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SUMMARY
Climate change is increasing the frequency and intensity of weather-related disasters such as hurricanes,
wildfires, floods, and droughts. Understanding resilience and vulnerability to these intense stressors
and their aftermath could reveal adaptations to extreme environmental change. In 2017, Puerto Rico
suffered its worst natural disaster, Hurricane Maria, which left 3,000 dead and provoked a mental
health crisis. Cayo Santiago island, home to a population of rhesus macaques (Macaca mulatta), was
devastated by the same storm. We compared social networks of two groups of macaques before
and after the hurricane and found an increase in affiliative social connections, driven largely by
monkeys most socially isolated before Hurricane Maria. Further analysis revealed monkeys invested
in building new relationships rather than strengthening existing ones. Social adaptations to environ-
mental instability might predispose rhesus macaques to success in rapidly changing anthropogenic
environments.
INTRODUCTION

The quality and quantity of social relationships predicts

morbidity and mortality in humans and other mammals.1 Yet

precisely how social relationships improve health and fitness

outcomes remains poorly understood.2 One model, the ‘‘So-

cial Buffering Hypothesis,’’3 proposes that social relationships

are critical mitigators of the negative consequences of expo-

sure to adversity. In humans, the presence of strong social

support predicts recovery from illness4 and resilience to

mental health disorders after terrorist attacks5 or loss of a

loved one.6 Social relationships in non-human primates also

play a critical role in weathering adversity. For example,

compared with females with weaker bonds, female chacma

baboons (Papio ursinus) with a network of strong and stable

bonds showed attenuated physiological responses during pe-

riods of social instability.7
Current Biology 31, 2299–2309, Jun
A tremendous source of instability for humans and other ani-

mals alike are natural disasters, such as earthquakes and tsu-

namis, and massive weather events, such as hurricanes.8,9

Extreme weather can cause widespread destruction of the natu-

ral landscape, resources, and infrastructure,10 all of which can

disrupt the lives of humans and other animals.11 With the inten-

sifying climate crisis, devastating storms are expected to

become less predictable12 and increase in both frequency and

force.13,14 Understanding how individuals adjust and survive in

severely transformed landscapes could inform species conser-

vation and human adaptation to increasingly unstable environ-

ments by providing evidence regarding which factors promote

resilience and survival.15,16 According to the social buffering hy-

pothesis, social relationships might be crucial for surviving

extreme environmental challenges. Yet how societies re-orga-

nize and how individuals adjust their social relationships in

response to catastrophic climatic events remains largely
e 7, 2021 Crown Copyright ª 2021 Published by Elsevier Inc. 2299
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Figure 1. Hurricane Maria’s effect on vegetation and mortality

(A) Foliage cover from Cayo Santiago Island, as measured by greenness, decreased by 63% after Maria (t test, p = 3.73 10�25). Images are Digital Globe aerial

photos of Cayo Santiago island, Puerto Rico, before Hurricane Maria (left) and after (right). See Figure S1 for details on the damage to each group’s home range.

(B) The death rate per 100 adults per month, from 1998 to 2018. We plot adult death rates because the exact date of death of infants and juveniles had an

estimated error margin of up to 8 months due to the difficulty in individually recognizing and tracking young animals who had not yet received their unique ID

tattoos. Color code: 2017 post-hurricane in dark orange and 2018 in yellow. Grey lines are years 1998 to 2017 pre-hurricane. The October 2017 death rate was

more than triple the rate expected based on October months in previous years (> upper bound for 99.99% CI, p < 0.0001). The peak in March corresponds to a

Shigella outbreak in 2010. The red vertical lines indicate the date whenHurricaneMariamade landfall on Cayo Santiago. See Data S1A for comparison ofmortality

rates after natural disasters in previous studies.
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unexplored. This is, in part, due to the unpredictable character of

natural disasters and the rarity of having longitudinal data

collected on individuals both before and after these events.

Here, we examined changes in social relationships after a

natural disaster within a population of free-ranging rhesus

macaques on Cayo Santiago island, Puerto Rico. On September

20, 2017 Hurricane Maria, then a category 4 hurricane, made

landfall on Puerto Rico and caused widespread physical and

environmental destruction. The human death toll from the hurri-

cane in Puerto Rico numbers in the thousands,17 making it

among the deadliest storms on record. A surge in mental health

disorders, including depression and anxiety, attests to the

lingering effects of physical, financial, and social devastation.18

Cayo Santiago also suffered catastrophic damage. After the hur-

ricane, green vegetation declined by 63% (t test, p = 3.73 10�25)

(Figure 1A) and nearly all research and husbandry infrastructure

was destroyed by the storm. Although the adult death rate

peaked in the month after the hurricane (more than triple the

expected death rate based on October months in previous

years, >99.99% confidence interval [CI] or p < 0.001), it returned

to expected numbers in subsequent months when compared to

previous years (Figure 1B). Furthermore, the population of rhe-

sus macaques experienced relatively few deaths due to the

storm itself, compared with previously studied animal popula-

tions after natural disasters19–24 (2% of the Cayo population

died immediately after the hurricane and 7% in the six following

months, compared to 30%–65% mortality in prior studies; see

Data S1A). This is consistent with a recent study showing no

overall increase in mortality after major hurricanes compared

with that in non-hurricane years for the past decades in this pop-

ulation (Hurricanes Hugo in 1989, Georges in 1998, and Maria in

2017).25 Food and water provisioning ensured that monkeys’

basic nutritional needs were generally met before and after these

disasters.

Our study uses rarely available data to investigate how a non-

human primate population, that has a similar physiology and
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behavior to humans,26,27 adapted socially to an environmental

catastrophe and its lingering effect in the absence of mass mor-

tality. Mass mortality precludes the ability to assess social

network changes outside of the direct consequences of group

size reduction.19,28 That relatively few monkeys were killed in

the aftermath of Hurricane Maria is an unusual circumstance

that allows us to draw parallels with human responses to disas-

ters in which whole communities have their homes and liveli-

hoods destroyed but relatively few individuals are killed directly

by the events themselves (e.g., Hurricane Harvey29). Further-

more, because themonkeys live on an island, their behavioral re-

sponses to the hurricane could inform predictions of behavioral

responses by humans who are unable or unwilling to move after

a disaster, as well as the behavioral responses of animal popula-

tions living in protected habitat ‘‘islands’’ without migration

corridors.

We investigated whether and how monkeys adjusted their in-

vestment in social relationships in response to Hurricane Maria,

drawing on a detailed dataset that encompasses behavioral ob-

servations occurring 3 years prior to, and 1 year immediately af-

ter, Hurricane Maria. Our study had five main questions: (1) we

tested whether individuals changed their probabilities of

engaging in affiliative (pro-social) behaviors after the hurricane

compared with before. We predicted that rhesus macaques

would show an increase in affiliative behavior, consistent with

the social buffering hypothesis. (2) We investigated inter-individ-

ual differences in social responses to the hurricane. Specifically,

we asked whether pre- to post-hurricane changes in probabili-

ties of affiliative behaviors were similar for all monkeys and, if

not, whether inter-individual differences were predicted by

gregariousness prior to the hurricane,30 the loss of a grooming

partner as a result of the storm,31 or clustering around newly

scarce resources like shade.11,32 In prior studies, gregarious-

ness and loss of a partner influenced individual social responses

to a mass predation event in wild mice30 and female chacma ba-

boons.33 (3) We explored which social strategies individual



Figure 2. Rhesus macaques showed higher

probabilities of affiliative behaviors after

Hurricane Maria

(A and B) Distribution of the probability of being in

proximity (A) and grooming (B) pre- (red) and post-

hurricane (blue) for study groups V and KK. Pre-

hurricane violin plots summarize multiple years of

data collection (2015–2017). 2017 data only in-

cludes observations up to Hurricane Maria

(September 20, 2017). Stars indicate statistical

significance (95% CIs of model estimates do not

include the null value, i.e., p < 0.05) (Table S1).
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monkeys adopted. In particular, we asked whether individual

monkeys increased their number of social partners or strength-

ened their existing connections (or both), two strategies that

potentially provide different benefits after catastrophic

events.7,22,30

Our results confirmed that rhesus macaques engaged more in

affiliative interactions after the storm and that this effect was

driven by an increase in their number of partners rather than

intensifying existing relationships. These findings motivated us

to explore the final two of our five questions: (4) because partner

selection might provide critical insights into the function of social

relationships,34–36 we asked which partners monkeys associ-

ated with after the disaster. We predicted that monkeys would

preferentially invest in relationships with kin and high-ranked in-

dividuals, whichmight be best placed to help them cope with the

physical challenges and potentially increased competition for re-

sources unleashed by the hurricane and its aftermath (i.e., vege-

tation-based food or shade) (Figure 1A).7,37 (5) We asked

whether simple association heuristics (reciprocity and closure

of triangles) and shared space use (i.e., proximity) predicted for-

mation of new relationships.

RESULTS

We focused our investigation on adult males and females in two

study groups (KK and V) for which we had behavioral data both

before and after Hurricane Maria (KK, n = 66 and V, n = 93).

