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Towards real-world objective speech quality and intelligibility
assessment using speech-enhancement residuals and
convolutional long short-term memory networks

Xuan Donga) and Donald S. Williamson
Department of Computer Science, Indiana University, Bloomington, Indiana 47408, USA

ABSTRACT:

Objective metrics, such as the perceptual evaluation of speech quality (PESQ), short-time objective intelligibility

(STOI), and signal-to-distortion ratio (SDR), are often used for evaluating speech. These metrics are intrusive since

they require a reference (clean) speech signal to complete the evaluation. The need for a reference signal reduces the

practicality of these metrics, since a clean reference signal is not typically available during real-world testing. In

this paper, a two-stage approach is presented that estimates the objective score of these intrusive metrics in a non-

intrusive manner, which enables testing in real-world environments. More specifically, objective score estimation

is treated as a machine-learning problem, and the use of speech-enhancement residuals and convolutional long

short-term memory (SER-CL) networks is proposed to blindly estimate the objective scores (i.e., PESQ, STOI, and

SDR) of various speech signals. The approach is evaluated in simulated and real environments that contain different

combinations of noise and reverberation. The results reveal that the proposed approach is a reasonable alternative

for evaluating speech, where it performs well in terms of accuracy and correlation. The proposed approach also

outperforms comparison approaches in several environments.VC 2020 Acoustical Society of America.
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I. INTRODUCTION

Quality and intelligibility are two important attributes

of speech. Speech quality refers to the pleasantness of a

speech signal, while intelligibility measures how well one

can recognize what is said in a given utterance (Loizou,

2013). Quality and intelligibility assessments are important

because they directly correlate to the usefulness of speech-

based applications, such as hearing aids and multimedia

communication services. One form of evaluation involves

subjective testing using human participants. These studies

are accurate and effective, however, they are also expensive

and time consuming. As a result, objective metrics are often

used instead.

Intrusive metrics assess speech by computing the simi-

larity or correlation between a clean reference signal and its

degraded version (noisy, reverberant, or enhanced). Popular

intrusive measures include the perceptual evaluation of

speech quality (PESQ) (Rix et al., 2001), short-time objec-

tive intelligibility (STOI) (Taal et al., 2011), extended STOI

(ESTOI) (Jensen and Taal, 2016), signal-to-distortion ratio

(SDR) (Vincent et al., 2006), and scale-invariant SDR

(SI-SDR) (Le Roux et al., 2019). Speech recognition mea-

sures (e.g., word and character error rates) can evaluate

speech, but they do not assess human-level quality or intelli-

gibility. One major shortcoming of intrusive measures is

that they require a clean reference signal. Unwanted inter-

ferences are always present in real environments, which

renders a clean signal inaccessible. This hinders objective

assessment in real environments, which ultimately restricts

improvement (Falk et al., 2015).

Non-intrusive objective metrics overcome the above

shortcoming by directly evaluating the signal of interest

without a reference signal. Many works have been proposed

(Falk et al., 2010; Kim and Tarraf, 2007; Sørensen et al.,

2017), but P.563 (Malfait et al., 2006) is the first non-

intrusive speech quality assessment model. It assesses the

quality of speech that is transmitted over a narrow-band tele-

phone communication channel. Its performance, however,

heavily depends on the chosen set of parameters, which

limits its applicability.

Data-driven approaches have recently been proposed

for non-intrusive objective evaluation. More specifically,

Falk and Chan (2006) use Gaussian mixture models, support

vector machines and random forest classifiers to produce

intermediate features from clean and degraded signals,

which are then combined by a classifier to estimate a mean

opinion score (MOS). A classification and regression tree is

used in Sharma et al. (2016), where several short- and long-

term features are extracted to estimate the quality and intel-

ligibility of speech degraded by additive noise and channel

distortions. Approaches involving neural networks have

been gaining in popularity. In Soni and Patil (2016), sub-

band autoencoders extract acoustic features that are mappeda)Electronic mail: xuandong@iu.edu, ORCID: 0000-0003-0630-0701.
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to quality scores using a single-layer neural network. In

Seetharaman et al. (2018), a full convolutional network is

used to regress from a reverberant speech signal to the

speech transmission index (STI), which is an objective met-

ric used for evaluating speech that is transmitted over a

communication channel. Andersen et al. (2018) utilize a sin-

gle convolutional layer to predict a scalar in the range of 0

to 1 that corresponds to 0%–100% speech intelligibility

from subjective datasets. The non-intrusive speech quality

assessment (NISQA) model (Mittag and M€oller, 2019) has a

CNN that first estimates per-time frame quality, and then

subsequently uses a long short-term memory (LSTM) net-

work to aggregate the per-frame values, to predict overall

quality. Although these approaches offer advances, they

have not been extensively evaluated in unseen noisy and

reverberant environments.

Current intrusive metrics provide quality and intelligi-

bility scores that correlate with human evaluations (Hu and

Loizou, 2008; Taal et al., 2011), but they cannot be used in

real-world environments where the reference signal is

unavailable. The existing non-intrusive approaches enable

reference-less evaluation, however, their performance is not

satisfactory in extremely low signal-to-noise ratios (SNR) or

highly reverberant environments (Falk et al., 2010; Fu et al.,

2018a; Kinoshita et al., 2016; Sharma et al., 2016).

Our goal is to predict the objective quality and intelligi-

bility scores of intrusive metrics from a degraded speech

signal using a two-stage deep learning framework. The

amount of environmental noise and reverberation play a

dominant role in degrading the objective quality and intelli-

gibility of clean speech, so our idea is to use the amount of

noise and reverberation as a feature for objective metric pre-

diction. In the first stage, degraded speech is provided to a

speech-enhancement system that separates a mixture into

enhanced speech and residuals. The second stage then uses

the residuals to predict the objective scores with a stacked

convolutional long short-term memory network

(ConvLSTM) (Xingjian et al., 2015). We view enhancement

as the first stage, although the focus of this study is on the

second stage that estimates quality and intelligibility scores

from the residual. We focus on predicting scores from three

relatively reliable intrusive metrics (i.e., PESQ, STOI, and

SDR) under noisy, reverberant, and noisy-reverberant envi-

ronments. The findings serve as a pilot study for future work

on predicting subjective MOS. A preliminary version of this

work is published in Dong and Williamson (2018).

