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Directed graphical models specify noisy functional relationships among a collection of random variables.

In the Gaussian case, each such model corresponds to a semi-algebraic set of positive definite covariance

matrices. The set is given via a parametrization, and much work has gone into obtaining an implicit descrip-

tion in terms of polynomial (in)equalities. Implicit descriptions shed light on problems such as parameter

identification, model equivalence and constraint-based statistical inference. For models given by directed

acyclic graphs, which represent settings where all relevant variables are observed, there is a complete the-

ory: All conditional independence relations can be found via graphical d-separation and are sufficient for an

implicit description. The situation is far more complicated, however, when some of the variables are hidden

(or in other words, unobserved or latent). We consider models associated to mixed graphs that capture the

effects of hidden variables through correlated error terms. The notion of trek separation explains when the

covariance matrix in such a model has submatrices of low rank and generalizes d-separation. However, in

many cases, such as the infamous Verma graph, the polynomials defining the graphical model are not de-

terminantal, and hence cannot be explained by d-separation or trek-separation. In this paper, we show that

these constraints often correspond to the vanishing of nested determinants and can be graphically explained

by the (more general) notion of restricted trek separation.

Keywords: conditional independence; covariance matrix; graphical model; trek separation; Verma

constraint

1. Introduction

Let G = (V ,E) be a directed graph with finite vertex set V and edge set E ⊆ V × V . The edge

set is always assumed to be free of self-loops, so (i, i) /∈ E for all i ∈ V . For each vertex i, define

a set of parents pa(i) = {j ∈ V : (j, i) ∈ E}. The graph G induces a statistical model for the joint

distribution of a collection of random variables Xi , i ∈ V , indexed by the graph’s vertices. The

model hypothesizes that each variable is a function of the parent variables and an independent

noise term. In this paper, we consider the Gaussian case, in which the functional relationships

are linear so that

Xi = λ0i +
∑

j∈pa(i)

λjiXj + ǫi, i ∈ V, (1.1)
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where the ǫi , i ∈ V , are independent and centered Gaussian random variables. The coefficients

λ0i and λji are unknown real parameters that are assumed to be such that the system (1.1) admits

a unique solution X = (Xi : i ∈ V ). Typically termed a system of structural equations, (1.1)

specifies cause-effect relations whose straightforward interpretability is behind the wide-spread

use of the models (Spirtes, Glymour and Scheines [22], Pearl [18]).

The random vector X that solves (1.1) follows a Gaussian distribution whose mean vector

may be arbitrary through the choice of the parameters λ0i but whose covariance matrix is highly

structured. The model obtained from (1.1) thus naturally corresponds to the set of covariance

matrices, which we denote by M(G). This set is given parametrically with each covariance

being a rational or even polynomial function of the parameters λji and the variances of the errors

ǫi , as we detail in Section 2.

While a parametrization is useful to specify a distribution and to optimize the likelihood func-

tion, many statistical problems can only be solved with some understanding of an implicit de-

scription, that is, a way of telling whether a given covariance matrix lies in the model M(G). In

our setting, an implicit description of the model amounts to a semialgebraic description of the set

of covariance matrices that belong to the model through polynomial equations and inequalities,

and a combinatorial criterion on the graph which specifies how to obtain them. Specific problems

that can be addressed through such an implicit description include model equivalence, parameter

identification and constraint-based statistical inference. We refer the reader to the recent work of

van Ommen and Mooij [26] and the reviews of Drton [4] and Drton and Maathuis [6].

If the underlying graph G is an acyclic digraph, also termed a directed acyclic graph (DAG),

then probabilistic conditional independence yields an implicit description of M(G) (Lauritzen

[16], Studený [23]). For a Gaussian joint distribution, conditional independence corresponds to

the vanishing of special subdeterminants of the covariance matrix, namely, subdeterminants that

are almost principal in the sense that the row and the column index sets agree in all but one

element (Lněnička and Matúš [17], Drton, Sturmfels and Sullivant [8], Chapter 3.1). The con-

ditional independences holding in all distributions in the given model can be found graphically

using the concept of d-separation. It follows in particular that two DAGs G and H give rise to

the same model M(G) = M(H) if and only if G and H have the same d-separation relations.

This combinatorial criterion can be simplified to yield an efficient algorithm: M(G) =M(H) if

and only if G and H have the same skeleta and the same sets of unshielded colliders (Frydenberg

[14], Verma and Pearl [27]).

While DAG models are well-understood, they only pertain to problems where all relevant

variables are observed. A long-standing program in the fields of graphical modeling and causal

inference seeks to develop combinatorial solutions to problems such as model equivalence in

settings with hidden/latent variables. Here, giving a combinatorial explanation for the defining

equations of the model of a mixed graph could be used to devise a combinatorial criterion for

when two mixed graphs give rise to the same model. Mathematically, if only the variables indexed

by a set A ⊂ V are observed while those indexed by V \ A are hidden, then the covariance

matrices in the set M(G) are to be projected on their principal A × A submatrix. It is well

known that conditional independence is no longer sufficient for implicit model description after

such a projection.

Example 1.1. Let G be the DAG in Figure 1, where vertex 5 indexes a hidden variable. Then no

conditional independence involving only the observed X1, X2, X3 and X4 holds for all covari-
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Figure 1. A DAG on five vertices. Vertex 5 indexes a hidden variable.

ance matrices in M(G). Instead, a positive definite 4 × 4 matrix � = (σij ) is the projection of a

matrix in M(G) if and only if

|�12,34| := det(�12,34) = σ13σ24 − σ14σ23 = 0

and σj3 = 0 implies σj4 = 0 for j = 1,2.

In the example just given the key constraint is a determinant of the covariance matrix that

cannot be explained by d-separation. A major advance in this decade was the introduction of

trek separation, which is a graphical criterion that can be used to decide the vanishing of any

subdeterminant of the covariance matrix (Draisma, Sullivant and Talaska [2], Sullivant, Talaska

and Draisma [24]). Although more work is required to fully exploit trek separation in model

equivalence criteria, the notion has already seen application in parameter identification problems

(Weihs et al. [28]).

While greatly generalizing Gaussian conditional independence, determinantal constraints are

again not sufficient to describe the sets M(G) after projection to the covariance matrix of ob-

served variables. The following example is due to Thomas Verma.

Example 1.2. Let G be the graph from Figure 2. Then as in the first example no conditional

independence that holds for M(G) involves only the observed variables X1, X2, X3 and X4.

Instead, a positive definite 4 × 4 matrix � = (σij ) is the projection of a matrix in M(G) if and

only if

fVerma = σ11σ13σ22σ34 − σ11σ13σ23σ24 − σ11σ14σ22σ33 + σ11σ14σ
2
23

− σ 2
12σ13σ34 + σ 2

12σ14σ33 + σ12σ
2
13σ24 − σ12σ13σ14σ23 = 0; (1.2)

Figure 2. The Verma graph. Vertex 5 indexes a hidden variable.
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Figure 3. Graph based on van Ommen and Mooij [26], Figure 1. Vertices 5, 6 and 7 index hidden variables.

compare Example 3.3.14 in Drton, Sturmfels and Sullivant [8]. The polynomial fVerma is not a

subdeterminant of � and, therefore, is neither explained by d-separation nor by trek-separation.

Another key advance in the area is a graph decomposition result of Tian and Pearl [25]; see

also Drton [4], Sections 5–6. This result allows one to derive constraints by applying d-separation

in certain subgraphs. In particular, the vanishing polynomial fVerma from (1.2) can be shown to

arise from the independence of variables X1 and X4 that holds for the subgraph obtained by

removing the edges 1 → 3 and 2 → 3 from the Verma graph in Figure 2. For further details, we

refer the reader to the review of Shpitser et al. [21].

In the next example however, neither Tian’s graph decomposition nor trek separation provide

any insight.

Example 1.3. Let G be the graph from Figure 3. There are four observed variables, and pro-

jecting M(G) gives a set of codimension one. As discussed in van Ommen and Mooij [26], any

covariance � = (σij ) ∈ M(G) satisfies the constraint

fvOM = σ22σ34σ13 − σ22σ33σ14 − σ23σ24σ13 + σ 2
23σ14 = 0. (1.3)

The irreducible polynomial in (1.3) defines the hypersurface that contains the projection of

M(G).

A closer look at Examples 1.2 and 1.3 reveals some common structure. Both constraints are

nested determinants, by which we mean determinants of a matrix whose entries are determinants

themselves. This observation is the point of departure for our paper.

Example 1.4. The Verma polynomial from Example 1.2 admits a compact representation

through nested determinants, namely,

fVerma =

∣

∣

∣

∣

|�123,123| |�123,124|

|�1,3| |�1,4|

∣

∣

∣

∣

. (1.4)

Such a representation is generally not unique. For instance,

fVerma =

∣

∣

∣

∣

|�123,134| |�123,234|

|�1,1| |�1,2|

∣

∣

∣

∣

=

∣

∣

∣

∣

|�12,12| |�12,13|

|�34,12| |�34,13|

∣

∣

∣

∣

. (1.5)
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The polynomial from Example 1.3 is also a nested determinant, namely,

fvOM =

∣

∣

∣

∣

|�23,23| |�23,24|

|�1,3| |�1,4|

∣

∣

∣

∣

. (1.6)

We are not aware of any literature emphasizing these types of representations.

In this paper, we investigate combinatorial conditions on the graph G that entail the vanishing

of nested determinants. We give a rigorous definition of the models we study in Section 2, where

we also provide background on the current knowledge of their description. In particular, we intro-

duce mixed graph models that play an important role in model selection Drton and Maathuis[6],

Section 5.2. Section 3 shows how nested determinants arise under conditions of ancestrality. In

Theorem 3.8, we show that such determinants completely describe the model M(G) for a wide

class of mixed graphs that are (nearly) ancestral. Section 4 describes our notion of restricted trek

separation in the setting of arbitrary acylic mixed graphs. In Section 5, we show how the van-

ishing of nested determinants can follow from restricted trek separation. The result we present

also implies the vanishing of the constraints exhibited for (nearly) ancestral graphs in Section 3.

In Section 6, we give examples that involve recursive nesting of determinants. Although these

examples are beyond the scope of our results, we can explain them via restricted trek separation.

While our focus is on acyclic mixed graphs, our last example shows that a nested determinant

may also arise for graphs containing directed cycles. Finally, in Section 7 we discuss future work

and open problems.

2. Background

2.1. Structural equation models

Let ǫ = (ǫi : i ∈ V ) be the random error vector for the equation system in (1.1). As we are only

concerned with the covariance structure, we disregard the offsets λ0i . The system can then be

written as

X = �T X + ǫ, (2.1)

where the matrix � = (λij ) ∈ R
V ×V holds the unknown coefficients. Let � = (ωij ) = Var[ǫ] ∈

R
V ×V be the covariance matrix of ǫ, which we assume positive definite. Assuming further that

I −� is invertible, the random vector X = (I −�)−1ǫ is the unique solution to the linear system

in (2.1) and has covariance matrix

Var[X] = (I − �)−T �(I − �)−1. (2.2)

In the Introduction, we focused on the case where the individual error terms ǫi are independent.

Their covariance matrix � is then diagonal. In this case, a model postulating that some of the

coefficients in � are zero is conveniently represented by a directed graph, as was our setup in

Section 1. Going forward, we also allow for dependence among the ǫi and a possibly nondiagonal
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matrix �. Nonzero off-diagonal terms of � are commonly represented by adding bidirected

edges to the considered directed graph.

A mixed graph is a triple G = (V ,D,B), where D ⊂ V ×V is the set of directed edges, and B

is the set of bidirected edges which is comprised of unordered pairs of elements of V . We denote

a directed edge from i to j by i → j , and a bidirected edge by i ↔ j . Let RD be the set of V ×V

matrices � with support D, that is,

R
D =

{

� ∈ R
V ×V : λij = 0 if i → j /∈ D

}

.