Group V ranged alone on ‘‘Small Cayo,’’ an area that was sev-

ered from the main island (‘‘Big Cayo’’) after the hurricane (Fig-

ure S1) and which was the least defoliated. By contrast, group

KK ranged on Big Cayo with other groups, mostly on the eastern

part of the island, which was the most defoliated after the hurri-

cane. The groups also had divergent demographic characteris-

tics: the male to female ratio was 1:2 in group KK and almost

1:1 in group V. These two important differences could lead to

divergent responses to the hurricane and its aftermath. Further-

more, three out of five of the statistical analyses we used did not

permit the inclusion of group membership as a covariate (see

STAR Methods). Therefore, in order to assess the potential
Current
differences in social response to the hur-

ricane between groups while maintaining

analytical consistency, we analyzed all

our results separately by group. We also

focused our investigation on affiliative be-

haviors and excluded aggressive behav-
iors because of differences in how aggression was recorded

before and after the hurricane (see STAR Methods).

Probability of affiliative interactions increased after the
hurricane
To evaluate the influence of Hurricane Maria on rhesus ma-

caques’ probability of exhibiting affiliative behavior, we focused

on two measures commonly used to quantify affiliation among

non-human primates:38 sitting within two meters of another

monkey39,40 (henceforth ‘‘proximity’’) and grooming each

other’s fur (henceforth ‘‘grooming’’). We used a sub-sampling

procedure to account for differences in the way data were

collected before and after the hurricane (see STAR Methods).

This procedure allowed us to match pre- and post-hurricane

observations across individuals, time of year, and time of day.

We found that macaques were more than four times more likely

to be found in proximity to another monkey after the hurricane

than before (binomial general linear mixed-effects model

[GLMM], group KK proximity odds ratio (OR) = 5.71, 95% CI =

{4.74, 6.90}; group V proximity OR = 6.49, 95% CI = {5.84,

7.19}) (Table S1; Figure 2A). They were also >50% more likely

to be found grooming after the hurricane than before (binomial

GLMM, group KK grooming OR = 2.01, 95% CI = {1.52, 2.63};

group V grooming OR = 1.46, 95% CI = {1.22, 1.75}) (Table

S1; Figure 2B).

Monkeys that were socially isolated before the
hurricane showed the greatest increase in affiliation
after it
Although on averagemonkeysweremore affiliative in the year af-

ter the hurricane, there was variability in the extent to which indi-

viduals changed their probability of grooming (mean change in

probability of grooming = 0.014, std. = 0.06) (Figure S2A) and

proximity (mean = 0.357, std. = 0.163) (Figure S2B.). Somemon-

keys increased their probability of affiliation more than others,

and some monkeys decreased their probability. We evaluated

three potential factors that might explain this variation: (1) group

members’ level of integration before the hurricane, defined as

overall time spent grooming (seconds per hour observed) and
Biology 31, 2299–2309, June 7, 2021 2301
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Figure 3. Pre-disaster social integration, but not loss of a partner, predicted changes in the probability of engaging in grooming after Hur-

ricane Maria

(A) Distribution of pre- to post-hurricane changes in an individual’s probability of grooming (for one sub-sampling iteration, see Figure S2 for all 500 subsampling

iterations).

(B–D) Pre- to post-hurricane change in an individual’s probability of grooming (based on one sub-sampling iteration) as a function of: (B) pre-disaster levels of

individual social integration (measured by time spent grooming); (C) standardized strength of relationship to lost partners (measured by pre-disaster time spent

grooming lost partners); (D) the change in an individual’s probability of being in proximity to others after the hurricane compared with before. Red lines in (B), (C),

and (D) are regression lines using ggplot geom_smooth in R. correlation coefficients (r) and p values are computed by using cor.test in R. n.s., non-significant.

See Table S2 for GLMM results across all subsampling iterations.
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the frequency of proximity events (frequency per hour)—referred

to as ‘‘gregariousness’’ in STAR Methods. (2) Whether individ-

uals lost members of their pre-hurricane social network (i.e., a

pre-storm grooming partner who died within 6 months after the

hurricane).30,31,33 Although the island did not suffer from mass

mortality as a result of the storm, the death rate was higher in

the month after the hurricane (October 2017) than in this month

in previous years (Figure 1B), which might affect probabilities

of affiliation beyond what was expected from normal demo-

graphic processes.31 (3) For the grooming probability model

only, whether increased grooming reflected increased use of

shared space (i.e., proximity to others) after the disaster.

We found that both the amount of time spent grooming and the

frequency at which individuals were in proximity to others before

the hurricane predicted the extent to which an individual

increased their engagement in affiliative behaviors after the
2302 Current Biology 31, 2299–2309, June 7, 2021
hurricane. Specifically, the less time monkeys spent grooming

or in proximity to other monkeys before the hurricane, the greater

the increase in their probability of engaging in grooming and

proximity afterward (linear mixedmodel [LMM], proximity model,

group KK = �0.105, 95% CI = {�0.134, �0.074}; group V =

�0.023, 95% CI = {�0.033, �0.012}; grooming model, group

KK = �0.051, 95% CI = {�0.064, �0.037}, group V = �0.016,

95% CI = {�0.02, �0.012}) (Figure 3B; Table S2). This effect

was stronger than what would be expected by regression to

the mean alone (Pitman t test, p < 0.0001). An individual’s pre-

storm strength of connections (measured by time spent groom-

ing) to monkeys who died after the hurricane did not predict their

hurricane-related changes in affiliation (LMM, proximity model,

group KK = 0.006, 95% CI = {�0.007, 0.018}; group V = 0.000,

95% CI = {�0.009, 0.008}; grooming model, group KK =

�0.006, 95% CI = {�0.014, 0.003}; group V = �0.002, 95%
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CI = {�0.006, 0.002}) (Figure 3C; Table S2). Monkeys who

increased their probability of being in proximity after the storm,

in relation to their pre-storm baseline, also displayed a pre- to

post-disaster increase in grooming behavior (LMM, group KK =

0.074, 95% CI = {0.016, 0.134}; group V = 0.08, 95% CI =

{0.034, 0.138}) (Figure 3D; Table S2).

Monkeys increased the quantity but not intensity of their
social relationships after the hurricane
Monkeys might be observed to engage in affiliative behaviors at

higher probabilities either because they have more partners, or

because they spend more time with specific partners, or both.

To test whether monkeys formed new connections, or strength-

ened the ones they already had, we examined connections at the

dyadic level. We focused on grooming because, unlike proximity

where many individuals can sit near one another because of

mutual attraction to a third party or a common resource, groom-

ing interactions are almost exclusively dyadic in the rhesus ma-

caque41 and partner choice is active and clear.

We examined network density, the proportion of unique pair-

wise connections observed over all possible pairwise connec-

tions.42 We found that grooming networks were denser after

the hurricane in both groups (sub-sampling-based grooming

networks; mean pre- to post-hurricane difference in network

density = 0.008, 95%CI = {0.003, 0.012}; see Table S3 for statis-

tics by year). As such, macaques had a greater number of unique

grooming partners after the hurricane (Figure 4; see Figure S3 for

all groups and years). In contrast, there was no evidence that

pairwise grooming relationships were stronger after the hurri-

cane (LMMs: group KK estimate = �0.039, 95% CI = {�0.088,

0.012}; group V estimate = �0.036, 95% CI = {�0.088, 0.015})

(Table S4). Even relationships to familiar partners, i.e., partners

thatmonkeys interacted with at least once in the years preceding

the hurricane, were not strengthened after the hurricane, and

actually became weaker in group V (LMMs: group KK estimate =

0.018, 95% CI = {�0.20, 0.29}; group V estimate = �0.175, 95%

CI = {�0.33, �0.013}) (Table S4).

Individuals interacted with different types of partners
after the hurricane
Partner selection might provide insights into the function of so-

cial relationships. We investigated how grooming within a group

was distributed among specific partner types after Hurricane

Maria. Dyads were categorized according to kinship, sex,

gregariousness, and social status (see STAR Methods).

‘‘Gregariousness’’ here represents how sociable an individual

was compared with their group in a given year pre-hurricane

and does not necessarily indicate a stable personality trait.

We found that monkeys were less likely to groom kin after the

hurricane than they were before in group V, and group KK

showed a non-significant result in the same direction (group V

mean pre- to post-hurricane difference in proportion of time

spent grooming kin = �0.13, 95% CI = {�0.30, �0.003}) (Table

S5; Figure 5) (group KK, mean difference = �0.045, 95% CI =

{�0.14, 0.04}). Females from both groups were more likely to

groom males after the hurricane (group KK mean difference =

0.143, 95% CI = {0.08, 0.21}; group V mean difference = 0.13,

95% CI = {0.06, 0.24}) (Table S5; Figure 5). Males from group

KK, but not group V, were less likely to groom females after
the hurricane than before (group KK mean difference = �0.087,

95% CI = {�0.16, �0.02}). In group V but not KK, ‘‘less gregar-

ious’’ individuals (i.e., who groomed or were groomed relatively

less before the storm) had a higher likelihood of grooming each

other after the hurricane than they did before, whereas ‘‘more

gregarious’’ individuals had a lower likelihood of grooming

each other (less gregarious to less gregarious: group KK mean

difference = 0.125, 95% CI = {�0.02, 0.26}; group V mean differ-

ence = 0.21, 95% CI = {0.002, 0.42}; more gregarious to more

gregarious: group KK mean difference = �0.02, 95% CI =

{�0.05, 0.01}; group V mean difference = �0.11, 95% CI =

{�0.19, �0.003}) (Table S5; Figure 5). Finally, we found no

evidence for increased likelihood of grooming from low- to

high-ranking individuals after the hurricane (group KK mean dif-

ference = 0.043, 95% CI = {�0.02, 0.04}; group V mean differ-

ence = �0.02, 95%CI = {�0.11, 0.06}) (Table S5; Figure 5).