This paper is organized as follows. A detailed descrip-

tion of our approach is given in Sec. II. Experimental results

and comparisons are given in Sec. III. Sections IV and V

conclude the discussion of the proposed system.

II. SYSTEM DESCRIPTION

A high-level depiction of the proposed approach is pro-

vided in Fig. 1. It consists of a speech enhancement stage and

an objective score prediction stage. Speech enhancement sepa-

rates the target speech from background noise. Residuals are

computed by subtracting the speech estimate from the input

mixture. Then the residual’s spectrogram is provided to the

speech assessment module for estimating the objective scores.

These steps are described in more detail in the following.

A. Motivation for using enhancement residuals

Assume that a clean speech signal, s(t), is corrupted by

distortions. In reverberant environments, the reverberant

speech, y(t), is defined as the convolution of anechoic

speech, s(t), with a room impulse response (RIR), h(t),

yðtÞ ¼ sðtÞ � hðtÞ ¼ dðtÞ þ erðtÞ þ lrðtÞ; (1)

where * indicates convolution and t represents a time index.

d(t) is the direct sound, and erðtÞ and lrðtÞ are the early and

late reflections, respectively. d(t) is used as the reference signal

when calculating the intrusive metrics of reverberant speech.

In noise-only environments, the distorted signal is merely the

clean signal with additive noise [e.g., yðtÞ ¼ sðtÞ þ nðtÞ].
Distorted signals in noisy-reverberant environments are gener-

ated by combining these two distortions.

A speech enhancement approach estimates the clean

speech (noise) or direct sound (reverberation), ŝðtÞ, from the

distorted signal. The enhancement residual, r̂ðtÞ, is then

computed as

r̂ðtÞ ¼ yðtÞ � ŝðtÞ (2)

FIG. 1. (Color online) Overview of the proposed two-stage objective metric prediction approach.
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and it is an estimate of the amount of additive noise or

reverberation (e.g., distortion), r(t), in a given signal.

Subsequently, r(t) equates to the noise signal (n(t)) in noisy

environments and the reverberation [erðtÞ þ lrðtÞ] in rever-

berant environments.

In general, intrusive measures generate assessment

scores by computing the quantitative distance or correlation

between a clean reference signal and the signal being evalu-

ated. For instance, PESQ is a perceptually motivated mea-

sure, where the differences between the loudness spectra of

the reference and degraded signals are calculated using two

different approaches. One calculation results in a symmetric

disturbance, dSYM, while the other results in an asymmetric

disturbance, dASYM (Rix et al., 2001). The final PESQ score

is a direct function of these disturbances,

PESQ ¼ 4:5� 0:1� dSYM � 0:0309� dASYM; (3)

where larger disturbances lead to lower PESQ scores.

When computing STOI scores, denote the kth short-

time Fourier transform (STFT) frequency bin of the mth

time frame of the clean speech signal as S(k, m), and of the

distortion as R(k, m). The STFT of the degraded speech is

then, Yðk;mÞ ¼ Sðk;mÞ þ Rðk;mÞ. The norms of the jth

one-third octave band are then defined as

SjðmÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

k2j

jSðk;mÞj2
s

; (4)

YjðmÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

k2j

jSðk;mÞ þ Rðk;mÞj2
s

: (5)

STOI compares a sequence of N one-third octave bands of

the clean speech, sj;m; to that of the degraded speech, yj;m, by

means of a correlation coefficient, dj;m, as follows:

sj;m ¼ Sjðm� N þ 1Þ;…; SjðmÞ
� �T

; (6)

yj;m ¼ Yjðm� N þ 1Þ;…; YjðmÞ
� �T

; (7)

dj;m ¼
ðsj;m � lsj;mÞ

Tð�yj;m � l�y j;mÞ

jjsj;m � lsj;m jjjjyj;m � lyj;m jj
; (8)

where �yj;m is a normalized and clipped version of yj;m; lðÞ
refers to the averaging operation, and jj � jj represents the l2
norm. Upon inserting Eq. (5) into Eqs. (7) and (8), it shows

that the distortion that is present within each time-frequency

bin has a strong effect on dj;m, which is expected to have a

monotonic inverse relation with average intelligibility (Taal

et al., 2011). More specifically, as the amount of distortion

increases, the subsequent objective STOI score lowers from

the ideal score of 1, which occurs when distortions are not

present.

For SDR, the degraded source is decomposed into the

summation of the clean speech and three error terms: inter-

ference, einterf, noise, enoise, and artifact, eartif, based on the

principle of orthogonal projection (Vincent et al., 2006),

starget :¼ Psiy; (9)

einterf :¼ Psy� Psiy; (10)

enoise :¼ Ps;ny� Psy; (11)

eartif :¼ y� Ps;ny; (12)

where Psi ; Ps, and Ps;n are the projection matrices for the ith

sound source, all sound sources (including distortions), and

all sound sources and sensor noises, respectively. Then the

SDR is defined as the energy ratio of the true source and

these errors in decibels,

SDR :¼ 10 log10
jjstargetjj

2

jjeinterf þ enoise þ eartif jj
2
: (13)

Since the latter two projection matrices (i.e., Ps and Ps;n)

depend on the distortions (e.g., noise or reverberation), this

impacts the interference, noise and artifact errors, which

impacts the final SDR.

These three intrusive metrics implicitly use a measure

of distortion (or residual) in their calculations. Hence, the

residual serves as a strong indicator of the resulting objec-

tive quality or intelligibility score, and could serve as an

input to a score-prediction module, if it can be appropriately

and accurately estimated.

B. Speech enhancement stage

Recent work has shown that enhancement approaches

that estimate a time-frequency (T-F) mask perform well

(Wang et al., 2014; Weninger et al., 2015). Many T-F masks

have been proposed (Erdogan et al., 2015; Srinivasan et al.,

2006; Wang, 2005), but we, however, elect to use the com-

plex ideal ratio mask (cIRM), since it has been shown to

perform best in noisy, reverberant and noisy-reverberant

environments (Williamson and Wang, 2017; Williamson

et al., 2016), where it outperformed many of the above

referenced options. Later we compare the cIRM to other

masks, but note that the primary focus of this work is to

determine if residuals can be successfully used for score pre-

diction, so much of our efforts are dedicated to this task.

