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Abstract 24 

Bacillus anthracis, the causative agent of anthrax disease, is a worldwide threat to livestock, 25 

wildlife and public health. While analyses of genetic data from across the globe have increased 26 

our understanding of this bacterium’s population genomic structure, the influence of selective 27 

pressures on this successful pathogen is not well understood. In this study, we investigate the 28 

effects of antimicrobial resistance, phage diversity, geography and isolation source in shaping 29 

population genomic structure. We also identify a suite of candidate genes potentially under 30 

selection, driving patterns of diversity across 356 globally extant B. anthracis genomes. We 31 

report ten antimicrobial resistance genes and eleven different prophage sequences, resulting in 32 

the first large-scale documentation of these genetic anomalies for this pathogen. Results of 33 

random forest classification suggest genomic structure may be driven by a combination of 34 

antimicrobial resistance, geography and isolation source, specific to the population cluster 35 

examined. We found strong evidence that a recombination event linked to a gene involved in 36 

protein synthesis may be responsible for phenotypic differences between comparatively disparate 37 

populations. We also offer a list of genes for further examination of B. anthracis evolution, based 38 

on high-impact single nucleotide polymorphisms and clustered mutations. The information 39 

presented here sheds new light on the factors driving genomic structure in this notorious 40 

pathogen and may act as a road map for future studies aimed at understanding functional 41 

differences in terms of B. anthracis biogeography, virulence, and evolution. 42 

 43 

Impact statement 44 

Understanding the drivers of pathogen genomic structure allows for targeted disease 45 

management based on factors contributing to virulence and host susceptibility. Despite the large 46 



 

 

3 

range of published information on B. anthracis genetic structure, little work has been done to 47 

understand the factors shaping its global genetic constitution. The presented data allows for the 48 

first large-scale accounting of antimicrobial resistance and phage sequence diversity for this 49 

species. These results suggest that antibiotic resistance genes and isolation source may be driving 50 

aspects of population structure and emphasizes the importance of examining multiple factors 51 

dictating pathogen evolution and genotypic persistence. 52 

 53 

Data Summary 54 

- All NCBI accession numbers related to sequence reads and bioproject data used in this study 55 

are listed in Supplemental File 1. 56 

- R script used for the random forest classification and code used for identifying clustered 57 

mutations can be found at the following GitHub repository: 58 

https://github.com/spencer411/B_anthracis_adaptation.  59 

 60 

Introduction 61 

For pathogens, consideration of intraspecific variation is central to understanding the evolution 62 

of virulence and genotypic persistence (Ernst et al., 2020; Patel, 2016; Buckee et al., 2008). 63 

Phenotypic and genetic variation in a population may influence ecological composition and 64 

function, leading to increased or decreased evolutionary capacity under altered habitat regimes 65 

(Gagneux, 2018; Myers & Cory, 2016). Incorporating intraspecific diversity into effective 66 

management strategies demands the identification of factors influencing ecological plasticity and 67 

reproductive success (King, 2019; Brown et al., 2012). A wide range of genomic analyses have 68 

revealed genetic anomalies supporting ecologically variable phenotypes, suggesting a 69 

https://github.com/spencer411/B_anthracis_adaptation
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consequential role for genomic architecture in driving intraspecific heterogeneity (Kumar et al., 70 

2015; Brockhurst et al., 2005). For example, single nucleotide polymorphisms (SNPs) may 71 

facilitate the evolution of new phenotypes through the formation of novel proteins in regions that 72 

code for spore formation in B. anthracis or virulence factors in Clostridium difficile (Collery et 73 

al., 2017; Liang et al., 2017). By evaluating the relationship between whole genome architecture 74 

and ecologically relevant sequence variation, we can gain an acute understanding of how 75 

biocomplexity drives genomic structure in pathogenic bacterium (Ekblom & Galindo, 2011). 76 

Nevertheless, the relationship between genomic variation and adaptive relevance remains largely 77 

unknown for the vast majority of pathogenic species (Pfeilmeier et al., 2016; Varela & Manaia, 78 

2013). 79 

 Bacillus anthracis has been extensively studied given its ability to cause anthrax, a 80 

disease that can be fatal to wildlife, livestock, and humans (De Vos et al., 2018). Studies that 81 

have examined the integration of bacteriophage DNA into the B. anthracis genome have 82 

suggested that these sequences may influence gene expression, potentially driving increased 83 

sporulation and observable phenotypic differences (Schuch & Fischetti, 2009; Schuch & 84 

Fischetti, 2006). In addition, antimicrobial resistance (AMR) has recently garnered a great deal 85 

of attention given the wide range of antibiotics administered to both humans and livestock 86 

throughout the world, driving selective resistance in a myriad of bacterium including B. 87 

anthracis (White et al., 2002; Doĝanay & Aydin, 1991).  Therefore, when examining B. 88 

anthracis genomic architecture in light of selection, the use of classification methodologies that 89 

incorporate potentially ecologically relevant differences in phage diversity and AMR may shed 90 

light on the drivers of modern population genomic structure in this species. This in turn will 91 

allow us to better forecast what genomic clusters or clades may pose the greatest risk of disease 92 
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emergence and reemergence in animals and humans (Morgan et al., 2018). Nevertheless, it 93 

should be noted that the detection of an AMR gene does not always translate to conferred 94 

resistance (Chen et al., 2004). 95 

Individual and regional genetic diversity that differentiates B. anthracis populations by 96 

