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a b s t r a c t

For a given graph H , the Ramsey number r(H) is the minimum N
such that any 2-edge-coloring of the complete graph KN yields a
monochromatic copy of H . Given a positive integer n, a fanFn is a
graph formed by n triangles that share one common vertex. We
show that 9n/2−5 ≤ r(Fn) ≤ 11n/2+6 for any n. This improves
previous best bounds r(Fn) ≤ 6n of Lin and Li and r(Fn) ≥ 4n+2
of Zhang, Broersma and Chen.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Let H1 and H2 be two graphs. The Ramsey number r(H1,H2) is the minimum N such that any
red–blue coloring of the edges of the complete graph KN yields a red copy of H1 or a blue copy of

2. Let r(H) = r(H,H) be the diagonal Ramsey number. Graph Ramsey theory is a central topic in
raph theory and combinatorics. For related results, see surveys [3,10].
In 1975, Burr, Erdős and Spencer [1] investigated Ramsey numbers for disjoint union of small

raphs. Given a graph G and a positive integer n, let nG denote n vertex-disjoint copies of G. It
as shown in [1] that r(nK3) = 5n for n ≥ 2. A book Bn is the union of n distinct triangles
aving exactly one edge in common. In 1978, Rousseau and Sheehan [11] showed that the Ramsey
umber r(Bn) ≤ 4n + 2 for all n and the bound is tight for infinitely many values of n (e.g.,

when 4n + 1 is a prime power). A more general book B(k)
n is the union of n distinct copies of

omplete graphs Kk+1, all sharing a common Kk (thus Bn = B(2)
n ). Conlon [2] recently proved that for

every k, r(B(k)
n ) = 2kn + ok(n), answering a question of Erdős, Faudree, Rousseau, and Schelp [6]
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and asymptotically confirming a conjecture of Thomason [12]. More recently, Conlon, Fox, and
Wigderson [4] provided another proof of Conlon’s result.

Inspired by these old and recent results on r(nK3) and r(B(k)
n ), in this paper we study the Ramsey

number of fans. A fan Fn is a union of n triangles sharing exactly one common vertex, named
the center, and all other vertices are distinct. Therefore, nK3, Fn and Bn are three graphs formed
y n triangles that share zero, one, and two common vertices, respectively. Since nK3 has more

vertices than Fn and Fn has more vertices and edges than Bn, it is reasonable to believe that
r(Bn) ≤ r(Fn) ≤ r(nK3) for sufficiently large n. We obtain the following bounds for r(Fn) confirming
r(Bn) < r(Fn) for sufficiently large n.4

Theorem 1.1. For every positive integer n,

9n/2 − 5 ≤ r(Fn) ≤ 11n/2 + 6.

Theorem 1.1 improves previously best known bounds

4n + 2 ≤ r(Fn) ≤ 6n. (1)

Indeed, Li and Rousseau [7] first studied off-diagonal Ramsey numbers of fans. They showed that
r(F1, Fn) = 4n + 1 for n ≥ 2 and 4n + 1 ≤ r(Fm, Fn) ≤ 4n + 4m − 2 for n ≥ m ≥ 1. Lin and Li [8]
proved that r(F2, Fn) = 4n + 1 for n ≥ 2 and improved the general upper bound as

r(Fm, Fn) ≤ 4n + 2m for n ≥ m ≥ 2. (2)

Lin, Li and Dong [9] showed that r(Fm, Fn) = 4n + 1 if n is sufficiently larger than m. The latest
result for r(Fm, Fn) is due to Zhang, Broersma and Chen [13], who proved that r(Fm, Fn) = 4n + 1 if
n ≥ max{(m2

−m)/2, 11m/2−4}. They also showed that r(Fn, Fm) ≥ 4n+2 for m ≤ n < (m2
−m)/2.

This and (2) together give (1).
The lower bound given in Theorem 1.1 is obtained from constructing a regular 3-partite graph

with about 3n/2 vertices in each part such that every vertex has less than n neighbors in one of the
other parts. To prove the upper bound given in Theorem 1.1, we first find a large monochromatic
clique in any 2-edge-colored K11n/2+6 and then use this clique to find the desired copy of Fn. This
approach is summarized in the following two lemmas.

