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Towards real-world objective speech quality and intelligibility
assessment using speech-enhancement residuals and
convolutional long short-term memory networks

Xuan Dong® and Donald S. Williamson
Department of Computer Science, Indiana University, Bloomington, Indiana 47408, USA

ABSTRACT:

Objective metrics, such as the perceptual evaluation of speech quality (PESQ), short-time objective intelligibility
(STOI), and signal-to-distortion ratio (SDR), are often used for evaluating speech. These metrics are intrusive since
they require a reference (clean) speech signal to complete the evaluation. The need for a reference signal reduces the
practicality of these metrics, since a clean reference signal is not typically available during real-world testing. In
this paper, a two-stage approach is presented that estimates the objective score of these intrusive metrics in a non-
intrusive manner, which enables testing in real-world environments. More specifically, objective score estimation
is treated as a machine-learning problem, and the use of speech-enhancement residuals and convolutional long
short-term memory (SER-CL) networks is proposed to blindly estimate the objective scores (i.e., PESQ, STOI, and
SDR) of various speech signals. The approach is evaluated in simulated and real environments that contain different
combinations of noise and reverberation. The results reveal that the proposed approach is a reasonable alternative
for evaluating speech, where it performs well in terms of accuracy and correlation. The proposed approach also

outperforms comparison approaches in several environments. © 2020 Acoustical Society of America.
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I. INTRODUCTION

Quality and intelligibility are two important attributes
of speech. Speech quality refers to the pleasantness of a
speech signal, while intelligibility measures how well one
can recognize what is said in a given utterance (Loizou,
2013). Quality and intelligibility assessments are important
because they directly correlate to the usefulness of speech-
based applications, such as hearing aids and multimedia
communication services. One form of evaluation involves
subjective testing using human participants. These studies
are accurate and effective, however, they are also expensive
and time consuming. As a result, objective metrics are often
used instead.

Intrusive metrics assess speech by computing the simi-
larity or correlation between a clean reference signal and its
degraded version (noisy, reverberant, or enhanced). Popular
intrusive measures include the perceptual evaluation of
speech quality (PESQ) (Rix et al., 2001), short-time objec-
tive intelligibility (STOI) (Taal et al., 2011), extended STOI
(ESTOI) (Jensen and Taal, 2016), signal-to-distortion ratio
(SDR) (Vincent et al., 2006), and scale-invariant SDR
(SI-SDR) (Le Roux et al., 2019). Speech recognition mea-
sures (e.g., word and character error rates) can evaluate
speech, but they do not assess human-level quality or intelli-
gibility. One major shortcoming of intrusive measures is
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that they require a clean reference signal. Unwanted inter-
ferences are always present in real environments, which
renders a clean signal inaccessible. This hinders objective
assessment in real environments, which ultimately restricts
improvement (Falk et al., 2015).

Non-intrusive objective metrics overcome the above
shortcoming by directly evaluating the signal of interest
without a reference signal. Many works have been proposed
(Falk et al., 2010; Kim and Tarraf, 2007; Sgrensen et al.,
2017), but P.563 (Malfait et al., 2006) is the first non-
intrusive speech quality assessment model. It assesses the
quality of speech that is transmitted over a narrow-band tele-
phone communication channel. Its performance, however,
heavily depends on the chosen set of parameters, which
limits its applicability.

Data-driven approaches have recently been proposed
for non-intrusive objective evaluation. More specifically,
Falk and Chan (2006) use Gaussian mixture models, support
vector machines and random forest classifiers to produce
intermediate features from clean and degraded signals,
which are then combined by a classifier to estimate a mean
opinion score (MOS). A classification and regression tree is
used in Sharma et al. (2016), where several short- and long-
term features are extracted to estimate the quality and intel-
ligibility of speech degraded by additive noise and channel
distortions. Approaches involving neural networks have
been gaining in popularity. In Soni and Patil (2016), sub-
band autoencoders extract acoustic features that are mapped
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to quality scores using a single-layer neural network. In
Seetharaman et al. (2018), a full convolutional network is
used to regress from a reverberant speech signal to the
speech transmission index (STI), which is an objective met-
ric used for evaluating speech that is transmitted over a
communication channel. Andersen et al. (2018) utilize a sin-
gle convolutional layer to predict a scalar in the range of 0
to 1 that corresponds to 0%—100% speech intelligibility
from subjective datasets. The non-intrusive speech quality
assessment (NISQA) model (Mittag and Moller, 2019) has a
CNN that first estimates per-time frame quality, and then
subsequently uses a long short-term memory (LSTM) net-
work to aggregate the per-frame values, to predict overall
quality. Although these approaches offer advances, they
have not been extensively evaluated in unseen noisy and
reverberant environments.

Current intrusive metrics provide quality and intelligi-
bility scores that correlate with human evaluations (Hu and
Loizou, 2008; Taal et al., 2011), but they cannot be used in
real-world environments where the reference signal is
unavailable. The existing non-intrusive approaches enable
reference-less evaluation, however, their performance is not
satisfactory in extremely low signal-to-noise ratios (SNR) or
highly reverberant environments (Falk et al., 2010; Fu et al.,
2018a; Kinoshita et al., 2016; Sharma et al., 2016).

Our goal is to predict the objective quality and intelligi-
bility scores of intrusive metrics from a degraded speech
signal using a two-stage deep learning framework. The
amount of environmental noise and reverberation play a
dominant role in degrading the objective quality and intelli-
gibility of clean speech, so our idea is to use the amount of
noise and reverberation as a feature for objective metric pre-
diction. In the first stage, degraded speech is provided to a
speech-enhancement system that separates a mixture into
enhanced speech and residuals. The second stage then uses
the residuals to predict the objective scores with a stacked
convolutional ~ long  short-term  memory  network
(ConvLSTM) (Xingjian et al., 2015). We view enhancement
as the first stage, although the focus of this study is on the
second stage that estimates quality and intelligibility scores
from the residual. We focus on predicting scores from three
relatively reliable intrusive metrics (i.e., PESQ, STOI, and

SDR) under noisy, reverberant, and noisy-reverberant envi-
ronments. The findings serve as a pilot study for future work
on predicting subjective MOS. A preliminary version of this
work is published in Dong and Williamson (2018).