SNP architecture has been identified on a global scale (Zhang et al., 2020; Rondinone et al., 97 

2020; Khmaladze et al., 2017; Van Ert et al. 2007). Recent work has refined our understanding 98 

of population genomic structure for this species (Bruce et al., 2020; Sahl et al., 2016). Work by 99 

Sahl et al. sought to expand on the original B. anthracis classification system, and generated a 100 

SNP database used to characterize the branching structure of isolates based on 193 genomes 101 

(Sahl et al., 2016). More recent genomic analyses that comprises the largest global phylogeny of 102 

B. anthracis to date (356 genomes) has redefined B. anthracis population genomic structure, 103 

resulting in six primary clusters and eighteen nested clades. This new classification system uses 104 

an intuitive, simplified naming system and allows for linkable, rapid classification (Bruce et al., 105 

2020). Two of the major genotype clusters, cluster 1 (C Branch) and cluster 2 (B Branch) are 106 

vastly underrepresented in terms of prevalence and have been hypothesized to be less fit than the 107 

majority of B. anthracis specimens isolated and sequenced (Van Ert et al., 2007; Pearson et al., 108 

2004; Smith et al., 2000). However, the link between genomic architecture, and the scarcity of 109 

these genotypes remains largely unexamined. In addition, some of the individual clades 110 

identified are geographically specific, whereas others seem to be widely distributed, raising 111 

numerous questions about what factors are driving evolutionary success in this species (Bruce et 112 

al., 2020; Sahl et al., 2016; Van Ert et al., 2007). Understanding the relationships among spatial 113 

variation, population stability, and genomic architectural variation is particularly important for B. 114 

anthracis, as it is a major threat to wildlife, livestock, and public health globally (Carlson et al., 115 
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2019). In this study, we explore genomic variation and selection in a global whole-genome 116 

dataset of B. anthracis isolates spanning thirty-nine countries and six continents. In addition, we 117 

apply an ensemble machine learning method (random forest) to elucidate the ways in which 118 

isolation source, geography, phage diversity, and AMR genes may be shaping genomic diversity 119 

and genotypic persistence. Random forest (RF) operates by constructing decision trees on 120 

various sub-samples of the dataset, allowing for predictions regarding evolutionary potential at 121 

the population level. 122 

 123 

Methods 124 

Whole genome mapping and assembly 125 

The population genomic dataset used in these analyses was previously developed and published 126 

in Bruce et al. 2020 consisting of 356 B. anthracis whole genomes collected from the NCBI 127 

sequence read archive (Bruce et al., 2020; Supplemental File 1). Each read pair was mapped to 128 

the fully annotated Ames Ancestor genome (accession AE017334.2), using the RedDog pipeline 129 

(https://github.com/katholt/RedDog). Mapped reads were then subjected to extensive post-130 

processing to remove calls (a) found in regions with large “inexact” repeats, (b) within prophage 131 

regions of the reference genome, (c) from regions that were found to be invariable in all but the 132 

outgroup, (d) from regions potentially resulting from recombination, and (e) potentially related to 133 

stutter. Full details relating to methods for mapping, SNP calling, and determination of 134 

population genomic structure can be found in Bruce et al. 2020.  135 

For the purpose of this study, the same trimmed sequence reads were also subjected to De 136 

Novo assemblies using SPAdes version 3.13.0, a genome assembly algorithm specifically 137 

developed for single cell and multi-cell bacterial isolates (Bankevich et al., 2012). De novo 138 

https://github.com/katholt/RedDog
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assemblies allow for the identification of unique sequences in each isolate not identifiable using 139 

the mapping method described above. 140 

 141 

Identification of AMR genes and phage sequence variation 142 

We screened each assembly for AMR genes employing The Resistance Gene Identifier (RGI) 143 

tool provided by the Comprehensive Antibiotic Resistance Database (CARD) (McArthur et al., 144 

2013). RGI can be used to predict resistomes from protein or nucleotide data based on homology 145 

and SNP models. In addition to identifying AMR genes, we identified prophage sequences 146 

within the contigs of each assembled genome using the Phage Search Tool Enhanced Release 147 

(PHASTER) (Arndt et al., 2016). PHASTER is a web-based application that is designed to 148 

rapidly and accurately identify, annotate and graphically display prophage sequences within 149 

bacterial genomes or plasmids. The full phylogenetic tree of B. anthracis isolates from Bruce et 150 

al. 2020 was then annotated using iTOL (Letunic & Bork, 2007) with both phage sequence 151 

variation (scored as either intact, questionable, or incomplete; see Table S1 for details), and 152 

presence (or absence) of AMR genes. AMR gene data was then plotted geographically to 153 

understand patterns of resistance on a global scale using Adobe Illustrator (Adobe Inc., 2019).  154 

