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ABSTRACT

Speech assessment is crucial for many applications, but cur-

rent intrusive methods cannot be used in real environments.

Data-driven approaches have been proposed, but they use

simulated speech materials or only estimate objective scores.

In this paper, we propose a novel multi-task non-intrusive

approach that is capable of simultaneously estimating both

subjective and objective scores of real-world speech, to help

facilitate learning. This approach enhances our prior work,

which estimated subjective mean-opinion scores, where our

approach now operates directly on the time-domain signal

in an end-to-end fashion. The proposed system is compared

against several state-of-the-art systems. The experimental

results show that our multi-task and end-to-end framework

leads to higher correlation performance and lower prediction

errors, according to multiple evaluation measures.

Index Terms— Speech assessment, non-intrusive metric,

subjective evaluation, neural networks

1. INTRODUCTION

Speech assessment is important for evaluating and improving

the performance of many applications, such as speech sepa-

ration [1, 2], dereverberation [3, 4], and text-to-speech (TTS)

translation [5]. Subjective ratings provide the most reliable

and accurate form of assessment, however, conducting listen-

ing studies is both time-consuming and costly. Hence, ob-

jective metrics are used, since they are easy to compute and

allow quick assessment of large-scale datasets.

Objective evaluation metrics can be divided into two

categories, intrusive and non-intrusive. Commonly used

metrics such as the perceptual evaluation of speech quality

(PESQ) [6], perceptual objective listening quality assessment

(POLQA) [7], extended short-time objective intelligibility

(eSTOI) [8] and signal-to-distortion ratio (SDR) are all in-

trusive approaches as they require a clean reference during
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assessment. The clean reference, however, is not always ac-

cessible in real-world environments which limits the practica-

bility of intrusive metrics. In contrast, non-intrusive metrics

such as ITU-T P.563 [9], speech-to-reverberation modulation

energy ratio (SRMR) [10], and ANIQUE [11] perform as-

sessment using only the corrupted speech. Although these

approaches enable real-world speech assessment, they do not

always correlate well with subjective ratings [12, 13].

Data-driven non-intrusive measures have been recently

proposed. Quality-Net [14] performs frame-level speech

quality assessment by leveraging the temporal properties of a

bidirectional LSTM (Bi-LSTM), using PESQ scores as train-

ing targets. NISQA [13] enables super wide-band speech

assessment with a convolution and LSTM based network that

estimates the POLQA score of a given stimulus. Although

these metrics have demonstrated good correlations with ob-

jective scores, only estimating objective scores is a limitation

as objective measures only serve as approximations of human

assessment [15, 16], indicating that further subjective tests are

still needed. Alternatively, some systems predict mean opin-

ion scores (MOS) collected from human listeners [17, 18].

However, like the earlier studies, noisy speech materials are

manually created which cannot fully capture all the complex

details that exist in real-world environments. Thus it is not

clear whether these approaches generalize well to unseen

real-world data. Moreover, most approaches use hand-crafted

features, including the magnitude spectrogram, but these may

not be optimal representations for speech assessment, since

many studies have shown that phase is also important for

human-assessed quality [19, 20, 21] and these features do not

allow the network to learn a more optimal representation.

We develop a novel non-intrusive assessment approach,

where an encoder first uses convolution and pyramid Bi-

LSTM (pBi-LSTM) layers to extract features locally and

temporally at different resolutions, directly from the time-

domain signal. Then an attention mechanism is applied in

a decoder for multi-task learning. The proposed system

assesses speech from multiple perspectives, including sub-

jective and objective speech quality (i.e., human MOS and

PESQ), objective intelligibility and signal distortions (i.e.,
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