This paper is organized as follows. A detailed descrip-
tion of our approach is given in Sec. II. Experimental results
and comparisons are given in Sec. III. Sections IV and V
conclude the discussion of the proposed system.

Il. SYSTEM DESCRIPTION

A high-level depiction of the proposed approach is pro-
vided in Fig. 1. It consists of a speech enhancement stage and
an objective score prediction stage. Speech enhancement sepa-
rates the target speech from background noise. Residuals are
computed by subtracting the speech estimate from the input
mixture. Then the residual’s spectrogram is provided to the
speech assessment module for estimating the objective scores.
These steps are described in more detail in the following.

A. Motivation for using enhancement residuals

Assume that a clean speech signal, s(¢), is corrupted by
distortions. In reverberant environments, the reverberant
speech, y(f), is defined as the convolution of anechoic
speech, s(7), with a room impulse response (RIR), A(%),

¥(1) = (6) % h(e) = d(0) + (1) + 1, (1), M

where * indicates convolution and ¢ represents a time index.
d(t) is the direct sound, and e, (¢) and /.(¢) are the early and
late reflections, respectively. d(7) is used as the reference signal
when calculating the intrusive metrics of reverberant speech.
In noise-only environments, the distorted signal is merely the
clean signal with additive noise [e.g., y(¢) = s(7) + n(?)].
Distorted signals in noisy-reverberant environments are gener-
ated by combining these two distortions.

A speech enhancement approach estimates the clean
speech (noise) or direct sound (reverberation), $(¢), from the
distorted signal. The enhancement residual, 7(), is then
computed as

F() = y(1) = 5(1) @
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FIG. 1. (Color online) Overview of the proposed two-stage objective metric prediction approach.
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and it is an estimate of the amount of additive noise or
reverberation (e.g., distortion), r(¢f), in a given signal.
Subsequently, () equates to the noise signal (n(f)) in noisy
environments and the reverberation [e, () + [,(¢)] in rever-
berant environments.

In general, intrusive measures generate assessment
scores by computing the quantitative distance or correlation
between a clean reference signal and the signal being evalu-
ated. For instance, PESQ is a perceptually motivated mea-
sure, where the differences between the loudness spectra of
the reference and degraded signals are calculated using two
different approaches. One calculation results in a symmetric
disturbance, dsy s, while the other results in an asymmetric
disturbance, dygy s (Rix et al., 2001). The final PESQ score
is a direct function of these disturbances,

PESQ = 4.5 — 0.1 X dsyy — 0.0309 X dysyu, 3)

where larger disturbances lead to lower PESQ scores.

When computing STOI scores, denote the kth short-
time Fourier transform (STFT) frequency bin of the mth
time frame of the clean speech signal as S(k, m), and of the
distortion as R(k, m). The STFT of the degraded speech is
then, Y(k,m) = S(k,m) + R(k,m). The norms of the jth
one-third octave band are then defined as

Sim) = [ > IS(k,m)P?, 4)
kej

Yiim) = [ [S(k,m) + R(k,m)|*. )

kej

STOI compares a sequence of N one-third octave bands of
the clean speech, s;,, to that of the degraded speech, y; ,,, by
means of a correlation coefficient, d;,,, as follows:

Sim = [Sim =N+ 1), ..., 8;(m)]", (6)

Yim = [Y/(m7N+1)aij(m)}T7 @)

d~ — (s‘,:'m B 'us/‘-"’)T(yj#m - 'u’yun) (8)
o ||sj~m - :u’s,;m ||yj.m - tuyj_m H 7

where y; , is a normalized and clipped version of y; ., i,
refers to the averaging operation, and || - || represents the /,
norm. Upon inserting Eq. (5) into Egs. (7) and (8), it shows
that the distortion that is present within each time-frequency
bin has a strong effect on d,,, which is expected to have a
monotonic inverse relation with average intelligibility (Taal
et al., 2011). More specifically, as the amount of distortion
increases, the subsequent objective STOI score lowers from
the ideal score of 1, which occurs when distortions are not
present.

For SDR, the degraded source is decomposed into the
summation of the clean speech and three error terms: inter-
ference, €, NOISE, €,,0i50, and artifact, e,,, based on the
principle of orthogonal projection (Vincent et al., 2006),
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Starger = Py, ©)
Cinterf = Pgy — Py,y, (10)
€noise = Pyny — Py, (1D
Carif =Y = Psay, 12)

where Py, Py, and P, , are the projection matrices for the ith
sound source, all sound sources (including distortions), and
all sound sources and sensor noises, respectively. Then the
SDR is defined as the energy ratio of the true source and
these errors in decibels,

||Starger| |2
||einterf + €noise + eartif‘ |2

SDR := 101log, (13)

Since the latter two projection matrices (i.e., Py and Py ,)
depend on the distortions (e.g., noise or reverberation), this
impacts the interference, noise and artifact errors, which
impacts the final SDR.

These three intrusive metrics implicitly use a measure
of distortion (or residual) in their calculations. Hence, the
residual serves as a strong indicator of the resulting objec-
tive quality or intelligibility score, and could serve as an
input to a score-prediction module, if it can be appropriately
and accurately estimated.

B. Speech enhancement stage

Recent work has shown that enhancement approaches
that estimate a time-frequency (T-F) mask perform well
(Wang et al., 2014; Weninger et al., 2015). Many T-F masks
have been proposed (Erdogan et al., 2015; Srinivasan et al.,
2006; Wang, 2005), but we, however, elect to use the com-
plex ideal ratio mask (cIRM), since it has been shown to
perform best in noisy, reverberant and noisy-reverberant
environments (Williamson and Wang, 2017; Williamson
et al., 2016), where it outperformed many of the above
referenced options. Later we compare the cIRM to other
masks, but note that the primary focus of this work is to
determine if residuals can be successfully used for score pre-
diction, so much of our efforts are dedicated to this task.