Reciprocity and closure of triads drove the formation of
new network edges from pre- to post-hurricane
networks
Finally, we tested whether new grooming-based relationships

were driven by simple association heuristics (closure of triads

and reciprocity) or shared use of space (i.e., probability of being

in proximity). Note that in macaques, grooming relationships are

not necessarily reciprocal and can be instead a ‘‘commodity’’

exchanged for agonistic support or tolerance while feeding.44,45

We used a temporal exponential random graph model

(TERGM).46 These models are designed to test hypotheses

related to how and why social interactions occur.47 TERGMs

can directly test the role of emergent network properties, like

transitivity, in structuring interactions, which is not possible

with other modeling frameworks.47 Including closure of triads

as a predictor enabled us to ask whether monkey A was more

or less likely to become connected to monkey B if both shared

a common partner.48 Reciprocity allowed us to test whether A

was more likely to groom B after the hurricane if B groomed A

before the event. Finally, including proximity as a factor

permitted us to test whether the probability of A and B to be in

proximity after the hurricane rendered grooming between them

more likely. Importantly, contrary to our previous analysis of pre-

dictors of changes in individual probability of grooming, our test

of the role of shared space use in relationship formation here is at

the dyadic level. Previously, we tested whether individuals who

had a higher probability of being in proximity to other monkeys

also had a higher probability of grooming after the hurricane.

Here, we specifically test whether proximity to a partner renders

grooming more likely with that specific partner. We also

controlled for network density, which could drive triadic closure

or reciprocity effects.47

We found that reciprocity and triadic closure had strong pos-

itive effects on the likelihood of relationship formation after the

hurricane (sub-sampling-based TERGM: group KK triad closure

estimate = 0.38, 95% CI = {0.092, 0.632}, reciprocity estimate =

1.35, 95% CI = {0.746, 1.933}; group V triad closure estimate =

0.66, 95% CI = {0.338, 0.994}, reciprocity estimate = 2.41, 95%

CI = {1.61, 2.99}) (Figure 6.). In other words, network edges

were more likely to form if they closed a triangle or reciprocated

a pre-storm edge. By contrast, probability of being in proximity

between dyads did not predict grooming relationship formation
Current Biology 31, 2299–2309, June 7, 2021 2303



Figure 4. Grooming networks were denser after Hurricane Maria

(A–D) Example grooming networks based on one sub-sampling iteration for group KK before the hurricane in 2017 (A) and after in 2018 (B); group V in 2017 (C) and

in 2018 (D). 2017 networks include data up to Hurricane Maria (Sept 20, 2017). See Figure S3 for all groups and years. Note: network plots have average values of

connectedness and are representative of other sub-sampling iterations. Each node is an individual. Color coding is as follows: males, green; females, purple.

Edges indicate a grooming relationship, and arrows indicate the direction of grooming. Edge thickness indicates relationship strength based on proportion of

grooming (number of scans a pair was observed grooming to total number of scans featuring animals from that pair). Node size scales with the number of unique

partners. Network layout was held constant for pre- and post-hurricane periods to make the comparison clearer. Note, we estimated the precision of our pre-

hurricane grooming networks based on Whitehead43 (see STAR Methods for details). This method estimates the correlation between the observed and true

interactions probabilities between dyads within a network. Correlations >0.4 are generally considered to indicate useful representations of the underlying social

structure.43 In our networks, correlation estimates for all groups and years range between 0.714 and 0.862 (Data S1C). See Tables S3 and S4 for hurricane effect

on network density and relationship strength respectively in groups V and KK.
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after the hurricane (sub-sampling-based TERGM: group KK

proximity estimate = �0.3, 95% CI = {�0.54, 0.32}; group V es-

timate = �012, 95% CI = {�1.51, 0.83}) (Figure 6). In other

words, sharing space with an individual, due to limited edible

vegetation or shade in a hurricane-disrupted tropical climate,

did not wholly explain grooming relationship formation at the

dyadic level.
2304 Current Biology 31, 2299–2309, June 7, 2021
DISCUSSION

Our findings are consistent with the social buffering hypothesis.

Adult monkeys became more affiliative and actively sought so-

cial contact after a natural disaster.7,49 Increases in social rela-

tionships, however, were not distributed uniformly across the

population. Instead, monkeys that were socially isolated before



Figure 5. Monkeys groomed different types of partners after Hurricane Maria

Violin plots summarize changes in proportion of grooming directed from one type of partner to another pre- to post-hurricane for individuals in group KK (orange)

and group V (blue). Dotted red linesmark the ‘‘no change’’ limit. Stars indicate a significant change (95%CI does not include 0; p < 0.05) in proportion of grooming

from before the hurricane to after (Table S5). ‘‘Male/Female’’ indicates grooming from males to females. Abbreviations are as follows: HighR, high-ranking;

LowR, low-ranking. Note: the bi- or tri-modal shape of the violin plots reflect the pre-hurricane year used for comparison (2 for KK and 3 for V). We plotted all years

together to facilitate presentation of results. Only differences robust to the pre-hurricane year used for comparison are ultimately detected as statistically sig-

nificant.
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the hurricane showed the greatest increases in affiliation after it.

On the basis of these findings, we postulate that individualsmore

peripheral to their social network had the biggest drive to invest

in social relationships during periods of instability, consistent

with a previous study in wildmice after amass predation event.30

There were strong sex differences in the drivers of these

changes. Specifically, females groomed males more, thereby

making males more connected. This finding is consistent with

the role of females in promoting group cohesion in some animal

societies.50,51 These results also suggest monkeys that were

already highly connected before the hurricane did not derive

additional benefits from being more affiliative.52 Together, we

take these findings as strong evidence for flexibility in the ability

of rhesus macaques to negotiate their social landscape in the

aftermath of a natural disaster.

We also found thatmacaqueswidened their social networks to

include more partners but did not strengthen the quality of their

relationships. Monkeys did not exhibit enhanced efforts to

interact with familiar partners, kin, or higher-ranking individuals

after the hurricane. These findings are consistent with a strategy
to gain social tolerance and support from the greatest number of

individuals, and to benefit from broader social integration, rather

than focusing on reinforcing relationships to ‘‘key’’ partners.

Extended ego-networks can enhance individuals’ integration

into communities.53 By contrast, strong ties that increase local

cohesion might lead to fragmentation of the larger group

because of formation of multiple smaller cliques.53 To broaden

their social networks, macaques tended to adopt a ‘‘path of least

resistance’’ approach in forming new relationships, by closing

triads and reciprocating grooming. Closure of triads—that is,

becoming friends with the friends of your friends—is a frequent

mechanism for bond formation across the animal kingdom,48

including humans.54 Overall, these results are consistent with a

group-level response to an extreme life event of Hurricane Ma-

ria’s magnitude, in which individuals become more tolerant of

one another and seek contact with unfamiliar partners or non-

kin, a pattern observed in humans after catastrophic events

that affect whole populations.55–57 One potential driver of this so-

cial response is the formation of a large pool of partners that is

mobilizable when needed, to reduce one’s vulnerability during
Current Biology 31, 2299–2309, June 7, 2021 2305



Figure 6. Reciprocity and closure of triads, but not probability of being in proximity, increased the likelihood of grooming between dyads

after the hurricane

Violin plots summarizing the distribution of TERGM formation model log-odds for group KK (left) and V (right). Labels from top to bottom: proximity, reciprocity,

triadic closure and network density (a control term). We plot the full distribution of log-odds over all 500 modeling iterations. Stars indicate a significant effect on

relationship formation (95% CI of parameter estimate does not include 0; p < 0.05; see Table S5 for statistics). Positive log-odds are interpreted as an increased

likelihood of relationship formation and negative log-odds as a decreased likelihood of relationship formation. The red dotted line marks the ‘‘coefficient = 0’’ limit.
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times of instability or resource scarcity after a catastrophic

event.22,53,58,59 A recent study in the same Cayo Santiago ma-

caque population showed that weak connections were positively

associated with survival.39 Enhanced resilience during harsh

times, like in the aftermath of a devastating hurricane, might be

one route linking weak bonds to enhanced fitness.

In the degraded landscape produced by Hurricane Maria, it

might be particularly important to seek out social support from

a large pool of partners to access a rare yet diffuse resource

like shade.32 After Hurricane Maria, Cayo Santiago island was

almost completely deforested (Figure 1A), which led to severe

shade scarcity. In the Caribbean, foliage provides significant

protection from high temperatures (Figure S8). As a conse-

quence, an increased probability that monkeys would sit near

others and engage in groomingmight have resulted from individ-

uals coalescing around this newly precious resource, which pro-

tects them from heat, and negotiating access to it by way of

grooming. When trying to access a scarce and diffuse resource

like shade, stronger bonds are not necessarily useful.53 For

example, monkeys might have turned to non-kin as partners af-

ter the hurricane to increase their number of access points to

shade. Support from new partners and non-kin, which do not

provide indirect fitness or rank-related benefits (given that new

partners here were not higher ranking), might require reciprocity

to be advantageous to both parties. This could explain why reci-

procity partly structured relationship formation from the pre- to

the post-hurricane epochs.

Even though we were unable to robustly quantify changes in

aggression given the structure of our data, our findings indicate

that monkeys became more tolerant of each other despite, or

perhaps as a consequence of, decreased shade. It remains

possible that increased affiliation reflected the need to secure
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social support in response to intensified competition over shade.

Finally, investment in new social relationships could result from

increased opportunities to interact with novel partners clustered

in limited shade. Althoughmonkeys that were more likely to be in

proximity to other individuals after the hurricane were also more

likely to be observed grooming, proximity to a specific individual

did not predict the formation of a grooming relationship. This

finding indicates a more active choice of grooming partner

than the passive emergence of grooming in limited shade.