Let RD
reg be the subset of matrices � ∈ R

D for which I − � is invertible. Let PDV be the cone

of positive definite V × V matrices, and define PD(B) to be the subcone of matrices supported

over B, that is,

PD(B) = {� = (ωij ) ∈ PDV : ωij = 0 if i �= j and i ↔ j /∈ B}.

The mixed graph G is acyclic if its directed part (V ,D) does not contain any directed cycles. Such

graphs are also referred to as acyclic directed mixed graphs (ADMGs); see, for example, Evans

and Richardson [11]. Here, a directed cycle is a sequence of vertices v1 → v2 → ·· · → vk → v1

connected by directed edges, where k > 1. If G is acyclic, then its vertex set V can be ordered

such that all matrices � ∈ R
D are strictly upper triangular. Thus, the determinant |I −�| = 1 and

R
D = R

D
reg. By Cramer’s rule, the covariances in Var[X] in (2.2) are then polynomial functions

of the entries of � and �.

Taking the error ǫ to be Gaussian, a given mixed graph induces the following statistical model

for the joint distribution of X.

Definition 2.1. The linear structural equation model given by a mixed graph G = (V ,D,B) is

the family of all multivariate normal distributions on R
V with covariance matrix in the set

M(G) =
{

(I − �)−T �(I − �)−1 : � ∈R
D
reg,� ∈ PD(B)

}

.

The set RD
reg × PD(B) is semialgebraic. Since M(G) is the image of this set under a rational

map, the Tarski–Seidenberg theorem yields that M(G) itself is a semialgebraic set, and thus,

admits a polynomial description. In this paper, we are interested in studying polynomial equa-

tions that are satisfied by the matrices in M(G). With � = (σij ) interpreted as a symmetric

V × V matrix of indeterminates, define R[�] to be the ring of polynomials in the σij . Then the

polynomial relations we seek to understand make up the vanishing ideal

I(G) :=
{

f ∈R[�] : f (�) = 0 for all � ∈M(G)
}

.

Suppose a variable Xj , j ∈ V , is hidden. Then the remaining variables (Xi : i �= j) have their

covariance matrix in the set obtained by projecting each matrix in M(G) onto its (V \ {j}) ×

(V \ {j}) submatrix. Two comments are in order. First, we emphasize that for a fixed j ∈ V , the

polynomials f ∈ I(G) that do not involve any of the indeterminates indexed by j , that is, f is

free of σjk for k ∈ V , give precisely the polynomial constraints holding for the model in which

random variable Xj is hidden. Second, the paradigm of mixed graphs allows one to directly
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Figure 4. (a)–(c) Mixed graphs obtained by latent projection of the DAGs in Figures 1–3, respectively.

capture relations after projection. Indeed, a graphical operation known as “latent projection”

creates a new mixed graph G′ over the observed variables that represents key relations among

covariances of observed variables; see Pearl [18], Section 2.6, Koster [15] or Wermuth [29]. For

instance, the three examples from our Introduction would be represented by the three mixed

graphs in Figure 4. In these examples, the ideal I(G′) of the given mixed graph coincides with

the ideal of polynomial relations among the observed covariances in the hidden variable model

given by the original DAG G.

2.2. Trek rule

Again let G = (V ,D,B) be any mixed graph, possibly cyclic. The starting point for any com-

binatorial understanding of polynomials in the vanishing ideal I(G) is the trek rule. This rule

specifies each entry of the covariance matrix in (2.2) as a sum of monomials associated with

certain paths in the graph.

Definition 2.2. A trek is a path τ of the form:

(a) iℓ ← ·· · ← i1 ↔ j1 → ·· · → jr , or

(b) iℓ ← ·· · ← i1 = j1 → ·· · → jr ,

for integers ℓ, r ≥ 0 with ℓ + r ≥ 1. Here, a path may visit a vertex more than once. If ℓ = 0,

the trek is simply the directed path j1 → ·· · → jr . Similarly, it is iℓ ← ·· · ← i1 if r = 0. We

call τ a trek from iℓ to jr or also a trek between iℓ and jr . The sets {ik : k = 1, . . . , ℓ} and

{jk : k = 1, . . . , r} are the left side and the right side of τ , respectively.

Let � = (λij ) ∈ R
D
reg and � = (ωij ) ∈ PD(B). To any trek τ , specified as in Definition 2.2,

associate a trek monomial

σ(τ) = ωi1j1

ℓ−1
∏

k=1

λik ik+1

r−1
∏

k=1

λjkjk+1
. (2.3)
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The trek rule now states that the covariance matrix � = (σij ) = (I − �)−T �(I − �)−1 has its

entries given by

σij =
∑

treks τ from i to j

σ(τ). (2.4)

The rule, which originates in the work of Wright [30], is obtained by observing that (I −�)−1 =

I + � + �2 + · · · . The right-hand side of (2.4) is a polynomial when G is acyclic and a (formal)

power series otherwise.

2.3. Conditional independence and subdeterminants

The notion of d-separation allows one to decide by inspection of paths in a mixed graph G

whether a conditional independence relation holds for all distributions in the model given by

G; see, for example, Drton [4], Section 10. In algebraic terms, for a Gaussian joint distribution,

variables Xi and Xj are conditionally independent given a subvector XS with i, j /∈ S if and only

if the subdeterminant |�iS,jS | is zero. Here, iS denotes the union of a singleton set {i} and the

set S. Thus, d-separation gives a combinatorial characterization of when a subdeterminant of the

form |�iS,jS | belongs to the ideal I(G). If G is a DAG, then the covariance model M(G) admits

a semialgebraic description by conditional independence. Indeed, M(G) is the set of positive

definite matrices � for which all conditional independence determinants |�iS,jS | associated with

the graph G vanish. This is also true for mixed graphs that are maximal ancestral (Richardson

and Spirtes [19]), but false more generally as the examples in the introduction show.

In seminal work, Sullivant, Talaska and Draisma [24] move beyond conditional independence

determinants and give a combinatorial characterization of when an arbitrary subdeterminant

|�A,B | is in I(G). We briefly review their concept of trek-separation; see also Drton [4], Sec-

tion 11.

Definition 2.3. Two sets A,B ⊆ V are trek-separated by the pair (SL, SR), where SL, SR ⊆ V ,

if every trek between a vertex from A and a vertex from B intersects either SL on its left side or

SR on its right side.

The vanishing of subdeterminants of the covariance matrix � in Gaussian DAG models may

now be characterized as follows.

Theorem 2.4 (Theorem 2.17, Sullivant, Talaska and Draisma [24]). Let A,B ⊆ V . The sub-

matrix �A,B has rank at most r for all covariance matrices � ∈ M(G) if and only if there

exist subsets SL, SR ⊆ V such that |SL| + |SR| ≤ r and (SL, SR) trek-separates A from B . For a

generic choice of � ∈M(G),

rank(�A,B) = min
{

|SL| + |SR| : (SL, SR) trek-separates A from B
}

.

In the case |A| = |B| = m, Theorem 2.4 shows that |�A,B | ∈ I(G) if and only if the sets of

vertices A and B are trek-separated by a pair (SL, SR) with |SL| + |SR| < |A|.
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While trek-separation greatly generalizes d-separation and can yield a generating set of I(G)

for some mixed graphs (Fink, Rajchgot and Sullivant [12]), it is in general not sufficient to

understand the vanishing ideal I(G) as we demonstrated in Examples 1.2 and 1.3.

3. Ancestral vertices and overdetermined linear systems

We now proceed to a first combinatorial condition (see Proposition 3.4) for the vanishing of very

special nested determinants (Definition 3.1). Fix a mixed graph G = (V ,D,B), and let � ∈ PDV .

For a pair of matrices � ∈ R
D
reg and � ∈ PD(B), it holds that

� = (I − �)−T �(I − �)−1 ⇐⇒ (I − �)T �(I − �) = �.

In turn, � ∈M(G) if and only if

[

(I − �)T �(I − �)
]

ij
= 0 ∀i, j ∈ V with i �= j, i ↔ j /∈ B. (3.1)

For some graphs it is known that all entries of � can be recovered as rational expressions of �,

at least for generic choices of positive definite �. For instance, the half-trek criterion (Foygel,

Draisma and Drton [13]) and its extensions (Chen [1], Drton and Weihs [9], Weihs et al. [28]) can

be used to certify graphically that such rational identification of � from � is possible and to find

rational expressions. If now both the ith and the j th column of � are rationally identifiable from

�, then the left-hand side of the equation in (3.1) can be expressed as a rational function of �. If

i �= j and i ↔ j /∈ B, then one finds a rational constraint on � that after clearing denominators

yields a polynomial in I(G). This approach is used, for instance, by van Ommen and Mooij [26].

In this section, we follow a similar approach in which we substitute solutions for some of the

entries of � that appear in (3.1). However, we only linearize the equations and then observe that

nested determinantal constraints arise from overdetermined linear equation systems. Specifically,

we study the following constraints.

Definition 3.1. Let i be a vertex of the mixed graph G, and let J be a subset of vertices in G.

Define a matrix of polynomials of size (|pa(i)| + |J |) × (|pa(i)| + 1) as

Fi,J =
(

|�pa(r)⊎{r},pa(r)⊎{c}|
)

r∈pa(i)⊎J,c∈pa(i)⊎{i}
. (3.2)

The parentally nested determinants for the pair (i, J ) are the minors of order |pa(i)| + 1 of the

matrix Fi,J . When J = {j} is a singleton, there is only one parentally nested determinant

fij =
∣

∣

(

|�pa(r)⊎{r},pa(r)⊎{c}|
)

r∈pa(i)⊎{j},c∈pa(i)⊎{i}

∣

∣. (3.3)

Here, index sets are treated as multisets with possibly repeated elements, and the determinants

are formed according to a prespecified linear order for the vertex set V . The symbol ⊎ stands for

the sum (or disjoint union) of multisets; for example, {1,1,2} ⊎ {1,3} = {1,1,1,2,3}.

Suppose j ∈ J ∩ pa(i). Then j is repeated in the row index set pa(i) ⊎ J for the matrix Fi,J .

In this case j indexes two rows for a minor, which is then zero. In particular, if j ∈ pa(i) then

fij = 0. We may therefore always restrict the set J to satisfy J ∩ pa(i) =∅.
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A repeated index may also arise for the column index sets of the matrices whose determinants

yield the entries of Fi,J . Indeed, if c ∈ pa(i) ∪ {i} is also in pa(r) for r ∈ pa(i) ∪ {j}, then the

(r, c) entry of Fi,J is zero.

Example 3.2. It holds that fVerma = f41 in Example 1.2, and fvOM = f41 in Example 1.3.

In the remainder of this section, we identify conditions under which parentally nested deter-

minants vanish.

Definition 3.3. A vertex j in the mixed graph G = (V ,D,B) is ancestral if (i) j is not on any

directed cycle, and (ii) no vertex k �= j has both k ↔ j ∈ B and a directed path from k to j .

Let � ∈R
D
reg and � ∈ PD(B), and define � = (I −�)−T �(I −�)−1 ∈ M(G). If j is ances-

tral, then all treks from a vertex r ∈ pa(j) to j end with a directed edge pointing to j . The trek

rule from (2.4) then implies that

�pa(j),pa(j)�pa(j),j = �pa(j),j . (3.4)

For our next result, it is convenient to introduce the set of siblings of a vertex j , which is sib(j) =

{k ∈ V : k ↔ i ∈ B}, the set of neighbors of j in the bidirected part of the graph.

Proposition 3.4. Let i be a vertex of a mixed graph G = (V ,D,B) such that:

(i) pa(i) ∩ sib(i) =∅,

(ii) all vertices in pa(i) are ancestral, and

(iii) the set J of all ancestral vertices in V \ (pa(i) ∪ sib(i) ∪ {i}) is nonempty.

Then the parentally nested determinants for the pair (i, J ) are in the vanishing ideal I(G).

Proof. Let � = (λab) ∈ R
D
reg and � ∈ PD(B), and define � = (I −�)−T �(I −�)−1 ∈M(G).