 155 

Classifying population genomic architecture using random forest 156 

To understand how various factors may be influencing the genomic architecture of B. anthracis 157 

we used a random forest approach (Liaw & Wiener, 2002), incorporating AMR gene data, phage 158 

diversity data, and isolate metadata (continent of isolation and source) accessed through the 159 

NCBI biosample database (Barret et al., 2012). RF has gained increased attention over the past 160 

several decades given its ability to produce excellent classification results while also being 161 
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computationally inexpensive (Lind & Anderson, 2019; Chuang & Kuo, 2017). The RF classifier 162 

produces valid classifications using predictions derived from a group of decision trees and can 163 

also be used to select and rank those variables, allowing the user to successfully discriminate 164 

between the target classes (Breiman, 2002). RF was carried out using the R package 165 

randomForest (Liaw & Wiener, 2002) to construct a multitude of decision trees and determine 166 

the mean prediction of each individual tree pertaining to the 6 primary population clusters (Bruce 167 

et al., 2020). The R package SPM was then used to carry out a 5-fold cross validation (Li , 2018). 168 

We first removed samples with missing values for independent variables, and 169 

additionally removed three variables (AMR gene mphL, and phage sequence Bacillus virus 1 and 170 

Bacillus phage PfEFR-5) which exhibited no variation across the dataset. The final dataset 171 

resulted in 20 independent variables (Table S2). We divided the dataset into a training dataset 172 

including 75% of the samples and a validation dataset including the other 25%. To determine 173 

Mtry and Ntree, we used a 5-fold cross validation and grid search. To carry out 5-fold cross 174 

validation, we randomly assigned each sample to one of five groups. For each pass of cross 175 

validation, RF classifiers were trained with a test dataset of which one group was held out 176 

(Svetnik et al., 2004). The model with the highest correct classification rate and Kappa index of 177 

the classification was selected for determining values of Mtry and Ntree. We used the best 178 

combination of the Mtry and Ntree for the final random forest model. To assess the model fit of 179 

the random forest we subjected the model to the validation dataset and estimated the accuracy. In 180 

order to determine the contribution of the variables to the classification in the model, the 181 

importance of variables was evaluated by the mean decrease in accuracy. The mean decrease in 182 

accuracy was computed with the difference between the OOB error (training observations not 183 
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included in the bootstrap) from a dataset with the selected variable permuted and the OOB error 184 

from the original dataset (Breiman, 2002). 185 

 186 

Recombination, high impact SNPs, and candidate genes for selection 187 

To determine how recombination may be influencing population genomic structure across our 188 

dataset we first used the program Gubbins to iteratively identify loci containing elevated 189 

densities of base substitutions in the SNP dataset (prior to removal of recombinant sequences) 190 

(Croucher et al., 2015). 191 

To analyze selection in non-recombining regions, we analyzed SNPs (post-removal of 192 

recombinant sequences) using the program SnpEff (Cingolani et al., 2012). SnpEff annotates and 193 

predicts the effects of genetic variants on genes and proteins (such as amino acid changes). To 194 

assess “high impact” SNPs influencing population genomic structure, we compiled a list of SNPs 195 

that produce significant changes to protein structure in the B. anthracis chromosome and 196 

plasmids, specific to each primary cluster and groups of primary clusters, such as mutations that 197 

result in the gain of a stop codon, the loss of a start codon, and splice region variants. We also 198 

looked for clustered SNPs across each of the aforementioned groups to identify genes that were 199 

possibly associated with selection using a modified version of the algorithm developed by Cui et 200 

al. 2020 (Cui et al., 2020), classifying genes that showed 3 or more mutations within an 2000bp 201 

range, as well as genes that showed 2 or more SNPs within a 50bp range. Clustered mutations 202 

have a low probability of occurring under a neutral substitution model, in which variations are 203 

assumed to be randomly distributed across the genome (Zhou et al., 2008). Examining the ratio 204 

of  nonsynonymous to synonymous SNPs at the gene level was problematic given the clonal 205 

nature of B. anthracis and reduced variability at the level of the gene, and was therefore not 206 
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included in our analysis. We then compiled a list of candidate genes for selection that were 207 

identified using both methods above. Finally, we examined differences in SNP variation across 208 

the B. anthracis virulence genes (in the plasmids), again using SNPeff to identify SNPs 209 

potentially leading to functional differences across the different population genomic clusters. 210 

 211 

Results 212 

Global variation in AMR and phage diversity 213 

We identified a total of ten AMR genes across the global collection of 356 B. anthracis genomes 214 

analyzed (Fig. 1, Table 1). Additional information regarding the AMR genes and their frequency 215 

are provided in Table S3. A key linking the classification framework shown here to the 216 

previously established branch labels outlined by Sahl et al. 2016 are provided in Fig. S1. Five 217 