The cIRM, which enhances the magnitude and phase of
degraded speech, is constructed from the STFTs of the clean
(or direct) and degraded speech,

_ IS m)| i, )y (kim))
cIRM(k,m) = 7|Y(k, )| e , (14)
where ¢(k,m) and ¢, (k,m) denote the phase response of
the clean and degraded speech, respectively. Williamson
et al. (2016) shows that the cIRM substantially improves
speech quality according to objective and subjective evalua-
tions, in many environments, so we expect it to help with
estimating the residual.

The left half of Fig. 2 illustrates the speech enhance-
ment stage. The complementary features (Wang et al.,
2013) from the input signal are extracted, and then provided
as inputs to a deep neural network (DNN) with three dense
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FIG. 2. (Color online) A depiction of our proposed two-stage objective metric prediction approach (cIRM-CL).

layers to estimate the cIRM. Each dense layer has 1024
units, and uses rectified linear unit (ReLU) activation func-
tions except that a linear activation function is employed in
the output layer. Adam optimization with a mean square
error (MSE) loss is used to train the DNN for 200 epochs
with a constant learning rate of 10~*. The remaining param-
eters match those as defined in the original paper. The T-F
domain speech estimate is generated by applying (via
Hadamard product) the estimated mask to Y(k, m). Equation
(2) is used to compute the enhancement residual, after per-
forming overlap-add synthesis.

C. Objective score prediction stage

The ConvLSTM that is proposed by Xingjian et al.
(2015) has been successfully applied in many fields, includ-
ing speech recognition (Zhang et al., 2017), and speech
translation (Weiss et al., 2017). A LSTM effectively
addresses temporal correlations, however, it is not good at
maintaining local structure and it is more prone to overfit-
ting (Salehinejad et al., 2017). ConvLSTM preserves the
local structure by replacing the Hadamard product (®) of
the LSTM with a convolution operation (*),

im = 0(W; x [xp, hyp1] + b)),
S =0(Wg* X, Byp1] + by),
0y = (W, % [Xp, Byy—1] + b,),
Cn =Jfm © Cm_1 + i © tanh (W, x [xy, Byp—1] + b.),
h,, = 0,, ® tanh(c,,), (15)
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where x,,, ¢,,, and h,, stand for the input data, cell state and
hidden state at time step m, respectively. iy, f,,, 0, denote
the input, forget, and output gates, respectively. W and b are
the filter matrices and bias vectors connecting different
gates. ¢ is the sigmoid activation function. We apply
ConvLSTM units here since it not only independently cap-
tures discriminative features in frequency and time, but it
also explores the co-occurrence relationship between the
frequency and time domains.

The right half of Fig. 2 illustrates how enhancement
residuals are utilized to predict the objective scores.
Specifically, the residual’s spectrogram is inputted to a stack
of four ConvLSTM layers, each consisting of 16, 32, 64,
and 96 filters with a 1 x 3 kernel (i.e., convolving only
across the frequency dimension within each time step),
respectively. Therefore, the characteristics of the residual
can be captured by the ConvLSTM units, where local fea-
tures of each frame are extracted by convolutional kernels
and temporal features by recurrent LSTM networks. The
hidden state for the last time step of the last ConvLSTM
layer is then passed to a dense layer with 32 units, which
finally outputs the predicted objective score. Training is per-
formed for 50 epochs with an MSE loss. The learning rate is
initially set to 0.01, but then it decays by 0.1 every 20
epochs. Note that the models of the first stage and the sec-
ond stage are trained individually.

Generally, a two-dimensional CNN needs a fixed length
feature as input, which limits the input size of the signal.
The length using a ConvLSTM is not restricted in this man-
ner. Alternatively, if using a one-dimensional CNN, fine
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frequency structure is not leveraged. Additionally, the
CNN-LSTM architecture learns frequency and temporal
features consecutively, while ConvLSTM is able to learn
temporal-frequency  patterns ~ simultaneously,  which
improves computational efficiency. This also may facilitate
the learning of discriminative features.

lll. EVALUATIONS AND RESULTS

We evaluate the proposed approach in three different
environments: noisy, reverberant, and noisy-reverberant
conditions. The TIMIT speech corpus (Garofolo et al.,
1993) is used for the initial experiments. Each signal has
been down-sampled to 16 kHz. In the speech enhancement
stage, we use the same parameter configuration for calculat-
ing the complementary features as described in Wang et al.
(2013), since they show success in modeling both noisy and
reverberant speech. The STFT of the residual uses a 40 ms
Hanning window, a 512 point fast Fourier transform (FFT)
and 25% overlap between adjacent frames.

A. Baseline speech enhancement approaches

We apply several T-F masking based speech enhance-
ment approaches as baselines, and investigate how the
enhancement performance of the first stage effects the pre-
diction accuracy of the second stage. We first consider the
ideal binary mask (IBM), which is a two-dimensional binary
matrix that labels each T-F unit as being speech or noise
dominant. The SNR of a T-F unit, SNR(k,m), and a local
criterion (LC) are used to classify whether speech or noise
dominates at each T-F point

1, ifSNR(k,m) > LC,

. (16)
0, otherwise.

memg:{

The ideal ratio mask (IRM) makes soft decisions for
each T-F unit, and can be computed as follows:

[S(k, m)]

RM(k,m) = e = RGEm)|

7)

where [S(k,m)| and |R(k,m)| refer to the magnitude
responses of the speech and distortion (noise or reverbera-
tion) of a distorted speech signal, respectively. The IRM
returns values in-between O and 1 (inclusively), hence it can
be thought of as the percentage of energy that is attributed
to speech at each T-F unit.

