European Journal of Combinatorics 96 (2021) 103347

Contents lists available at ScienceDirect European Journal

of Combinatorics

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

Improved bounds on the Ramsey number of fans M

Guantao Chen®', Xiaowei Yu"?, Yi Zhao ** i

2 Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, USA
b Department of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, 221116, PR China

ARTICLE INFO ABSTRACT

Article history: For a given graph H, the Ramsey number r(H) is the minimum N
Received 14 September 2020 such that any 2-edge-coloring of the complete graph Ky yields a
Accepted 28 March 2021 monochromatic copy of H. Given a positive integer n, a fanF, is a

Available online 26 April 2021 graph formed by n triangles that share one common vertex. We

show that 9n/2 —5 < r(F,) < 11n/2+6 for any n. This improves
previous best bounds r(F;) < 6n of Lin and Li and r(F,) > 4n+2
of Zhang, Broersma and Chen.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Let H, and H; be two graphs. The Ramsey number r(Hq, Hy) is the minimum N such that any
red-blue coloring of the edges of the complete graph Ky yields a red copy of H; or a blue copy of
H,. Let r(H) = r(H, H) be the diagonal Ramsey number. Graph Ramsey theory is a central topic in
graph theory and combinatorics. For related results, see surveys [3,10].

In 1975, Burr, Erdés and Spencer [1] investigated Ramsey numbers for disjoint union of small
graphs. Given a graph G and a positive integer n, let nG denote n vertex-disjoint copies of G. It
was shown in [1] that r(nK3) = 5n for n > 2. A book B, is the union of n distinct triangles
having exactly one edge in common. In 1978, Rousseau and Sheehan [11] showed that the Ramsey
number r(B,) < 4n + 2 for all n and the bound is tight for infinitely many values of n (e.g.,
when 4n + 1 is a prime power). A more general book B 1s the union of n distinct copies of
complete gra?hs Ky+1, all sharing a common K (thus B, = B ) Conlon [2] recently proved that for
every k, r(B 2*n + oi(n), answering a question of Erdds, Faudree, Rousseau, and Schelp [6]
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and asymptotically confirming a conjecture of Thomason [12]. More recently, Conlon, Fox, and
Wigderson [4] provided another proof of Conlon’s result.

Inspired by these old and recent results on r(nK3) and r(BSlk)), in this paper we study the Ramsey
number of fans. A fan F, is a union of n triangles sharing exactly one common vertex, named
the center, and all other vertices are distinct. Therefore, nKs, F, and B, are three graphs formed
by n triangles that share zero, one, and two common vertices, respectively. Since nK3 has more
vertices than F, and F, has more vertices and edges than B,, it is reasonable to believe that
r(B,) < r(F,;) < r(nKs) for sufficiently large n. We obtain the following bounds for r(F,) confirming
r(By) < r(F,) for sufficiently large n.*

Theorem 1.1. For every positive integer n,
In/2 -5 <r(F,) <11n/2 +6.
Theorem 1.1 improves previously best known bounds
4n+2 <r(F,) <6n. @)

Indeed, Li and Rousseau [7] first studied off-diagonal Ramsey numbers of fans. They showed that
r(Fi,Fy) =4n+1forn>2and4n+ 1 < r(Fy, Fy) < 4n+4m — 2 forn > m > 1. Lin and Li [8]
proved that r(F,, F;) = 4n + 1 for n > 2 and improved the general upper bound as

r(Fn, Fpy) <4n+2m for n>m> 2. (2)

Lin, Li and Dong [9] showed that r(F,,, F,) = 4n + 1 if n is sufficiently larger than m. The latest
result for r(F;,, F,) is due to Zhang, Broersma and Chen [13], who proved that r(F,,, F,) = 4n + 1 if
n > max{(m? —m)/2, 11m/2—4}. They also showed that r(F,, F;) > 4n+2 form < n < (m?> —m)/2.
This and (2) together give (1).

The lower bound given in Theorem 1.1 is obtained from constructing a regular 3-partite graph
with about 3n/2 vertices in each part such that every vertex has less than n neighbors in one of the
other parts. To prove the upper bound given in Theorem 1.1, we first find a large monochromatic
clique in any 2-edge-colored Kj1n/24+6 and then use this clique to find the desired copy of F,. This
approach is summarized in the following two lemmas.