The cIRM, which enhances the magnitude and phase of

degraded speech, is constructed from the STFTs of the clean

(or direct) and degraded speech,

cIRMðk;mÞ ¼
jSðk;mÞj

jYðk;mÞj
eið/sðk;mÞ�/yðk;mÞÞ; (14)

where /sðk;mÞ and /yðk;mÞ denote the phase response of

the clean and degraded speech, respectively. Williamson

et al. (2016) shows that the cIRM substantially improves

speech quality according to objective and subjective evalua-

tions, in many environments, so we expect it to help with

estimating the residual.

The left half of Fig. 2 illustrates the speech enhance-

ment stage. The complementary features (Wang et al.,

2013) from the input signal are extracted, and then provided

as inputs to a deep neural network (DNN) with three dense
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layers to estimate the cIRM. Each dense layer has 1024

units, and uses rectified linear unit (ReLU) activation func-

tions except that a linear activation function is employed in

the output layer. Adam optimization with a mean square

error (MSE) loss is used to train the DNN for 200 epochs

with a constant learning rate of 10�4. The remaining param-

eters match those as defined in the original paper. The T-F

domain speech estimate is generated by applying (via

Hadamard product) the estimated mask to Y(k, m). Equation

(2) is used to compute the enhancement residual, after per-

forming overlap-add synthesis.

C. Objective score prediction stage

The ConvLSTM that is proposed by Xingjian et al.

(2015) has been successfully applied in many fields, includ-

ing speech recognition (Zhang et al., 2017), and speech

translation (Weiss et al., 2017). A LSTM effectively

addresses temporal correlations, however, it is not good at

maintaining local structure and it is more prone to overfit-

ting (Salehinejad et al., 2017). ConvLSTM preserves the

local structure by replacing the Hadamard product (�) of

the LSTM with a convolution operation (*),

im ¼ rðWi � xm; hm�1½ � þ biÞ;

fm ¼ rðWf � xm; hm�1½ � þ bf Þ;

om ¼ rðWo � xm; hm�1½ � þ boÞ;

cm ¼ fm � cm�1 þ im � tanhðWc � xm; hm�1½ � þ bcÞ;

hm ¼ om � tanhðcmÞ; (15)

where xm; cm, and hm stand for the input data, cell state and

hidden state at time step m, respectively. im; fm; om denote

the input, forget, and output gates, respectively. W and b are

the filter matrices and bias vectors connecting different

gates. r is the sigmoid activation function. We apply

ConvLSTM units here since it not only independently cap-

tures discriminative features in frequency and time, but it

also explores the co-occurrence relationship between the

frequency and time domains.

The right half of Fig. 2 illustrates how enhancement

residuals are utilized to predict the objective scores.

Specifically, the residual’s spectrogram is inputted to a stack

of four ConvLSTM layers, each consisting of 16, 32, 64,

and 96 filters with a 1� 3 kernel (i.e., convolving only

across the frequency dimension within each time step),

respectively. Therefore, the characteristics of the residual

can be captured by the ConvLSTM units, where local fea-

tures of each frame are extracted by convolutional kernels

and temporal features by recurrent LSTM networks. The

hidden state for the last time step of the last ConvLSTM

layer is then passed to a dense layer with 32 units, which

finally outputs the predicted objective score. Training is per-

formed for 50 epochs with an MSE loss. The learning rate is

initially set to 0.01, but then it decays by 0.1 every 20

epochs. Note that the models of the first stage and the sec-

ond stage are trained individually.

Generally, a two-dimensional CNN needs a fixed length

feature as input, which limits the input size of the signal.

The length using a ConvLSTM is not restricted in this man-

ner. Alternatively, if using a one-dimensional CNN, fine

FIG. 2. (Color online) A depiction of our proposed two-stage objective metric prediction approach (cIRM-CL).
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frequency structure is not leveraged. Additionally, the

CNN-LSTM architecture learns frequency and temporal

features consecutively, while ConvLSTM is able to learn

temporal-frequency patterns simultaneously, which

improves computational efficiency. This also may facilitate

the learning of discriminative features.

III. EVALUATIONS AND RESULTS

We evaluate the proposed approach in three different

environments: noisy, reverberant, and noisy-reverberant

conditions. The TIMIT speech corpus (Garofolo et al.,

1993) is used for the initial experiments. Each signal has

been down-sampled to 16 kHz. In the speech enhancement

stage, we use the same parameter configuration for calculat-

ing the complementary features as described in Wang et al.

(2013), since they show success in modeling both noisy and

reverberant speech. The STFT of the residual uses a 40ms

Hanning window, a 512 point fast Fourier transform (FFT)

and 25% overlap between adjacent frames.

A. Baseline speech enhancement approaches

We apply several T-F masking based speech enhance-

ment approaches as baselines, and investigate how the

enhancement performance of the first stage effects the pre-

diction accuracy of the second stage. We first consider the

ideal binary mask (IBM), which is a two-dimensional binary

matrix that labels each T-F unit as being speech or noise

dominant. The SNR of a T-F unit, SNRðk;mÞ, and a local

criterion (LC) are used to classify whether speech or noise

dominates at each T-F point

IBMðk;mÞ ¼
1; if SNRðk;mÞ > LC;

0; otherwise:

(

(16)

The ideal ratio mask (IRM) makes soft decisions for

each T-F unit, and can be computed as follows:

IRMðk;mÞ ¼
jSðk;mÞj

jSðk;mÞj þ jRðk;mÞj
; (17)

where jSðk;mÞj and jRðk;mÞj refer to the magnitude

responses of the speech and distortion (noise or reverbera-

tion) of a distorted speech signal, respectively. The IRM

returns values in-between 0 and 1 (inclusively), hence it can

be thought of as the percentage of energy that is attributed

to speech at each T-F unit.