Two separate DNNs are trained to estimate one of the
above training targets. The DNNs each have architectures
that are similar to that used for the cIRM. However, sigmoid
activation functions are used in the output layer, since these
labels have values between O and 1. The complementary
features are provided as inputs as well. The same training
hyper-parameters and datasets are used. In reverberant con-
ditions, the direct sound, D(k, m), is used in place of S(k, m).
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B. Comparison non-intrusive methods

We initially compare our system with six non-intrusive
methods: noise power spectral density (PSD) (Hendriks
et al., 2010), speech PSD (Erkelens et al., 2007), non-
intrusive speech assessment (NISA) (Sharma et al., 2016),
AutoMOS (Patton et al., 2016), a CNN-based model
(Gamper et al., 2019), and Quality-Net (Fu et al., 2018a),
which can be used for estimating the quality and intelligibil-
ity of speech degraded by additive noise and reverberation.
Noise and speech PSD are unsupervised approaches that
have been used for SNR estimation (Chinaev and Haeb-
Umbach, 2016; Martin, 1993; Suhadi et al., 2010), which is
a closely related problem. We follow this idea, but modify it
for general objective metric prediction. Noise PSD is based
on a minimum mean-squared error (MMSE) estimate of the
noise power spectrum coefficients. Clean speech is obtained
by subtracting the estimated noise PSD from the noisy
speech PSD. It then is employed as the reference signal to
estimate the true objective score. The speech PSD algorithm
operates in a similar manner, but it directly estimates the
clean speech PSD. We also select four recently developed
data-driven approaches for comparison. NISA combines
feature extraction with a classification and regression tree
model. AutoMOS uses the log-Mel spectrogram as input to
a stack of LSTMs. The outputs of the last LSTM layer are
fed to two fully connected (FC) layers for estimating the
final assessment score. The CNN approach utilizes Mel-
frequency coefficients and pitch features as the input to a
model that has four convolutional and two FC layers.
Quality-Net has one bidirectional LSTM layer followed by
two FC layers. For these approaches that do not release pub-
licly available code, we followed the configurations (e.g.,
features and model parameters) that are used in the original
papers. We verified the correctness of the implementation
by obtaining nearly identical results.

C. Performance measures

The accuracy of the prediction is evaluated by the mean
absolute error (MAE) between the true objective score and
the predicted score. We also use the epsilon-insensitive root
MSE (RMSE®), which gives an impression of how much the
prediction error exceeds the 95% confidence interval. It is
recommended by ITU-T P.1401 (ITU, 2012) to compare the
statistical performance of different evaluation algorithms.
Last, the Pearson’s correlation coefficient (PCC) is used to
measure the linear relationship between a model’s predic-
tion and the ground-truth score.

D. Noisy condition

1. Experimental data

For the noisy-speech case, ten noise signals from the
NOISEX-92 noise database (Varga and Steeneken, 1993)
(e.g., speech-shaped noise, babble, factory floor, machine
gun, cockpit, fighter jets, vehicle, radio channel, operating
room, and white noise) are separately combined with 1500

Xuan Dong and Donald S. Williamson



TABLE 1. Performance comparison of different speech enhancement
approaches averaged across seen and unseen noisy conditions. A-(-) denotes
performance improvement.

IBM IRM cIRM
A-PESQ 0.39 0.42 0.60
A-STOI 0.12 0.14 0.15
A-SDR 5.40 5.60 7.07

TIMIT clean speech utterances at one of ten SNR levels
(from —15 to 30 dB with 5 dB increments). This results in a
total of 15000 training mixtures. Random contiguous seg-
ments from the first half of each noise are used in generating
the training noisy speech mixtures. The approach is tested
with 200 different TIMIT utterances that are combined with
random segments from the second half of the seen noise sig-
nals at the same SNR levels as above. This results in 2000
testing mixtures for the seen noise-type dataset, even though
the exact realization of the noise has not been seen during
training. To further test generalization, we create a second
testing set of signals that are generated from completely
unseen noises and utterances. It uses 300 different clean
utterances that are mixed with five unseen noise types (e.g.,
cafeteria, destroyer engine, live restaurant, pink, and tank
noise) at one of ten SNR levels (from —15 to 30dB with a
5dB step). This results in 1500 testing mixtures for the
unseen noise-type dataset. Note that all testing signals (seen
and unseen) are composed of signals from unseen speakers.
The training labels for metric prediction (e.g., PESQ, STOI,
and SDR scores) are calculated from the true clean speech
and generated noisy speech signals.

2. Results and analysis

In the first stage, we separately employ different
speech-enhancement algorithms in our two-stage approach,
aiming to investigate how the enhancement capabilities
influence prediction accuracy. PESQ, STOI, and SDR are
employed to evaluate the enhancement performance. We
define A-(+) as the improvement of the corresponding score
compared to the unprocessed noisy speech, where larger val-
ues for A-(-) indicate better enhancement performance.
Table I shows the average improvement of each algorithm
under noisy conditions. We see that every approach
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improves PESQ performance when compared to the unen-
hanced mixture. IBM offers the smallest PESQ improve-
ment over the noisy speech, while the estimated cIRM
performs best. When evaluating objective intelligibility with
STOI, all approaches show noticeable improvement. Similar
trends are shown when evaluating with A-SDR. Overall, the
estimated cIRM performs better than other approaches for
this task. Figure 3 shows spectrograms for the true and
estimated residuals from the three enhancement
approaches, where the residuals are computed from a 0 dB
noisy speech signal using babble noise. In the ideal sense,
the residuals would be more like the noise, since this indi-
cates better enhancement. Notice that the estimated resid-
ual from the IBM does not capture all details of the noise.
The estimated residuals from the IRM and cIRM
approaches are similar.

The upper portion of Table II illustrates the prediction
errors of the proposed two-stage approach using different
speech-enhancement algorithms. “CL” indicates that the
proposed second stage is applied. In general, we see that in
noisy environments, cIRM-CL gives the best estimates com-
pared to IBM-CL and IRM-CL. For PESQ prediction, using
a cIRM in the enhancement stage significantly reduces the
RMSE* from 0.38 to 0.26 compared to IBM-CL. In terms of
STOI, the MAE and RMSE* of cIRM-CL are halved relative
to the other enhancement options. For SDR, cIRM-CL
clearly outperforms IBM-CL and IRM-CL in reducing the
prediction error. cIRM-CL also increases the PCCs for all
objective metrics. Furthermore, we observe a consistent pat-
tern when comparing Tables I and II. That is, better
enhancement performance leads to lower score prediction
errors. Although the spectrograms of the IRM and cIRM are
similar, the cIRM also enhances phase, which results in a
better residual estimate. It reveals that improving speech-
enhancement performance clearly improves prediction accu-
racy. Therefore, we use the cIRM for the first stage. We
now denote our proposed two-stage approach that uses
speech-enhancement residuals (SER) as SER-CL for the
remainder of the paper.