Neither pa(i) nor J contains vertices in sib(i). Fixing r ∈ pa(i) ∪ J , (3.1) implies that

[

(I − �)T �(I − �)
]

ri
= 0. (3.5)

This equation becomes

σri − �T
pa(r),r�pa(r),i − �r,pa(i)�pa(i),i + �T

pa(r),r�pa(r),pa(i)�pa(i),i = 0. (3.6)

Since all vertices in pa(i) ∪ J are ancestral, we may use (3.4) to get the rational equation

σri −�r,pa(r)�
−1
pa(r),pa(r)�pa(r),i −

(

�r,pa(i)−�r,pa(r)�
−1
pa(r),pa(r)�pa(r),pa(i)

)

�pa(i),i = 0. (3.7)

Now observe that for any vertex c,

(

σrc − �r,pa(r)�
−1
pa(r),pa(r)�pa(r),c

)

|�pa(r),pa(r)| = |�pa(r)∪{r},pa(r)∪{c}|. (3.8)
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Figure 5. (a) A DAG on 4 vertices to illustrate the nested determinants fij . (b) A subgraph with two edges.

Hence, multiplying the equation in (3.7) by |�pa(r),pa(r)| gives

|�pa(r)∪{r},pa(r)∪{i}| −
∑

c∈pa(i)

|�pa(r)∪{r},pa(r)∪{c}| · λci = 0. (3.9)

With one equation for every r ∈ pa(i) ∪ J , the system is overdetermined and admits a solution

only if the matrix Fi,J from Definition 3.1 has rank at most |pa(i)|. This in turn implies the

vanishing of its minors. Note that in the case that i is not trek reachable from r , the last equation

is trivial and corresponds to a row of zeros in Fi,J . �

We now illustrate the vanishing of parentally nested determinants through several examples.

Example 3.5. In our first example, consider the graph G from Figure 5(a). This graph is a DAG,

and thus all its vertices are ancestral. As there are no bidirected edges, fij ∈ I(G) for all i �= j . As

previously noted, for any graph fij = 0 if j ∈ pa(i). Here, f21 = f32 = f42 = f43 = 0. Moreover,

f12 = f34 = 0. The nonzero polynomials are

f13 = |�12,23|, f31 = σ11 · |�12,23|, f23 = −σ12 · |�12,23|

f14 = |�123,234|, f41 = σ11σ22 · |�123,234|, f24 = −σ12 · |�123,234|.

The irreducible polynomial f13 corresponds to conditional independence of X1 and X3 given X2.

The second irreducible polynomial f14 encodes conditional independence of X1 and X4 given

(X2,X3). It turns out that

M(G) =
{

� ∈ PD{1,2,3,4} : f13(�) = f14(�) = 0
}

=
{

� ∈ PD{1,2,3,4} : f31(�) = f41(�) = 0
}

=
{

� ∈ PD{1,2,3,4} : fij (�) = 0 ∀i �= j
}

.

In fact, the ideal 〈fij : i �= j〉 = 〈f13, f14〉 differs from I(G) only through components that do

not vanish at positive definite matrices Roozbehani and Polyanskiy [20], Example 2. Specifically,

〈f13, f14〉 = I(G) ∩
〈

|�23,23|, |�13,23|, |�12,23|
〉

.

Here,

I(G) =
〈

|�12,23|, |�12,24|, |�12,34|
〉

is generated by three subdeterminants, two of which are conditional independences.
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Figure 6. An ancestral graph that is not maximal.

For a second example, we pass to a subgraph to emphasize that even for DAGs parentally

nested determinants need not factor into conditional independence determinants.

Example 3.6. Let G to be the subgraph illustrated in Figure 5(b). Again, this is a DAG and fij ∈

I(G) for all i �= j . We find eight nonzero polynomials. Of these, six correspond to (conditional)

independences, namely,

f13 = f31 = σ13, f14 = f41 = |�14,34|, f23 = f32 = |�12,13|.

However, the remaining two are not conditional independence determinants and also do not factor

into such determinants. Instead,

f24 = f42 = −σ12σ14σ33 + σ11σ24σ33 + σ12σ13σ34 − σ11σ23σ34.

As in the previous example, M(G) is comprised exactly of those positive definite matrices at

which the fij vanish. Similarly, the ideal I(G) = 〈σ13, σ14, σ23, σ24〉 differs from that generated

by the fij from only through components that do not vanish at positive definite matrices:

〈fij : i �= j〉 = I(G) ∩ 〈σ13, σ23, σ33〉 ∩ 〈σ11, σ13, σ33〉 ∩ 〈σ11, σ13, σ14〉.

Finally, our third example is a mixed graph, whose model cannot be described using condi-

tional independence alone.

Example 3.7. The mixed graph in Figure 6 is an ancestral graph, that is, all vertices are ancestral

(Richardson and Spirtes [19]). It is not maximal, that is, there are nonadjacent vertices, namely,

3 and 5, that cannot be d-separated. There is then no conditional independence constraint asso-

ciated to the non-adjacency. Precisely two of the fij are nonzero, namely,

f35 =

∣

∣

∣

∣

∣

∣

|�1,1| |�1,2| |�1,3|

|�1,2| |�2,2| |�2,3|

|�124,245| |�224,245| |�234,245|

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

|�1,1| |�1,2| |�1,3|

|�1,2| |�2,2| |�2,3|

|�124,245| 0 |�234,245|

∣

∣

∣

∣

∣

∣

,

f53 =

∣

∣

∣

∣

∣

∣

|�2,2| |�2,4| |�2,5|

|�4,2| |�4,4| |�4,5|

|�123,122| |�123,124| |�123,125|

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

|�2,2| |�2,4| |�2,5|

|�4,2| |�4,4| |�4,5|

0 |�123,124| |�123,125|

∣

∣

∣

∣

∣

∣

.



Nested covariance determinants 2515

In fact, f35 = f53, and I(G) = 〈f35〉 = 〈f53〉. We note that there is also the alternative represen-

tation of

f35 =

∣

∣

∣

∣

|�12,12| |�12,23|

|�124,245| |�234,245|

∣

∣

∣

∣

=

∣

∣

∣

∣

|�24,24| |�24,25|

|�123,124| |�123,125|

∣

∣

∣

∣

= f53.

We now give a model description for a class of graphs that includes all ancestral graphs. It

also covers the two graphs from Figure 4(b)(c). We call G globally identifiable if for every

covariance matrix � ∈ M(G), there are unique parameters � ∈ R
D , � ∈ PD(B) such that

� = (I − �)−T �(I − �)−1. Recall that a sink of a mixed graph G = (V ,D,B) is any vertex

that is not a parent of any other vertex. A subgraph of G is a mixed graph G′ = (V ′,D′,B′) with

V ′ ⊆ V , D′ ⊆ D, and B′ ⊆ B. It turns out that a graph G is globally identifiable if and only if

G is acyclic and none of its subgraphs G′ = (V ′,D′,B′) containing at least 2 vertices has both a

connected bidirected part (V ′,B′) and a unique sink vertex in its directed part (V ′,D′) (Drton,

Foygel and Sullivant [5]).

For any set of polynomials F ⊂ R[�], we let VF = {� : f (�) = 0∀f ∈ F} be the algebraic

subset it defines in the space of symmetric matrices.

Theorem 3.8. Let G = (V ,D,B) be a globally identifiable mixed graph with vertex set V =

[p] ≡ {1, . . . , p} enumerated in a topological order. Suppose all vertices in [p−1] are ancestral.

Let F(G) be the set of all parentally nested determinants obtained from the pairs (i, [i − 1] \

(pa(i) ∪ sib(i))) for i ∈ V . Then

M(G) = PDV ∩ VF(G).

Proof. The inclusion M(G) ⊆ PDV ∩ VF(G) follows from application of Proposition 3.4.

To show the reverse inclusion, we proceed by induction on the number of vertices p. The state-

ment is trivial for p = 1. In the induction step, let � ∈ PDV ∩VF(G). Let �[p−1],[p−1] be the sub-

matrix obtained by removing the pth row and column. Let G[p−1] = ([p−1],D[p−1],B[p−

1]) be the subgraph induced by [p − 1]. Now, �[p−1],[p−1] ∈ PD[p−1] ∩ VF(G[p−1]). The induc-

tion hypothesis yields that �[p−1],[p−1] ∈M(G[p − 1]). Let �[p−1],[p−1] = (I − �′)−T �′(I −

�′)−1 for �′ ∈ R
D[p−1] and �′ ∈ PD(B[p − 1]).

Consider the matrix Fp,[p−1]\(pa(p)∪sib(p)) from Definition 3.1 evaluated at the given matrix �.

For each r ∈ [p − 1] \ sib(p), divide the corresponding row by |�pa(r),pa(r)| > 0. The resulting

matrix F̄ has entries

σrc − �r,pa(r)�
−1
pa(r),pa(r)�pa(r),c (3.10)

for r ∈ [p − 1] \ sib(p) and c ∈ pa(p) ∪ {p}; recall (3.8). Using (3.4), we obtain that

F̄ =
[(

I − �′
)T

�[p−1],V

]

[p−1]\sib(p),pa(p)∪{p}
. (3.11)

Form the submatrix F̄[p−1]\sib(p),pa(p), that is, we omit the column indexed by p. Then

F̄[p−1]\sib(p),pa(p) =
[

�′
(

I − �′
)−1]

[p−1]\sib(p),pa(p)
.
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Figure 7. Almost ancestral identifiable graphs in the equivalence class of the Verma graph.

Lemma 2 in Drton, Foygel and Sullivant [5] yields that F̄[p−1]\sib(p),pa(p) has full column rank.

Since � ∈ VF(G), the matrix Fp,[p−1]\(pa(p)∪sib(p)) and thus also F̄ do not have full column

rank. We conclude that the kernel of F̄ contains a vector x ∈ R
pa(p)∪{p} for which the last coor-

dinate xp �= 0. Dividing xpa(p) by −xp gives a vector λpa(p),p ∈ R
pa(p) that solves the equation

system in (3.9). Define a p×p matrix � ∈ R
D by using λpa(p),p to define its last column. Then �

solves (3.5) for i = p and all r ∈ [p − 1] \ sib(p), and thus also (3.1). Therefore, � ∈ M(G). �

Theorem 3.8 allows us to check equivalence of graphs that satisfy the conditions listed in the

theorem, that is, mixed graphs that are identifiable and for which the vertices in [p − 1] are

ancestral. To check equivalence, we create the defining equations for the model given by the first

graph (a set of parentally nested determinants), and plug in the parametrization corresponding to

the second graph to see if the equations hold there. Then we repeat the procedure with the two

graphs switched. An interesting problem for future work is to find a combinatorial criterion that

circumvents the algebra and decides the equivalence by only using the graphs.

Example 3.9. Consider the Verma graph from Figure 4(b). The equivalence class contains two

graphs – the Verma graphs itself and the same graph with the edge 1 → 2 changed to a bidirected

edge, depicted in Figure 7.

The above facts leverage existence of ancestral vertices. In the next sections, we seek to give a

more general condition for the vanishing of nested determinants. The results on vanishing nested

determinants from this section can be recovered as a special case; see Proposition 5.8.

4. Restricted trek separation

As we reviewed in Section 2.3, the notion of trek separation (Sullivant, Talaska and Draisma [24])

provides a combinatorial characterization of when a subdeterminant of the covariance matrix �

vanishes over a model M(G). Underlying the trek separation result, we stated in Theorem 2.4 is

the observation that determinants correspond to sums of certain products of trek monomials. In

this section, we recall this observation and then introduce a notion of restricted trek separation, in

which separation only needs to occur with respect to treks that avoid certain vertices on their left

or right sides. This notion will be used in Section 5 to obtain conditions that imply the vanishing

of nested determinants.

Let A and B be two subsets of the vertex set of a mixed graph G, with |A| = |B|. A system of

treks from A to B is a set of treks that each are between a vertex in A and a vertex in B . Let T be

such a system. Then T has no sided intersection if any two distinct treks in T have disjoint left
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sides and disjoint right sides. In particular, each vertex in A and each vertex in B is on precisely

one trek, so that T induces a bijection between A and B . Fixing an ordering of the elements of

A and B , the trek system induces a permutation of B in which the ith element of B is mapped

to the end point of the trek that starts at the ith element of A. Write (−1)T for the sign of this

permutation. Now define

PA,B =
∑

(−1)T
∏

τ∈T

σ(τ) (4.1)

with the summation being over all systems of treks T from A to B with no sided intersection;

recall the definition of trek monomials from (2.3).