Two separate DNNs are trained to estimate one of the

above training targets. The DNNs each have architectures

that are similar to that used for the cIRM. However, sigmoid

activation functions are used in the output layer, since these

labels have values between 0 and 1. The complementary

features are provided as inputs as well. The same training

hyper-parameters and datasets are used. In reverberant con-

ditions, the direct sound, D(k, m), is used in place of S(k, m).

B. Comparison non-intrusive methods

We initially compare our system with six non-intrusive

methods: noise power spectral density (PSD) (Hendriks

et al., 2010), speech PSD (Erkelens et al., 2007), non-

intrusive speech assessment (NISA) (Sharma et al., 2016),

AutoMOS (Patton et al., 2016), a CNN-based model

(Gamper et al., 2019), and Quality-Net (Fu et al., 2018a),

which can be used for estimating the quality and intelligibil-

ity of speech degraded by additive noise and reverberation.

Noise and speech PSD are unsupervised approaches that

have been used for SNR estimation (Chinaev and Haeb-

Umbach, 2016; Martin, 1993; Suhadi et al., 2010), which is

a closely related problem. We follow this idea, but modify it

for general objective metric prediction. Noise PSD is based

on a minimum mean-squared error (MMSE) estimate of the

noise power spectrum coefficients. Clean speech is obtained

by subtracting the estimated noise PSD from the noisy

speech PSD. It then is employed as the reference signal to

estimate the true objective score. The speech PSD algorithm

operates in a similar manner, but it directly estimates the

clean speech PSD. We also select four recently developed

data-driven approaches for comparison. NISA combines

feature extraction with a classification and regression tree

model. AutoMOS uses the log-Mel spectrogram as input to

a stack of LSTMs. The outputs of the last LSTM layer are

fed to two fully connected (FC) layers for estimating the

final assessment score. The CNN approach utilizes Mel-

frequency coefficients and pitch features as the input to a

model that has four convolutional and two FC layers.

Quality-Net has one bidirectional LSTM layer followed by

two FC layers. For these approaches that do not release pub-

licly available code, we followed the configurations (e.g.,

features and model parameters) that are used in the original

papers. We verified the correctness of the implementation

by obtaining nearly identical results.

C. Performance measures

The accuracy of the prediction is evaluated by the mean

absolute error (MAE) between the true objective score and

the predicted score. We also use the epsilon-insensitive root

MSE (RMSE?), which gives an impression of how much the

prediction error exceeds the 95% confidence interval. It is

recommended by ITU-T P.1401 (ITU, 2012) to compare the

statistical performance of different evaluation algorithms.

Last, the Pearson’s correlation coefficient (PCC) is used to

measure the linear relationship between a model’s predic-

tion and the ground-truth score.

D. Noisy condition

1. Experimental data

For the noisy-speech case, ten noise signals from the

NOISEX-92 noise database (Varga and Steeneken, 1993)

(e.g., speech-shaped noise, babble, factory floor, machine

gun, cockpit, fighter jets, vehicle, radio channel, operating

room, and white noise) are separately combined with 1500
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TIMIT clean speech utterances at one of ten SNR levels

(from �15 to 30 dB with 5 dB increments). This results in a

total of 15 000 training mixtures. Random contiguous seg-

ments from the first half of each noise are used in generating

the training noisy speech mixtures. The approach is tested

with 200 different TIMIT utterances that are combined with

random segments from the second half of the seen noise sig-

nals at the same SNR levels as above. This results in 2000

testing mixtures for the seen noise-type dataset, even though

the exact realization of the noise has not been seen during

training. To further test generalization, we create a second

testing set of signals that are generated from completely

unseen noises and utterances. It uses 300 different clean

utterances that are mixed with five unseen noise types (e.g.,

cafeteria, destroyer engine, live restaurant, pink, and tank

noise) at one of ten SNR levels (from �15 to 30 dB with a

5 dB step). This results in 1500 testing mixtures for the

unseen noise-type dataset. Note that all testing signals (seen

and unseen) are composed of signals from unseen speakers.

The training labels for metric prediction (e.g., PESQ, STOI,

and SDR scores) are calculated from the true clean speech

and generated noisy speech signals.

2. Results and analysis

In the first stage, we separately employ different

speech-enhancement algorithms in our two-stage approach,

aiming to investigate how the enhancement capabilities

influence prediction accuracy. PESQ, STOI, and SDR are

employed to evaluate the enhancement performance. We

define D-ð�Þ as the improvement of the corresponding score

compared to the unprocessed noisy speech, where larger val-

ues for D-ð�Þ indicate better enhancement performance.

Table I shows the average improvement of each algorithm

under noisy conditions. We see that every approach

improves PESQ performance when compared to the unen-

hanced mixture. IBM offers the smallest PESQ improve-

ment over the noisy speech, while the estimated cIRM

performs best. When evaluating objective intelligibility with

STOI, all approaches show noticeable improvement. Similar

trends are shown when evaluating with D-SDR. Overall, the

estimated cIRM performs better than other approaches for

this task. Figure 3 shows spectrograms for the true and

estimated residuals from the three enhancement

approaches, where the residuals are computed from a 0 dB

noisy speech signal using babble noise. In the ideal sense,

the residuals would be more like the noise, since this indi-

cates better enhancement. Notice that the estimated resid-

ual from the IBM does not capture all details of the noise.

The estimated residuals from the IRM and cIRM

approaches are similar.

The upper portion of Table II illustrates the prediction

errors of the proposed two-stage approach using different

speech-enhancement algorithms. “CL” indicates that the

proposed second stage is applied. In general, we see that in

noisy environments, cIRM-CL gives the best estimates com-

pared to IBM-CL and IRM-CL. For PESQ prediction, using

a cIRM in the enhancement stage significantly reduces the

RMSE? from 0.38 to 0.26 compared to IBM-CL. In terms of

STOI, the MAE and RMSE? of cIRM-CL are halved relative

to the other enhancement options. For SDR, cIRM-CL

clearly outperforms IBM-CL and IRM-CL in reducing the

prediction error. cIRM-CL also increases the PCCs for all

objective metrics. Furthermore, we observe a consistent pat-

tern when comparing Tables I and II. That is, better

enhancement performance leads to lower score prediction

errors. Although the spectrograms of the IRM and cIRM are

similar, the cIRM also enhances phase, which results in a

better residual estimate. It reveals that improving speech-

enhancement performance clearly improves prediction accu-

racy. Therefore, we use the cIRM for the first stage. We

now denote our proposed two-stage approach that uses

speech-enhancement residuals (SER) as SER-CL for the

remainder of the paper.