An extreme experiment was conducted in the noisy
speech condition. Assuming that a speech enhancement
algorithm can ideally separate clean speech from noise in
the first stage, then two input configurations to the second-
stage are tested: (1) The true noise is supplied as an input to
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FIG. 3. (Color online) Spectrograms of the true and estimated residuals that are generated by three speech enhancement algorithms on a 0 dB seen noisy
(babble) speech signal.(a) Oracle residual. (b) IBM-estimated residual. (c) IRM-estimated residual. (d) cIRM-estimated residual.
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TABLE II. Comparisons between the proposed two-stage system, one-stage approaches, and different non-intrusive methods under noisy conditions. The
average performance across seen and unseen testing noisy conditions is reported.

PESQ STOI SDR
MAE RMSE* PCC(%) MAE RMSE* PCC(%) MAE RMSE® PCC(%)
Two- stage IBM-CL 0.35 0.38 90.9 0.07 0.07 97.1 1.86 1.73 98.2
IRM-CL 0.27 0.34 91.7 0.05 0.06 96.3 1.53 1.44 99.1
cIRM-CL (SER-CL) 0.16 0.26 94.6 0.02 0.03 98.7 1.07 0.87 99.5
Ideal two-stage True noise-only 0.23 0.31 91.2 0.03 0.03 95.6 1.59 1.42 98.1
Clean speech & noise 0.12 0.18 96.2 0.02 0.02 99.2 0.88 0.79 99.3
One- stage IBM 0.48 0.50 88.2 0.14 0.11 90.3 4.70 3.92 93.9
IRM 0.42 0.51 87.9 0.11 0.09 90.1 3.97 3.69 95.1
cIRM 0.40 0.48 89.3 0.08 0.08 90.8 3.15 3.02 95.8
Other non-intrusive methods Noise PSD 1.20 1.13 77.4 0.23 0.19 80.5 8.22 7.31 85.3
Speech PSD 0.80 0.83 83.6 0.14 0.13 85.4 5.37 4.17 90.0
NISA 0.53 0.59 86.9 0.12 0.10 88.6 4.05 3.82 94.8
AutoMOS 0.31 0.38 90.8 0.09 0.08 91.9 2.05 2.02 97.3
Quality-Net 0.24 0.30 93.1 0.05 0.04 96.9 1.32 1.16 99.2
CNN 0.20 0.29 94.2 0.04 0.04 97.8 1.63 1.54 98.8

the second score-prediction stage and (2) the true noise and
the corresponding clean speech are provided as inputs to the
original section stage. The results of two test cases are indi-
cated as “ideal two-stage” in Table II. Generally, the estima-
tion errors of the model trained with true noise are worse
than the proposed two-stage model trained with the cIRM
(i.e., cIRM-CL). Many factors can lead to the above results.
One reason is that the network has not been designed and
optimized for the pure noise, where it is possible that an
alternative network structure (number of layers, number of
nodes per layer, hyperparameters, etc.) may be needed.
Additionally, it is quite possible that the second-stage net-
work leverages some of the errors of the first stage, where
the errors (removal of speech or retention of noise) provide
distinguishing information that improves performance. It is
worth noting that the model trained with both clean speech
and pure noise obtains much lower error and higher correla-
tion compared to the other models. It confirms that in the
ideal case, if both original speech and noise are available,
the prediction performance using the neural network is also
ideal. These results can be regarded as a performance upper
bound of the proposed framework.

In order to evaluate the importance of the second stage,
we also directly use the enhanced speech from the first stage
as an estimate of the clean reference to calculate intrusive
scores (e.g., using enhanced speech as the substitute for
clean speech in PESQ calculation). We denote this approach
as “one-stage,” since the second prediction stage is not
applied. The comparison results are shown in the middle of
Table II. Consistently, for each enhancement algorithm, the
prediction results using one stage are severely worse than
the proposed two-stage approach. The reason is that speech
enhancement algorithms do not perform perfectly, so the
difference between the true clean speech and the estimated
clean speech leads to the inaccurate estimates of true intru-
sive scores, especially when the testing data include many
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challenging noise types and SNRs. It indicates that a speech
enhancement stage followed by a metrics prediction stage is
preferred. Thus, we elect to further process the enhancement
residuals for score prediction.

The results when the proposed system is compared to
other non-intrusive approaches in seen and unseen noisy envi-
ronments are shown in the bottom portion of Table II. In
general, the four deep-learning approaches significantly outper-
form the two unsupervised (i.e., noise PSD and speech PSD)
and tree based (i.e., NISA) approaches across all metrics. It
demonstrates that neural network methods are beneficial for
speech assessment. It is noticeable that the results of SER-CL
are superior to AutoMOS, Quality-Net, and CNN approaches.
For PESQ prediction, the RMSE* of SER-CL is 0.26, which is
lower than the competitive CNN approach by 0.03 and
Quality-Net by 0.04. The same trends occur when predicting
STOI and SDR, that is, SER-CL always produces the lowest
error and highest correlation across all cases. Specifically, the
STOI MAE of Quality-Net and CNN are 0.05 and 0.04,
respectively, which are both higher than the 0.02 of SER-CL.
Quality-Net shows better performance (1.32 MAE and 1.16
RMSE*) over CNN in terms of SDR prediction, however, it is
worse than SER-CL (1.07 MAE and 0.87 RMSE"). Also,
SER-CL reduces the MAE and RMSE* of STOI and SDR by
half compared to AutoMOS. In Fig. 4, the predicted scores
from SER-CL are plotted against the true scores for all three
objective measures. A strong and almost linear correlation
between the predicted and true values are observed.

