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Abstract

The real-world capabilities of objective speech quality measures

are limited since current measures (1) are developed from sim-

ulated data that does not adequately model real environments;

or they (2) predict objective scores that are not always strongly

correlated with subjective ratings. Additionally, a large dataset

of real-world signals with listener quality ratings does not cur-

rently exist, which would help facilitate real-world assessment.

In this paper, we collect and predict the perceptual quality of

real-world speech signals that are evaluated by human listen-

ers. We first collect a large quality rating dataset by conducting

crowdsourced listening studies on two real-world corpora. We

further develop a novel approach that predicts human quality

ratings using a pyramid bidirectional long short term memory

(pBLSTM) network with an attention mechanism. The results

show that the proposed model achieves statistically lower esti-

mation errors than prior assessment approaches, where the pre-

dicted scores strongly correlate with human judgments.

Index Terms: speech quality assessment, crowdsourcing, sub-

jective evaluation, attention, neural networks

1. Introduction

Subjective listening studies are the most reliable form of speech

quality assessment for many applications, including speech en-

hancement and audio source separation [1, 2]. Listeners often

rate the perceptual quality of testing materials using categor-

ical or multi-stimuli rating protocols [3, 4]. The test materi-

als are often artificially created by additively or convolution-

ally mixing clean speech with noise or reverberation at pre-

scribed levels, to simulate real environments [5, 6]. Unfortu-

nately, the simulated data does not capture all the intricate de-

tails of real environments (e.g., speaker and environmental char-

acteristics), so it is not clear if these assessments are consistent

with assessment results from real-world environments. Many

investigations conclude that more realistic datasets and scenar-

ios are needed to improve real-world speech processing perfor-

mance [7, 8, 9]. However, the cost and time-consuming nature

of subjective studies also hinders progress.

Computational objective measures enable low cost and ef-

ficient speech quality assessment, where many intrusive, non-

intrusive, and data-driven approaches have been developed. In-

trusive measures, such as the perceptual evaluation of speech

quality (PESQ) [10], signal-to-distortion ratio (SDR) [2] and

perceptual objective listening quality analysis (POLQA) [11],

generate quality scores by calculating the dissimilarities be-

tween a clean reference speech signal and its degraded coun-

terpart (e.g., noisy, reverberant, enhanced). These measures,

however, do not always correlate well with subjective quality

results [12, 13].
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Several non-intrusive (or reference-less) objective quality

measures have been developed, including the ITU-T standard

P.563 [14], ANSI standard ANIQUE+ [15], and the speech to

reverberation modulation energy ratio (SRMR) [16]. These ap-

proaches use signal processing concepts to generate quality-

assessment scores. These approaches, however, rely on sig-

nal properties and assumptions that are not always realized

in real-world environments, hence the assessment scores are

not always consistent with human ratings [6, 17]. More re-

cent work uses data-driven methods to estimate speech qual-

ity [21, 17, 22, 18, 19]. The authors in [20] combine hand-

crafted feature extraction with a tree-based regression model

to predict objective PESQ scores. Quality-Net [21] provides

frame-level quality assessment by predicting the utterance-level

PESQ scores that are copied as per-frame labels using a bidi-

rectional long short-term memory (BLSTM) network. Simi-

larly, NISQA [17] estimates the per-frame POLQA scores us-

ing a convolutional neural network (CNN). It subsequently uses

a BLSTM to aggregate frame-level predictions into utterance-

level objective quality scores. These data-driven approaches

perform well and increase the practicality of real-world assess-

ment. However, the usage of objective quality scores as training

targets is a major limitation, since objective measures only ap-

proximate human perception [2, 12]. Alternatively, the model

developed in [22] predicts the mean opinion score (MOS) [23]

of human ratings, but the ratings are collected on simulated

speech data. This approach advances the field, but it is not

enough to ensure good performance in real environments. A

complete approach is needed that predicts human quality rat-

ings of real recordings.

In this study, we conduct a large-scale listening test on

real-world data and collect 180,000 subjective quality ratings

through Amazon’s Mechanical Turk (MTurk) [24] using two

publically-available speech corpora [25, 26]. This platform pro-

vides a diverse population of participants at a significantly lower

cost to facilitate accurate and rapid testing [27, 28, 29]. These

corpora have a wide range of distortions that occur in every-

day life, which reflect varying levels of noise and reverbera-

tion. Our listening tests follow the MUltiple Stimuli with Hid-

den Reference and Anchor (MUSHRA) protocol [4]. To the

best of our knowledge, a large publically-available dataset that

contains degraded speech and human quality ratings does not

currently exist. We additionally develop an encoder-decoder

model with attention mechanism [30] to non-intrusively predict

the perceived speech quality of these real-world signals. The

encoder consists of stacked pyramid BLSTMs (pBLSTM) [31]

that convert low-level speech spectra into high-level features.

This encoder-decoder architecture reduces the sequential size of

the latent representation that is provided to an attention model.

The key difference between this proposed approach and related

approaches, is that our approach predicts mean-opinion scores

of real-world signals using a deep-learning framework. The fol-
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[28] M. Schoeffler, F.-R. Stöter, B. Edler, and J. Herre, “Towards the
next generation of web-based experiments: A case study assess-
ing basic audio quality following the ITU-R recommendation BS.
1534 (MUSHRA),” in 1st Web Audio Conference, 2015, pp. 1–6.

[29] M. Cartwright, B. Pardo, G. J. Mysore, and M. Hoffman, “Fast
and easy crowdsourced perceptual audio evaluation,” in Proc.

ICASSP. IEEE, 2016, pp. 619–623.

[30] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Ben-
gio, “Attention-based models for speech recognition,” in NIPS,
2015, pp. 577–585.

[31] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend
and spell: A neural network for large vocabulary conversational
speech recognition,” in Proc. ICASSP. IEEE, 2016.

[32] ITU-T, “P. 808: Subjective evaluation of speech quality with a
crowdsourcing approach,” ITU Recommendation, 2018.

[33] B. Naderi, T. Polzehl, I. Wechsung, F. Köster, and S. Möller, “Ef-
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