Theorem 4.1 (Draisma, Sullivant and Talaska, [2]). Suppose the underlying graph G is

acyclic. Then the determinant of �A,B equals PA,B .

This result admits a generalization to the case where the graph G contains directed cycles.

Indeed, Draisma, Sullivant and Talaska [2] give a rational expression for the determinant of �A,B

in terms of self-avoiding trek flows, which reduce to trek systems without sided intersection in

the acyclic case. As this generalization is more involved, we will not give any details here and

focus instead on acyclic graphs only.

We now extend the combinatorial characterization of determinants and the trek separation

result from Theorem 2.4 to allow for restricted treks.

Definition 4.2. Let A, B , P and Q be subsets of vertices of a mixed graph G. A (P,Q)-

restricted trek between A and B is a trek between a vertex in A and a vertex in B that has

its left side in P and its right side in Q. Let SL and SR be two further subsets of vertices. Then A

and B are (P,Q)-restricted trek-separated by (SL, SR) if every (P,Q)-restricted trek between

A and B intersects SL on its left side or SR on its right side.

Example 4.3. Consider the Verma graph from Figure 4(b). Take A = {2,4}, B = {2,3}, P =

{2,4} and Q = {2,3,4}. Then A and B are (P,Q)-restricted trek-separated by ({}, {2}). Indeed,

every trek between A and B that only uses P on the left and only uses Q on the right has to

go through 2 on the right. Note, however, that this is not true if, for example, P = Q = V or if

3 ∈ P .

The main observation of this section is that restricted trek separation is equivalent to a rank

constraint on a special matrix. Note also that part (ii) of the theorem is a direct generalization of

Theorem 4.1 to the restricted case.

Theorem 4.4. Let G = (V ,D,B) be an acyclic mixed graph, and let � ∈ R
D and � ∈ PD(B).

For P,Q ⊆ V , consider the matrix

�(P,Q) =
[

(I − �)P,P

]−T
�P,Q

[

(I − �)Q,Q

]−1
,

and its submatrix �
(P,Q)
A,B for a choice of row indices A ⊆ P and column indices B ⊆ Q.
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(i) The rank of �
(P,Q)
A,B is at most

min
{

|SL| + |SR| : A and B are (P,Q)-restricted trek-separated by (SL, SR)
}

,

and equal to this minimum generically.

(ii) If |A| = |B|, then the determinant of �
(P,Q)
A,B is equal to

PA,B,(P,Q) =
∑

(−1)T
∏

τ∈T

σ(τ),

where the summation runs over all systems of treks T that comprise only (P,Q)-restricted

treks from A to B and have no sided intersection.

The proof of Theorem 4.4 is located in Appendix A. It is analogous to the proofs of Theo-

rems 2.4 and 4.1 as developed in Sullivant, Talaska and Draisma [24] and Draisma, Sullivant and

Talaska [2].

Example 4.5. Consider once more the Verma graph from Figure 4(b). Let A = {2,4}, B = {2,3},

P = {2,4} and Q = {2,3,4}. We saw in Example 4.3 that A and B are (P,Q)-restricted trek-

separated by ({}, {2}). Now consider the matrix

�(P,Q) =
[

(I − �)24,24

]−T
�24,234

[

(I − �)234,234

]−1

=

(

ω22 ω22λ23 ω22λ23λ34 + ω24

ω24 ω24λ23 ω24λ23λ34 + ω44

)

.

As predicted by Theorem 4.4(i), the submatrix �
(P,Q)
A,B = �

(P,Q)
24,23 has rank 1.

5. Nested determinants

In this section, we demonstrate how restricted trek separation may lead to polynomial equations

in the vanishing ideal I(G) of the model M(G) of an acyclic mixed graph G. These equations

are in general not determinantal, instead they are given by specific types of nested determinants.

In Section 5.1, we introduce a swapping property based on which in Theorem 5.3 we show how

restricted trek separation gives rise to the vanishing of such nested determinants. In Section 5.2,

we show how the swapping property and Theorem 5.3 are sufficient to explain the vanishing of

the parentally nested determinants from Proposition 3.4 and Theorem 3.8 in terms of restricted

trek separation.

5.1. Restricted trek separation and nested determinants

We begin by defining a swapping property that allows us to factor certain subdeterminants of �.

Recall that ⊎ denotes disjoint union (of multisets).
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Definition 5.1. Let A1, . . . ,Ak,B1, . . . ,Bk be sets of vertices of an acyclic mixed graph G with

|Ai | = |Bi | for every i = 1, . . . , k. Suppose every system of treks without sided intersection

between A1 ⊎ · · · ⊎ Ak and B1 ⊎ · · · ⊎ Bk connects Ai to Bi for every i. Moreover, suppose

that for any two trek systems T1 and T2 without sided intersection between A1 ⊎ · · · ⊎ Ak and

B1 ⊎· · ·⊎Bk if we swap the treks between Ai and Bi from T1 with those from T2, then we obtain

another two trek systems with no sided intersection between A1 ⊎ · · · ⊎ Ak and B1 ⊎ · · · ⊎ Bk .

Then we say that (A1,B1), . . . , (Ak,Bk) satisfy the swapping property.

The next lemma, which is proven in Appendix B.1, shows how the swapping property gives

factorizations of subdeterminants of � into different systems of trek monomial sums.

Lemma 5.2. Assume that (A1,B1), . . . , (Ak,Bk) satisfy the swapping property. Then

|�A1⊎···⊎Ak,B1⊎···⊎Bk
| =

k
∏

i=1

PAi ,Bi ,(Ci ,Di),

where C1, . . . ,Ck,D1, . . . ,Dk are sets of vertices determined by the trek systems without sided

intersection between A1 ⊎· · ·⊎Ak and B1 ⊎· · ·⊎Bk . More specifically, Ci and Di are some sets

of vertices such that Ci contains all left vertices and Di contains all right vertices of the induced

trek system between Ai and Bi .

We now proceed to the main result of this section, Theorem 5.3, which shows that the swapping

property for suitable sets of vertices implies that certain nested determinants can be factored

into sums of restricted trek monomial systems. Later in the section we will see that though

the conditions of this theorem appear to be quite special, they are very natural. In particular,

they apply to a multitude of examples, and moreover, the theorem generalizes our results from

Proposition 3.4 and Theorem 3.8.

Theorem 5.3. Let a1, . . . , an, b1, . . . , bn ∈ V . For i = 1, . . . , n, let Ai,Bi,Ci,Di ⊆ V be four

subsets with |Ai | = |Bi | and |Ci | = |Di |. Assume further that for each i, j , the sets (Ai,Bi),

(Cj ,Dj ) and ({ai}, {bj }) satisfy the swapping property such that

|�Ai⊎Cj ⊎{ai },Bi⊎Dj ⊎{bj }| =PAi ,Bi ,(Pi ,Qi )PCj ,Dj ,(Rj ,Sj )Pai ,bj ,(Eij ,Fij )

for sets of vertices Pi,Qi,Rj , Sj ,Eij ,Fij and every i and j . Assume also that

∣

∣(Pai ,bj ,(Eij ,Fij ))1≤i,j≤n

∣

∣ =P{a1,...,an},{b1,...,bn},(E,F ) (5.1)

for some E,F . Then

∣

∣

(

|�Ai⊎Cj ⊎{ai },Bi⊎Dj ⊎{bj }|
)

1≤i,j≤n

∣

∣

=

(

∏

i

PAi ,Bi ,(Pi ,Qi )

)(

∏

j

PCj ,Dj ,(Rj ,Sj )

)

P{a1,...,an},{b1,...,bn},(E,F ).
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Remark 5.4. Although the swapping property for (Ai,Bi), (Cj ,Dj ), ({ai}, {bj }) may appear

quite restrictive, we will see that it is satisfied in a variety of cases. For example, in Propo-

sition 5.8, we show that it allows one to recover the results from Section 3 that concern

graphs with ancestral nodes. The sets used there are (Ai = pa(ai),Bi = pa(ai)), (Cj = ∅,Dj =

∅), ({ai}, {bj }), where ai ∈ pa(v)∪{w}, bj ∈ pa(v)∪{v}, v satisfies conditions (i)–(iii) of Propo-

sition 5.8, and w ∈ V \ (pa(v) ∪ sib(v) ∪ {v}). In addition, the swapping property is satisfied by

(Ai,Bi), ({ai}, {bj }) whenever, for example, Ai = pa(ai) and Bi is a set of cardinality |Ai | con-

sisting of nondescendants of sib(ai) ∪ {ai}.

In general, the role of the swapping property is that it allows us to “get rid of” certain treks

when studying the covariance structure. Specifically, it allows us to omit treks between ai and bj

that use vertices or edges from treks between Ai and Bi or between Cj and Dj .

Proof. Let M be the matrix with i, j th entry equal to |�Ai⊎Cj ⊎{ai },Bi⊎Dj ⊎{bj }| for 1 ≤ i, j ≤ n.

Since the entries in the ith row of M are divisible by PAi ,Bi ,(Pi ,Qi), we can factor the determinant

of M as

|M| =

(

n
∏

i=1

PAi ,Bi ,(Pi ,Qi )

)

det
(

(PCj ,Dj ,(Rj ,Sj )Pai ,bj ,(Eij ,Fij ))1≤i,j≤n

)

.

Since the j th column is divisible by PCj ,Dj ,(Rj ,Sj ), we can further factor as

|M| =

(

∏

i

PAi ,Bi ,(Pi ,Qi )

)(

∏

j

PCj ,Dj ,(Rj ,Sj )

)

det(Pai ,bj ,(Eij ,Fij ))

=

(

∏

i

PAi ,Bi ,(Pi ,Qi )

)(

∏

j

PCj ,Dj ,(Rj ,Sj )

)

P{a1,...,an},{b1,...,bn},(E,F ) (5.2)

as required. �

Condition (5.1) deserves further discussion. By Theorem 4.4(ii),

∣

∣(Pai ,bj ,(E,F ))i,j
∣

∣ =P{a1,...,an},{b1,...,bn},(E,F )

for every a1, . . . , an, b1, . . . , bn ∈ V and E,F ⊆ V . However, for this equality, it is not necessary

to have the exact sets E and F for all matrix entries on the left-hand side. Instead, slightly

different sets Eij and Fij can be used as the following lemma indicates.

Lemma 5.5. Let a1, . . . , an, b1, . . . , bn ∈ V and E,F ⊆ V . Then

∣

∣(Pai ,bj ,(Eij ,Fij ))i,j
∣

∣ =P{a1,...,an},{b1,...,bn},(E,F ) (5.3)

if

E \ {ak : k �= i} ⊆ Eij ⊆ E ∪
(

V \ an(ai)
)

and F \ {bℓ : ℓ �= j} ⊆ Fij ⊆ F ∪
(

V \ an(bj )
)

.
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The proof can be found in Appendix B.2. We remark that additional choices of Eij and Fij

are certainly possible depending on the graph structure at hand. Nevertheless, this lemma gives

us a wide variety of sets Eij and Fij for which equality (5.3) holds.

Example 5.6. Recall the Verma graph from Figure 4(b). In the context of Theorem 5.3 let

a1 = 2, a2 = 3, b1 = 2, b2 = 4,

C1 = {1}, C2 = {1}, D1 = {1}, D2 = {3}, A1 = A2 = B1 = B2 =∅.

Then (C1,D1), ({ai}, {b1}) satisfy the swapping property for i = 1,2. The same is true for

(C2,D2), ({ai}, {b2}) for i = 1,2. Moreover,

|�12,12| =P1,1P2,2,({234},{234}), |�12,34| = P1,3P2,4,({234},{24}),

|�13,12| =P1,1P3,2,({234},{234}), |�13,34| = P1,3P3,4,({234},{24}).