Lemma 1.2. Let m, n, N be positive integers such that N = 4n+m+ L%"J + 1. Then every 2-coloring
of E(Ky) yields a monochromatic copy of F, or K,

Lemma 1.3. Let n be a positive integer. If a graph G contains a clique Vo with |Vy| > 3n/2 + 1 such
that every vertex v € Vy has at least n neighbors in V\V,, then G or its complement G contains a copy
of F, with center in V.

We prove Lemmas 1.2 and 1.3 by using the theorems of Hall and Tutte on matchings along with a
result on r(nk;, Fy,) from [8]. Unfortunately our approach (of finding a large monochromatic clique)
cannot prove r(F,) < 11n/2 because Lemma 1.3 is tight with respect to the size of Vj, see Section 5
for details.

We organize our paper as follows. We give notation and preliminary results in Section 2. After
proving Lemmas 1.2 and 1.3 in Section 3, we complete the proof of Theorem 1.1 in Section 4. We
give concluding remarks, including a lower bound for r(F,, Fy), in the last section.

2. Notation and preliminaries

We start this section with some notation and terminologies. Given a positive integer n, let
[n] := {1,2,...,n}. All graphs considered are simple and finite. Given a graph G, we denote by
V(G) and E(G) the vertex and edge sets of G, respectively. |G| := |[V(G)| and |E(G)| are the order and
the size of G, respectively. Let G denote the complement graph of G.

Given a graph G, let v be a vertex and H be a subgraph. Denote by Ny(v) the set of neighbors of
v in H. For a subset S C V(G), define Ny(S) = U,esNy(v). The degree of v in H is denoted by dy(v),

4 These inequalities fail when n = 2 because r(B,) = r(2Ks) = 10 [1,11] while r(F;) =9 [8].
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that is, dy(v) = |[Ny(v)|. When all the vertices of G have the same degree d, we call G a d-regular
graph. The subgraph induced by the vertices of S is denoted by G[S]. We simply write G[V(G)\S] as
G — S. A component of G is odd if it consists of an odd number of vertices. We denote by o(G) the
number of odd components of G.

Given a graph G, we denote by v(G) the size of a largest matching of G. We will use the following
defect versions of Hall’s and Tutte’s theorems (see, e.g., [5]).

Theorem 2.1 (Hall). Let G be a bipartite graph on parts X and Y. For any non-negative integer d,
v(G) > |X| — d if and only if |[Ng(S)| > |S| — d for every S C X.

Theorem 2.2 (Tutte). Let G be a graph on order n. For any non-negative integer d, v(G) > (n — d)/2
if and only if o(G — S) < |S| + d for every subset S of V(G).

The aforementioned result r(F,, F,) < 4n + 2m for n > m follows from the following lemma, in
which nkKj; is a matching of size n. Note that the n = m case of this lemma was proved in the same
way as our Lemma 1.2.

Lemma 2.3 (Lin and Li [8]). Let m, n be two positive integers with n > m. Then r(nk;, Fy) = 2n+ m.

We will use the following corollary.

Corollary 2.4. Let G be a graph with maximum degree A(G). If A(G) > 3n, then G or G contains a
copy of F,.

Proof. Assume v is a vertex such that dg(v) > 3n. By Lemma 2.3, there is a copy of nK; in G[Ng(v)]
or a copy of F, in G[Ng(v)]. So, G has a copy of F,, centered at v or G contains a copy of F,. O

3. Proofs of Lemmas 1.2 and 1.3

Proof of Lemma 1.2. Let ¢ := | 2| 4 1 for convenience, and so N = 4n + m + c. Fix a red-blue
edge coloring of Ky and let R, B be the graphs induced by red and blue edges, respectively. Assuming
there is no monochromatic K,;,, we will find a monochromatic F,.

Fix a vertex w. Assume, without loss of generality, that dg(w) > % = 2n + %H Let
G = B[Ng(w)]. If v(G) > n, we get a blue F, with center w. So, we assume v(G) < n — 1.
Applying Theorem 2.2 with d := dp(w) — 2n > %H we get a subset S € Np(w) such that
o(G—S)> S| +d+ 12> |S| + B

Let Cq1,Cy,...,C, be the vertex sets of the components of G — S. We have the following
observations.