In the Anthropocene, living in climate-transformed land-

scapes can have myriad negative health consequences.60

Devastating tropical storms like Hurricane Maria are predicted

to increase in both frequency and intensity,13,14 as well as

become increasingly difficult to predict.12 Going forward,

studies of how animals adjust, socially or otherwise, to these

massive transformations of their habitats will be important for

addressing why some species, or individuals, are resilient and

others more vulnerable. The rhesus macaque, which shows

impressive proliferation in human-transformed landscapes,61

provides important lessons for answering this question. In

response to a major hurricane, the Cayo Santiago macaques

not only became more tolerant of other monkeys but also

formed new social connections—despite increased competi-

tion for scarce resources. Our findings support the hypothesis

that social support is an important mechanism that gregarious

primates can deploy to adapt to extreme environmental

change.
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32. Schütz, K.E., Rogers, A.R., Poulouin, Y.A., Cox, N.R., and Tucker, C.B.

(2010). The amount of shade influences the behavior and physiology of

dairy cattle. J. Dairy Sci. 93, 125–133.

33. Engh, A.L., Beehner, J.C., Bergman, T.J., Whitten, P.L., Hoffmeier, R.R.,

Seyfarth, R.M., and Cheney, D.L. (2006). Behavioural and hormonal re-

sponses to predation in female chacma baboons (Papio hamadryas ursi-

nus). Proc. Biol. Sci. 273, 707–712.

34. Tiddi, B., Aureli, F., and Schino, G. (2012). Grooming up the hierarchy: the

exchange of grooming and rank-related benefits in a new world primate.

PLoS ONE 7, e36641.

35. Silk, J.B. (2009). Nepotistic cooperation in non-human primate groups.

Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 3243–3254.

36. Ebenau, A., von Borell, C., Penke, L., Ostner, J., and Schülke, O. (2019).

Personality homophily affects male social bonding in wild Assamese ma-

caques, Macaca assamensis. Anim. Behav. 155, 21–35.

37. Kamilar, J.M., and Beaudrot, L. (2018). Effects of Environmental Stress on

Primate Populations. Annu. Rev. Anthropol. 47, 417–434.

38. Silk, J., Cheney, D., and Seyfarth, R. (2013). A practical guide to the study

of social relationships. Evol. Anthropol. 22, 213–225.

39. Ellis, S., Snyder-Mackler, N., Ruiz-Lambides, A., Platt, M.L., and Brent,

L.J.N. (2019). Deconstructing sociality: the types of social connections

that predict longevity in a group-living primate. Proc. Biol. Sci. 286,

20191991.
2308 Current Biology 31, 2299–2309, June 7, 2021
40. Silk, J.B., Alberts, S.C., Altmann, J., Cheney, D.L., and Seyfarth, R.M.

(2012). Stability of partner choice among female baboons. Anim. Behav.

83, 1511–1518.

41. Maestripieri, D., and Hoffman, C.L. (2012). Behavior and Social Dynamics

of Rhesus Macaques on Cayo Santiago. In Bones, Genetics, and Behavior

of Rhesus Macaques: Macaca Mulatta of Cayo Santiago and Beyond, Q.

Wang, ed. (Springer New York), pp. 247–262.

42. Scott, J. (2000). Social Network Analysis: A Handbook. (Sage).

43. Whitehead, H. (2008). Precision and power in the analysis of social struc-

ture using associations. Anim. Behav. 75, 1093–1099.

44. Carne, C., Wiper, S., and Semple, S. (2011). Reciprocation and inter-

change of grooming, agonistic support, feeding tolerance, and aggression

in semi-free-ranging Barbary macaques. Am. J. Primatol. 73, 1127–1133.

45. Balasubramaniam, K.N., and Berman, C.M. (2017). Grooming interchange

for resource tolerance: biological markets principles within a group of free-

ranging rhesus macaques. Behaviour 154, 1145–1176.

46. Krivitsky, P.N., and Handcock, M.S. (2014). A Separable Model for

Dynamic Networks. J. R. Stat. Soc. Series B Stat. Methodol. 76, 29–46.

47. Silk, M.J., and Fisher, D.N. (2017). Understanding animal social structure:

exponential random graph models in animal behaviour research. Anim.

Behav. 132, 137–146.

48. Watts, D.J. (2004). Six Degrees: The Science of a Connected Age (W. W.

Norton & Company).

49. Taylor, S.E., Klein, L.C., Lewis, B.P., Gruenewald, T.L., Gurung, R.A.R.,

and Updegraff, J.A. (2000). Biobehavioral Responses to Stress in

Females: Tend-and-Befriend, Not Fight-or-Flight. https://doi.org/10.

1037//0033-295X.107.3.411.

50. Lonsdorf, E.V. (2017). Sex differences in nonhuman primate behavioral

development. J. Neurosci. Res. 95, 213–221.

51. Bret, C., Sueur, C., Ngoubangoye, B., Verrier, D., Deneubourg, J.-L., and

Petit, O. (2013). Social structure of a semi-free ranging group of mandrills

(Mandrillus sphinx): a social network analysis. PLoS ONE 8, e83015.

52. Lehmann, J., Korstjens, A.H., and Dunbar, R.I.M. (2007). Group size,

grooming and social cohesion in primates. Anim. Behav. 74, 1617–1629.

53. Granovetter, M.S. (1973). The Strength of Weak Ties. Am. J. Sociol. 78,

1360–1380.

54. Easley, D., and Kleinberg, J. (2010). Networks, Crowds, and Markets: A

Book by David Easley and Jon Kleinberg (Cambridge University Press).

https://www.cs.cornell.edu/home/kleinber/networks-book/.

55. Collins, R. (2004). Rituals of Solidarity and Security in theWake of Terrorist

Attack. Sociol. Theory 22, 53–87.

56. Drabek, T.E. (1986). Human System Responses to Disaster: An Inventory

of Sociological Findings (New York, NY: Springer).

57. Kaniasty, K., andNorris, F.H. (1995). In search of altruistic community: pat-

terns of social support mobilization following Hurricane Hugo. Am. J.

Community Psychol. 23, 447–477.

58. Henzi, S.P., Lusseau, D., Weingrill, T., van Schaik, C.P., and Barrett, L.

(2009). Cyclicity in the Structure of Female Baboon Social Networks.

Behav. Ecol. Sociobiol. 63, 1015–1021.

59. McFarland, R., Murphy, D., Lusseau, D., Henzi, S.P., Parker, J.L., Pollet,

T.V., and Barrett, L. (2017). The ‘‘strength of weak ties’’ among female ba-

boons: fitness-related benefits of social bonds. Anim. Behav. 126,

101–106.

60. Rangel-Negrı́n, A., Coyohua-Fuentes, A., Chavira, R., Canales-Espinosa,

D., and Dias, P.A.D. (2014). Primates living outside protected habitats

are more stressed: the case of black howler monkeys in the Yucatán

Peninsula. PLoS ONE 9, e112329.

61. Richard, A.F., Goldstein, S.J., and Dewar, R.E. (1989). Weed macaques:

The evolutionary implications of macaque feeding ecology. Int. J.

Primatol. 10, 569–594.

62. Altmann, J. (1974). Observational study of behavior: sampling methods.

Behaviour 49, 227–267.

http://refhub.elsevier.com/S0960-9822(21)00368-7/sref19
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref19
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref19
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref20
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref20
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref20
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref21
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref21
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref21
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref22
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref22
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref22
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref23
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref23
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref23
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref23
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref24
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref24
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref24
https://doi.org/10.1101/2020.06.08.140566
https://doi.org/10.1101/2020.06.08.140566
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref26
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref26
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref26
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref26
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref27
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref27
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref27
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref28
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref28
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref28
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref29
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref29
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref30
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref30
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref30
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref31
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref31
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref32
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref32
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref32
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref33
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref33
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref33
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref33
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref34
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref34
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref34
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref35
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref35
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref36
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref36
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref36
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref37
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref37
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref38
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref38
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref39
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref39
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref39
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref39
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref40
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref40
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref40
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref41
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref41
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref41
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref41
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref42
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref43
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref43
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref44
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref44
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref44
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref45
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref45
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref45
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref46
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref46
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref47
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref47
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref47
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref48
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref48
https://doi.org/10.1037//0033-295X.107.3.411
https://doi.org/10.1037//0033-295X.107.3.411
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref50
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref50
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref51
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref51
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref51
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref52
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref52
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref53
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref53
https://www.cs.cornell.edu/home/kleinber/networks-book/
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref55
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref55
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref56
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref56
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref57
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref57
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref57
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref58
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref58
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref58
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref59
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref59
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref59
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref59
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref59
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref59
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref60
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref60
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref60
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref60
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref61
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref61
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref61
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref62
http://refhub.elsevier.com/S0960-9822(21)00368-7/sref62


ll
Article
63. Bateson, P., and Martin, P. (1993). Measuring behavior: an introductory

guide (Cambridge University Press).

64. Madlon-Kay, S., Brent, L., Montague, M., Heller, K., and Platt, M. (2017).

Using Machine Learning to Discover Latent Social Phenotypes in Free-

Ranging Macaques. Brain Sci. 7, 91.