AMR genes (mphL, bla1, fosB, bla2, and vmlR) were found across the majority of isolates 218 

tested. AMR gene mphL was identified in every isolate examined. AMR gene bla1 was absent in 219 

two unrelated isolates, one collected in South Carolina of the United States (clade 4.3 (Vollum), 220 

NCBI Sequence Read Archive: SRR5811007), and the other collected in Morioka, Japan (clade 221 

5.2 (Sterne), NCBI Sequence Read Archive: DRR128181). AMR gene fosB was absent from a 222 

single isolate collected in South Carolina (clade 4.2 (Vollum), NCBI Sequence Read Archive: 223 

SRR5811063), and all isolates that comprise primary cluster 1 (C Branch) from the United States 224 

(N = 5). bla2 was absent from a number of other disparate samples (N = 11) and was completely 225 

absent from all isolates that comprise clade 3.1 (Ancient A; N = 4). AMR gene vmlR was present 226 

in all isolates with the exception of a handful of closely related isolates collected in the United 227 

States between 1956 and 1978 from clade 4.1 (Vollum, N = 3), as well as the entirety of isolates 228 

that comprise primary cluster 5 (V770, Ames, Sterne, Aust94; N = 72). All other AMR genes 229 



 

 

11 

were far rarer. AMR gene bcII was present in only 6 samples, including one isolate from 230 

Alabama (clade 4.2 (Vollum), NCBI Sequence Read Archive: SRR1739961), one isolate from 231 

Akita, Japan (clade 5.2 (Sterne), NCBI Sequence Read Archive: DRR128182), one isolate from 232 

Argentina (clade 5.2 (Sterne), NCBI Sequence Read Archive: SRR5810989), and three isolates 233 

from Albania (clade 6.1 (TEABr008/011), NCBI Sequence Read Archive: SRR2968139, 234 

SRR2968140, and SRR2968213). AMR gene tem-116 was present in only 3 isolates all collected 235 

in Zambia between 2012 and 2013 (clade 3.3 (Ancient A), NCBI Sequence Read Archive: 236 

DRR014736, DRR014737, and DRR125655). AMR gene cfrC was present in a single isolate 237 

from Germany (clade 5.3 (Aust94), NCBI Sequence Read Archive: SRR2968155), dfrG was 238 

present in a single isolate from Zambia (clade 3.3 (Ancient A), NCBI Sequence Read Archive: 239 

DRR125655), and oxa-59 was present in a single isolate from Italy (clade 6.1 (TEABr008/011), 240 

NCBI Sequence Read Archive: SRR2968209). 241 

In addition to AMR genes, we also identified eleven prophage sequences across our 242 

global dataset (Fig. 2, Table S4). Prophage sequences were scored as intact, questionable, or 243 

incomplete. Criteria related to this categorization can be found in Table S1. Additional 244 

information regarding the phage sequences and their lineages are provided in Table S5. Bacillus 245 

virus 1, Bacillus phage PfEFR-5, and Staphylococcus phage vB_SepS_SEP9 sequences were 246 

detected across all of our samples. Bacillus virus 1 was determined to be intact in all isolates 247 

examined. Bacillus phage PfEFR-5 was determined to be questionable across most isolates, but 248 

incomplete for all isolates comprising primary cluster 1 (C Branch, N = 5), while Staphylococcus 249 

phage vB_SepS_SEP9 was determined to be questionable across all isolates, but incomplete for 250 

all isolates comprising primary cluster 1 and 2 (C and B Branches; N = 18). The 8 remaining 251 

prophage sequences were scattered in comparatively minimal amounts across the global dataset, 252 
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with the exception of Bacillus phage phBC6A52 which was intact in a large number of the 253 

isolates examined (N = 91), with seemingly no link to relatedness or geography among isolates. 254 

 255 

Explaining global genomic clusters with random forest 256 

The RF model was trained using 5-fold cross validation with a training dataset. The best model 257 

parameter (where number of trees (Ntree) and number of variables (Mtry) equaled 400 and 9 258 

respectively) produced a cross correlation rate that showed a high value of 83.6, while kappa 259 

equaled 0.764. Variables examined include presence of AMR genes and phage sequences, as 260 

well as sample source (details provided in Table S2). With this combination of Ntree and Mtry, 261 

the out-of-bag (OOB) error based on the confusion matrix was 16.89%. Applying the model to 262 

the validation dataset and comparing the observations and predictions, the overall accuracy was 263 

0.861. The model always failed to predict primary cluster 1 (C Branch) for the validation dataset 264 

(N = 1), and primary cluster 2 (B Branch) for both the training set (N = 9) and validation dataset 265 

(N = 2), likely due to the reduced number of representatives comprising these clusters. The AMR 266 

gene vmlR, the isolation source (host, environment, or industry), and the continent of isolation 267 

were the most important variables in explaining genomic clusters across the entire dataset (Fig. 268 