() €= 0(G—§) = |S| + ™t
(b) For any distinct i, j € [£], all edges between C; and G are red.
We further assume that |C;| := min{|G;| : i € [¢]} and let D = U, C:. By (b), G contains a red K,
which in turn shows £ <m — 1.
If dg(w) > 3n, then by Corollary 2.4, Np(w) spans a blue nK; or a red F,, which in turn shows

that there is a monochromatic F,. So we assume dg(w) < 3n— 1. By the minimality of |C;|, we have

the following.
dg(w) — |S]| 3n—1 3n 6n
Gl = < < ——=—.
L (m+c+1)/2 m/2 m

Thus, |Cq] < |6n/m] and
ID| = dp(w) — IS| — G4

m+4c—1 m+c—+1 6n
=t " )
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=m+2n—£€+1 (asc=[6n/m]+1)
>2n+ 2. (3)

For every i € [£], fix an arbitrary vertex v; € C;. Let X = {v;, v3, ..., v¢}. Note that X C D and its
vertices form a red clique, and v, is red-adjacent to all vertices in D.

Let D* := D\ X. Then |D*| = |D| — (£ — 1) > m + 2n — 2¢ + 2. We claim that D* contains a red
matching of size at least n — £ 4 2. Otherwise, by removing the vertices of a largest red matching in
D*, we get a blue clique Z in G[D*] with |Z| > [D*| —=2v(G[D*]) > m+2n—20+2—-2(n—£+1) =m.
So, Z induces a blue K, giving a contradiction. Let M be a red matching in G[D*] with |[M| > n—{+2
and let Y := D* — V(M).

Recall from (b) that v; is red-adjacent to all vertices in D. We will show that there is a red
matching of size at least n in D, which gives a red F, with center v;. Since vy, vs, ..., v, are in
different components of G — S, every vertex in Y is red-adjacent to at least |X| — 1 vertices in X.
Hence we can greedily find a red matching M’ of size at least min{|Y|, |[X| — 1} between X and Y.
If IM'| = |Y|, then M’ U M saturates all the vertices in D*. Since R[X] is a red complete graph, the
vertices in D = D* U X contains a red matching of size at least | |D|/2] > n by (3). If [M'| > |X| —1,
then [M"UM| > |[X| —1+(n—£€+2) =€ —2+(n— £+ 2) = n. In either case, we find a red
matching of size at least n in D, as desired. O

Proof of Lemma 1.3. Suppose to the contrary that neither G nor G contains a copy of F,. We make
the following observation:

n
For every v € Vj, there is no matching M in G[N(v)] such that |V(M)\Vy| > LEJ (4)

Otherwise, there are v € Vp and a matching M in G[N(v)] such that |V(M)\Vy| > [n/2]. Since
Vo is a clique, M can be extended to a matching M* containing all vertices in V(M) U Vp\{v} if
V(M) U Vo\{v}| is even and all but one vertex in V(M) U Vo\{v} if |V(M)U Vp\{v}| is odd. Since
[Vo| = [3n/2] + 1, it follows that M* is a matching M in G[N(v)] of size

{IV(M)U VO\{UHJ - {Ln/ZJ + F3n/21J
2 2

which in turn gives an F, centered at v, a contradiction.

In the rest of the proof, we will find disjoint subsets S,,, S,,, ..., Sy, of V\V; for some t > 3 and
a vertex w € Vp such that G[U;<;<.S,; U {w}] contains a subgraph isomorphic to F,. For this goal,
we first prove the following claim.

’

Claim 3.1. For every vertex v € V, there exists an independent set S, < N(v)\Vy such that
ISl = IN(Sy) N Vol +1n/2 and IN(S,) N Vol < n/2.

Proof. Let v be a vertex in Vy and M, be a largest matching in G[N(v) \ Vo]. Let m = |M,|.
Then N(v) \ (Vo U V(M,)) is an independent set. Since v has at least n neighbors in V\V,, we have
IN(vV)\ (Vo UV(M,))| = n—2m. Let Z, € N(v) \ (Vo UV(M,)) with |Z,| = n — 2m. If there is a
matching M’ between Z, and Vp\{v} with [M’| > [n/2] —2m, then M := M'UM,, is a matching with
|V(M)\Vo| > |n/2], contradicting (4). Thus there is no matching of size |[n/2| —2m = |Z,| — [n/2]
between Z, and Vy\{v}. Applying Theorem 2.1 on G[Z,, Vp\{v}] by taking

X =2Z,, Y:=V\{v} and d:=[n/27,

we get a subset S, C Z, (thus S, is independent) such that
IN(Sy) N Vo\{v}] = [Sy| —d — 1.

This implies that |S,| > [N(S,) N Vo\{v}| +1+d > IN(S,) N Vp| +n/2 and
IN(S,) N Vo| = IN(S,) N Vo\{v} +1 < IS)| —d < |Z,| —d < n/2.