65. Brent, L.J.N., Ruiz-Lambides, A., and Platt, M.L. (2017). Persistent social

isolation reflects identity and social context but not maternal effects or

early environment. Sci. Rep. 7, 17791.

66. Brent, L.J.N., Maclarnon, A., Platt, M.L., and Semple, S. (2013). Seasonal

changes in the structure of rhesus macaque social networks. Behav. Ecol.

Sociobiol. 67, 349–359.

67. Sosa, S., Sueur, C., and Puga-Gonzalez, I. (2020). Network measures in

animal social network analysis: Their strengths, limits, interpretations

and uses. Methods Ecol. Evol. 63, 379.

68. Borgeaud, C., Sosa, S., Sueur, C., and Bshary, R. (2017). The influence of

demographic variation on social network stability in wild vervet monkeys.

Anim. Behav. 134, 155–165.

69. Schielzeth, H., Dingemanse, N.J., Nakagawa, S., Westneat, D.F., Allegue,

H., Teplitsky, C., R�eale, D., Dochtermann, N.A., Garamszegi, L.Z., and

Araya-Ajoy, Y.G. (2020). Robustness of linear mixed-effects models to vi-

olations of distributional assumptions. Methods Ecol. Evol. 11, 1141–

1152.

70. Robinson, N.P., Allred, B.W., Jones, M.O., Moreno, A., Kimball, J.S.,

Naugle, D.E., Erickson, T.A., and Richardson, A.D. (2017). A Dynamic

Landsat Derived Normalized Difference Vegetation Index (NDVI) Product

for the Conterminous United States. Remote Sens. 9, 863.

71. Davis, G.H., Crofoot, M.C., and Farine, D.R. (2018). Estimating the robust-

ness and uncertainty of animal social networks using different observa-

tional methods. Anim. Behav. 141, 29–44.

72. Bolker, B.M., Brooks, M.E., Clark, C.J., Geange, S.W., Poulsen, J.R.,

Stevens, M.H.H., and White, J.-S.S. (2009). Generalized linear mixed

models: a practical guide for ecology and evolution. Trends Ecol. Evol.

24, 127–135.
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MATERIALS AVAILABILITY

This study did not generate new unique reagents.

DATA AND CODE AVAILABILITY

The dataset and code generated during this study are available at

https://github.com/camilletestard/Cayo-Maria.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We studied a population of rhesus macaques living in a semi free-ranging colony on Cayo Santiago Island, Puerto Rico (18�09 N,

65�44W). The colony has been continuously monitored since it was established in 1938 following the release of 409 animals originally

captured in India. Cayo Santiago is managed by the Caribbean Primate Research Center (CPRC), which supplies food to the pop-

ulation daily and water ad libitum. There is no contraceptive use and no medical intervention aside from tetanus inoculation when

animals are weaned yearlings. Animals are free to aggregate into social units as they would in the wild. There are no natural predators

on the island.

Subjects for this study were adult males and females (at least 6 years old), individually recognizable by tattoos, ear notches, and

facial features.We used two groups for which there was behavioral data before and after HurricaneMaria, groups KK and V, including

159 unique adult individuals (KK: n = 66, F = 44, M = 22; V: n = 93, F = 44, M = 49). These groups had home ranges on different parts of

the island (Figure S1). Group V ranged alone on ‘‘small Cayo’’; an area that was severed from themain part of island (‘‘big Cayo’’) after

the hurricane. In contrast, Group KK ranged on big Cayo with all other groups, mostly on the eastern part of the island which was the

most de-vegetated after the hurricane. We used multiple available years of observational data (KK: 2015, 2017; V: 2015, 2016, 2017)

to characterize social behaviors before the hurricane (‘‘pre-hurricane’’).

METHOD DETAILS

Behavioral data collection
Prior to Hurricane Maria, behavioral data were collected using 10-min focal animal samples62 on Teklogic Psion WorkAbout Pro ª
handheld computers, with Noldus Observerª software. The duration and partner identity of all positive (e.g., grooming) and negative

(e.g., aggression, threats, submissions, and displacements) social interactions with adults were recorded. At the 0-, 5-, and 10-min

marks of the focal follow, we collected instantaneous scan samples during which we recorded the state behavior of the subject

(grooming, feeding, resting, and traveling) and the identity of all adults within two meters (i.e., in proximity). Importantly for this study,

grooming, and proximity were mutually exclusive: grooming took precedence over proximity such that whenever two individuals

were grooming they were not recorded as being in proximity as well. We balanced the collection of focal samples on individuals

across time of day and across months to account for temporal variation in behaviors.
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After Hurricane Maria (September 17, 2020), damage resulting in inconsistent access to electricity in Puerto Rico imposed the

adoption of a downgraded means of recording data using basic tablets. We recorded group-wide instantaneous scan samples at

10-min intervals. For all animals in view of an observer, we recorded the state behavior of the subject, the identity of their adult social

partner when relevant (i.e., if they were grooming) and the identity of all adults within two meters (i.e., in proximity)–similarly to instan-

taneous scans recorded during focal follows prior to the hurricane. Observers were given 15mins to complete a group-wide scan

session, were required to stand a minimum of 4 m from monkeys and, because of very good visibility of these terrestrial animals,

were able to identify them at distances upward of 30m.While aggressive interactions were recorded during scans after the hurricane

they were only recorded during focal samples before the storm. Scan samples and focal samples can provide different estimates of

brief behaviors like aggression that are not extended in time.63 Given this limitation, we focused exclusively on affiliative behaviors in

this study.

Our subjects were observed over a mean (SD) of 2.97 (0.75) years, always including 2018 (the post-hurricane year). We included on

average 4.03 (1.61) h of focal follows and 88.33 (20.86) scan observations embedded within focal follows per individual per year pre-

hurricane (see Data S1B for more details), and 448.74 (180.40) scans per individual post-hurricane (November 2017 - September

2018). Because of storms and Hurricane Maria, data collection stopped on August 31, 2017 and didn’t resume until November

2nd, 2017.

Dominance ranks for individuals were determined separately for each group and year. Rank was also determined separately for

males and females. For males, the direction and outcome of win-loss agonistic interactions recorded during focal animal samples

or during ad libitum observations of a given year was used to determine rank for that year. For females, rank was determined using

both outcomes of win-loss agonistic interactions and matriline rank. Female macaques inherit their rank from their mothers, and fe-

male ranks are linear and relatively stable over time.41 In order to account for group size, dominance rank was defined by the per-

centage of same sex individuals outranked, and ranged between 0 to 100 (0 = lowest rank, outranks 0% of same sex individuals;

100 = highest rank, outranks 100%). We were interested in comparing top ranking macaques to mid- and low-ranking individuals,

where the most important behavioral differences were likely to occur based on previous results.64,65 Thus, we classified animals

as either ‘high’ or ‘low’ ranking (with ‘low’ including both themedium and lowest ranking animals) based on the percentage outranked

scale. Monkeys were classified as high ranking if they outranked > 80% of the monkeys of their group/sex and were classified as low

ranking if they were outranked by %79% of monkeys of their group/sex.

Estimating uncertainty of pre-hurricane social networks
Our pre-hurricane social networks were built using an average of 88.33 (20.86) scan observations per individual per year, or 168.21

(41.22) observations per dyad (where either member of a dyadwas observed). To ensure this amount of sampling was able to capture

a useful representation of the underlying social structure, we evaluated the precision of our pre-hurricane social networks.43 This

method estimates the correlation between our measured interaction indices and the underlying interaction probabilities.43 We first

calculated the coefficient of variation (CV) of the observed probability of interacting, and then estimated the CV of the underlying inter-

action probabilities (S) via maximum likelihood, assuming the underlying associations follow a beta distribution. The ratio of S to the

observed CV is an estimate of the portion of variance in interaction probability values that is accounted for by the variance in ‘‘true’’

interaction probabilities, rather than sampling variance, and therefore approximates the correlation between ‘‘true’’ and observed

interaction indices. Correlations greater than 0.4 are considered to indicate useful representations of the underlying social struc-

ture.43 In our pre-hurricane grooming networks, the average correlation across group-years was 0.781, with a min correlation of

0.72 and a max correlation of 0.86 (Data S1C).

Sub-sampling procedure
In the year following the hurricane (2018), we were only able to collect instantaneous scan samples. As a result, we exclusively used

scan samples to compare the social behavior of our study population before and after the hurricane (those collected after the hur-

ricane as instantaneous scans, and those collected in the course of focal animal follows before the hurricane). There were therefore

structural differences between our pre- and post-hurricane data that we needed to account for. Specifically: (1) scans were collected

far more frequently post-hurricane, which increased the likelihood of picking up interactions compared to before the hurricane, and

(2) our pre- and post-hurricane data were not collected equally across time of day (AM/PM) and time of year—though both of these

factors may affect rates of affiliative behaviors, such as grooming. For example, monkeys were fed commercially purchasedmonkey

chow exclusively in the morning, which may have a significant negative impact on their propensity to engage in affiliative interactions

at that time. Additionally, rhesus macaques are seasonal breeders and there is seasonal variation in their social behavior.66 Such

biases in sampling effort can affect social network measures.67 To cope with these structural issues, we thus developed a subsam-

pling procedure (Figure S4) that equally balanced the number of observations pre- to post-hurricane, in addition to balancing across

time of day and time of year, for all individuals. Using simulations, we show that this procedure limits the detection of individual or

dyad-based differences in the probability of interaction pre-to-post hurricane when in fact there are none (see next section and

Figure S5).