E. Reverberant condition

1. Experimental data

Reverberation adversely affects speech quality and
intelligibility because the sound reflections smear speech
structure across time and frequency. The reverberant speech
dataset used for evaluation in reverberant conditions is
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FIG. 4. (Color online) Scatter plots of the true (x axis) and predicted scores (y axis) of SER-CL under noisy conditions. (a) PESQ prediction. (b) STOI pre-

diction. (c) SDR prediction.

generated with the TIMIT corpus and an imaging method
(Habets, 2006). Specifically, five simulated rooms are
selected for both training and testing since different room
dimensions will produce diverse reverberation effects.
The dimensions of the five seen rooms are 4 x 3 x 3 m°,
6x5x3 m’, 8x7x4 m’, 9x8x4 m’, and 10 x 9
x5m°, respectively. Another two unseen rooms are created
to further test generalization. The dimensions of these rooms
are5x 4 x3m’and7 x 6 x 4 m”>.

RIRs are generated by placing the target speaker and
microphone in random positions in the simulated rooms, where
the distance between the speaker and microphone is fixed at
1 m. With this configuration, 10 RIRs at 3Tgy’s (i.e., 0.2, 0.4,
and 0.6 s) are generated for each of the 5 training rooms, result-
ing in 150 training conditions. Two additional RIRs at the
same 3 Tyo’s are generated for each of the 5 seen testing rooms,
to serve as the seen room but unseen RIR test cases. For the
unseen room case, 2 RIRs using 5 different T¢,’s (i.e., 0.1, 0.2,
0.3, 0.4, and 0.5 s) are generated for each of the 2 unseen test-
ing rooms. In total, 30 conditions from seen rooms and 20
from unseen rooms are used for testing. Each of the 1500
TIMIT utterances is convolved with 10 random training RIRs,
resulting in a set of 15000 reverberant training signals. For
testing, each of the 500 different utterances from 100 speakers
are convolved with 5 random testing RIRs, resulting in 2500
testing speech signals. Thus, individual models are trained and
tested for each objective metric using utterances from many
speakers, multiple RIRs and rooms.

2. Results and analysis

Table III reports the average performance of PESQ,
STOIL and SDR prediction across seen and unseen reverberant
testing conditions. The average across the seen and unseen
sets are shown together for brevity, but the trends are similar
in each case. SER-CL is evidently superior to the PSD-based
and NISA approaches in all cases. When comparing with
other deep learning approaches (i.e., AutoMOS, Quality-Net,
and CNN), SER-CL achieves the best result in predicting all
objective metrics. For PESQ prediction, the RMSE* of SER-
CL is 0.29, which is lower than the 0.40 of AutoMOS, 0.35 of
Quality-Net, and 0.33 of CNN. Similar trends occur for STOI
and SDR prediction. Specifically, the STOI RMSE* of SER-
CL is 0.03, while AutoMOS and Quality-Net scores are 0.10
and 0.05, respectively. The performance of the CNN approach
is comparable to that of the SER-CL in STOI prediction,
where the MAE and RMSE”* are both 0.04, while PCC is
93.7%, which is close to the 93.9% of SER-CL. In terms of
SDR, the MAE, RMSE* and PCC of SER-CL are 1.36%,
1.24%, and 92.4%, which surpasses the second place Quality-
Net. The experimental results show the robustness of the two-
stage approach in reverberant environments.

F. Noisy-reverberant condition

Background noise and reverberation are both present in
real world environments. To evaluate performance in this
challenging scenario, we generate noisy-reverberant speech by

TABLE III. Comparison of different non-intrusive methods under reverberant conditions. The average performance across seen and unseen testing data is

reported.
PESQ STOI SDR
MAE RMSE* PCC(%) MAE RMSE* PCC(%) MAE RMSE* PCC(%)

Noise PSD 0.67 0.92 78.4 0.16 0.18 82.2 5.54 4.98 78.9
Speech PSD 0.56 0.64 71.5 0.12 0.15 81.4 441 4.12 774
NISA 0.42 0.56 84.1 0.10 0.11 85.9 3.55 3.98 81.0
AutoMOS 0.32 0.40 88.3 0.09 0.10 87.9 2.47 2.33 83.1
Quality-Net 0.27 0.35 90.4 0.06 0.05 91.5 1.73 1.60 90.5
CNN 0.26 0.33 90.3 0.04 0.04 93.7 1.86 1.83 88.8
SER-CL 0.21 0.29 90.8 0.03 0.03 93.9 1.36 1.24 92.4
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combining different utterances with various RIRs and noises.
Specifically, 150 pairs of RIRs are generated in 5 rooms for
training. 30 pairs are generated in 5 seen rooms and 20 pairs
in 2 unseen rooms, resulting in 50 RIR pairs for testing. The
utterances and random cuts of noise are each convolved with
the corresponding RIR from the pairs. 1500 utterances are
mixed with one of 150 training RIRs and 10 types of noises
(1500 x 10 = 15000 training signals). The SNR in each case
is randomly set to 0, 3, 6, and 9 dB. The testing dataset is gen-
erated by combining 200 different utterances with 50 testing
RIRs and 10 noises (200 x 10=2000 testing signals). Both
proposed and comparison approaches are trained and tested on
the same datasets. The average prediction errors under noisy-
reverberant conditions are shown in Table I'V. The results are
broadly consistent with those of the two previous experiments.
SER-CL’s performance is superior to the other approaches in
most cases, except for STOI prediction, where the RMSE™ of
CNN is the same as SER-CL. The average error of PSD-based
and NISA approaches are substantially higher than the pro-
posed approach in all cases. SER-CL obtains a noticeable
lower error than AutoMOS and Quality-Net across all metrics.

When comparing noise PSD, speech PSD and NISA to
our two-stage approach, we find that they do not give reli-
able and consistent predictions, especially in extreme condi-
tions, e.g., very low SNR, or severe reverberation. The
errors of other competitive deep learning approaches in each
case also have noticeable growth. On the contrary, the pro-
posed approach performs well in several testing conditions.
One reason is that our two-stage approach depends on
speech-enhancement residuals, which are a reasonable indi-
cator of degradation in objective quality and intelligibility.
The other reason is that we use a stack of convolutional
LSTMs to map the enhancement residuals to a target metric.
The ConvLSTM unit bonds the local feature extraction abil-
ity of deep convolutional neural networks with the temporal
consistency of LSTMs. Thus, our model outperforms the
LSTM-based AutoMOS, the BLSTM-based Quality-Net,
and the CNN-based approaches.