Lemma 1.2. Let m, n,N be positive integers such that N = 4n+m+
⌊ 6n

m

⌋
+ 1. Then every 2-coloring

f E(KN ) yields a monochromatic copy of Fn or Km.

emma 1.3. Let n be a positive integer. If a graph G contains a clique V0 with |V0| ≥ 3n/2 + 1 such
that every vertex v ∈ V0 has at least n neighbors in V\V0, then G or its complement G contains a copy
f Fn with center in V0.

We prove Lemmas 1.2 and 1.3 by using the theorems of Hall and Tutte on matchings along with a
esult on r(nK2, Fm) from [8]. Unfortunately our approach (of finding a large monochromatic clique)
annot prove r(Fn) < 11n/2 because Lemma 1.3 is tight with respect to the size of V0, see Section 5
or details.

We organize our paper as follows. We give notation and preliminary results in Section 2. After
roving Lemmas 1.2 and 1.3 in Section 3, we complete the proof of Theorem 1.1 in Section 4. We
ive concluding remarks, including a lower bound for r(Fn, Fm), in the last section.

. Notation and preliminaries

We start this section with some notation and terminologies. Given a positive integer n, let
n] := {1, 2, . . . , n}. All graphs considered are simple and finite. Given a graph G, we denote by
(G) and E(G) the vertex and edge sets of G, respectively. |G| := |V (G)| and |E(G)| are the order and
he size of G, respectively. Let G denote the complement graph of G.

Given a graph G, let v be a vertex and H be a subgraph. Denote by NH (v) the set of neighbors of
in H . For a subset S ⊆ V (G), define NH (S) = ∪v∈SNH (v). The degree of v in H is denoted by dH (v),

4 These inequalities fail when n = 2 because r(B ) = r(2K ) = 10 [1,11] while r(F ) = 9 [8].
2 3 2
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that is, dH (v) = |NH (v)|. When all the vertices of G have the same degree d, we call G a d-regular
graph. The subgraph induced by the vertices of S is denoted by G[S]. We simply write G[V (G)\S] as
G − S. A component of G is odd if it consists of an odd number of vertices. We denote by o(G) the
number of odd components of G.

Given a graph G, we denote by ν(G) the size of a largest matching of G. We will use the following
defect versions of Hall’s and Tutte’s theorems (see, e.g., [5]).

Theorem 2.1 (Hall). Let G be a bipartite graph on parts X and Y . For any non-negative integer d,
ν(G) ≥ |X | − d if and only if |NG(S)| ≥ |S| − d for every S ⊆ X.

Theorem 2.2 (Tutte). Let G be a graph on order n. For any non-negative integer d, ν(G) ≥ (n − d)/2
if and only if o(G − S) ≤ |S| + d for every subset S of V (G).

The aforementioned result r(Fn, Fm) ≤ 4n + 2m for n ≥ m follows from the following lemma, in
which nK2 is a matching of size n. Note that the n = m case of this lemma was proved in the same
way as our Lemma 1.2.

Lemma 2.3 (Lin and Li [8]). Let m, n be two positive integers with n ≥ m. Then r(nK2, Fm) = 2n + m.

We will use the following corollary.

Corollary 2.4. Let G be a graph with maximum degree ∆(G). If ∆(G) ≥ 3n, then G or G contains a
opy of Fn.

roof. Assume v is a vertex such that dG(v) ≥ 3n. By Lemma 2.3, there is a copy of nK2 in G[NG(v)]
or a copy of Fn in G[NG(v)]. So, G has a copy of Fn centered at v or G contains a copy of Fn. □

. Proofs of Lemmas 1.2 and 1.3

roof of Lemma 1.2. Let c :=
⌊ 6n

m

⌋
+ 1 for convenience, and so N = 4n + m + c. Fix a red–blue

dge coloring of KN and let R, B be the graphs induced by red and blue edges, respectively. Assuming
there is no monochromatic Km, we will find a monochromatic Fn.