By Lemma 5.5, we have that

∣

∣

∣

∣

P2,2,({234},{234}) P2,4,({234},{24})

P3,2,({234},{234}) P3,4,({234},{24})

∣

∣

∣

∣

=P{2,3},{2,4},({234},{24}).

Therefore, the conditions of Theorem 5.3 are satisfied, and

fVerma =

∣

∣

∣

∣

|�12,12| |�12,34|

|�13,12| |�13,34|

∣

∣

∣

∣

=P1,1P1,3P{2,3},{2,4},({234},{24}).

Now P{2,3},{2,4},({2,3,4},{2,4}) is zero because {2,3} and {2,4} are ({234}, {2,4})-restricted trek

separated by ({2},∅). That is, the nested determinant giving fVerma vanishes because treks be-

tween {2,3} and {2,4} that only use {2,3,4} on the left and {2,4} on the right must all pass

through 2 on the left.

The following corollary gives a combinatorial interpretation of the vanishing of a nested de-

terminant like the ones specified in Theorem 5.3.

Corollary 5.7. Suppose the conditions in Theorem 5.3 are satisfied. Define matrix entries Mij =

|�Ai⊎Cj ⊎{ai },Bi⊎Dj ⊎{bj }|. Then |M| = 0 if and only if at least one of the following holds:

(i) The sets {a1, . . . , an} and {b1, . . . , bn} are (E,F )-restricted trek separated by some sets

(X,Y ) with |X| + |Y | < n; or

(ii) For some i = 1, . . . , n, the sets Ai and Bi are (Pi,Qi)-restricted trek separated by some

sets (X,Y ) with |X| + |Y | < |Ai |; or

(iii) For some j = 1, . . . , n, the sets Cj and Dj are (Rj , Sj )-restricted trek separated by some

sets (X,Y ) with |X| + |Y | < |Cj |.

Proof. By Theorem 5.3, |M| factors as in (5.2). Therefore, |M| = 0 if and only if one of the

factors in this expression vanishes. By Theorem 4.4, each of these factors vanishes if and only if

the corresponding restricted trek separation is satisfied. �
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5.2. Restricted trek separation and ancestral vertices

We return to the parentally nested determinants and specifically the nested determinant fij de-

fined in (3.3). In Proposition 3.4, we gave conditions that entailed the vanishing of fij . We now

see how this result is also implied by restricted trek separation.

Proposition 5.8. Consider the conditions from Proposition 3.4, that is, i is a vertex in G =

(V ,D,B) satisfying:

(i) pa(i) ∩ sib(i) =∅,

(ii) all vertices in pa(i) are ancestral and

(iii) the set J of all ancestral vertices in V \ (pa(i) ∪ sib(i) ∪ {i}) is nonempty.

Then for every j ∈ J the sets pa(i) ∪ {j} and pa(i) ∪ {i} are (pa(i) ∪ {j},V )-restricted trek

separated by (∅,pa(v)). This restricted trek separation implies that fij ∈ I(G) for all j ∈ J ,

that is, all parentally nested determinants for (i, J ) lie in I(G).

The proof can be found in Appendix B.3.

Example 5.9. Again consider the Verma graph from Figure 4(b). We have that

fVerma =

∣

∣

∣

∣

σ13 σ14

|�123,123| |�123,124|

∣

∣

∣

∣

.

As mentioned in Section 3, fVerma = f41. Indeed, ({3,1}, {3,4}) are ({3,1},V )-restricted trek

separated by (∅, {3}).

Example 5.10.

Consider the ancestral graph from Figure 8(a), which was studied in more detail in Richard-

son and Spirtes [19]. Applying Proposition 5.8, we choose i = 3 and j = 4 to obtain that the

corresponding polynomial f34 vanishes. Indeed, by Lemma 5.2, we have that

f34 =

∣

∣

∣

∣

σ11 σ13

|�24,21| |�24,23|

∣

∣

∣

∣

=

∣

∣

∣

∣

P1,1,({1,3,4},{1,2,3,4}) P1,3,({1,3,4},{1,2,3,4})

P2,2P4,1,({1,3,4},{1,2,3,4}) P2,2P4,3,({1,3,4},{1,2,3,4})

∣

∣

∣

∣

=P2
2,2P{1,4},{1,3},({1,3,4},{1,2,3,4}).

As all treks between {1,4} and {1,3} which avoid 2 on the left must intersect 1 on the right we

have that P{1,4},{1,3},({1,3,4},{1,2,3,4}) = 0, and thus the above nested determinant is an element

of the vanishing ideal for the graph. It can be checked by computational algebra that the above

determinant generates the ideal of the model.



Nested covariance determinants 2523

Figure 8. Ancestral graph examples.

Example 5.11. For the ancestral graph in Figure 8(b), we choose i = 6, j = 3. Then, using

Lemma 5.2, we have that

f63 =

∣

∣

∣

∣

∣

∣

|�123,124| |�123,125| |�123,126|

σ44 σ45 σ46

σ54 σ55 σ56

∣

∣

∣

∣

∣

∣

=P{1,2},{1,2}P{3,4,5},{4,5,6},({3,4,5,6},{3,4,5,6}).

As all treks between {3,4,5} and {4,5,6} which are restricted to only use {3,4,5,6} on their left

or right sides must use 4 or 5 on their right side it follows that

P{3,4,5},{4,5,6},({3,4,5,6},{3,4,5,6}) = 0,

and thus the above determinant is an element of the vanishing ideal.

Example 5.12. Consider the graph from Figure 8(c). Lemma 5.2 implies that

f53 =

∣

∣

∣

∣

∣

∣

|�123,122| |�123,124| |�123,125|

σ22 σ24 σ25

σ42 σ44 σ45

∣

∣

∣

∣

∣

∣

=P{1,2},{1,2}P{3,2,4},{2,4,5},({2,3,4,5},{1,2,3,4,5}).

As any trek from {3,2,4} to {2,4,5} which avoids 1 on the left must use 2 or 4 on the right it

follows that P{3,2,4},{2,4,5},({2,3,4,5},{1,2,3,4,5}) = 0. Hence f53 is in (and generates) the vanishing

ideal.
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Figure 9. Two four-node graphs whose vanishing ideals are known from computational algebra. We are

able to write the generators of these vanishing ideals as nested determinant but our combinatorial conditions

do not appear to apply.

6. Beyond swapping: Recursive nesting, directed cycles and the

pentad

In this section, we explore examples that are not covered by Theorem 5.3 and Corollary 5.7 but

whose constraints are still nested determinants. In Section 6.1, we consider two mixed graphs

for which the constraints could be presented as nested determinants but for which – we argue –

a recursive nesting of determinants is more natural and more directly tied to restricted trek sepa-

ration. In Section 6.2, we discuss an example of a directed graph with a directed cycle for which

restricted trek separation also implies a nested determinant constraint. Finally, in Section 6.3, we

turn to the pentad from factor analysis (Drton, Sturmfels and Sullivant [7]), and show that it is

also defined by a nested determinant.

6.1. Restricted trek separation and determinants of recursively nested

matrices

It is apparent from Theorem 5.3 and Corollary 5.7 that (singly) nested determinants give a way

to express restricted trek systems as factors as follows. Recall the Verma graph and Example 5.6

where we saw that

fVerma =

∣

∣

∣

∣

|�12,12| |�12,34|

|�13,12| |�13,34|

∣

∣

∣

∣

=

∣

∣

∣

∣

P1,1P2,2,({2,3,4},{2,3,4}) P1,3P2,4,({2,3,4},{2,4})

P1,1P3,2,({2,3,4},{2,3,4}) P1,3P3,4,({2,3,4},{2,4})

∣

∣

∣

∣

=P1,1P1,3P{2,3},{2,4},({2,3,4},{2,4}).

Notice that each of the entries in the 2 × 2 matrix whose determinant equals fVerma is a determi-

nant, which, because of the swapping property, factors out P1,1 or P1,3, and leaves monomials

corresponding to restricted trek systems that only use {2,3,4} on the left and {2,4} on the right.

In other graphs, using single subdeterminants of � is not enough to factor out restricted trek

systems. However, one can instead use recursively nested determinants. We illustrate this in the

following two examples.

Example 6.1. As is shown by van Ommen and Mooij [26] in their Appendix B, the graph from

Figure 9(a) has vanishing ideal generated by

f = p2
0σ34 + p0σ23p2 + p1σ24p0 + p1σ22p2,
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where

p0 = |�12,12|, p1 = |�13,21|, p2 = |�21,14|.

One may express f as a nested determinant by noting that

−f =

∣

∣

∣

∣

∣

∣

0 |�12,12| |�12,14|

|�12,12| σ22 σ24

|�13,12| σ32 σ34

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

|�112,112| |�12,12| |�12,14|

|�12,12| σ22 σ24

|�13,12| σ32 σ34

∣

∣

∣

∣

∣

∣

.

While the above representation of f suggests applying Theorem 5.3 with

a1 = 2, a2 = 2, a3 = 3, b1 = 2, b2 = 2, b3 = 4,

A1 = {1}, B1 = {1}, C1 = {1}, D1 = {1},

Ai = Bi = Ci = Di =∅ (i = 2,3),

this, unfortunately, does not seem to satisfy the conditions of the theorem. On the other hand, we

can express f as the determinant of a matrix whose entries are themselves nested determinants,

namely,

f =

∣

∣

∣

∣

∣

∣

|�12,12| |�12,14|
∣

∣

∣

∣

|�12,12| |�12,13|

�22 �23

∣

∣

∣

∣

∣

∣

∣

∣

|�12,12| |�12,13|

�42 �43

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Moreover, using Lemma 5.2, we get the following factorizations:

|�12,12| =P1,1P2,2,({2,3,4},{2,3,4}), |�12,13| = P1,1P2,3,({2,3,4},{2,3,4}),

|�12,14| =P1,1P2,4,({2,3,4},{2,3,4}).

Thus,

∣

∣

∣

∣

|�12,12| |�12,13|

�22 �23

∣

∣

∣

∣

=P1,1ω2,2λ12ω1,3 =P1,1P2,2,({2,3,4},{2,3,4})P3,2,({3,4},{12,3,4}),

∣

∣

∣

∣

|�12,12| |�12,13|

�42 �43

∣

∣

∣

∣

=P1,1ω2,2λ1,2ω1,3λ2,4 =P1,1P2,2,({2,3,4},{2,3,4})P3,4,({3,4},{1,2,3,4}).

This implies that

f =P2
1,1P2,2,({2,3,4},{2,3,4})

∣

∣

∣

∣

P2,2,({2,3,4},{2,3,4}) P2,4,({2,3,4},{2,3,4})

P3,2,({34},{1,2,3,4}) P3,4,({34},{1,2,3,4})

∣

∣

∣

∣

=P2
1,1P2,2,({2,3,4},{2,3,4})P{2,3},{2,4},({2,3,4},{1,2,3,4}),

where we have used Lemma 5.5 in the second step. Indeed, the sets {2,3} and {2,4} are

({2,3,4}, {1,2,3,4})-restricted trek-separated by (∅, {2}).
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Example 6.2. Now consider the graph in Figure 9(b). Its vanishing ideal is generated by the

polynomial

f =

∣

∣

∣

∣

∣

∣

|�112,112| |�12,13| |�12,12|

|�13,12| σ33 σ32

|�14,12| σ43 σ42

∣

∣

∣

∣

∣

∣

.

While the above representation of f suggests applying Theorem 5.3, this, unfortunately, does

not seem to satisfy the conditions of the theorem either. On the other hand, we can express f as

the determinant of a matrix whose entries are themselves nested determinants:

f =

∣

∣

∣

∣

∣

∣

|�12,13| |�12,14|
∣

∣

∣

∣

�2,3 �3,3

|�12,12| |�13,12|

∣

∣

∣

∣

∣

∣

∣

∣

�2,4 �3,4

|�12,12| |�13,12|

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Moreover, by Lemma 5.2,

|�12,12| = P1,1P2,2,({2,3,4},{2,3,4}), |�12,13| =P1,1P2,3,({2,3,4},{2,3,4}),

|�12,14| = P1,1P2,4,({2,3,4},{2,3,4}).