G. Real-world conditions

To further test generalization capabilities and the
importance of inputs to the second stage, we also consider a

real-world dataset, namely, the conversational speech in
noisy environments (COSINE) speech corpus (Stupakov
et al., 2009). COSINE captures multi-party conversations in
real-world environments that contain background noise and
interfering speakers, using multiple microphones. The
recordings were captured indoors and outdoors, and
included car engine sounds, birds, wind noise, street noise,
and busy cafeteria conditions, to name a few. The recordings
from the close-talking microphone and the body micro-
phones (e.g., shoulder or chest) are used as the clean refer-
ence and distorted speech, respectively, when calculating
the ground-truth objective scores. Two experiments are con-
ducted to first compare alternative inputs to our second net-
work stage, and to compare real-world performance against
other well-performing approaches. In the first, we separately
develop models that use the concatenations of (1) the esti-
mated speech and residual; (2) the degraded (unprocessed)
speech and residual; (3) the estimated speech, residual, and
degraded speech; and (4) only the residual (e.g., proposed
approach), as the input into the second metric-prediction
stage. The model parameters and configurations in both
stages are as previously defined. In the second experiment,
we compare our system with three of the previously used
approaches (e.g., AutoMOS, Quality-Net, and CNN) and a
fourth deep-learning approach, NISQA (Mittag, 2019;
Mittag and Moller, 2019), since it has recently been shown
to perform well. Five thousand distorted signals from the
COSINE corpus are used to train each model, and 1000 sig-
nals are used for testing. Since the COSINE corpus is
recorded in everyday life environments, the training and
testing conditions (e.g., noise, speakers, and environments)
are not the same. In addition to PESQ, two additional met-
rics, ESTOI (Jensen and Taal, 2016) and SI-SDR (Le Roux
et al., 2019), are used as the training targets, to demonstrate
the flexibility of our two-stage approach in predicting
emerging objective measures. An additional performance
evaluation metric, Spearman’s rank correlation coefficient
(SRC) is included, since it describes the monotonicity
between the true and predicted scores.

We summarize the results of these experiments in
Table V. The upper half of the table shows the average
performance when applying different inputs to the second

TABLE IV. Comparison of different non-intrusive methods under noisy-reverberant conditions. The average performance across seen and unseen testing

data is reported.

PESQ STOI SDR
MAE RMSE* PCC(%) MAE RMSE* PCC(%) MAE RMSE* PCC(%)
Noise PSD 0.59 0.63 79.7 0.35 0.28 73.6 9.02 9.15 78.1
Speech PSD 0.56 0.58 81.9 0.28 0.25 77.8 7.58 8.32 77.3
NISA 0.55 0.53 83.2 0.18 0.16 82.5 7.82 6.53 79.5
AutoMOS 0.41 0.49 85.4 0.13 0.14 85.8 3.23 3.06 85.3
Quality-Net 0.32 0.39 89.5 0.07 0.07 90.1 2.49 237 88.1
CNN 0.29 0.34 89.2 0.06 0.05 92.8 2.65 2.54 86.9
SER-CL 0.24 0.30 90.1 0.04 0.05 93.1 1.73 1.66 91.2
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TABLE V. Performance comparison of proposed models (upper half) and comparison approaches (lower half) using the real-world COSINE corpus.

PESQ ESTOI SI-SDR

MAE RMSE* PCC SRC MAE RMSE* PCC SRC MAE RMSE* PCC SRC
(est.+res.)-CLa 0.27 0.30 0.80 0.74 0.07 0.09 0.76 0.74 3.02 3.11 0.78 0.74
(deg.+res.)-CLa 0.25 0.30 0.80 0.78 0.07 0.07 0.77 0.75 271 2.74 0.79 0.76
(est.+res.+deg.)-CLa 0.28 0.31 0.80 0.74 0.08 0.10 0.75 0.75 3.21 3.05 0.76 0.76
SER-CL (only res.) 0.26 0.32 0.81 0.76 0.07 0.09 0.76 0.75 291 2.95 0.76 0.74
AutoMOS 0.48 0.44 0.72 0.65 0.17 0.17 0.67 0.65 3.70 3.88 0.72 0.72
Quality-Net 0.34 0.46 0.76 0.72 0.13 0.11 0.74 0.73 3.30 3.45 0.76 0.74
CNN 0.36 0.41 0.78 0.72 0.12 0.12 0.72 0.72 3.21 3.24 0.80 0.75
NISQA 0.24° 0.29° 0.82° 0.79° 0.06 0.07 0.78 0.77 2.70° 2.83° 0.79° 0.75"

“Statistically significant results when compared to SER-CL, according to a two-tailed t-test with 95% confidence interval.

"Statistically insignificant results when compared to the (deg.+res)-CL model.

stage. The model that uses the concatenation of the
degraded speech and residual [e.g., (deg.+res.)-CL] yields
the lowest error in most cases, except PCC for PESQ pre-
diction. For each alternative proposed model, the two-tailed
t-test with a 0.05 significance level is conducted against the
proposed SER-CL. There are no statistically significant dif-
ferences between the means of each pair of predicted scores
(p-value > 0.1). Since the alternative models do not show a
substantial advantage over SER-CL in these experiments,
we recommend that the residual only model is used when
computational efficiency is required, since the input size is
smaller, resulting in fewer computations. These results also
confirm that the residual can be used to predict objective
scores.