An extreme experiment was conducted in the noisy

speech condition. Assuming that a speech enhancement

algorithm can ideally separate clean speech from noise in

the first stage, then two input configurations to the second-

stage are tested: (1) The true noise is supplied as an input to

TABLE I. Performance comparison of different speech enhancement

approaches averaged across seen and unseen noisy conditions. D-(�) denotes
performance improvement.

IBM IRM cIRM

D-PESQ 0.39 0.42 0.60

D-STOI 0.12 0.14 0.15

D-SDR 5.40 5.60 7.07

FIG. 3. (Color online) Spectrograms of the true and estimated residuals that are generated by three speech enhancement algorithms on a 0 dB seen noisy

(babble) speech signal.(a) Oracle residual. (b) IBM-estimated residual. (c) IRM-estimated residual. (d) cIRM-estimated residual.
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the second score-prediction stage and (2) the true noise and

the corresponding clean speech are provided as inputs to the

original section stage. The results of two test cases are indi-

cated as “ideal two-stage” in Table II. Generally, the estima-

tion errors of the model trained with true noise are worse

than the proposed two-stage model trained with the cIRM

(i.e., cIRM-CL). Many factors can lead to the above results.

One reason is that the network has not been designed and

optimized for the pure noise, where it is possible that an

alternative network structure (number of layers, number of

nodes per layer, hyperparameters, etc.) may be needed.

Additionally, it is quite possible that the second-stage net-

work leverages some of the errors of the first stage, where

the errors (removal of speech or retention of noise) provide

distinguishing information that improves performance. It is

worth noting that the model trained with both clean speech

and pure noise obtains much lower error and higher correla-

tion compared to the other models. It confirms that in the

ideal case, if both original speech and noise are available,

the prediction performance using the neural network is also

ideal. These results can be regarded as a performance upper

bound of the proposed framework.

In order to evaluate the importance of the second stage,

we also directly use the enhanced speech from the first stage

as an estimate of the clean reference to calculate intrusive

scores (e.g., using enhanced speech as the substitute for

clean speech in PESQ calculation). We denote this approach

as “one-stage,” since the second prediction stage is not

applied. The comparison results are shown in the middle of

Table II. Consistently, for each enhancement algorithm, the

prediction results using one stage are severely worse than

the proposed two-stage approach. The reason is that speech

enhancement algorithms do not perform perfectly, so the

difference between the true clean speech and the estimated

clean speech leads to the inaccurate estimates of true intru-

sive scores, especially when the testing data include many

challenging noise types and SNRs. It indicates that a speech

enhancement stage followed by a metrics prediction stage is

preferred. Thus, we elect to further process the enhancement

residuals for score prediction.

The results when the proposed system is compared to

other non-intrusive approaches in seen and unseen noisy envi-

ronments are shown in the bottom portion of Table II. In

general, the four deep-learning approaches significantly outper-

form the two unsupervised (i.e., noise PSD and speech PSD)

and tree based (i.e., NISA) approaches across all metrics. It

demonstrates that neural network methods are beneficial for

speech assessment. It is noticeable that the results of SER-CL

are superior to AutoMOS, Quality-Net, and CNN approaches.

For PESQ prediction, the RMSE? of SER-CL is 0.26, which is

lower than the competitive CNN approach by 0.03 and

Quality-Net by 0.04. The same trends occur when predicting

STOI and SDR, that is, SER-CL always produces the lowest

error and highest correlation across all cases. Specifically, the

STOI MAE of Quality-Net and CNN are 0.05 and 0.04,

respectively, which are both higher than the 0.02 of SER-CL.

Quality-Net shows better performance (1.32 MAE and 1.16

RMSE?) over CNN in terms of SDR prediction, however, it is

worse than SER-CL (1.07 MAE and 0.87 RMSE?). Also,

SER-CL reduces the MAE and RMSE? of STOI and SDR by

half compared to AutoMOS. In Fig. 4, the predicted scores

from SER-CL are plotted against the true scores for all three

objective measures. A strong and almost linear correlation

between the predicted and true values are observed.

E. Reverberant condition

1. Experimental data

Reverberation adversely affects speech quality and

intelligibility because the sound reflections smear speech

structure across time and frequency. The reverberant speech

dataset used for evaluation in reverberant conditions is

TABLE II. Comparisons between the proposed two-stage system, one-stage approaches, and different non-intrusive methods under noisy conditions. The

average performance across seen and unseen testing noisy conditions is reported.

PESQ STOI SDR

MAE RMSE? PCC(%) MAE RMSE? PCC(%) MAE RMSE? PCC(%)

Two- stage IBM-CL 0.35 0.38 90.9 0.07 0.07 97.1 1.86 1.73 98.2

IRM-CL 0.27 0.34 91.7 0.05 0.06 96.3 1.53 1.44 99.1

cIRM-CL (SER-CL) 0.16 0.26 94.6 0.02 0.03 98.7 1.07 0.87 99.5

Ideal two-stage True noise-only 0.23 0.31 91.2 0.03 0.03 95.6 1.59 1.42 98.1

Clean speech & noise 0.12 0.18 96.2 0.02 0.02 99.2 0.88 0.79 99.3

One- stage IBM 0.48 0.50 88.2 0.14 0.11 90.3 4.70 3.92 93.9

IRM 0.42 0.51 87.9 0.11 0.09 90.1 3.97 3.69 95.1

cIRM 0.40 0.48 89.3 0.08 0.08 90.8 3.15 3.02 95.8

Other non-intrusive methods Noise PSD 1.20 1.13 77.4 0.23 0.19 80.5 8.22 7.31 85.3

Speech PSD 0.80 0.83 83.6 0.14 0.13 85.4 5.37 4.17 90.0

NISA 0.53 0.59 86.9 0.12 0.10 88.6 4.05 3.82 94.8

AutoMOS 0.31 0.38 90.8 0.09 0.08 91.9 2.05 2.02 97.3

Quality-Net 0.24 0.30 93.1 0.05 0.04 96.9 1.32 1.16 99.2

CNN 0.20 0.29 94.2 0.04 0.04 97.8 1.63 1.54 98.8
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generated with the TIMIT corpus and an imaging method

(Habets, 2006). Specifically, five simulated rooms are

selected for both training and testing since different room

dimensions will produce diverse reverberation effects.