3a). The variable importance based on the mean decrease in accuracy for each individual cluster 269 

is shown in Fig. 3b. The absence of AMR gene fosB was the strongest predictor for primary 270 

cluster 1 (C Branch), whereas the vmlR gene in primary cluster 2 (B Branch) acted as the 271 

strongest predictor. Nevertheless, both of these models exhibited negligible accuracy in the 272 

confusion matrix, suggesting more data is needed for accurate classification for these two 273 

clusters (Table S6). In cluster 3 (Ancient A) the continent of isolation was the strongest predictor 274 

by a large margin, as the vast majority of the samples that make up this population were isolated 275 
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in Africa. For cluster 4 (Vollum) isolation source was the strongest predictor, followed by 276 

continent, as the majority of the isolates from this cluster were collected from industry (textile 277 

factories, animal processing plants, etc.) in North America. For cluster 5 (V770, Ames, Sterne, 278 

Aust94) the absence of the vmlR gene was the strongest, lone overall predictor. Finally, in cluster 279 

6 (TEA) isolation source, presence of the vmlR gene and continent all showed comparatively 280 

strong power in classifying this cluster as the majority of isolates from this cluster were isolated 281 

from animal hosts in North America and Europe. 282 

 283 

Selection’s role in shaping the B. anthracis genome 284 

The program Gubbins predicted two instances of recombination, the first in a single isolate from 285 

Thailand (clade 5.2 (Ames), NCBI Sequence Read Archive: SRR5811219), based on 26 SNPs, 286 

and the second encompassing 13 isolates (comprising all of primary cluster 2 (B Branch)), based 287 

on 24 SNPs. Both instances of predicted recombination were specific to the rrsA rRNA gene 288 

(positions 9335–10841 in the Ames Ancestor reference genome (NCBI accession: AE017334.2), 289 

which encodes the 16S ribosomal RNA, essential to translating messenger RNA into proteins. 290 

After removing SNPs associated with recombination, SNP calls were split by primary 291 

cluster designations using a hierarchical approach, grouping primary clusters based on their 292 

nested structure, while filtering at a minimum allele frequency of 0.10 to avoid the identification 293 

of relatively rare alleles that were not necessarily indicative of their respective population 294 

genomic cluster. High impact SNPs were then identified using the program snpEff. A detailed 295 

accounting of all 62 high impact SNPs identified (including their predicted effect) can be found 296 

in Table S7. We also looked at clustered mutations in the same hierarchical manner, leading to 297 

the identification of 122 candidate genes potentially influencing selection (Table S8). Comparing 298 
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both methodologies, five genes that spanned clustered mutations also contained a high impact 299 

SNP (Table 2). These include genes coding for a DNA-binding response regulator and stage 0 300 

sporulation regulatory protein (both specific to primary cluster 1), a tetratricopeptide repeat 301 

(TPR) domain protein (specific to primary cluster 2 (B Branch)), as well as a chlorohydrolase 302 

family protein and a hypothetical protein (both specific to primary clusters 5 (V770, Ames, 303 

Sterne, Aust94) through 6 (TEA)). 304 

Lastly, we looked at non-synonymous mutations across the B. anthracis virulence genes 305 

(in the pXO1 and pXO2 plasmids), again using a minimum allele frequency of 0.10 to avoid the 306 

identification of relatively rare alleles that were not necessarily indicative of a group. All of the 307 

non-synonymous SNPs identified were on the pXO1 plasmid and spanned two toxin genes; the 308 

cya (calmodulin-sensitive adenylate cyclase) and the pagA (protective antigen) genes (Table 3). 309 

Both of the mutations in the cya gene were specific to clade 6.3 (WNA/TEABr011) for which all 310 

isolates were collected in western North America. In the pagA gene, one missense mutation was 311 

specific to the genetically and geographically diverse primary cluster 4 (Vollum), and the other 312 

to cluster 5 (V770, Ames, Sterne, Aust94), for which most of the isolates were collected in Asia 313 

and Europe. 314 

 315 

Discussion 316 

Understanding the drivers of population genomic structure in pathogens is essential for making 317 

informed decisions related to wildlife management, disease control, and public health. The data 318 

presented in this study offers the first detailed, global accounting of AMR genes and phage 319 

diversity in this bacterium. In addition, our findings suggest that the 6 primary clusters defining 320 

population genomic structure in this species are consistent with differences in both AMR genes, 321 
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geography, and the source from which they were isolated. We also demonstrate that a 322 

recombination event linked to protein translation may take part in determining the persistence of 323 

certain B. anthracis strains. Finally, we offer a wealth of information on genomic diversity 324 

potentially associated with functional differences driving selection, allowing for further 325 

investigations into B. anthracis persistence, biogeography and evolution. 326 

AMR has gained increased attention as a major threat to public health throughout the 327 

world (Lehtinen  et al., 2019; Sekyere & Asante 2018). By documenting AMR genes on a global 328 

scale, we can gain a better understanding of how biogeography and persistence is transforming 329 

the genomic constitution of dangerous pathogens at both regional and wider scales (Sandulescu, 330 