The comparison with other data-driven approaches is
shown in the lower half of Table V. Not surprisingly, the
performance of SER-CL on real-world COSINE data
declined compared to the results on the simulated TIMIT
dataset, but its drop is much smaller than that of AutoMOS,
Quality-Net, and the CNN-based approach. NISQA, how-
ever, performs the best overall. The performance, however,
is similar for PESQ prediction (not statistically significant),
but NISQA performs slightly better than SER-CL for
ESTOI (p-value < 0.01) and SI-SDR predictions (p-value
< 0.05). When comparing NISQA to our (deg.+res.)-CL
model, (deg.+res.)-CL performs better on average for SI-
SDR, while NISQA performs better for ESTOI. The PESQ
results are not statistically significant. Note that the results
from the proposed approaches are statistically significant
against the results from AutoMos, Quality-Net, and CNN,
except for the few cases where the results are the same.

IV. DISCUSSION

Our experimental results show that improving speech
enhancement performance can noticeably reduce the predic-
tion error of objective metrics. One of the advantages of our
two-stage framework is that the enhancement algorithm can
be replaced by any state-of-the-art approach, e.g., deep clus-
tering (Hershey et al., 2016), Wave-U-Net (Stoller et al.,
2018), or speech enhancement generative adversarial net-
work (Pascual et al., 2017). From the experiments of various
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simulated and real-world conditions, we notice that the dis-
tortions present in speech signals have a large impact on the
accuracy and robustness of metric prediction. Therefore, the
choice of the speech enhancement algorithm in the first
stage depends on the overall performance improvement in
the intended environments. In other words, a speech
enhancement approach that has been proven to be successful
for an intended type of distortion or environment should be
a suitable enhancement approach for our two-stage system.
If across environmental performance is not satisfactory, a
per-environment optimal enhancement approach may be
needed.

In previous experiments, the first stage and second stage
are trained with the same dataset. To further test the general-
ization capability of the system on mismatched training
datasets, we use the already-trained speech-enhancement
model on TIMIT noisy data as the first stage, and the
already-trained metric-score prediction model on COSINE
data as the second stage, then test this combined two-stage
system with the COSINE data. This experiment will deter-
mine the effectiveness of metric prediction, assuming the
enhancement stage uses a pre-trained model from a different
dataset. The results are shown in Table VI. The estimation
errors (MAE and RMSE*) have a moderate increase when
compared to the matched-stage training case, but the corre-
lation coefficients drop noticeably compared to the model
trained on the same dataset (i.e., SER-CL in Table V). It
indicates that the mismatched training data between the two
stages indeed has an impact on the prediction performance
since unseen distortions are included. When comparing to
the average performance of CNN and Quality-Net
approaches in Table V, the mismatched SER-CL model
shows comparable prediction errors (e.g., did slightly better

TABLE VI. Performance of the proposed SER-CL approach on mis-
matched training data.

MAE RMSE* PCC SRC

PESQ 0.37 0.40 0.70 0.69
ESTOI 0.12 0.15 0.63 0.65
SI-SDR 3.30 3.50 0.61 0.58
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in PESQ while worse in ESTOI and SI-SDR), but worse cor-
relation performance. The reason is that the first stage of
SER-CL is trained from noisy TIMIT dataset, which did not
include the same types of distortions or speakers, as the
COSINE dataset, where the COSINE dataset also includes
reverberation. It is possible that performance differences are
also due to differences between the simulated and real data.
Nevertheless, it shows that matched training is preferred.

The poor performance of certain approaches (e.g.,
Quality-Net) may be attributed to making frame-level score
predictions, where each frame of the signal is given an
utterance-level assessment score as a label, and the pre-
dicted score of the signal is obtained by averaging the esti-
mated values over all frames. This is a major shortcoming,
as frame-level (objective or subjective) scores (~ over milli-
second length windows) are not the same as utterance-level
scores (~ over 4-5s), as the degree of distortion might vary
much over this time period. Our approach overcomes this
drawback as a single objective metric prediction is made for
the utterance.

Our approach may potentially be used to alleviate the
well-known metric discrepancy problem (Fakoor et al.,
2018; Fu et al., 2018b), where the training objective func-
tion (e.g., MSE per frame) and performance evaluation met-
rics (e.g., PESQ, STOI, and WER) are mismatched. A
model that obtains the lowest MSE during training does not
necessarily achieve an improvement in speech quality and
intelligibility. On the contrary, our model can potentially
facilitate a multi-task learning framework, where the speech
enhancement and objective metric prediction stages are
trained simultaneously to improve the quality and intelligi-
bility of the enhanced speech and lower the error of objec-
tive metric prediction.

Successfully predicting objective quality and intelligi-
bility scores enables real-world testing. These objective met-
rics, however, may not be the gold standard, since they may
not always strongly correlate with user sentiment, in all
environments. Predicting human-provided mean-opinion
scores (MOS) is more ideal, but a large-scale publicly avail-
able speech corpus that contains subjective ratings currently
does not exist to facilitate human-level score prediction. We
plan to conduct large-scale listening tests using real-world
corpora, and evaluate the proposed two-stage system with
human-level assessment in the future. In the meantime,
objective-score prediction is still viable, since it will enable
researchers to assess and analyze real-world performance,
which can lead to algorithm improvements.

V. CONCLUSION

In this paper, we propose a data-driven framework that
uses deep learning to perform objective speech quality and
intelligibility assessment. It is clear that environmental noise
and reverberation play a dominant role in degrading the
objective metrics of clean speech, so our idea is to use the
amount of noise and reverberation distortions as an indicator
of the scores of these objective metrics. Specifically, we
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propose a two-stage non-intrusive prediction model. In the
first stage, degraded speech is passed to a speech enhance-
ment system that separates the mixture into enhanced speech
and residuals. The residuals contain mostly noise and rever-
beration components and can be regarded as a reasonable
distortion feature for the next stage. Then the second stage
uses the residuals to predict the objective metrics of mixture
speech with a stack of four convolutional LSTM layers. The
results show that our two-stage approach can accurately and
reliably predict many objective metrics, e.g., PESQ, STOI,
and SDR, when compared to other state-of-the-art methods,
in noisy, reverberant, and combined testing environments.

In the future, we will investigate training the entire sys-
tem in an end-to-end manner. We expect that jointly training
both stages could be beneficial to each other, that is, using
the second stage to help update the first stage can improve
the performance of the speech enhancement task, in return,
boosting the accuracy and robustness of the assessment pre-
diction task.
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