Fix a vertex w. Assume, without loss of generality, that dB(w) ≥
N−1
2 = 2n +

m+c−1
2 . Let

:= B[NB(w)]. If ν(G) ≥ n, we get a blue Fn with center w. So, we assume ν(G) ≤ n − 1.
pplying Theorem 2.2 with d := dB(w) − 2n ≥

m+c−1
2 , we get a subset S ⊆ NB(w) such that

(G − S) ≥ |S| + d + 1 ≥ |S| +
m+c+1

2 .
Let C1, C2, . . . , Cℓ be the vertex sets of the components of G − S. We have the following

bservations.

(a) ℓ ≥ o(G − S) ≥ |S| +
m+c+1

2 .
(b) For any distinct i, j ∈ [ℓ], all edges between Ci and Cj are red.

We further assume that |C1| := min{|Ci| : i ∈ [ℓ]} and let D = ∪
ℓ
i=2Ci. By (b), G contains a red Kℓ,

which in turn shows ℓ ≤ m − 1.
If dB(w) ≥ 3n, then by Corollary 2.4, NB(w) spans a blue nK2 or a red Fn, which in turn shows

that there is a monochromatic Fn. So we assume dB(w) ≤ 3n−1. By the minimality of |C1|, we have
the following.

|C1| ≤
dB(w) − |S|

ℓ
≤

3n − 1
(m + c + 1)/2

<
3n
m/2

=
6n
m

.

Thus, |C1| ≤ ⌊6n/m⌋ and

|D| = dB(w) − |S| − |C1|

≥ 2n +
m + c − 1

−

(
ℓ −

m + c + 1
)

−

⌊
6n

⌋

2 2 m

3
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= m + 2n − ℓ + 1 (as c = ⌊6n/m⌋ + 1)

≥ 2n + 2. (3)

For every i ∈ [ℓ], fix an arbitrary vertex vi ∈ Ci. Let X = {v2, v3, . . . , vℓ}. Note that X ⊆ D and its
ertices form a red clique, and v1 is red-adjacent to all vertices in D.
Let D∗

:= D \ X . Then |D∗
| = |D| − (ℓ − 1) ≥ m + 2n − 2ℓ + 2. We claim that D∗ contains a red

atching of size at least n− ℓ+2. Otherwise, by removing the vertices of a largest red matching in
∗, we get a blue clique Z in G[D∗

] with |Z | ≥ |D∗
|−2ν(G[D∗

]) ≥ m+2n−2ℓ+2−2(n−ℓ+1) = m.
o, Z induces a blue Km, giving a contradiction. Let M be a red matching in G[D∗

] with |M| ≥ n−ℓ+2
nd let Y := D∗

− V (M).
Recall from (b) that v1 is red-adjacent to all vertices in D. We will show that there is a red

atching of size at least n in D, which gives a red Fn with center v1. Since v2, v3, . . . , vℓ are in
ifferent components of G − S, every vertex in Y is red-adjacent to at least |X | − 1 vertices in X .
ence we can greedily find a red matching M ′ of size at least min{|Y |, |X | − 1} between X and Y .
f |M ′

| = |Y |, then M ′
∪ M saturates all the vertices in D∗. Since R[X] is a red complete graph, the

ertices in D = D∗
∪ X contains a red matching of size at least ⌊|D|/2⌋ ≥ n by (3). If |M ′

| ≥ |X | − 1,
hen |M ′

∪ M| ≥ |X | − 1 + (n − ℓ + 2) = ℓ − 2 + (n − ℓ + 2) = n. In either case, we find a red
atching of size at least n in D, as desired. □

roof of Lemma 1.3. Suppose to the contrary that neither G nor G contains a copy of Fn. We make
he following observation:

For every v ∈ V0, there is no matching M in G[N(v)] such that |V (M)\V0| ≥

⌊n
2

⌋
. (4)

Otherwise, there are v ∈ V0 and a matching M in G[N(v)] such that |V (M)\V0| ≥ ⌊n/2⌋. Since
0 is a clique, M can be extended to a matching M∗ containing all vertices in V (M) ∪ V0\{v} if
V (M) ∪ V0\{v}| is even and all but one vertex in V (M) ∪ V0\{v} if |V (M) ∪ V0\{v}| is odd. Since
V0| ≥ ⌈3n/2⌉ + 1, it follows that M∗ is a matching M in G[N(v)] of size⌊

|V (M) ∪ V0\{v}|

2

⌋
≥

⌊
⌊n/2⌋ + ⌈3n/2⌉

2

⌋
= n,

hich in turn gives an Fn centered at v, a contradiction.
In the rest of the proof, we will find disjoint subsets Sv1 , Sv2 , . . . , Svt of V\V0 for some t > 3 and

a vertex w ∈ V0 such that G[∪1≤i≤tSvi ∪ {w}] contains a subgraph isomorphic to Fn. For this goal,
e first prove the following claim.