2016; Agersø et al, 2013). Based on our analysis of over 350 whole genomes we have identified 331 

ten AMR genes present in B. anthracis isolates collected from over 35 countries, many 332 

consistent with the different population clusters examined in this study. Five of these genes are 333 

commonplace and can be found in the majority of isolates examined, whereas the other five are 334 

comparatively rare across the dataset. Given the application of commonly used antibiotic drugs, 335 

such as penicillin, doxycycline, and ciprofloxacin to treat B. anthracis infections, the regions 336 

where rare antibiotic resistant gene isolates were sampled may benefit from monitoring, in order 337 

to document the persistence of these novel, resistant population clusters and modify antibiotic 338 

treatments for effectiveness (Heine et al., 2017; Kelly et al., 1992). The resistance gene bcII for 339 

example, which was found in only six samples is known to hydrolyze a large number of 340 

penicillins (Table 1). Rarer antibiotic resistant gene strains such as these may be indicative of a 341 

larger problem with antibiotic resistance in other dangerous pathogens as well, especially if the 342 

overuse of certain antibiotics is driving resistance in those regions where novel resistance genes 343 

reside (Mather et al., 2016). 344 
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The influence of bacteriophage sequences on population genomic structure across the 345 

global dataset is less clear. As with AMR genes, several phage sequences were commonplace 346 

across isolates examined, while others were rarer or without pattern. Phage diversity was the 347 

least important factor in predicting population genomic structure based on the random forest 348 

technique applied in this study. This is in contrast to studies of other pathogens, where phage 349 

sequence variation has been consistent with population genomic structure and therefore used for 350 

strain typing (Uelze et al., 2020; Neufeld et al., 2003). Although previous studies have suggested 351 

some phage sequences may affect certain bacterial processes in B. anthracis, such as sporulation 352 

(Schuch & Fischetti, 2009; Schuch & Fischetti, 2006), there was not an observable example of 353 

this leading to any advantage reflected in the form of genetically similar population clusters. 354 

Applying the random forest model, population genomic structure was most readily 355 

described by a combination of AMR genes, isolation location and source. The strongest predictor 356 

of population genomic structure when examining the dataset in its entirety was the presence of 357 

the AMR gene vmlR, which was completely absent in primary cluster 5 (which was A.Br.001 – 358 

A.Br.004 (Ames, Sterne, Aust94, V770) in the original classification system), the most 359 

genetically diverse population cluster examined in this study from which isolates were collected 360 

across Europe, Asia, Africa and the Americas. Interestingly, isolation source (host, environment, 361 

or industry) was the second strongest predictor, suggesting that some strains of B. anthracis may 362 

be better suited to different environmental circumstances (or at least more readily cultured within 363 

them). Previous work that has examined population genomic structure has suggested that 364 

environmental growth outside of the host is possible (Sahl et al., 2016). Additionally, strains 365 

collected from industry may represent geographic consistencies in raw wool procural rather than 366 

a niche associated with this type of artificial environment (Pilo & Frey 2018; Irenge & Gala, 367 
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2012). Nevertheless, long latent periods in the spore phase may be hindering our ability to detect 368 

environmental consistencies with population genomic structure. Not surprisingly the continent of 369 

isolation was also a strong predictor in terms of population genomic structure, consistent with 370 

expected biogeographic patterns based on centuries of dispersal, complex trading patterns and 371 

global commerce. These findings are largely consistent with past work that has examined the 372 

population genetics and ubiquitous dissemination of this bacterium (Pilo & Frey 2018; Sahl et 373 

al., 2016; Van Ert et al., 2007). These combined forces—AMR genes, isolation source and 374 

biogeography—all seem to play a role in defining modern population structure in this bacterium. 375 

Using random forest models to look at the factors influencing each primary cluster 376 

individually, we found that varying circumstances seem to act as predictors for each individual 377 

cluster. The most underrepresented group, primary cluster 1, previously referred to as the C 378 

Branch in the B. anthracis literature and viewed as a rarely occurring clade (Sahl et al., 2016; 379 

Van Ert et al., 2007), is largely defined by the absence of the AMR gene fosB, which is found 380 

universally across all other population clusters examined. The relatively rare primary cluster 2 (B 381 

Branch) was not easily defined by any of the variables examined. Nevertheless, classification 382 

performance for both primary cluster 1 and 2 were equally poor when assessing the accuracy. 383 

Previous work that has specifically examined isolates belonging to cluster 2 from Kruger 384 

National Park found that they were prevalent in more alkaline calcium rich soils than the cluster 385 

3 (Ancient A) isolates occurring in the same region (Smith et al., 2000). Cluster 3 (Ancient A) 386 

was described primarily by its isolation from the continent of Africa (although there are several 387 

isolates from elsewhere as well) suggesting that isolates from this group may be uniquely suited 388 

to or may have originated in this region. Primary cluster 4 is primarily described by a 389 

combination of isolation source and continent. This group, formerly referred to as A.Br.007 or 390 
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Vollum in the literature, was isolated almost exclusively in a manufacturing setting in North 391 