Consequently,

∣

∣

∣

∣

�2,3 �3,3

|�12,12| |�13,12|

∣

∣

∣

∣

=P1,1P2,2,({2,3,4},{2,3,4})P3,3,({3,4},{3,4}),

∣

∣

∣

∣

�2,4 �3,4

|�12,12| |�13,12|

∣

∣

∣

∣

=P1,1P2,2,({2,3,4},{2,3,4})P3,4,({3,4},{3,4}).

Thus, we can write the full determinant as

f =P2
1,1P2,2,({2,3,4},{2,3,4})

∣

∣

∣

∣

P2,3,({2,3,4},{2,3,4}) P2,4,({2,3,4},{2,3,4})

P3,3,({3,4},{3,4}) P3,4,({3,4},{3,4})

∣

∣

∣

∣

.

By Lemma 5.5,

f =P2
1,1P2,2,(2,3,4,2,3,4)P{2,3},{3,4},({2,3,4},{2,3,4}).

The last term suggests that {2,3} and {3,4} are ({2,3,4}, {2,3,4})-restricted trek separated.

Indeed, this is the case, and they are separated by (∅, {3}).

Remark 6.3. Appendix B of van Ommen and Mooij [26] explicitly lists the (minimal) generators

of all vanishing ideals of acyclic mixed graphs on 4 nodes. Of these graphs, only those from

Figure 9 cannot be immediately recognized as being determinantal constraints on the covariance

matrix. From what we have shown above, we now see that all generators of vanishing ideals

of acyclic mixed graphs on four nodes can be written as nested determinants with, at most, a

single level of nesting (i.e., as determinants of determinants), and moreover can be explained via

restricted trek separation.
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Figure 10. A cyclic graph whose model is defined by a nested determinant.

As we also record in Section 7, we believe that restricted trek separation can always be formed

as a factor of a vanishing recursively nested determinant. Moreover, we deem it possible that such

determinants define all acyclic linear structural equation models. We defer further exploration of

these questions to a future study.

6.2. Graphs with cycles

Although we believe our results from the previous two sections can be extended to graphs con-

taining cycles, the situation there is a bit more complicated. Even extending Theorem 4.1 to the

cyclic case is not a simple task. It was accomplished (along with other results) in a separate

article (Draisma, Sullivant and Talaska [2]).

The following model, although it has cycles, is defined by the vanishing of a nested determi-

nant, which can be explained by restricted trek separation. However, we wish to point out that a

more sophisticated example might need the definition of further notions, like those that appear

in Draisma, Sullivant and Talaska [2].

Example 6.4. Consider the graph G in Figure 10, which was treated in Drton [3] where a degree

6 polynomial f generating I(G) was displayed. This polynomial can be written as the following

doubly nested determinant:

f =

∣

∣

∣

∣

∣

∣

|�34,12| |�34,13|
∣

∣

∣

∣

|�12,12| |�12,34|

|�14,12| |�14,34|

∣

∣

∣

∣

∣

∣

∣

∣

|�12,13| |�12,34|

|�14,13| |�14,34|

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

We will now show that the vanishing of this determinant corresponds to the fact that {4,2} and

{2,3} are ({1,2,4}, {2,3,4})-restricted-trek separated by (∅, {2}). For our derivations, we use

results from Draisma, Sullivant and Talaska [2], where subdeterminants of � corresponding to

graphs with cycles are given by rational expressions. The entries of the above matrix are:

|�34,12| =
(λ13 + λ12λ23)ω11ω44λ42

(1 − λ23λ34λ42)2
=

P3,1,({1,2,3},{1,2,3})P4,2,({1,2,4},{2,3,4})

(1 − λ23λ34λ42)
,

|�34,13| =
(λ13 + λ12λ23)ω11ω44λ42λ23

(1 − λ23λ34λ42)2
=

P3,1,({1,2,3},{1,2,3})P4,3,({1,2,4},{2,3,4})

(1 − λ23λ34λ42)
,

∣

∣

∣

∣

|�12,12| |�12,34|

|�14,12| |�14,34|

∣

∣

∣

∣

= �14,34ω11ω22
1

1 − λ23λ34λ42
= �14,34ω11P2,2,({1,2},{2,3,4}),
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Figure 11. The factor analysis model on five nodes with two factors. The vanishing ideal of this model is

generated by one degree five polynomial.

∣

∣

∣

∣

|�12,13| |�12,34|

|�14,13| |�14,34|

∣

∣

∣

∣

= �14,34ω11ω22λ23
1

1 − λ23λ34λ42
= �14,34ω11P2,3,({1,2},{2,3,4}).

It follows that

f = �14,34ω11P3,1,({1,2,3},{1,2,3})

∣

∣

∣

∣

P4,2,({1,2,4},{2,3,4}) P4,3,({1,2,4},{2,3,4})

P2,2,({1,2},{2,3,4}) P2,3,({1,2},{2,3,4})

∣

∣

∣

∣

=
�14,34ω11P3,1,({1,2,3},{1,2,3})P{4,2},{2,3},({1,2,4},{2,3,4})

(1 − λ23λ34λ42)
,

where the last equality follows by Lemma 5.5. The last term in the numerator vanishes due to the

above mentioned restricted trek separation. We remark that the extra term (1 − λ23λ34λ42) in the

denominator cannot be obtained via the formula given in Theorem 5.3 (even with the usage of

geometric series).

6.3. Nested determinants with no restricted trek separation

We have not found any examples of acyclic mixed graphs G for which defining equations of

the model M(G) cannot be explained using restricted trek separation. However, there are other,

closely related models, for which restricted trek separation does not seem to provide the same

combinatorial explanation.

Example 6.5 (The pentad). Consider a factor analysis model with five normally distributed

observed variables and two latent factors as in Figure 11. Its defining equation is a degree 5

polynomial in the covariance matrix entries:

fpentad = σ12σ13σ24σ35σ45 − σ12σ13σ25σ34σ45 − σ12σ14σ23σ35σ45 + σ12σ14σ25σ34σ35

+ σ12σ15σ23σ34σ45 − σ12σ15σ24σ34σ35 + σ13σ14σ23σ25σ45 − σ13σ14σ24σ25σ35

− σ13σ15σ23σ24σ45 + σ13σ15σ24σ25σ34 − σ14σ15σ23σ25σ34 + σ14σ15σ23σ24σ35.

This polynomial can be expressed in nested determinantal form as

fpentad =

∣

∣

∣

∣

|�23,45| |�25,34|

|�123,145| |�125,134|

∣

∣

∣

∣

.
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Combinatorially, we can see that all trek systems stemming from the second row of the matrix

are in one-to-one correspondence with the trek systems from the first row of the matrix, and are

obtained by just adding the trek 1 − 1. However, we have not been able to interpret this nested

determinant via restricted trek separation. Note that the mixed graph obtained by latent projection

would be a complete graph with a bidirected edge between each i, j ∈ {1, . . . ,5}.

7. Discussion

We conclude by giving a brief review of the results presented in this paper and then discussing

problems for future work.

Contributions

This paper demonstrates the importance of nested determinants as constraints on covariance

matrices in graphical causal/structural equation models associated to mixed graphs. Nested de-

terminants are determinants of matrices whose entries are determinants themselves. Theorem 3.8

shows that a special class of parentally nested determinants is sufficient for a semialgebraic de-

scription of a class of models that is slightly more general than the class of ancestral graph

models. Theorem 5.3 provides a framework for explaining the vanishing of more general nested

determinants via trek separation under restrictions on the vertices that treks may visit on their

left and their right sides.

The examples from Section 6 depict graphs for which the conditions of Theorem 5.3 do not

apply. While it is often possible to present the defining equations of such models in terms of

(singly) nested determinants, we suggest to instead view the equations as recursively nested

determinants. In other words, we consider determinants of smaller matrices whose entries are

(recursively) nested determinants. As we exemplified, such recursively nested determinants may

admit an explanation by restricted trek separation. We further exhibit an example of a graph with

a cycle in which the model is also described by a recursively nested determinant that admits a

restricted trek separation interpretation.

Definition of nested and recursively nested determinants

Theorem 5.3 is concerned with a particular type of nested determinants where rows and columns

of the considered matrix correspond to vertices of the graph/the given random variables. This

setup contains as a special case the parentally nested determinants from Section 3. We anticipate

that the nested determinants considered in Theorem 5.3 are sufficiently general to describe mixed

graph models as long as we allow for a suitable notion of recursive nesting as encountered in the

Examples in Section 6.

In a general definition of recursively nested determinants, the subdeterminants of the original

covariance matrix would be recursively nested determinants with depth of recursion zero. At

depth k, we would take determinants of matrices whose entries are recursively nested determi-

nants of depth at most k − 1. However, it would be desirable to constrain this construction such

that for any recursively nested determinant the rows and columns of the considered matrix can be

put in correspondence with two sets of vertices. These sets of vertices may then admit a restricted

trek separation.
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Problem 7.1. Develop a notion of recursively nested determinants for which row and column

indices are in correspondence with graph vertices. The depth of recursion should be such that the

subdeterminants of the original matrix are the only recursively nested determinants of depth 0.

The recursively nested determinants of depth 1 should be of the type encountered in Theorem 5.3.

Tian decomposition

In the Introduction, after Example 1.2, we mentioned Tian’s graph decomposition, which may

yield subgraphs whose covariance matrix can be rationally identified from the covariance matrix

for the original graph G. Trek separation in the subgraph then gives a rational constraint. Clearing

denominators yields a polynomial in I(G).

Conjecture 7.2. Trek separation relations in subgraphs obtained from Tian’s graph decomposi-

tion correspond to recursively nested determinants.

Vanishing nested determinants

The results we have given so far are sufficient conditions for the vanishing of nested determinants.

Problem 7.3. Using restricted trek separation, obtain graphical conditions that are necessary for

the vanishing of the nested determinants from Theorem 5.3.

If a characterization of the vanishing of nested determinants is established, it can be used to

decide model equivalence questions. More generally, it would be desirable to obtain conditions,

sufficient and necessary, for the vanishing of recursively nested determinants. We formulate a

“hopeful” conjecture for acyclic mixed graphs.

Conjecture 7.4. The equality of two models M(G) and M(H) can be decided by comparing

restricted trek separation relations in G and H .

In all examples of graphs G we inspected, the vanishing ideal I(G) is in fact generated by

nested or recursively nested determinants.

Conjecture 7.5. The vanishing ideal I(G) can always be generated by recursively nested deter-

minants.

An important step in the study of nested determinants would be characterizing when two

nested determinants are equal (recall, for example, the Verma graph from Example 1.4 and equa-

tion (1.5)).

Problem 7.6. Give conditions on when two nested determinants are equal. Describe the equiva-

lence class of different representations of an equation as a nested determinant.
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Computing restricted trek separation

Assuming that restricted trek separation is what characterizes equivalence classes of models, as

suggested by Conjecture 7.4, we may need to either use the graphical conditions from Prob-

lem 7.3 or to be able to compute restricted trek separation in order to find equivalent graphs.

Problem 7.7. Design computationally efficient algorithms for checking/finding restricted trek

separations.

Feedback cycles

Our focus was on acyclic mixed graphs, for which determinants of the covariance matrix have

expansions in terms of systems of treks without sided intersection. However, as the example of

Figure 10 shows, (recursively) nested determinants are also relevant for cyclic graphs.

Problem 7.8. Generalize Theorem 5.3 to the general possibly cyclic case.

In addition, all problems mentioned above also pertain to graphs with cycles.

Appendix A: Proofs for Section 4: Restricted trek separation

This section is devoted to proving Theorem 4.4. The proof proceeds through rather minor modi-

fications of the ideas of Sullivant, Talaska and Draisma [24].