This proves the claim. O



G. Chen, X. Yu and Y. Zhao European Journal of Combinatorics 96 (2021) 103347

For every v € Vj, let S, be the subset of N(v)\Vy defined in Claim 3.1.

e Let v; € Vp such that |[N(S,,) N V| is the maximum among all vertices in Vy. Let V; =
Vo\N(S,, ). By definition, every vertex in V; is not adjacent to any vertex in S,,.

e For eachi > 1,if Vi_1\N(S,,) # @, then define V; := V;_1\N(S,,) and choose v;;; € V; such that
IN(Sy;,,) N Vil is the maximum among all vertices in V;. Note that N(S,,,,) N V; # ¥ because

vit1 € N(Sy,, ;) N Vi. Together with the choice of v;, we derive that

0 < IN(Sy 1) NVil < IN(Sypp) N Viea] < IN(Sy) N Vieql. (5)
For simplicity, let N'(S,,,,) := N(Sy,,) N Vi. By definition, N'(S,,), N'(S,,), ... are nonempty and
pairwise disjoint. Suppose the above process stops when i = t due to V;_;\N(S,,) = ¢. Then
UNS)=v and [ J NS, < Vo (6)
1<i<t 1<i<t
By Claim 3.1, (5), and the choice of v;, we have
(1) IN(Su )l < IN"(Sy_ )l < -+ < IN'(Syp)l < /25
(ii) Su;,s Su,, - -, Sy are disjoint independent sets such that |S,,| > [N'(S,,)| +n/2 for all i € [t];
every vertex in V; is not adjacent to any vertex in U@.S.svj for all i € [t].
By (6) and (i), we have

(=1 | npy t ,
D i1 IN'(Sy) > D1 IN(Sy) _ Vol and t> [Vol - 3n/2 _
t—1 t t IN(Sy,)l  n/2

It follows that

w
oY
Wl N

Il
=

t—1 , f—1
DN = Vol - —— =
i=1

By (ii) and the fact that t > 3, we have

t—1 t—1
n n
Sl > (N/s. —)>n Toa=on
DoIsul = (NGl +5) zn+3
i=1 i=1
Since all S,, are independent sets, we obtain a matching M’ of size n in G [Ul:l] Svi]. Since
U, N(S,,) € Vo, there is a vertex w € Vo \ ] N(S,,). By (iii), w is not adjacent to any vertex in
U,:]l Sy;- Therefore, V(M’) U {w} spans a fan F, in G O

4. Proof of Theorem 1.1
4.1. Lower bound

Let n be a positive integer and let t be the largest even number less than 3n/2. Thus t > 3n/2—2.
We construct a graph G = (V, E) on 3t vertices as follows. Let V; UV, U V3 be a partition of V such
that |Vq| = |V3] = |V3] = t and all G[V;] are complete graphs. For each i € [3], further partition
V; into two subsets X; and Y; with |X;| = |Y;| = t/2, and add edges between X; and Y;,; such that
G[X;, Yiz1] is an |—g-|—regular bipartite graph, where we assume Y, = Y. The graph G is depicted in
Fig. 1.

Observe that G does not contain a copy of F, because every vertex has degree [n/2]+t—1 < 2n.
To see that G contains no copy of F,, we note that G is 3-partite because V;, V,, V3 induce cliques in
G. Thus G induces a bipartite graph on N¢(v) for every vertex v € V. Furthermore, two parts of this
bipartite graph have sizes t and t — [n/2] < n and thus there is no matching of size n in G[N¢(v)].
Consequently G contains no copy of F,.

Since neither G nor G contains a copy of F,, we have r(F,) > |[V|+1=3t+1>9n/2 — 5.

5
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Fig. 1. Illustration of G.

4.2. Upper bound

Given a red-blue edge coloring of a complete graph on N = [11n/27 + 5, let R, B be the graphs
induced by the red and blue edges, respectively. If there is a vertex v with |[Ng(v)| > 3n or |[Ng(v)| >
3n, then there is a monochromatic F, by Corollary 2.4. We thus assume that |[Ni(v)| < 3n — 1 and
Ng(v)| < 3n—1 for all vertices v. Because R and B are complementary to each other, it follows that
dr(v),dg(v) > (N —1)— (3n— 1) = N — 3n. Define m := N — 4n — 4 = [3n/2] + 1. Since

6n 6n 6n
— = < =
m [3n/214+1 3n/2

)

we have | %] <3.S04n+m+ | %] +1 < N. By Lemma 1.2, there exists a monochromatic F,
or a monochromatic K, in Ky. If there exists a monochromatic F,,, we are done. Otherwise, assume
there is a monochromatic K;,,. Without loss of generality, suppose that K, is blue. Let V; be the blue
clique of order m. For every v € Vg, v has at least dg(v) —(m — 1) > (N —3n) — (N —4n —5) =
n+5 > n neighbors in V(B)\Vp. Applying Lemma 1.3 with G := B, we get a monochromatic F,. Thus
r(F) <N <11n/24+6. O

5. Concluding remarks

Theorem 1.1 contains upper and lower bounds for r(F,) that differ by about n. We do not have
a conjecture on the value of r(F,) but speculate that the lower bound is closer to the truth.