America. Metadata and historical records for some of these isolates which were originally 392 

sequenced by the Center of Disease Control (CDC) suggest that these isolates may have 393 

originated in other areas, most notably Asia and the Middle East (Pilo & Frey 2018; Derzelle et 394 

al., 2016). Cluster 5 (A.Br 001-004) is most readily described by the complete absence of the 395 

AMR gene vmlR. Lastly, cluster 6 (previously the A.Br.008 and A.Br.009 lineages (TAE)) was 396 

primarily described by isolation source, as the majority of these isolates were collected from 397 

animal hosts throughout Europe and North America, although this group also contained isolates 398 

from Asia and South America in smaller numbers. 399 

When examining population genomic structure in the context of candidate genes for 400 

selection, we see that recombination specific to primary cluster 2 (previously known as B 401 

Branch) may be responsible for the comparatively extreme difference in population structure in 402 

this group when compared to groups 3 through 6 (A Branch). A study that specifically looked at 403 

this group suggests that there may be phenotypic differences leading to contrasting mechanisms 404 

of infection, make this group specifically well suited to bovine species (Pilo & Frey 2018). 405 

Given that this recombination event is rooted in a gene responsible for protein translation, these 406 

results support the hypothesis that phenotypic and functional traits for this cluster may be 407 

substantially different from the others. 408 

We examined genes that were identified using two methods for pinpointing candidates 409 

for selection (high-impact SNPs and clustered mutations) and found that a range of functional 410 

differences may be driving population genomic structure. Primary cluster 1 (C Branch) exhibited 411 

premature stop codons in two genes, a DNA-binding response regulator and a stage 0 sporulation 412 

regulatory protein. If these premature stop codons are hindering this cluster’s ability to produce 413 
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proteins and influencing the timing and magnitude of sporulation, then this may indeed be why 414 

they are so underrepresented in the global dataset, and comparatively rare. Primary cluster 2 (B 415 

Branch) exhibited a premature stop codon in the TPR domain protein. TPR proteins may act as 416 

scaffolds for the assembly of different multiprotein complexes (Whitfield & Mainprize, 2010). A 417 

premature stop codon in this sequence may be similarly affecting primary cluster 2’s ability to 418 

persist and reproduce leading to its similar rarity across the remainder of the global dataset (N = 419 

13/356). When primary clusters 5 and 6 are examined as a unit we see that the chlorohydrolase 420 

family protein exhibits a premature stop codon. Hydrolase proteins commonly perform as 421 

biochemical catalysts that use water to break a chemical bond, which typically results in dividing 422 

larger molecules into smaller molecules (Quinn et al., 2007). If this protein lacks the ability to 423 

perform this function, isolates specific to this group may be functionally different than the other 424 

population groupings. Overall these findings lay the groundwork for future studies into B. 425 

anthracis evolution, allowing for investigations into how protein structure drives functional and 426 

phenotypic differences across varied lineages. 427 

Lastly, we looked at the B. anthracis virulence genes and found that several missense 428 

mutations may be influencing protein structure in some population clusters relative to others. 429 

Primary clusters 4 (Vollum) and 5 (A.Br001-004), the 2nd and 3rd most common designations 430 

across all isolates examined, exhibited different missense mutations in the pagA gene. The pagA 431 

gene encodes the protective antigen (PA), which binds to a receptor in sensitive eukaryotic cells, 432 

thereby facilitating the translocation of the enzymatic toxin components, edema factor and lethal 433 

factor, across the target cell membrane (Koehler, 2007). Past work on this gene found six 434 

different haplotypes, which translate into three different amino acid sequences. Amino acid 435 

changes were shown to be located in an area near a highly antigenic region critical to lethal 436 
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factor binding (Price et al., 1999). These mutations may therefore explain these cluster’s 437 

comparatively robust prevalence compared to some others if this differentiated structure is more 438 

beneficial to genotypic persistence. We also found two mutations in the cya gene specific to 439 

clade 6.3 (WNA) entirely from North America. The cya gene codes for the calmodulin-sensitive 440 

adenylate cyclase that, when associated with PA, causes edema. This protein product is not toxic 441 

in and of itself, although it is required for the survival of germinated spores within macrophages 442 

at the early stages of infection, provoking dramatic elevation of intracellular cAMP levels in the 443 

host (Pezard et al., 1991). 444 

When evaluating the population genomic structure of B. anthracis in light of 445 

biogeography, AMR, phage diversity and candidate genes for selection, we find varying 446 

explanations for differences in population genomic structure. Nevertheless, it should be noted 447 

that in a mined-dataset such as this, inaccuracy in metadata and/or sequencing have the potential 448 

to produce unintentional errors. In addition, our dataset is highly biased towards developed 449 

countries where whole genome sequencing technology is readily available and government 450 

support for such work is more abundant. Given the complex dispersal history of this notorious 451 

pathogen and the competing factors that ultimately sculpt its global genomic architecture, no 452 

single factor alone can be attributed to its modern genomic constitution. Despite these limitations 453 

we were able to determine the most influential factors consistent with differences and similarities 454 

among lineages using modern bioinformatic techniques. The information provided in this study 455 

not only offers a detailed accounting of AMR genes and phage diversity in this species, but also 456 

allows for the groundwork upon which future B. anthracis studies into evolution can be built. 457 