laim 3.1. For every vertex v ∈ V0, there exists an independent set Sv ⊆ N(v)\V0 such that
|Sv| ≥ |N(Sv) ∩ V0| + n/2 and |N(Sv) ∩ V0| ≤ n/2.

Proof. Let v be a vertex in V0 and Mv be a largest matching in G[N(v) \ V0]. Let m := |Mv|.
Then N(v) \ (V0 ∪ V (Mv)) is an independent set. Since v has at least n neighbors in V\V0, we have
|N(v) \ (V0 ∪ V (Mv))| ≥ n − 2m. Let Zv ⊆ N(v) \ (V0 ∪ V (Mv)) with |Zv| = n − 2m. If there is a
matching M ′ between Zv and V0\{v} with |M ′

| ≥ ⌊n/2⌋−2m, then M := M ′
∪Mv is a matching with

|V (M)\V0| ≥ ⌊n/2⌋, contradicting (4). Thus there is no matching of size ⌊n/2⌋ − 2m = |Zv| − ⌈n/2⌉
between Zv and V0\{v}. Applying Theorem 2.1 on G [Zv, V0\{v}] by taking

X := Zv, Y := V0\{v} and d := ⌈n/2⌉ ,

we get a subset Sv ⊆ Zv (thus Sv is independent) such that

|N(Sv) ∩ V0\{v}| ≤ |Sv| − d − 1.

This implies that |Sv| ≥ |N(Sv) ∩ V0\{v}| + 1 + d ≥ |N(Sv) ∩ V0| + n/2 and

|N(Sv) ∩ V0| = |N(Sv) ∩ V0\{v}| + 1 ≤ |Sv| − d ≤ |Zv| − d ≤ n/2.

This proves the claim. □
4
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For every v ∈ V0, let Sv be the subset of N(v)\V0 defined in Claim 3.1.

• Let v1 ∈ V0 such that |N(Sv1 ) ∩ V0| is the maximum among all vertices in V0. Let V1 :=

V0\N(Sv1 ). By definition, every vertex in V1 is not adjacent to any vertex in Sv1 .
• For each i ≥ 1, if Vi−1\N(Svi ) ̸= ∅, then define Vi := Vi−1\N(Svi ) and choose vi+1 ∈ Vi such that

|N(Svi+1 ) ∩ Vi| is the maximum among all vertices in Vi. Note that N(Svi+1 ) ∩ Vi ̸= ∅ because
vi+1 ∈ N(Svi+1 ) ∩ Vi. Together with the choice of vi, we derive that

0 < |N(Svi+1 ) ∩ Vi| ≤ |N(Svi+1 ) ∩ Vi−1| ≤ |N(Svi ) ∩ Vi−1|. (5)

For simplicity, let N ′(Svi+1 ) := N(Svi+1 ) ∩ Vi. By definition, N ′(Sv1 ), N
′(Sv2 ), . . . are nonempty and

pairwise disjoint. Suppose the above process stops when i = t due to Vt−1\N(Svt ) = ∅. Then⋃
1≤i≤t

N ′(Svi ) = V0 and
⋃

1≤i<t

N ′(Svi ) ⊊ V0. (6)

y Claim 3.1, (5), and the choice of vi, we have

(i) |N ′(Svt )| ≤ |N ′(Svt−1 )| ≤ · · · ≤ |N ′(Sv1 )| ≤ n/2;
(ii) Sv1 , Sv2 , . . . , Svt are disjoint independent sets such that |Svi | ≥ |N ′(Svi )| + n/2 for all i ∈ [t];
(iii) every vertex in Vi is not adjacent to any vertex in

⋃
1≤j≤i Svj for all i ∈ [t].

y (6) and (i), we have∑t−1
i=1 |N ′(Svi )|
t − 1

≥

∑t
i=1 |N ′(Svi )|

t
=

|V0|

t
and t ≥

|V0|

|N ′(Sv1 )|
>

3n/2
n/2

= 3.

t follows that
t−1∑
i=1

|N ′(Svi )| ≥ |V0| ·
t − 1
t

≥
3n
2

·
2
3

= n.

y (ii) and the fact that t ≥ 3, we have
t−1∑
i=1

|Svi | ≥

t−1∑
i=1

(
|N ′(Svi )| +

n
2

)
≥ n +

n
2

· 2 = 2n.