As mentioned in Section 1, we believe that r(F,) < r(nK3) = 5n. Although we are unable to
verify this, there is some evidence for this assertion. First, r(F;) = 9 < 10 = r(2K3). Second, let
t, n be positive integers such that t divides n. One way of proving r(F,) < r(nK3) is showing that
r(¢{F) < r(nK3) for all such t. Indeed, Burr, Erdés and Spencer [1] proved the following theorem.

Theorem 5.1 ([1, Theorem 1]). Let n be a positive integer and G be a graph of order k and independence
number i. Then there exists a constant C = C; such that

(2k—in—1<r(nG) <(2k—in+C.

We can apply Theorem 5.1 with G = F; (thus k = 2t + 1 and i = t) and obtain that
(3t +2)F —1 < r(}F) < (3t + 2)} + C for some C depending only on F;. For fixed t > 2, this
implies that r(F;) = (3 + 2) n+ 0(1), much smaller than r(nk3).>

We now give a construction that shows Lemma 1.3 is best possible with respect to |Vp|. Suppose
niseven. Let G = (V, E) be a graph on 9n/2 — 2 vertices that contains a clique Vj of order 3n/2, and
Vp is partitioned into V7 U V5 U V3 such that |Vq| = |V;| = |V3] = n/2. The set V\V, is independent
and is partitioned into U; UU, UU3 U{xo} with |U;| = |U| = |U3| = n— 1. For every i € [3], G[V;, U]
is complete but G[V;, U;] is empty for distinct i, j € [3]. In addition, all the vertices of V, are adjacent
to xo. Then each v € Vj has exactly n neighbors in V \ V,. But neither G or G contains an F, centered
in Vy (there are copies of F, whose centers are outside V; in G). Indeed, for v € Vy, every matching

5 The proof of [1, Theorem 1] shows that C is double exponential in t and thus r(%F[) = (3 + %) n + o(n) whenever
t = o(loglogn).
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M in G[Ng(v)] contains at most n/2 vertices in V \ Vp and thus [V(M)| < |[Vo| =14+ n/2 < 2n.In G,
every v € Vp has exactly 2n — 2 neighbors so there is no matching of order 2n in G[Ng(v)].

We can generalize the construction that gives the lower bound of Theorem 1.1 and obtain a new
lower bound for r(F,, F,). When m < n < 3m/2 — 7, our bound is better than r(F,, F) > 4n + 2
given in [13].

3m

Theorem 5.2. Let m, n be positive integers with m < n < =% — 3. We have

3m
r(Fp, Fn) > 5 +3n—5.

Proof. We construct a graph G = (V, E) on 3t vertices, where t is the largest even number less
than % +n. Thus t > % +n — 2. Our goal is to show that neither G contains F, nor G contains Fy,.
This will imply that r(F,, F;) > 3t + 1 > 3m/2 + 3n — 5 as desired.

Let V; UV, U V3 be a partition of V such that |V{| = |V5| = |V3] = t and all G[V;] are complete
graphs. For every i € [3], partition V; into two subsets X; and Y; with |X;| = |Y;| = t/2. Observe that

t m m n m 1 3m n 3 3m
*—(n—*—lzf—f-f—l— n——+-|=——--—--20 asn<33-3.
2 2 4 2 2 2 4 2 2

For every i € [3], we add edges between X; and Y;,; (assuming Y4 = Y;) such that G[X;, Y;;1] is an
[n — 2]-regular bipartite graph.
The graph G contains no F, because for every vertex v € V,

de(v) <t 1+|Vn m“ m—i—n 1+n m+1 2n ast m+n
v — —— <= — ——+-< < = .
an= 2172 2 2 2

For every v € V, G induces a bipartite graph on Nz(v) with one part of size

t |Vn m—l m+n (n m>_m
21772 2) =™

It follows that G contains no F,. O
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