A.1. Proof of Theorem 4.4(i) for directed acyclic graphs

We begin by proving Theorem 4.4 in the case when G is a directed acyclic graph (DAG). We

extend it to acyclic mixed graphs in the next section. We first record the following combinatorial

interpretation of the entries of (I − �C,C)−1 for a subset of vertices C.

Proposition A.1. Let P(i, j,C) be the set of directed paths from i ∈ C to j ∈ C that only use

vertices from a subset C ⊆ V in the directed graph G. For each path P , define λP =
∏

i→j∈P λij .

Then
[

(I − �C,C)−1
]

ij
=

∑

P∈P(i,j,C)

λP .

Proof. The claim follows from Proposition 3.1 in Sullivant, Talaska and Draisma [24] if we

consider the induced subgraph of G with vertex set C. �

When G is a directed graph, the error covariance matrix � is diagonal. This allows us to show

the following lemma. We emphasize that in our discussion a determinant is zero if it is identically

zero as a polynomial/function.
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Lemma A.2. In a directed graph consider sets of vertices A ⊆ P,B ⊆ Q with |A| = |B|. Then

det�
(P,Q)
A,B = 0 if and only if for every set S ⊆ P ∩ Q with |S| = |A| = |B| either det(((I −

�)P,P )−1)S,A = 0 or det(((I − �)Q,Q)−1)S,B = 0.

Proof. Since �(P,Q) = ((I − �)P,P )−T �P,Q((I − �)Q,Q)−1, we have

�
(P,Q)
A,B =

((

(I − �)P,P

)−T )

A,P
�P,Q

((

(I − �)Q,Q

)−1)

Q,B
.

By the Cauchy–Binet theorem,

det�
(P,Q)
A,B =

∑

S⊆P,R⊆Q

det
((

(I − �)P,P

)−T )

A,S
det(�S,R)det

((

(I − �)Q,Q

)−1)

R,B
,

where the sum runs over S and R of cardinality |A| = |B|. As � is diagonal, we obtain that

det�
(P,Q)
A,B =

∑

S⊆P∩Q

det
((

(I − �)P,P

)−T )

A,S
det(�S,S)det

((

(I − �)Q,Q

)−1)

S,B

=
∑

S⊆P∩Q

det
((

(I − �)P,P

)−1)

S,A
det

((

(I − �)Q,Q

)−1)

S,B

∏

s∈S

ωs,s .

Since each monomial
∏

s∈S ωs,s appears only in one term in this expansion, the result follows. �

We now recall the Gessel–Viennot–Lindström lemma.

Lemma A.3 (Gessel–Viennot–Lindström lemma). Suppose G is a DAG with vertex set

{1, . . . ,m}. Let A,B ⊆ {1, . . . ,m} be such that |A| = |B| = ℓ. Then

det
(

(I − �)−1
)

A,B
=

∑

S∈N (A,B)

(−1)SλS,

where N (A,B) is the set of all nonintersecting systems of ℓ directed paths in G from A to

B , and (−1)S is the sign of the induced permutation of elements from A to B . In particular,

det((I − �)−1)A,B = 0 if and only if every system of ℓ directed paths from A to B has two paths

which share a vertex.

We are going to use this lemma by restricting the original directed acyclic graph G to the

induced subgraphs on the subsets P and Q. The lemma applies to all these subgraphs because

they themselves are directed acyclic graphs.

Let A ⊆ P,B ⊆ Q with |A| = |B| = ℓ. Consider a system T = {τ1, . . . , τℓ} of ℓ (P,Q)-

restricted treks from A ⊆ P to B ⊆ Q, connecting the ℓ distinct vertices in A to the ℓ distinct

vertices in B . Let top(T ) denote the multiset {top(τ1, ), . . . , top(τℓ)}. Here top(τ ) is the unique

source of the trek τ , that is, the vertex contained in both the left side and the right side of the trek.

Note that the trek system T consists of two systems of directed paths, a path system SA from

top(T ) to A which only uses vertices in P , and a path system SB from top(T ) to B which only
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uses vertices in Q. We say that T has a sided intersection if two paths in SA share a vertex or if

two paths in SB share a vertex.

Proposition A.4. In a DAG consider sets of vertices A ⊆ P and B ⊆ Q with |A| = |B|. Then,

det
(

�
(P,Q)
A,B

)

= 0

if and only if every system of (simple) (P,Q)-restricted treks from A to B has a sided intersection.

Proof. Suppose that det(�
(P,Q)
A,B ) = 0, and let T be a (P,Q)-restricted trek system from A

to B . If all elements of the multiset top(T ) are distinct, then Lemma A.2 implies that either

det(((I −�)P,P )−1)top(T ),A = 0 or det(((I −�)Q,Q)−1)top(T ),B = 0. If top(T ) has repeated el-

ements, then these determinants are also zero since there are repeated rows. Thus, in both cases,

Lemma A.3 implies that there is an intersection in the path system from top(T ) to A or in the

path system from top(T ) to B . Hence, T has a sided intersection.

Conversely, suppose that every (P,Q)-restricted trek system from A to B has a sided inter-

section, and let S ⊆ P ∩ Q. If R = top(T ) for some (P,Q)-restricted trek system T from A to

B , then either the path system from top(T ) to A or the path system from top(T ) to B has an

intersection. If R is not the set of top elements for some (P,Q)-restricted trek system T from A

to B , then there is no P -restricted path system connecting R to A or there is no Q-restricted path

system from R to B . In both cases, Lemma A.3 implies that either det(((I − �)P,P )−1)R,A = 0

or det(((I − �)Q,Q)−1)R,B = 0. Then, Lemma A.2 implies that det(�
(P,Q)
A,B ) = 0.

Note that it is sufficient to check the systems of simple treks only. Here, simple indicates that

a trek has no repeated vertices. �

We now define a new DAG associated to G, denoted G̃P,Q in order to be able to invoke the

Max-Flow–Min-Cut Theorem (see Theorem A.6). Let P ′ = {i′ : i ∈ P } be a set of new vertices,

each being the copy of a corresponding vertex in P . The vertex set of graph G̃P,Q is P ′ ∪ Q.

The edge set of G̃P,Q includes the edge i → j for all i, j ∈ Q such that i → j is an edge in G.

Moreover, it includes the edge j ′ → i′ for all i, j ∈ P such that i → j is an edge in G, and the

edge i′ → i for all i ∈ P ∩ Q.

Proposition A.5. The (P,Q)-restricted treks in G from i ∈ P to j ∈ Q are in bijective corre-

spondence with directed paths from i′ to j in G̃P,Q. Simple (P,Q)-restricted treks in G from i

to j are in bijective correspondence with directed paths from i′ to j in G̃P,Q that use at most

one edge from any pair a → b and b′ → c′ where a, b ∈ Q, b, c ∈ P .

Proof. Every trek from i to j is the union of two paths with a common top, the left path in P ,

the right path in Q. The part of the trek from the top to i corresponds to the subpath with only

vertices in P ′, and the part of the trek from the top to j corresponds to the subpath with only

vertices in Q. The unique edge of the form k′ → k corresponds to the top of the trek. Excluding

a → b and b′ → c′ implies that a trek never visits the same vertex b twice. �

Menger’s theorem, also known as the Max-Flow–Min-Cut theorem, now allows us to turn the

sided crossing result on G into a blocking characterization on G̃P,Q.
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Theorem A.6 (Vertex version of Menger’s theorem). The cardinality of the largest set of ver-

tex disjoint directed paths between two nonadjacent vertices u and v in a DAG is equal to the

cardinality of the smallest blocking set, where a blocking set is a set of vertices whose removal

from the graph ensures there is no directed path from u to v.

Proof of Theorem 4.4 for DAGs. We first focus on the case where det�
(P,Q)
A,B = 0 so that the

rank is at most k − 1, where k = |A| = |B|. According to Proposition A.4, every system of k

(P,Q)-restricted treks from A to B must have a sided intersection. That is, the number of vertex

disjoint paths from A′ to B is at most k − 1 in the graph G̃P,Q. We add two new vertices to

G̃P,Q, one vertex u that points to each vertex in A′ and one vertex v that each vertex in B

points to v. Thus, there are at most k − 1 vertex disjoint paths from u to v. Applying Menger’s

theorem, there is a blocking set W in G̃P,Q of cardinality |W | ≤ k − 1. Set JA = {i ∈ P : i′ ∈ W }

and JB = {i ∈ Q : i ∈ W }. Then, we have that |JA| + |JB | ≤ k − 1, and these two sets (P,Q)-

restricted trek-separate A from B .

Conversely, suppose there exist sets JA ⊆ P and JB ⊆ Q with |JA| + |JB | ≤ k − 1 which

(P,Q)-restricted trek-separate A from B . Then W = {i : i ∈ JB} ∪ {i′ : i ∈ JA} is a blocking set

between u and v as above. By Menger’s theorem, since |W | ≤ k − 1, there is no vertex disjoint

system of k paths from A′ to B in G̃P,Q. Thus, every (P,Q)-restricted trek system from A to B

has a sided intersection so that det�
(P,Q)
A,B = 0 by Proposition A.4.

From the special case of determinants, we deduce the general result, because if the smallest

blocking set has size r , there exists a collection of r disjoint paths between any subset of A′ and

any subset of B , and this is the largest possible number of paths in such a collection. This means

that all (r + 1) × (r + 1) minors of �
(P,Q)
A,B are zero, but at least one r × r minor is not zero.

Hence, �
(P,Q)
A,B has rank r for generic choices of the parameters. �

A.2. Proof of Theorem 4.4(i) for mixed graphs

A standard argument allows us to reduce to the case where there are no bidirected edges in the

graph. This can be achieved by subdividing the bidirected edges; that is, for each bidirected edge

i ↔ j in the graph, where i ≤ j , we replace i ↔ j with a vertex vi,j , directed edges vi,j → i and

vi,j → j . If i or j lie in P or Q, then we add vi,j to P or Q respectively. Call the enhanced sets

P and Q. The graph G obtained from G by subdividing all of its bidirected edges is called the

bidirected subdivision, or canonical DAG associated to G.

Proposition A.7. Let A ⊆ P , B ⊆ Q be sets of vertices of a mixed graph with |A| = |B|.

(i) The matrix �
(P,Q)
A,B associated to G has the same generic rank as the matrix �

(P ,Q)
A,B asso-

ciated to G.

(ii) There exist JL ⊆ P,JR ⊆ Q with |JL| + |JR| = r such that (JL, JR) (P,Q)-restricted

trek-separates A from B in G if and only if there exist JL ⊆ P ,JR ⊆ Q with |JL| +

|JR| = r such that (JL, JR) (P ,Q)-restricted trek-separates A from B in G.
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Proof. (i) Let �̄ = (λ̄k,l) and �̄ = (ω̄k,l) be parameters for Ḡ. Define parameters for G =

(V ,D,B) as follows. For any directed edge i → j in G, set λi,j = λ̄i,j . For any bidirected

edge i ↔ j in G, set

ωi,j = ωvi,j ,vi,j
λvi,j ,iλvi,j ,j . (A.1)

Finally, for each vertex i in G, set

ωi,i = ωi,i +
∑

j↔i∈G

ωvi,j ,vi,j
λ

2

vi,j i . (A.2)

Clearly, � = (λi,j ) ∈ R
D . Since all ωi,i > 0, the matrix � = (ωi,j ) is positive definite and, thus,

in PD(B). Let �
(P,Q)
A,B be the matrix defined by (�,�), and let �

(P ,Q)
A,B be the matrix defined by

(�,�). Applying the (P,Q)-restricted trek rule to G and Ḡ, respectively, we see that �
(P,Q)
A,B =

�
(P ,Q)
A,B . We conclude that the set of matrices �

(P ,Q)
A,B associated to Ḡ is contained in the set of

matrices �
(P,Q)
A,B associated to G.