This work has the potential to drive further discovery of functional differences in terms of 458 
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virulence and genotypic persistence that may ultimately help to inform management strategies in 459 

the realm of public health and wildlife conservation. 460 
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 725 

Table 1. AMR genes and their definitions from the Comprehensive Antibiotic Resistance 726 

Database (CARD). 727 
Name Resistance 

mechanism 

Accession Definition 

mphL antibiotic inactivation ARO:3003072 A chromosomally-encoded macrolide 

phosphotransferases that inactivates macrolides such as 

erythromycin, clarithromycin, azithromycin 

bla1 antibiotic inactivation ARO:3000090 A chromosomal-encoded beta-lactamase, which 

hydrolyzes penicillins 

fosB antibiotic inactivation ARO:3000172 A thiol transferase that leads to the resistance of 

Fosfomycin 

bla2 antibiotic inactivation ARO:3004189 A chromosomal-encoded beta-lactamase, which has 

penicillin, cephalosporin, and carbapenem-hydrolizing 

abilities) 

vmlR antibiotic target 

protection 

ARO:3004476 An ABC-F ATPase ribosomal protection protein shown 

to confer resistance to lincomycin and streptogramin A 

virginiamycin 

bcII antibiotic inactivation ARO:3002878 A zinc metallo-beta-lactamase that hydrolyzes a large 

number of penicillins and cephalosporins 

tem-116 antibiotic inactivation ARO:3000979 A broad-spectrum beta-lactamase found in many species 

of bacteria 

cfrC antibiotic target 

alteration 

ARO:3004146 A cfr-like 23S rRNA methyltransferase shown to confer 

resistance to linezolid and phenicol antibiotics, including 

florfenicol and chloramphenicol 
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dfrG antibiotic target 

replacement 

ARO:3002868 A plasmid-encoded dihydrofolate reductase 

oxa-59 antibiotic inactivation ARO:3001772 A beta-lactamase 

 728 

Table 2. Information for SNPs that exhibit a potentially high impact effect and fall within 729 

clustered mutations across the B. anthracis genome. Positions are relative to the Ames Ancestor 730 

reference genome (NCBI accession: AE017334.2). 731 
Cluster Position Ref Alt Comparative effect Gene/Product 

1 1260604 C T stop gained DNA-binding response regulator 
 

1292469 C A stop gained stage 0 sporulation regulatory protein 

2 3140849 A T stop gained TPR domain protein 

5 through 6 1748642 A T stop gained chlorohydrolase family protein 
 

2423864 T C start lost hypothetical protein 

 732 

Table 3. Information for non-synonymous SNPs in virulence genes across the B. anthracis 733 

plasmids. Positions are relative to the Ames Ancestor reference genome (NCBI accession: 734 

AE017336). 735 
Cluster.clade Position Plasmid Ref Alt Comparative effect Gene/Product 

6.3 123936 pXO1 A T missense mutation cya: calmodulin-sensitive 

adenylate cyclase 

6.3 124007 pXO1 A G missense mutation cya: calmodulin-sensitive 

adenylate cyclase 

4 145471 pXO1 C T missense mutation pagA: protective antigen 

5 145577 pXO1 C T missense mutation pagA: protective antigen 

 736 
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 737 

Figure 1. AMR genes identified in the whole‐chromosome tree of 356 global B. anthracis 738 

isolates (a). Primary clusters are divided into their numbered nested clades by gray lines. The key 739 

on the right lists the 10 AMR genes identified. Outer rings reflect presence (color) or absence 740 

(white) of each gene across all isolates in the phylogeny. A world map depicting the prevalence 741 

of AMR genes is depicted in (b). Each circle represents an AMR gene colored according to the 742 

key and figure above. Percentages represent the total proportion of isolates from each continent 743 

where the respective AMR gene was identified (including North America, South America, 744 

Europe, Asia, and Oceania). See Fig. S1 for a key to previously established classification 745 

schemes. 746 
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 747 

 748 
 749 

Figure 2. Prophage sequences identified in whole‐chromosome tree of 356 global B. anthracis 750 

isolates. Primary clusters are divided into their numbered nested clades by grey lines. The key on 751 

the right indicates the phage sequence present for each isolate, numbered according to their order 752 

from the inside of the ring to the outside. Color indicates whether the phage sequence was 753 

determined to be intact, questionable or incomplete. Criteria related to this categorization can be 754 

found in Table S1. See Fig. S1 for a key to previously established classification schemes. 755 
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Figure 3. Importance of the covariates in defining population genomic architecture for all primary clusters combined (a) and for each 759 

primary cluster on its own (b) by the random forest classifier. 760 
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