The dimensions of the five seen rooms are 4� 3� 3 m3,

6� 5� 3 m3, 8� 7� 4 m3, 9� 8� 4 m3, and 10� 9

�5m3, respectively. Another two unseen rooms are created

to further test generalization. The dimensions of these rooms

are 5� 4� 3 m3 and 7� 6� 4 m3.

RIRs are generated by placing the target speaker and

microphone in random positions in the simulated rooms, where

the distance between the speaker and microphone is fixed at

1m. With this configuration, 10 RIRs at 3T60’s (i.e., 0.2, 0.4,

and 0.6 s) are generated for each of the 5 training rooms, result-

ing in 150 training conditions. Two additional RIRs at the

same 3T60’s are generated for each of the 5 seen testing rooms,

to serve as the seen room but unseen RIR test cases. For the

unseen room case, 2 RIRs using 5 different T60’s (i.e., 0.1, 0.2,

0.3, 0.4, and 0.5 s) are generated for each of the 2 unseen test-

ing rooms. In total, 30 conditions from seen rooms and 20

from unseen rooms are used for testing. Each of the 1500

TIMIT utterances is convolved with 10 random training RIRs,

resulting in a set of 15 000 reverberant training signals. For

testing, each of the 500 different utterances from 100 speakers

are convolved with 5 random testing RIRs, resulting in 2500

testing speech signals. Thus, individual models are trained and

tested for each objective metric using utterances from many

speakers, multiple RIRs and rooms.

2. Results and analysis

Table III reports the average performance of PESQ,

STOI, and SDR prediction across seen and unseen reverberant

testing conditions. The average across the seen and unseen

sets are shown together for brevity, but the trends are similar

in each case. SER-CL is evidently superior to the PSD-based

and NISA approaches in all cases. When comparing with

other deep learning approaches (i.e., AutoMOS, Quality-Net,

and CNN), SER-CL achieves the best result in predicting all

objective metrics. For PESQ prediction, the RMSE? of SER-

CL is 0.29, which is lower than the 0.40 of AutoMOS, 0.35 of

Quality-Net, and 0.33 of CNN. Similar trends occur for STOI

and SDR prediction. Specifically, the STOI RMSE? of SER-

CL is 0.03, while AutoMOS and Quality-Net scores are 0.10

and 0.05, respectively. The performance of the CNN approach

is comparable to that of the SER-CL in STOI prediction,

where the MAE and RMSE? are both 0.04, while PCC is

93.7%, which is close to the 93.9% of SER-CL. In terms of

SDR, the MAE, RMSE? and PCC of SER-CL are 1.36%,

1.24%, and 92.4%, which surpasses the second place Quality-

Net. The experimental results show the robustness of the two-

stage approach in reverberant environments.

F. Noisy-reverberant condition

Background noise and reverberation are both present in

real world environments. To evaluate performance in this

challenging scenario, we generate noisy-reverberant speech by

FIG. 4. (Color online) Scatter plots of the true (x axis) and predicted scores (y axis) of SER-CL under noisy conditions. (a) PESQ prediction. (b) STOI pre-

diction. (c) SDR prediction.

TABLE III. Comparison of different non-intrusive methods under reverberant conditions. The average performance across seen and unseen testing data is

reported.

PESQ STOI SDR

MAE RMSE? PCC(%) MAE RMSE? PCC(%) MAE RMSE? PCC(%)

Noise PSD 0.67 0.92 78.4 0.16 0.18 82.2 5.54 4.98 78.9

Speech PSD 0.56 0.64 77.5 0.12 0.15 81.4 4.41 4.12 77.4

NISA 0.42 0.56 84.1 0.10 0.11 85.9 3.55 3.98 81.0

AutoMOS 0.32 0.40 88.3 0.09 0.10 87.9 2.47 2.33 83.1

Quality-Net 0.27 0.35 90.4 0.06 0.05 91.5 1.73 1.60 90.5

CNN 0.26 0.33 90.3 0.04 0.04 93.7 1.86 1.83 88.8

SER-CL 0.21 0.29 90.8 0.03 0.03 93.9 1.36 1.24 92.4
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combining different utterances with various RIRs and noises.

Specifically, 150 pairs of RIRs are generated in 5 rooms for

training. 30 pairs are generated in 5 seen rooms and 20 pairs

in 2 unseen rooms, resulting in 50 RIR pairs for testing. The

utterances and random cuts of noise are each convolved with

the corresponding RIR from the pairs. 1500 utterances are

mixed with one of 150 training RIRs and 10 types of noises

(1500� 10¼ 15 000 training signals). The SNR in each case

is randomly set to 0, 3, 6, and 9 dB. The testing dataset is gen-

erated by combining 200 different utterances with 50 testing

RIRs and 10 noises (200� 10¼ 2000 testing signals). Both

proposed and comparison approaches are trained and tested on

the same datasets. The average prediction errors under noisy-

reverberant conditions are shown in Table IV. The results are

broadly consistent with those of the two previous experiments.

SER-CL’s performance is superior to the other approaches in

most cases, except for STOI prediction, where the RMSE? of

CNN is the same as SER-CL. The average error of PSD-based

and NISA approaches are substantially higher than the pro-

posed approach in all cases. SER-CL obtains a noticeable

lower error than AutoMOS and Quality-Net across all metrics.

When comparing noise PSD, speech PSD and NISA to

our two-stage approach, we find that they do not give reli-

able and consistent predictions, especially in extreme condi-

tions, e.g., very low SNR, or severe reverberation. The

errors of other competitive deep learning approaches in each

case also have noticeable growth. On the contrary, the pro-

posed approach performs well in several testing conditions.

One reason is that our two-stage approach depends on

speech-enhancement residuals, which are a reasonable indi-

cator of degradation in objective quality and intelligibility.