Furthermore, sampling effort and social dynamics may vary from one year to the next,68 making it important to account for the

variation across pre-hurricane years. Accordingly, we ran our sub-sampling procedure separately for each year pre-hurricane,

creating a matched dataset pre-to-post hurricane for each group and pre-hurricane year considered. The latter point is important

regarding our first analysis which used a generalized linear mixed model (GLMM) to model changes in probabilities of affiliative
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behavior following the hurricane.While GLMMs can account for sampling biases,69 we were not able to account for year-to-year vari-

ation by adding ‘‘year’’ as a random effect. This is because year and hurricane effects are confounded: practically all post-hurricane

observations happened in one year (2018). For this reason, we also applied our sub-sampling procedure when running this GLMM

allowing us to account for the effect of the pre-hurricane year used for comparison.

We provide a concrete example of our sub-sampling procedure here.When building amatched post-hurricane network for group V

in 2016, we only considered individuals present in group V both in 2016 and in 2018 (after the hurricane). For each individual sepa-

rately, we computed the number of observations in the morning versus afternoon, and across quarters of the year both pre and post-

hurricane. For example, animal ‘‘00V’’ in 2016 had 27 scans in the morning and 30 in the afternoon. In 2018 (post-hurricane), she had

431 scans in the morning and 149 in the afternoon. We sub-sampled without replacement 27 observations in the morning and 30 in

the afternoon from the post-hurricane data to match the 2016 (pre-hurricane) data. Similarly, data was matched across quarters of

the year (henceforth quarter). So, before the subsampling procedure, 00V had 57 observations in 2016 compared to 580 post-hur-

ricane, which were not sampled equally throughout the time of day and time of year pre- to post-hurricane. After the subsampling

approach, 00V had 55 observations in 2016 and 55 in 2018, with the same number of observations in AM versus PM and across quar-

ters pre-to-post hurricane. To build the V2016-pre/post dataset, we sub-sampled post-hurricane and/or pre-hurricane data to have

them exactly match, for all individuals. Importantly, ‘‘year’’ in this sub-sampled dataset no longer indicated ‘‘data collection year’’ but

rather ‘‘year of matched data.’’ This coding of year allowed us to account for the pre-hurricane year we used as a baseline for com-

parison. The same sub-sampling procedure is used for all groups and pre-hurricane years. After one sub-sampling iteration, we sub-

sampled our data to have matched pre- and post-hurricane datasets for V2015, V2016, V2017, KK2015 and KK2017. All analyses

detailed below arewithin-individual orwithin-group comparisons and compared 5 pre-hurricane datasets to their matched post- hur-

ricane counterparts. Overall, this procedure accounts for (1) differences in the amount of sampling between pre- and post-hurricane

epochs—while interactions may be more likely to be picked up post-hurricane due to more frequent sampling, after sub-sampling

they are not picked up often enough to drive the detection of a difference in interaction rates pre- to post-hurricane when in reality

there is none (Figure S5); (2) differences in sampling effort throughout the day and across seasons; and (3) year-to-year pre-hurricane

variation.

Our full dataset contained 97,415 scan sampled observations while the sub-sampled andmatched dataset contained 37,950 scan

sampled observations. Only observations that did not have a matched category pre- and post-hurricane were discarded. For

example, 00V did not have any morning observations from October to December (Q4) in 2016; therefore, all morning Q4 data

post-hurricane were discarded for that individual when building the matched post-hurricane dataset. Overall, our sub-sampling

approach kept 89% of our full dataset (n = 86,666/97,415). To have all scans with an available match sub-sampled at least once,

we needed to run at least 275 sub-sampling iterations (Figure S6). To make sure all our data were considered in our analyses we

ran 500 sub-sampling iterations (each of the 5 matched datasets are generated 500 times).

Sub-sampling accounts for differences in sampling effort
Post-hurricane scans were collected far more frequently than pre-hurricane (see ‘‘Behavioral data collection’’ section). This can lead

to the detection of interactions post-hurricane that existed pre-hurricane but were missed due to less frequent sampling. Using sim-

ulations, we show that subsampling is able to handle this mismatch between pre and post-hurricane datasets and limits the prob-

ability of false positives (Figure S5), i.e., the detection of differences in an individual’s or a dyad’s probability of interacting pre-to-post

hurricane when in fact there are none. We describe our simulation step-by-step below.

First, we simulated two datasets with 500 scan observations each. These simulated observations represented pre- and post-hur-

ricane observations for one individual. Each observation can take two possible values: 1 if the individual was observed interacting

(i.e., grooming) and 0 if not. Our goal was to quantify false positive rates with and without sub-sampling, such that we set the indi-

vidual’s probability of grooming (henceforth ‘‘p(grooming)’’) to be the same in pre- versus post-event simulated datasets (i.e., no true

difference in p(grooming)). To model the sparser sampling pre-hurricane in our actual dataset, we only considered a fixed subset of

the simulated pre-event data available for comparing pre- and post-event p(grooming). We chose a range of 20-150 observations, in

10 observation increments, which approximates the range of observations per individual we have in our actual dataset. To model the

mismatch in amounts of data available between pre- and post-hurricane in our actual dataset, all simulated 500 observations were

available to estimate post-event p(grooming), which is approximately the amount of data available per individual in our post-hurricane

sample. To match the sparser pre-event data, we sub-sampled through the 500 post-event observations using the same amount of

data as pre-event (ranging in 10 observation increments from 20-150, analogous to the sub-sampling used in the manuscript). After

sub-sampling, we computed p(grooming), i.e., number of grooming events (or 1’s)/total number of observations, for both pre and

post-event data, and subtracted the pre value to the post value to obtain the difference in p(grooming). After 1000 iterations of

the sub-sampling procedure, we ended upwith a distribution of differences in p(grooming). If the 95%CI of the p(grooming) difference

did not contain 0, we considered the difference significant (as in our manuscript). We re-ran steps 2 and 3 1000 times to compare

1000 different subsets of the simulated pre-event data of different sizes (n observations = 20, 30, 50...150). We then computed

the probability of a false positive (# differences detected/ # iterations) given a sparse pre-event sample of each fixed size. Finally,

we also varied the value of p(grooming) from 0.01 to 0.3 ([0.01, 0.05, 0.1, 0.15, 0.20, 0.3]), and ran steps 3-5 for each value of

p(grooming).

This simulation showed that our sub-sampling procedure deals properly with differences in sampling effort between the pre- and

post-hurricane epochs and prevents unacceptable false positive rates. False positives occurred < 5% of the time regardless of the
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sample size and p(grooming) simulated (Figure S5A). By contrast, if we had failed to use this sub-sampling approach but only boot-

strapped the pre- and the post-event datasets, then our p(false positives) would have been much higher (Figure S5B).

Overall, the estimated precision of our pre-hurricane networks43 and sub-sampling simulations show respectively that: 1. pre-hur-

ricane networks correlate highly with the true underlying social structure (r > 0.7, min = 0.71, max = 0,86, Data S1C); 2. we controlled

analytically for the mismatch in the amount of data pre- versus post-hurricane (Figure S5). Both make it unlikely to detect changes in

relationships or social structure due to missed relationships pre-hurricane. However, to ensure that our results were not driven by

individuals with lower numbers of scan samples (< 1.5 SD away from themean, i.e., < 60 scans), we also re-ran our analyses for ques-

tions 2-5 (analyses described below) excluding these individuals (n = 23) and found no qualitative difference in our results.

Testing independence of observations post-hurricane
The statistical analyses we used throughout our study assume independence of observations: within one scan sample, observing an

individual grooming or in proximity should not impact the probability of observing another individual in the same states. To test

whether our sub-sampled group-wide instantaneous scans post-hurricane suffered from a lack of independence, we ran a simulation

to compare the observed distribution of the probability of grooming events across scans after sub-sampling (henceforth ‘‘p(groom)’’)

to a theoretical distribution assuming independence of observations. We computed both distributions as follows: for each observed

scan sampling session, we computed the p(groom) (#grooming events in scan ‘A’/ all scan ‘A’ observations). Then, we generated a

matched simulated scan sample with the same number of observations but where the outcome of each observation (groom or no-

groom) was assigned randomly with a specified probability (i.e., a weighted coin) using the base r function ‘sample’. This specified

probability matches the observed mean p(groom) across all scan samples, such that the mean theoretical p(groom) in simulated

scans matches the observed mean (0.03). Finally, we ran a Chi-square Goodness of fit test using chisq.test in R to test the difference

between distributions. The distributions were statistically indistinguishable (chi-square Goodness of fit test, p > 0.2, Figure S7), indi-

cating that our observations can be considered independent for analytical purposes. We ran the same analysis for proximity data as

well (which is less sparse, mean p(proximity) = 0.18) and found the same result.

Ecological changes and mortality after Hurricane Maria
We quantified changes to vegetation cover and temperature as a result of Hurricane Maria. We measured vegetation cover from two

years before to two years after Hurricane Maria using satellite images from Sentinel-hub EO-Browser. We used images from Landsat

8, a satellite operated by the US Geological Survey that has a 16-day repeat cycle (i.e., visiting Cayo Santiago every approximately

16 days). Images from Landsat 8 can be viewed in many formats, including ‘‘Normalized Difference Vegetation Index’’ (NDVI) image

format. NDVI is the most widely used remote sensing index for assessing vegetation cover.70 NDVI is measured using the near-

infrared radiation from photosynthetic pigments to assess the photosynthetic activity of vegetation.70 For Landsat 8, NDVI is auto-

matically calculated by the database with the following band combination ((Band 5 – Band 4) / (Band 5 + Band 4)) which isolates

bands that reflect photosynthetic activity.

