., 2016;
Van Ert et al., 2007), is largely defined by the absence of the AMR gene fosB, which is found
universally across all other population clusters examined. The relatively rare primary cluster 2 (B
Branch) was not easily defined by any of the variables examined. Nevertheless, classification
performance for both primary cluster 1 and 2 were equally poor when assessing the accuracy.
Previous work that has specifically examined isolates belonging to cluster 2 from Kruger
National Park found that they were prevalent in more alkaline calcium rich soils than the cluster
3 (Ancient A) isolates occurring in the same region (Smith et al., 2000). Cluster 3 (Ancient A)
was described primarily by its isolation from the continent of Africa (although there are several
isolates from elsewhere as well) suggesting that isolates from this group may be uniquely suited
to or may have originated in this region. Primary cluster 4 is primarily described by a

combination of isolation source and continent. This group, formerly referred to as A.Br.007 or
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Vollum in the literature, was isolated almost exclusively in a manufacturing setting in North
America. Metadata and historical records for some of these isolates which were originally
sequenced by the Center of Disease Control (CDC) suggest that these isolates may have
originated in other areas, most notably Asia and the Middle East (Pilo & Frey 2018; Derzelle et
al., 2016). Cluster 5 (A.Br 001-004) is most readily described by the complete absence of the
AMR gene vmlR. Lastly, cluster 6 (previously the A.Br.008 and A.Br.009 lineages (TAE)) was
primarily described by isolation source, as the majority of these isolates were collected from
animal hosts throughout Europe and North America, although this group also contained isolates
from Asia and South America in smaller numbers.

When examining population genomic structure in the context of candidate genes for
selection, we see that recombination specific to primary cluster 2 (previously known as B
Branch) may be responsible for the comparatively extreme difference in population structure in
this group when compared to groups 3 through 6 (A Branch). A study that specifically looked at
this group suggests that there may be phenotypic differences leading to contrasting mechanisms
of infection, make this group specifically well suited to bovine species (Pilo & Frey 2018).
Given that this recombination event is rooted in a gene responsible for protein translation, these
results support the hypothesis that phenotypic and functional traits for this cluster may be
substantially different from the others.

We examined genes that were identified using two methods for pinpointing candidates
for selection (high-impact SNPs and clustered mutations) and found that a range of functional
differences may be driving population genomic structure. Primary cluster 1 (C Branch) exhibited
premature stop codons in two genes, a DNA-binding response regulator and a stage 0 sporulation

regulatory protein. If these premature stop codons are hindering this cluster’s ability to produce
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proteins and influencing the timing and magnitude of sporulation, then this may indeed be why
they are so underrepresented in the global dataset, and comparatively rare. Primary cluster 2 (B
Branch) exhibited a premature stop codon in the TPR domain protein. TPR proteins may act as
scaffolds for the assembly of different multiprotein complexes (Whitfield & Mainprize, 2010). A
premature stop codon in this sequence may be similarly affecting primary cluster 2’s ability to
persist and reproduce leading to its similar rarity across the remainder of the global dataset (N =
13/356). When primary clusters 5 and 6 are examined as a unit we see that the chlorohydrolase
family protein exhibits a premature stop codon. Hydrolase proteins commonly perform as
biochemical catalysts that use water to break a chemical bond, which typically results in dividing
larger molecules into smaller molecules (Quinn et al., 2007). If this protein lacks the ability to
perform this function, isolates specific to this group may be functionally different than the other
population groupings. Overall these findings lay the groundwork for future studies into B.
anthracis evolution, allowing for investigations into how protein structure drives functional and
phenotypic differences across varied lineages.

Lastly, we looked at the B. anthracis virulence genes and found that several missense
mutations may be influencing protein structure in some population clusters relative to others.
Primary clusters 4 (Vollum) and 5 (A.Br001-004), the 2" and 3™ most common designations
across all isolates examined, exhibited different missense mutations in the pagA gene. The pagA
gene encodes the protective antigen (PA), which binds to a receptor in sensitive eukaryotic cells,
thereby facilitating the translocation of the enzymatic toxin components, edema factor and lethal
factor, across the target cell membrane (Koehler, 2007). Past work on this gene found six
different haplotypes, which translate into three different amino acid sequences. Amino acid

changes were shown to be located in an area near a highly antigenic region critical to lethal
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factor binding (Price et al., 1999). These mutations may therefore explain these cluster’s
comparatively robust prevalence compared to some others if this differentiated structure is more
beneficial to genotypic persistence. We also found two mutations in the cya gene specific to
clade 6.3 (WNA) entirely from North America. The cya gene codes for the calmodulin-sensitive
adenylate cyclase that, when associated with PA, causes edema. This protein product is not toxic
in and of itself, although it is required for the survival of germinated spores within macrophages
at the early stages of infection, provoking dramatic elevation of intracellular cAMP levels in the
host (Pezard et al., 1991).