In general the reverse inclusion does not hold (Drton and Yu [10]). Nevertheless, the set of ma-

trices �
(P,Q)
A,B for G has the same Zariski closure as the set of �

(P ,Q)
A,B for G. Let U ⊂R

D×PD(B)

be a neighborhood of (0, I ), that is, we consider matrices � with entries of small magnitude and

� near the identity matrix. To prove equality of the Zariski closures, it suffices to show that ev-

ery matrix �
(P,Q)
A,B given by a choice of (�,�) ∈ U is equal to a matrix �

(P ,Q)
A,B associated to

a choice of � and � for G. This in turn will follow from the trek rule if we can find (�,�)

such that (A.1) and (A.2) hold. However, this is possible because near the identity matrix, each

off-diagonal entry ωi,j is small. Specifically, we choose ωvi,j ,vi,j
= 1, and set λvi,j ,i =

√

|ωi,j |

and λvi,j ,j = sign(ωi,j )
√

|ωi,j |. When the ωi,j are small enough, the sum on the right-hand side

of (A.2) is smaller than ωi,i , which is near one. Hence, we can find a positive ωi,i satisfying (A.2),

which ensures that � is a diagonal matrix with positive diagonal entries as required.

(ii) Any pair of sets SL and SR that are (P,Q)-restricted trek-separating in G are also clearly

(P ,Q)-restricted trek-separating in G. Conversely, suppose that (JL, JR) is a minimal (P ,Q)-

restricted trek-separating set in G; that is, if any vertex is deleted from (JL, JR), we no longer

have a (P ,Q)-restricted trek-separating set. We show that such a minimal (P ,Q)-restricted trek-

separating set in G corresponds to a (P,Q)-restricted trek-separating set in G. Define

JL = (JL ∩ P) ∪ {i ∈ P : vi,j ∈ JL},

JR = (JR ∩ Q) ∪ {j ∈ Q : vi,j ∈ JR}.

If JL and JR contain none of the vertices vi,j , then JL and JR clearly (P,Q)-restricted trek-

separate A and B in G. Otherwise, the way that {i ∈ P : vi,j ∈ JL} and {j ∈ Q : vi,j ∈ JR} are

chosen is important. Given a vertex vi,j ∈ JL ∪JR , let T (vi,j ) denote the set of (P,Q)-restricted

treks τ = (τL, τR) from A to B such that τL ∩ JL = {vi,j } or τR ∩ JR = {vi,j }. Since (JL, JR)

is minimal, then T (vi,j ) must be nonempty. This implies that in every (P,Q)-restricted trek

τ = (τL, τR) ∈ T (vi,j ), up to relabeling, i occurs in τL (whose sink lies in A) and j occurs in τR
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(whose sink lies in B). For if there were also a trek τ = (τL, τR) in T (vi,j ) which has j in τL or

i in τR , we could patch two halves of these treks together to find a (P,Q)-restricted trek from A

to B that does not have a sided intersection with (JL, JR). So, assume i lies in τL, and j lies in

τR for all (P,Q)-restricted treks in T (vi,j ). In this case, add i to JL whenever vi,j ∈ JL, and add

j to JR whenever vi,j ∈ JR . Then, |JL| + |JR| ≤ |JL| + |JR|, and (JL, JR) (P,Q)-restricted

trek-separates A from B in G. �

To finish the proof of Theorem 4.4(i), note that Proposition A.7 immediately reduces the state-

ment to the case of directed acyclic graphs, which was given in the previous subsection.

A.3. Proof of Theorem 4.4(ii)

Using first the Cauchy–Binet Theorem and then the Gessel–Viennot–Lindström Lemma A.3, we

have that

det
(

�
(P,Q)
A,B

)

= det
((

(I − �)P,P

)−T )

A,P
�P,Q

((

(I − �)Q,Q

)−1)

Q,B

=
∑

S⊆P,R⊆Q,
|S|=|R|=|A|

det
((

(I − �)P,P

)−T )

A,S
det(�S,R)det

((

(I − �)Q,Q

)−1)

R,B

=
∑

S⊆P,R⊆Q,
|S|=|R|=|A|

∑

τ1∈N (S,A),

τ2∈N (R,B)

(−1)τ1+τ2λτ1+τ2 det(�S,R)

=
∑

S⊆P,R⊆Q,
|S|=|R|=|A|

∑

τ1∈N (S,A),

τ2∈N (R,B)

∑

σ∈�|S|

(−1)τ1+τ2+sign(σ )λτ1+τ2
∏

i

ωsi ,rσ(i)
.

The latter sum goes over all trek systems between A and B whose left directed parts have no sided

intersection and only use vertices from P , whose right directed parts have no sided intersection

and only use vertices from Q, and use left and right sides are joined via “middle vertices” in

S and R. Each summand is the product of the trek monomials of the treks in each such system

times the sign of the permutation induced by each such trek system. Moreover, note that each

trek system with no sided intersection between A and B appears in this sum.

Appendix B: Proofs for nested determinants

B.1. Proof of Lemma 5.2

Proof. Suppose first that there exist Ai and Aj such that Ai ∩ Aj �= 0 for i �= j . The case where

two of the Bi ’s intersect is analogous. Then, |�A1⊎···⊎Ak,B1⊎···⊎Bk
| = 0 since this matrix has a

repeated row. On the other hand, we can select Ci = ∅, which makes PAi ,Bi ,(Ci ,Di) = 0, so that
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for any choice of the rest of the Cj and Dj , we have that
∏k

j=1 PAj ,Bj ,(Cj ,Dj ) = 0. Thus, both

sides are equal to 0, which establishes the statement.

Now, assume that Ai ∩ Aj = Bi ∩ Bj =∅ for all i �= j . We know by Theorem 4.1 that

|�A1∪···∪Ak,B1∪···∪Bk
| = PA1∪···∪Ak,B1∪···∪Bk

.

For every i = 1, . . . , k let Cc
i , the complement of Ci , be the union over all treks in trek systems

with no sided intersection between A1 ∪· · ·∪Ak and B1 ∪· · ·∪Bk of the vertices that take part in

the left side of the treks that start at A1 ∪ · · · ∪ Ai−1 ∪ Ai+1 ∪ · · · ∪ Ak . Let Dc
i be the union over

all treks in trek systems with no sided intersection between A1 ∪· · ·∪Ak and B1 ∪· · ·∪Bk of the

vertices that take part in the right side of the treks that start at A1 ∪ · · · ∪ Ai−1 ∪ Ai+1 ∪ · · · ∪ Ak

(and end at B1 ∪ · · · ∪ Bi−1 ∪ Bi+1 ∪ · · · ∪ Bk).

By assumption, if we are given two trek systems T1 and T2 with no sided intersection between

A1 ∪· · ·∪Ak and B1 ∪· · ·∪Bk , then we can swap the treks from Ai to Bi from the first system T1

with those from the second system T2 and obtain two other trek systems between A1 ∪ · · · ∪ Ak

and B1 ∪ · · · ∪ Bk with no sided intersection. Hence, each summand in PA1∪···∪Ak,B1∪···∪Bk
can

be factored uniquely as a product of one element from each of PAi ,Bi ,(Ci ,Di ). Conversely, the

product of one element from each of PAi ,Bi ,(Ci ,Di ) gives an element from PA1∪···∪Ak,B1∪···∪Bk
.

Thus,

|�A1∪···∪Ak,B1∪···∪Bk
| =

k
∏

i=1

PAi ,Bi ,(Ci ,Di),

as required. �

B.2. Proof of Lemma 5.5

Proof. Recall that P{a1,...,an},{b1,...,bn},(E,F ) is the sum of the trek monomials of all trek systems

with no sided intersection between {a1, . . . , an} and {b1, . . . , bn} that only use E on the left

and F on the right. For each such trek system, the trek starting at ai only uses Eij on the left,

and the trek ending at bj only uses Fij on the right. On the other hand, the determinant of

(Pai ,bj ,(Eij ,Fij ))i,j is the sum of the trek monomials of all trek systems with no sided intersection

between {a1, . . . , an} and {b1, . . . , bn} for which the trek starting at ai only uses Eij on the left,

and the trek ending at bj only uses Fij on the right. Therefore, the two quantities are equal. �

B.3. Proof of Proposition 5.8

Proof. We will show that the determinant of the matrix with entries

(|�pa(u)∪{u},pa(u)∪{x})u∈pa(i)∪{j},x∈pa(i)∪{i}
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is divisible by Ppa(i)∪{j},pa(i)∪{i},(pa(i)∪{j},V ). Combinatorially, this means that there is a (pa(i) ∪

{j},V )-restricted trek separation between the sets pa(i) ∪ {j} and pa(i) ∪ {j}. Indeed, they are

(pa(i) ∪ {j},V )-restricted trek separated by (∅,pa(i)).

We begin by showing that the sets (pa(u),pa(u)), (u, x) for u ∈ pa(i)∪{j} and x ∈ pa(i)∪{i}

satisfy the swapping property. Firstly, consider a system of treks with no sided intersection be-

tween pa(u) ∪ {u} and pa(u) ∪ {x}. Suppose that in this system it is not the case that pa(u) is

connected to pa(u) and u is connected to x. Then, there must exist a trek between u and an ele-

ment from pa(u). Since u is ancestral, the left side of this trek has to end in a directed edge. That

means that the left side of this trek contains an element from pa(u), which is impossible since

this creates a sided intersection on the left side of this system. Therefore, we have a contradiction,

and any such trek system connects pa(u) to pa(u) and u to x.

Now, suppose that we have two systems of treks with no sided intersection between pa(u)∪{u}

and pa(u) ∪ {i}. Call them T1 and T2. In both systems, the treks connecting u and x need to start

with a bidirected edge at u or with a directed edge away from u in order to avoid intersections

on the left. We need to show that we can exchange the part connecting pa(u) to pa(u) in T1 with

the corresponding part of T2, thereby obtaining two new trek systems with no sided intersection.

Suppose for contradiction that once we make such an exchange, we get a sided intersection.

Then, one of the treks from u to x gets a sided intersection with a trek from pa(u) to pa(u). Since

the former trek has the form u(↔) → ·· · → x, the created intersection has to be on its right side.

Switch the tails of the two intersecting treks. We get a trek of the form u ↔→ ·· · → z ∈ pa(u).

But this is a contradiction to u being ancestral.

We have shown that the sets (pa(u),pa(u)), (u, x) for u ∈ pa(i)∪{j} and x ∈ pa(i)∪{i} satisfy

the swapping property. We now show that

|�pa(u)∪{u},pa(u)∪{x}| = Ppa(u),pa(u)Pu,x,(u,V ). (B.1)

Note that |�pa(u)∪{u},pa(u)∪{x}| = Ppa(u)∪{u},pa(u)∪{x}. Since the sets (pa(u),pa(u)), (u, x) for

u ∈ pa(i)∪{j} and x ∈ pa(i)∪{i} satisfy the swapping property, every trek system with no sided

intersection between pa(u) ∪ {u} and pa(u) ∪ {x} splits into a trek system connecting pa(u) and

pa(u) and a single trek connecting u and x. The latter trek only has the vertex u on its left side.

In other words, it starts either with a bidirected edge at u or with a directed edge pointing away

from u.

On the other hand we claim that every trek system connecting pa(u) to pa(u) with no sided

intersection, and every trek from u to x that only has u on the left can be combined into a

trek system connecting pa(u) ∪ {u} and pa(u) ∪ {x} with no sided intersection. Suppose for

contradiction that the combination gives a sided intersection. So, there is a trek from a ∈ pa(u) to

b ∈ pa(u) that has sided intersection with the considered trek from u to x. The intersection cannot

be on the left since otherwise we would have a loop u → ·· · → a → u which is not allowed.

Thus, there is intersection on the right. Swapping the right tails then gives a trek u(↔) → ·· · →

b. But since u is ancestral, we know that every trek between u and its parents has to end with a

directed edge at u. We have arrived at a contradiction and, thus, the claimed combination into a

trek system connecting pa(u) ∪ {u} and pa(u) ∪ {x} with no sided intersection is possible. This

proves (B.1).
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Finally, it remains to show that

det(Pu,x,(u,V ))u∈pa(i)∪{j},x∈pa(i)∪{i} =Ppa(i)∪{j},pa(i)∪{i},(pa(i)∪{j},V ).

But this equality follows directly from Lemma 5.5. �
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