Since all Svi are independent sets, we obtain a matching M ′ of size n in G
[⋃t−1

i=1 Svi

]
. Since

t−1
i=1 N(Svi ) ⊊ V0, there is a vertex w ∈ V0 \

⋃t−1
i=1 N(Svi ). By (iii), w is not adjacent to any vertex in

t−1
i=1 Svi . Therefore, V (M ′) ∪ {w} spans a fan Fn in G. □

. Proof of Theorem 1.1

.1. Lower bound

Let n be a positive integer and let t be the largest even number less than 3n/2. Thus t ≥ 3n/2−2.
e construct a graph G = (V , E) on 3t vertices as follows. Let V1 ∪ V2 ∪ V3 be a partition of V such

hat |V1| = |V2| = |V3| = t and all G[Vi] are complete graphs. For each i ∈ [3], further partition
i into two subsets Xi and Yi with |Xi| = |Yi| = t/2, and add edges between Xi and Yi+1 such that

G[Xi, Yi+1] is an
⌈ n

2

⌉
-regular bipartite graph, where we assume Y4 = Y1. The graph G is depicted in

Fig. 1.
Observe that G does not contain a copy of Fn because every vertex has degree ⌈n/2⌉+t−1 < 2n.

To see that G contains no copy of Fn, we note that G is 3-partite because V1, V2, V3 induce cliques in
G. Thus G induces a bipartite graph on NG(v) for every vertex v ∈ V . Furthermore, two parts of this
bipartite graph have sizes t and t − ⌈n/2⌉ < n and thus there is no matching of size n in G[NG(v)].
Consequently G contains no copy of Fn.

Since neither G nor G contains a copy of F , we have r(F ) ≥ |V | + 1 = 3t + 1 ≥ 9n/2 − 5.
n n

5
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Fig. 1. Illustration of G.

4.2. Upper bound

Given a red–blue edge coloring of a complete graph on N = ⌈11n/2⌉ + 5, let R, B be the graphs
nduced by the red and blue edges, respectively. If there is a vertex v with |NR(v)| ≥ 3n or |NB(v)| ≥

n, then there is a monochromatic Fn by Corollary 2.4. We thus assume that |NR(v)| ≤ 3n − 1 and
NB(v)| ≤ 3n−1 for all vertices v. Because R and B are complementary to each other, it follows that
R(v), dB(v) ≥ (N − 1) − (3n − 1) = N − 3n. Define m := N − 4n − 4 = ⌈3n/2⌉ + 1. Since

6n
m

=
6n

⌈3n/2⌉ + 1
<

6n
3n/2

= 4,

we have
⌊ 6n

m

⌋
≤ 3. So 4n + m +

⌊ 6n
m

⌋
+ 1 ≤ N . By Lemma 1.2, there exists a monochromatic Fn

or a monochromatic Km in KN . If there exists a monochromatic Fn, we are done. Otherwise, assume
there is a monochromatic Km. Without loss of generality, suppose that Km is blue. Let V0 be the blue
lique of order m. For every v ∈ V0, v has at least dB(v) − (m − 1) ≥ (N − 3n) − (N − 4n − 5) =

+5 > n neighbors in V (B)\V0. Applying Lemma 1.3 with G := B, we get a monochromatic Fn. Thus
(Fn) ≤ N ≤ 11n/2 + 6. □

. Concluding remarks

Theorem 1.1 contains upper and lower bounds for r(Fn) that differ by about n. We do not have
conjecture on the value of r(Fn) but speculate that the lower bound is closer to the truth.
As mentioned in Section 1, we believe that r(Fn) ≤ r(nK3) = 5n. Although we are unable to

erify this, there is some evidence for this assertion. First, r(F2) = 9 < 10 = r(2K3). Second, let
, n be positive integers such that t divides n. One way of proving r(Fn) ≤ r(nK3) is showing that
( nt Ft ) ≤ r(nK3) for all such t . Indeed, Burr, Erdős and Spencer [1] proved the following theorem.

heorem 5.1 ([1, Theorem 1]). Let n be a positive integer and G be a graph of order k and independence
umber i. Then there exists a constant C = CG such that

(2k − i)n − 1 ≤ r(nG) ≤ (2k − i)n + C .