When evaluating the population genomic structure of B. anthracis in light of
biogeography, AMR, phage diversity and candidate genes for selection, we find varying
explanations for differences in population genomic structure. Nevertheless, it should be noted
that in a mined-dataset such as this, inaccuracy in metadata and/or sequencing have the potential
to produce unintentional errors. In addition, our dataset is highly biased towards developed
countries where whole genome sequencing technology is readily available and government
support for such work is more abundant. Given the complex dispersal history of this notorious
pathogen and the competing factors that ultimately sculpt its global genomic architecture, no
single factor alone can be attributed to its modern genomic constitution. Despite these limitations
we were able to determine the most influential factors consistent with differences and similarities
among lineages using modern bioinformatic techniques. The information provided in this study
not only offers a detailed accounting of AMR genes and phage diversity in this species, but also
allows for the groundwork upon which future B. anthracis studies into evolution can be built.

This work has the potential to drive further discovery of functional differences in terms of
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virulence and genotypic persistence that may ultimately help to inform management strategies in

the realm of public health and wildlife conservation.
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Table 1. AMR genes and their definitions from the Comprehensive Antibiotic Resistance
Database (CARD).

Name Resistance Accession Definition
mechanism

mphL antibiotic inactivation =~ ARO:3003072 A chromosomally-encoded macrolide
phosphotransferases that inactivates macrolides such as
erythromycin, clarithromycin, azithromycin

blal antibiotic inactivation =~ ARO:3000090 A chromosomal-encoded beta-lactamase, which
hydrolyzes penicillins

fosB antibiotic inactivation =~ ARO:3000172 A thiol transferase that leads to the resistance of
Fosfomycin

bla2 antibiotic inactivation =~ ARO:3004189 A chromosomal-encoded beta-lactamase, which has
penicillin, cephalosporin, and carbapenem-hydrolizing
abilities)

vmIR antibiotic target ARO:3004476  An ABC-F ATPase ribosomal protection protein shown

protection to confer resistance to lincomycin and streptogramin A

virginiamycin

bell antibiotic inactivation =~ ARO:3002878 A zinc metallo-beta-lactamase that hydrolyzes a large
number of penicillins and cephalosporins

tem-116  antibiotic inactivation =~ ARO:3000979 A broad-spectrum beta-lactamase found in many species
of bacteria

cfirC antibiotic target ARO:3004146 A cfr-like 23S rRNA methyltransferase shown to confer

alteration

resistance to linezolid and phenicol antibiotics, including
florfenicol and chloramphenicol
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dfirG antibiotic target ARO:3002868 A plasmid-encoded dihydrofolate reductase
replacement
oxa-59 antibiotic inactivation =~ ARO:3001772 A beta-lactamase

728

729  Table 2. Information for SNPs that exhibit a potentially high impact effect and fall within

730  clustered mutations across the B. anthracis genome. Positions are relative to the Ames Ancestor
731  reference genome (NCBI accession: AE017334.2).

Cluster Position Ref Alt Comparative effect Gene/Product

1 1260604 C T stop gained DNA-binding response regulator
1292469 C A stop gained stage 0 sporulation regulatory protein

2 3140849 A T stop gained TPR domain protein

5 through 6 1748642 A T stop gained chlorohydrolase family protein
2423864 T C start lost hypothetical protein

732
733 Table 3. Information for non-synonymous SNPs in virulence genes across the B. anthracis

734  plasmids. Positions are relative to the Ames Ancestor reference genome (NCBI accession:
735  AE017336).

Cluster.clade  Position Plasmid Ref Alt Comparative effect Gene/Product

6.3 123936 pXO1 A T missense mutation cya: calmodulin-sensitive
adenylate cyclase

6.3 124007 pXO1 A G missense mutation cya: calmodulin-sensitive
adenylate cyclase

4 145471 pXO1 C T missense mutation pagA: protective antigen

145577 pXO1 C T missense mutation pagA: protective antigen

736
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738  Figure 1. AMR genes identified in the whole-chromosome tree of 356 global B. anthracis

739  isolates (a). Primary clusters are divided into their numbered nested clades by gray lines. The key
740  on the right lists the 10 AMR genes identified. Outer rings reflect presence (color) or absence
741  (white) of each gene across all isolates in the phylogeny. A world map depicting the prevalence
742 of AMR genes is depicted in (b). Each circle represents an AMR gene colored according to the
743  key and figure above. Percentages represent the total proportion of isolates from each continent
744  where the respective AMR gene was identified (including North America, South America,

745  Europe, Asia, and Oceania). See Fig. S1 for a key to previously established classification

746  schemes.
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. intact
. questionable

. incomplete

1. Bacillus virus 1

2. Bacillus phage PfEFR-5

3. Staphylococcus phage vB_SepS_SEP9
4. Bacillus phage phBC6A52

5. Bacillus phage phi4B1

6. Bacillus phage phi4J1

7. Enterobacteria phage phiX174
8. Bacillus phage Gamma

Tree scale: 0.01 —= 9. Bacillus virus Wbeta

10. Bacillus phage phiCM3

11. Bacillus virus AP50

Figure 2. Prophage sequences identified in whole-chromosome tree of 356 global B. anthracis
isolates. Primary clusters are divided into their numbered nested clades by grey lines. The key on
the right indicates the phage sequence present for each isolate, numbered according to their order
from the inside of the ring to the outside. Color indicates whether the phage sequence was
determined to be intact, questionable or incomplete. Criteria related to this categorization can be
found in Table S1. See Fig. S1 for a key to previously established classification schemes.
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758
759  Figure 3. Importance of the covariates in defining population genomic architecture for all primary clusters combined (a) and for each

760  primary cluster on its own (b) by the random forest classifier.
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