The other reason is that we use a stack of convolutional

LSTMs to map the enhancement residuals to a target metric.

The ConvLSTM unit bonds the local feature extraction abil-

ity of deep convolutional neural networks with the temporal

consistency of LSTMs. Thus, our model outperforms the

LSTM-based AutoMOS, the BLSTM-based Quality-Net,

and the CNN-based approaches.

G. Real-world conditions

To further test generalization capabilities and the

importance of inputs to the second stage, we also consider a

real-world dataset, namely, the conversational speech in

noisy environments (COSINE) speech corpus (Stupakov

et al., 2009). COSINE captures multi-party conversations in

real-world environments that contain background noise and

interfering speakers, using multiple microphones. The

recordings were captured indoors and outdoors, and

included car engine sounds, birds, wind noise, street noise,

and busy cafeteria conditions, to name a few. The recordings

from the close-talking microphone and the body micro-

phones (e.g., shoulder or chest) are used as the clean refer-

ence and distorted speech, respectively, when calculating

the ground-truth objective scores. Two experiments are con-

ducted to first compare alternative inputs to our second net-

work stage, and to compare real-world performance against

other well-performing approaches. In the first, we separately

develop models that use the concatenations of (1) the esti-

mated speech and residual; (2) the degraded (unprocessed)

speech and residual; (3) the estimated speech, residual, and

degraded speech; and (4) only the residual (e.g., proposed

approach), as the input into the second metric-prediction

stage. The model parameters and configurations in both

stages are as previously defined. In the second experiment,

we compare our system with three of the previously used

approaches (e.g., AutoMOS, Quality-Net, and CNN) and a

fourth deep-learning approach, NISQA (Mittag, 2019;

Mittag and M€oller, 2019), since it has recently been shown

to perform well. Five thousand distorted signals from the

COSINE corpus are used to train each model, and 1000 sig-

nals are used for testing. Since the COSINE corpus is

recorded in everyday life environments, the training and

testing conditions (e.g., noise, speakers, and environments)

are not the same. In addition to PESQ, two additional met-

rics, ESTOI (Jensen and Taal, 2016) and SI-SDR (Le Roux

et al., 2019), are used as the training targets, to demonstrate

the flexibility of our two-stage approach in predicting

emerging objective measures. An additional performance

evaluation metric, Spearman’s rank correlation coefficient

(SRC) is included, since it describes the monotonicity

between the true and predicted scores.

We summarize the results of these experiments in

Table V. The upper half of the table shows the average

performance when applying different inputs to the second

TABLE IV. Comparison of different non-intrusive methods under noisy-reverberant conditions. The average performance across seen and unseen testing

data is reported.

PESQ STOI SDR

MAE RMSE? PCC(%) MAE RMSE? PCC(%) MAE RMSE? PCC(%)

Noise PSD 0.59 0.63 79.7 0.35 0.28 73.6 9.02 9.15 78.1

Speech PSD 0.56 0.58 81.9 0.28 0.25 77.8 7.58 8.32 77.3

NISA 0.55 0.53 83.2 0.18 0.16 82.5 7.82 6.53 79.5

AutoMOS 0.41 0.49 85.4 0.13 0.14 85.8 3.23 3.06 85.3

Quality-Net 0.32 0.39 89.5 0.07 0.07 90.1 2.49 2.37 88.1

CNN 0.29 0.34 89.2 0.06 0.05 92.8 2.65 2.54 86.9

SER-CL 0.24 0.30 90.1 0.04 0.05 93.1 1.73 1.66 91.2
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stage. The model that uses the concatenation of the

degraded speech and residual [e.g., (deg.þres.)-CL] yields

the lowest error in most cases, except PCC for PESQ pre-

diction. For each alternative proposed model, the two-tailed

t-test with a 0.05 significance level is conducted against the

proposed SER-CL. There are no statistically significant dif-

ferences between the means of each pair of predicted scores

(p-value > 0.1). Since the alternative models do not show a

substantial advantage over SER-CL in these experiments,

we recommend that the residual only model is used when

computational efficiency is required, since the input size is

smaller, resulting in fewer computations. These results also

confirm that the residual can be used to predict objective

scores.

The comparison with other data-driven approaches is

shown in the lower half of Table V. Not surprisingly, the

performance of SER-CL on real-world COSINE data

declined compared to the results on the simulated TIMIT

dataset, but its drop is much smaller than that of AutoMOS,

Quality-Net, and the CNN-based approach. NISQA, how-

ever, performs the best overall. The performance, however,

is similar for PESQ prediction (not statistically significant),

but NISQA performs slightly better than SER-CL for

ESTOI (p-value < 0.01) and SI-SDR predictions (p-value

< 0.05). When comparing NISQA to our (deg.þres.)-CL

model, (deg.þres.)-CL performs better on average for SI-

SDR, while NISQA performs better for ESTOI. The PESQ

results are not statistically significant. Note that the results

from the proposed approaches are statistically significant

against the results from AutoMos, Quality-Net, and CNN,

except for the few cases where the results are the same.

IV. DISCUSSION

Our experimental results show that improving speech

enhancement performance can noticeably reduce the predic-

tion error of objective metrics. One of the advantages of our

two-stage framework is that the enhancement algorithm can

be replaced by any state-of-the-art approach, e.g., deep clus-

tering (Hershey et al., 2016), Wave-U-Net (Stoller et al.,

2018), or speech enhancement generative adversarial net-

work (Pascual et al., 2017). From the experiments of various

simulated and real-world conditions, we notice that the dis-

tortions present in speech signals have a large impact on the

accuracy and robustness of metric prediction. Therefore, the

choice of the speech enhancement algorithm in the first

stage depends on the overall performance improvement in

the intended environments. In other words, a speech

enhancement approach that has been proven to be successful

for an intended type of distortion or environment should be

a suitable enhancement approach for our two-stage system.

If across environmental performance is not satisfactory, a

per-environment optimal enhancement approach may be

needed.