We created a geojson shapefile of coordinates outlining the entirety of Cayo Santiago, including both the large and small islands,

which allowed us to specifically search for images in which there was no cloud cover over the island. We compiled NDVI scores (0

representing no vegetation and 1 representing full vegetation cover) from satellite images with 0% cloud cover over Cayo Santiago

fromSeptember 21, 2015 to November 29, 2019 (approximately 2 years pre- and 2 years post-Maria). In total, we used 89 images, 42

from before HurricaneMaria (09/21/2015–09/10/2017) and 47 from after (09/26/2017–11/29/2019). Following HurricaneMaria, vege-

tation on the island decreased by 63% (t test, p = 3.7 3 10�25).

To evaluate the death toll following the hurricane (Figure 1B), we used the CPRC long-term demographic data to compute the

monthly number of adult deaths per 100 adult monkeys from 1998 to 2018. We only included adults because the exact date of death

of infants and juveniles had an estimated error margin of up to 8 months due to the difficulty in individually recognizing and tracking

young animals who had not yet received their unique ID tattoos (in addition to adults being the focus of this study). We also compared

the death rate following hurricane Maria to previous studies of population changes following disasters (Data S1A). Death rates in

those previous studies included individuals of all ages, such that we also included all individuals to compute the death rate reported

in Data S1A – note that this is a conservative estimate (i.e., on the high end) since some of these deaths could have happened before

the hurricane or outside of our study period. Study periods in previous studies ranged from 1 day to 1 year following disasters, such

that we chose six months as the death rate analysis period (i.e., death rate = number of individuals who died between October 2017

and March 2018 / Number of individuals alive in September 2017).

QUANTIFICATION AND STATISTICAL ANALYSIS

Note that we exclusively used scan data when comparing pre- and post-hurricane probability of affiliation and social networks, since

post-hurricane data did not include focal follows. Focal data was only used when estimating individuals’ pre-storm strength of

connection to monkeys who later died after the hurricane in analysis 2, and gregariousness pre-hurricane in analyses 2 and 4,

because focal samples are most appropriate when examining individual-level characteristics and patterns of behavior.71 Further-

more, our analyses relied on the assumption that scan observations were independent of one another, an assumption we validated

using simulations (details in the section ‘‘Testing independence of observation post-hurricane,’’ Figure S5).
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Probability of affiliative interactions increased after the hurricane
The first goal of our study was to evaluate the influence of Hurricane Maria on probabilities of social interaction. We focused on two

measures of sociality: the probability of being scanned in a state-of-proximity (henceforth the proximity) and the probability of being

scanned in a state-of-grooming (henceforth the grooming). We used a generalized linear mixed model from R package lme4

(GLMMs),72 to assess the significance of the hurricane on probability of proximity and grooming. Our dependent variables were bi-

nary (e.g., an individual can be scanned in a grooming state = 1; or not = 0), so we used a binomial family model with a logit link func-

tion. We controlled for time of day (AM/PM), time of year (quarters), the interaction between time of year and hurricane status, and

demographic variables age, sex, and rank by including them as fixed effects. Individual ID and year were included as random effects.

We checked the multicollinearity of independent variables using ‘‘check_collinearity’’ from R package ‘‘performance’’73—all our in-

dependent variables had a low variance inflation factor (< 1). We sub-sampled our data 500 times, ran a binomial model for each

subsampling iteration, and reported the mean estimates and 95% confidence interval for all our regressors.

Monkeys that were socially isolated before the hurricane showed the greatest increase in affiliation after it
We evaluated whether individuals’ gregariousness pre-hurricane and their relationship to partners who died in the six months

following the hurricane predicted changes in their probability of grooming (henceforth p(grooming)) and being in proximity to others

(henceforth p(proximity)) from the pre- to the post-hurricane period. Gregariousness in the grooming model was based on grooming

data while gregariousness in the proximity model was based on proximity data. For the change in p(grooming) model, we also tested

whether p(grooming) changes could be explained by changes in p(proximity), by including change in p(proximity) as a predictor.

To compute individual grooming and proximity probabilities pre- and post-hurricane, we used the sub-sampling approach

described above to match scans for groups KK and V, pre- and post-hurricane, for each year pre-hurricane separately. After

each sub-sampling iteration, we computed p(grooming) ( = number of grooming events/total number of scans) and p(proximity)

( = number of proximity events/total number of scans) for all individuals pre- and post-hurricane separately. Changes in probabilities

of affiliative interactions were calculated by subtracting the pre value to the post value, such that a positive change indicated an in-

crease in probability pre-to-post hurricane.

To evaluate an individual’s level of gregariousness pre-hurricane, we computed individuals’ grooming index and proximity index,

separately for each year pre-hurricane using focal samples and scan samples respectively. Grooming index is a standardized mea-

sure of the amount of time spent grooming per individual, computed as follows: we summed the amount of time (seconds) a subject

was observed grooming (or being groomed) for the entire year, divided this sum by the number of hours they were followed that year

(to control for observational time), and further standardized this ratio by dividing by the mean for that group and year (to control for

group differences in average sociality, which may be influenced by group size and other factors). This grooming index is robust to

differences in observational time and represents how gregarious an individual is relative to other members of their group.38 Impor-

tantly, the latter gregariousness predictor was computed using focal data (available pre-hurricane only) and is distinct from p(groom-

ing) pre-hurricane used to compute the dependent variable in our model. Proximity index was calculated by summing the number of

times a subject was observed in proximity to another monkey for the entire year, and standardized the same way as the grooming

index. This proximity index, like the grooming index, is robust to differences in observational time and group average sociality. Finally,

using focal data we quantified the strength of relationship to monkeys who died in the six months following the hurricane by summing

the time spent grooming one another before the hurricane (separately for each year pre-hurricane), divided by the average number of

hours followed for the two monkeys, and further standardized by the mean strength of grooming bond for that group and year.

Although our dependent variables were bounded between �1 and 1, their distributions approximated a normal distribution (Fig-

ure S2). We used linear mixed models from R package lme4 (LMMs)72 to assess the significance of pre-hurricane level of gregarious-

ness and relationship to deceased monkeys in predicting change in grooming and proximity probabilities in two separate models. In

both models we controlled for demographic variables age, sex, and rank included as fixed effects. Individual ID and year were

included as random effects. For change in grooming probability model, we also included pre-to-post hurricane change in probability

of being in proximity as a predictor (fixed effect). Multiple model assumptions were visually checked using ‘‘check_model’’ from the R

package ‘‘performance’’73 (normality of residuals, normality of random effects, heteroscedasticity, homogeneity of variance andmul-

ticollinearity). After confirming that assumptions were met on several sub-sampling iterations, we sub-sampled our data 500 times,

ran a predictive model for each subsampled data, and reported the mean estimate and 95% confidence interval (CI) of our fixed-ef-

fect coefficients.

In our models, the pre-hurricane values of p(grooming) or p(proximity) (henceforth ‘‘p(affiliation)’’) and measures of social integra-

tion pre-hurricane are related (they both rely on grooming and proximity behavior pre-disaster). Thus, the negative relationship

observed between individuals’ level of social integration pre-hurricane and their change in probability of affiliation pre-to-post hur-

ricane (Figure 3B in themain text) may be partly due to regression toward themean (RTM,74). This raises the question of whether there

are differential effects between individuals with initially low and high social integration values beyond what is expected from the RTM

effect. One reasonable prediction of a differential effect is a change in the variance of the population.75,76 If the null hypothesis that

variances at the two time points are equal is rejected, then this is a good indication that our differential effect is above what is ex-

pected from RTM.75 We ran a Pitman t test on the pre- and post- p(groom) and p(proximity) values on 500 subsampling iterations

and found statistically different variance on each iteration (95% CI t-value = [6.28 11.96], df = 272, p < 0.0001). We conclude that

the differential effect observed (the negative relationship between change in p(affiliation) and baseline social integration) is larger

than the effect expected by RTM alone.
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Monkeys increased the quantity but not intensity of their social relationships after the hurricane
To compare both the number and the intensity of social relationships before and after the hurricane, we used the sub-sampling

approach described above to generate subsampled social networks using R package ‘igraph’77 (500 iterations for each group

and year). Edge weights were computed by counting from scan samples the number of grooming events between two individuals

and dividing this count by the average number of times each member of the dyad was scanned.

To evaluate whether individuals had a greater number of unique partners after the disaster compared to before, we asked whether

grooming networks were denser. Network density is the proportion of unique pairwise connections observed over all possible pair-

wise connections.42 We computed non-weighted network density for all sub-sampled networks by using the ‘edge_density’ function

in igraph. At each subsampling iteration, we calculated the difference between matched pre- and post-hurricane grooming network

densities, for each group and year pre-hurricane separately (i.e., 5 differences were computed since there are 5 group-year combi-

nations, pre- and post). We report the mean pre-/post-hurricane difference in network density and 95%CI. We considered a change

in network density as statistically significant if the 95%CI of pre-/post-hurricane difference did not include 0. Note that this bootstrap-

ping-based analytical approach does not allow for the inclusion of group membership or year as a covariate, and for that reason we

analyzed data separately by group and year (Table S3).