We can apply Theorem 5.1 with G = Ft (thus k = 2t + 1 and i = t) and obtain that
(3t + 2) nt − 1 ≤ r( nt Ft ) ≤ (3t + 2) nt + C for some C depending only on Ft . For fixed t ≥ 2, this
implies that r( nt Ft ) =

(
3 +

2
t

)
n + O(1), much smaller than r(nK3).5

We now give a construction that shows Lemma 1.3 is best possible with respect to |V0|. Suppose
is even. Let G = (V , E) be a graph on 9n/2−2 vertices that contains a clique V0 of order 3n/2, and
0 is partitioned into V1 ∪ V2 ∪ V3 such that |V1| = |V2| = |V3| = n/2. The set V\V0 is independent
nd is partitioned into U1∪U2∪U3∪{x0} with |U1| = |U2| = |U3| = n−1. For every i ∈ [3], G[Vi,Ui]

s complete but G[Vi,Uj] is empty for distinct i, j ∈ [3]. In addition, all the vertices of V0 are adjacent
o x0. Then each v ∈ V0 has exactly n neighbors in V \V0. But neither G or G contains an Fn centered
in V0 (there are copies of Fn whose centers are outside V0 in G). Indeed, for v ∈ V0, every matching

5 The proof of [1, Theorem 1] shows that C is double exponential in t and thus r( nt Ft ) =
(
3 +

2
t

)
n + o(n) whenever

= o(log log n).
6
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M in G[NG(v)] contains at most n/2 vertices in V \ V0 and thus |V (M)| ≤ |V0| − 1 + n/2 < 2n. In G,
very v ∈ V0 has exactly 2n − 2 neighbors so there is no matching of order 2n in G[NG(v)].
We can generalize the construction that gives the lower bound of Theorem 1.1 and obtain a new

lower bound for r(Fn, Fm). When m ≤ n < 3m/2 − 7, our bound is better than r(Fn, Fm) ≥ 4n + 2
iven in [13].

heorem 5.2. Let m, n be positive integers with m ≤ n ≤
3m
2 − 3. We have

r(Fn, Fm) ≥
3m
2

+ 3n − 5.

Proof. We construct a graph G = (V , E) on 3t vertices, where t is the largest even number less
han m

2 + n. Thus t ≥
m
2 + n − 2. Our goal is to show that neither G contains Fn nor G contains Fm.

his will imply that r(Fn, Fm) ≥ 3t + 1 ≥ 3m/2 + 3n − 5 as desired.
Let V1 ∪ V2 ∪ V3 be a partition of V such that |V1| = |V2| = |V3| = t and all G[Vi] are complete

raphs. For every i ∈ [3], partition Vi into two subsets Xi and Yi with |Xi| = |Yi| = t/2. Observe that

t
2

−

⌈
n −

m
2

⌉
≥

m
4

+
n
2

− 1 −

(
n −

m
2

+
1
2

)
=

3m
4

−
n
2

−
3
2

≥ 0 as n ≤
3m
2 − 3.

or every i ∈ [3], we add edges between Xi and Yi+1 (assuming Y4 = Y1) such that G[Xi, Yi+1] is an⌈
n −

m
2

⌉
-regular bipartite graph.

The graph G contains no Fn because for every vertex v ∈ V ,

dG(v) ≤ t − 1 +

⌈
n −

m
2

⌉
<

m
2

+ n − 1 + n −
m
2

+
1
2

< 2n as t <
m
2

+ n.

or every v ∈ V , G induces a bipartite graph on NG(v) with one part of size

t −

⌈
n −

m
2

⌉
<

m
2

+ n −

(
n −

m
2

)
= m.

It follows that G contains no Fm. □
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