In previous experiments, the first stage and second stage

are trained with the same dataset. To further test the general-

ization capability of the system on mismatched training

datasets, we use the already-trained speech-enhancement

model on TIMIT noisy data as the first stage, and the

already-trained metric-score prediction model on COSINE

data as the second stage, then test this combined two-stage

system with the COSINE data. This experiment will deter-

mine the effectiveness of metric prediction, assuming the

enhancement stage uses a pre-trained model from a different

dataset. The results are shown in Table VI. The estimation

errors (MAE and RMSE?) have a moderate increase when

compared to the matched-stage training case, but the corre-

lation coefficients drop noticeably compared to the model

trained on the same dataset (i.e., SER-CL in Table V). It

indicates that the mismatched training data between the two

stages indeed has an impact on the prediction performance

since unseen distortions are included. When comparing to

the average performance of CNN and Quality-Net

approaches in Table V, the mismatched SER-CL model

shows comparable prediction errors (e.g., did slightly better

TABLE V. Performance comparison of proposed models (upper half) and comparison approaches (lower half) using the real-world COSINE corpus.

PESQ ESTOI SI-SDR

MAE RMSE? PCC SRC MAE RMSE? PCC SRC MAE RMSE? PCC SRC

(est.þres.)-CLa 0.27 0.30 0.80 0.74 0.07 0.09 0.76 0.74 3.02 3.11 0.78 0.74

(deg.þres.)-CLa 0.25 0.30 0.80 0.78 0.07 0.07 0.77 0.75 2.71 2.74 0.79 0.76

(est.þres.þdeg.)-CLa 0.28 0.31 0.80 0.74 0.08 0.10 0.75 0.75 3.21 3.05 0.76 0.76

SER-CL (only res.) 0.26 0.32 0.81 0.76 0.07 0.09 0.76 0.75 2.91 2.95 0.76 0.74

AutoMOS 0.48 0.44 0.72 0.65 0.17 0.17 0.67 0.65 3.70 3.88 0.72 0.72

Quality-Net 0.34 0.46 0.76 0.72 0.13 0.11 0.74 0.73 3.30 3.45 0.76 0.74

CNN 0.36 0.41 0.78 0.72 0.12 0.12 0.72 0.72 3.21 3.24 0.80 0.75

NISQA 0.24
a

0.29
a

0.82
a

0.79
a

0.06 0.07 0.78 0.77 2.70
b

2.83
b

0.79
b

0.75
b

aStatistically significant results when compared to SER-CL, according to a two-tailed t-test with 95% confidence interval.
bStatistically insignificant results when compared to the (deg.þres)-CL model.

TABLE VI. Performance of the proposed SER-CL approach on mis-

matched training data.

MAE RMSE? PCC SRC

PESQ 0.37 0.40 0.70 0.69

ESTOI 0.12 0.15 0.63 0.65

SI-SDR 3.30 3.50 0.61 0.58
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in PESQ while worse in ESTOI and SI-SDR), but worse cor-

relation performance. The reason is that the first stage of

SER-CL is trained from noisy TIMIT dataset, which did not

include the same types of distortions or speakers, as the

COSINE dataset, where the COSINE dataset also includes

reverberation. It is possible that performance differences are

also due to differences between the simulated and real data.

Nevertheless, it shows that matched training is preferred.

The poor performance of certain approaches (e.g.,

Quality-Net) may be attributed to making frame-level score

predictions, where each frame of the signal is given an

utterance-level assessment score as a label, and the pre-

dicted score of the signal is obtained by averaging the esti-

mated values over all frames. This is a major shortcoming,

as frame-level (objective or subjective) scores (� over milli-

second length windows) are not the same as utterance-level

scores (� over 4–5 s), as the degree of distortion might vary

much over this time period. Our approach overcomes this

drawback as a single objective metric prediction is made for

the utterance.

Our approach may potentially be used to alleviate the

well-known metric discrepancy problem (Fakoor et al.,

2018; Fu et al., 2018b), where the training objective func-

tion (e.g., MSE per frame) and performance evaluation met-

rics (e.g., PESQ, STOI, and WER) are mismatched. A

model that obtains the lowest MSE during training does not

necessarily achieve an improvement in speech quality and

intelligibility. On the contrary, our model can potentially

facilitate a multi-task learning framework, where the speech

enhancement and objective metric prediction stages are

trained simultaneously to improve the quality and intelligi-

bility of the enhanced speech and lower the error of objec-

tive metric prediction.

Successfully predicting objective quality and intelligi-

bility scores enables real-world testing. These objective met-

rics, however, may not be the gold standard, since they may

not always strongly correlate with user sentiment, in all

environments. Predicting human-provided mean-opinion

scores (MOS) is more ideal, but a large-scale publicly avail-

able speech corpus that contains subjective ratings currently

does not exist to facilitate human-level score prediction. We

plan to conduct large-scale listening tests using real-world

corpora, and evaluate the proposed two-stage system with

human-level assessment in the future. In the meantime,

objective-score prediction is still viable, since it will enable

researchers to assess and analyze real-world performance,

which can lead to algorithm improvements.

V. CONCLUSION

In this paper, we propose a data-driven framework that

uses deep learning to perform objective speech quality and

intelligibility assessment. It is clear that environmental noise

and reverberation play a dominant role in degrading the

objective metrics of clean speech, so our idea is to use the

amount of noise and reverberation distortions as an indicator

of the scores of these objective metrics. Specifically, we

propose a two-stage non-intrusive prediction model. In the

first stage, degraded speech is passed to a speech enhance-

ment system that separates the mixture into enhanced speech

and residuals. The residuals contain mostly noise and rever-

beration components and can be regarded as a reasonable

distortion feature for the next stage. Then the second stage

uses the residuals to predict the objective metrics of mixture

speech with a stack of four convolutional LSTM layers. The

results show that our two-stage approach can accurately and

reliably predict many objective metrics, e.g., PESQ, STOI,

and SDR, when compared to other state-of-the-art methods,

in noisy, reverberant, and combined testing environments.

In the future, we will investigate training the entire sys-

tem in an end-to-end manner. We expect that jointly training

both stages could be beneficial to each other, that is, using

the second stage to help update the first stage can improve

the performance of the speech enhancement task, in return,

boosting the accuracy and robustness of the assessment pre-

diction task.
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