Next, we tested whether individuals had stronger relationships after the hurricane compared to before. Strength of relationships

was measured as the weight assigned to edges in the grooming networks. Importantly, weights were not standardized within group

and year. Standardizing would occlude any change in relationship strength in the post-hurricane year. Furthermore, we specifically

tested the effect of the hurricane on non-zero weights. We asked whether dyadic relationships, when there were any, were stronger

post-hurricane. Importantly, pairs compared were not necessarily the same before and after the hurricane. Individuals only needed to

interact in one of the two time points to be considered in this analysis (e.g., A groomedBbefore the storm but not after). Before using a

linear mixed model to assess the effect of the hurricane on relationship strength (categorical predictor 0 = pre-hurricane, 1 = post-

hurricane), we log-transformed relationship strength indices (i.e., weights) to meet assumptions of normality and constant variance.

We controlled for the demographic characteristics of the subject who gave grooming to its partner (age, sex, and rank) by including

them as fixed effects. Individual ID, partner ID and year were included as random effects. After visually confirming that assumptions

(normality of residuals, normality of random effects, heteroscedasticity, homogeneity of variance and multicollinearity) were met on

several sub-sampling iterations using check_model from R package ‘‘performance’’73, we sub-sampled our data 500 times, ran a

linear mixed model for each subsampled dataset and report the mean estimate and 95% CI of our regression coefficients.

We also wanted to assess whether individuals strengthen their relationships to familiar partners in particular—that is partners that

interacted at least once in the three years prior to the hurricane and afterward. We used the exact same approach as described

above, but this time only including dyads which interacted at least once both before and after the hurricane.

Individuals interacted with different types of partners following the hurricane
To evaluate whether allocation of grooming between different partner types, or partner preference, changed following the hurricane,

wemeasured the proportion of total group-level grooming occurring among different partner types, and compared these group-level

proportions pre-to-post hurricane. Our analysis aimed at answering the following question: out of all grooming interactions within a

given group and a given year pre-hurricane, what proportion occurred between, for example, kin versus between non-kin and did this

group-level allocation of grooming efforts change following the hurricane? This analysis was done at the group level rather than in-

dividual level because of our lack of statistical power to assess inter-individual differences in partner preference changes following

the hurricane.

Animals were defined according to their sex, rank, gregariousness level, and kinship to all potential partners. All subjects fell into

one category of each aforementioned attribute. For example, A is ‘‘less gregarious,’’ ‘‘high ranking,’’ ‘‘female’’ and is related to partner

B (they are considered kin). Animal B on the other hand is ‘‘more gregarious,’’ ‘‘low ranking’’ and a ‘‘male.’’ Therefore, the dyad ‘‘A

groom B’’ was categorized as ‘‘kin,’’ ‘‘less gregarious�more gregarious,’’ ‘‘high/low’’ and ‘‘female/male.’’ Note that grooming

dyads were directional, such that ‘‘B groom A’’ fell under a different category from ‘‘A groom B.’’ For any one network, we assessed

partner preference by measuring the proportion of overall grooming that occurred between dyads of different types. For example,

pre-hurricane 50% of all grooming might have occurred between females, while only 10% might have occurred between males.

This allocation of grooming effort may change after the hurricane such that 40% of all grooming interactions might occur between

females and 20%might occur between males. This would indicate a shift in partner preferences, where males interacted proportion-

ately more among each other and females less so (note that these numbers are simply used as an example and do not reflect a real

result).

To calculate relatedness (or kinship) between social partners, we used information onmaternal assignment taken by the Caribbean

Primate Research Center (CPRC) dating back to the sites’ inception in 1938. Paternity assignment was based on 29 microsatellite

markers for most animals born after 1985. Every subject in our sample had a known maternity; 97% had known paternity. We

used the kinship2 package in R to calculate the pairwise kin coefficients for all individuals within the sample.78 To be considered

‘‘related,’’ a dyad had to have a relatedness coefficient of at least 0.125 (i.e., sharing at least 12.5% of their genetic material or having

at least a common grand-parent79). Sex was based on the CPRC census data. For social rank, we used categorical rank (low versus

high) as described in the ‘‘behavioral data collection’’ section. To calculate gregariousness, we used focal animal sample data

collected before the hurricane to compute a standardized measure of time spent grooming, or grooming index per individual, as fol-

lows: we summed the amount of time (secs) a subject was observed grooming (or being groomed) for the entire year, divided this sum
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by the number of h they were followed that year, and further standardized the ratio by dividing by the mean for that group and year.

Thus, this grooming index is robust to differences in observational time and group size; and represents how gregarious an individual is

relative to othermembers of their group. Individuals were categorized as ‘‘more gregarious’’ if their grooming index was in the top 20th

percentile of their group, and ‘‘less gregarious’’ if otherwise–the same threshold that was used for separating low from high ranking

individuals in this and previous studies.64

We used our sub-sampling approach to generate grooming networks (500 iterations) for groups KK and V, matched pre- and

post-hurricane, for each year pre-hurricane. Thus, at each iteration 10 grooming networks were computed (there are 5 group-year

combinations, pre- and post). It is important to note here once more that grooming networks were exactly matched pre- to post-

hurricane: they contained the same individuals and the same number of observations per individual before and after the hurricane.

To compute edge weights, we counted the number of grooming events between two individuals (or nodes) and divided this count

by the average number of times each member of the dyad was scanned. Those weights were then further standardized by dividing

by the mean edge weight for that group and year. Thus, edge weights were robust to differences in observational time and group

size as well. At each subsampling iteration, the proportions of edge weight attributed to each dyadic category (i.e., sum of weights

for dyad category X/ sum of all weights) were computed for all the networks generated (n = 10). In other words, at each iteration

we computed 10 proportions per dyadic category (5 pre-hurricane, 5 post-hurricane). Finally, we calculated the difference in

grooming proportions between matched pre- and post-hurricane networks, for each partner-type category. We report the

mean pre-to-post hurricane difference in proportions per dyadic category and the 95% CI. We consider a change in partner pref-

erence for a partner-type category as significant if the 95% CI did not include 0. Note that this bootstrapping-based analytical

approach does not allow the inclusion of group membership as a covariate, and for that reason we report our results separately

by group (Table S5). Moreover, only pre-to-post hurricane differences consistent across pre-hurricane years used for comparison

will be significant. Our pre-/post-hurricane comparisons are within-subject, such that our results are limited to the individuals and

pre-hurricane years for which we had matched post-hurricane data (i.e., years 2015-2017).

Reciprocity and closure of triads drive the formation of network edges from pre- to post-hurricane networks
To evaluate which mechanisms may explain relationship formation before and after the hurricane we used Temporal Exponential

RandomGraphModels (TERGMs).46We generated balanced, sub-sampled, grooming, and proximity networks, separated by group,

year, and hurricane status (as described previously). Grooming networks were used as the response variable in our TERGMs. Prox-

imity networks were computed to include probability of being in proximity between a dyad as an edge covariate in our model. In other

words, we asked whether proximity networks predicted the observed grooming networks. Proximity network edge weights were

computed by counting the number of proximity events between two individuals (or nodes), divided by the average number of times

each member of the dyad was scanned, standardized by the mean weight for that group and year.

At each sub-sampling iteration, we created a ‘‘dynamic network structure’’ using the networkDynamic R package,80 which com-

bined unweighted pre- and post-hurricane social networks. Thus, this dynamic network structure had two time-steps (pre and post).

TERGM models take this dynamic network as input. It also requires the specification of two models: formation and dissolution. The

formation model captures relationship formation dynamics while the dissolution captures dissolution dynamics. These two models

are specified separately. For the formation model, we included network density (using ‘‘edges’’), reciprocity (using ‘‘mutual’’), and

proximity as edge covariate (using ‘‘edgecov’’). Formodeling triad closure, model degeneracy81 (a common problem in fitting ERGMs

in which the algorithms converge to an empty or full network) did not allow us to use the simple triad census, which counts each triad

type as a term in the models. As an alternative, we chose the term ‘gwesp’ to test for the prevalence of triads in our networks. In the

ERGMmodels, gwesp is a geometrically weighted term, which was found to be effective at overcoming the degeneracy problems82

and models the number of edges that serve as a common base for distinct triangles.83 Network density was included as a predictor

because it drives the propensity for triad closure and reciprocity, and therefore needs to be controlled for. For the dissolution model,

we only included network density and proximity—as including reciprocity and closure of triads lead to degeneracy of the model (i.e.,

parameter estimation rarely or never converged). We used the Markov chain Monte Carlo maximum likelihood estimation proced-

ure46 for fitting TERGMs to the networks using stergm function from R package ‘‘ergm’’84. This method creates networks from an

initial guess of parameter estimates and updates these estimates iteratively to find parameters that replicate the observed network.

The model goodness of fit and MCMC simulations were assessed visually for several sub-sampling iterations using ‘‘gof’’ and

‘‘mcmc.diagnostics’’ functions respectively.84

TERGMs are not equipped to evaluate networks frommultiple groups simultaneously.46 Thus we had to run our models separately

for each group and year pre-hurricane used for comparison. We sub-sampled our data 500 times, ran five TERGM for each subsam-

ple (as we have 5 group and year combinations) and report the mean estimate and 95% confidence interval of our regressor coef-

ficients for the formation model - which was the focus of this analysis. Positive parameters in the formation model indicate a higher

likelihood than chance that a relationship will form from the first to the second time step. Note that this analysis takes non-weighted

networks as its inputs, and is the only analysis in this study that directly compares a specific dyad’s relationship pre- versus post-

hurricane. Therefore, it is most susceptible to missed interactions or incomplete networks, and should be interpreted with caution.
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