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Testing mutual independence for high-dimensional observations is a fun-
damental statistical challenge. Popular tests based on linear and simple rank
correlations are known to be incapable of detecting nonlinear, nonmonotone
relationships, calling for methods that can account for such dependences. To
address this challenge, we propose a family of tests that are constructed us-
ing maxima of pairwise rank correlations that permit consistent assessment
of pairwise independence. Built upon a newly developed Cramér-type mod-
erate deviation theorem for degenerate U-statistics, our results cover a variety
of rank correlations including Hoeffding’s D, Blum–Kiefer–Rosenblatt’s R

and Bergsma–Dassios–Yanagimoto’s τ∗. The proposed tests are distribution-
free in the class of multivariate distributions with continuous margins, imple-
mentable without the need for permutation, and are shown to be rate-optimal
against sparse alternatives under the Gaussian copula model. As a by-product
of the study, we reveal an identity between the aforementioned three rank
correlation statistics, and hence make a step towards proving a conjecture of
Bergsma and Dassios.

1. Introduction. Let X = (X1, . . . ,Xp)⊤ be a random vector taking values in R
p and

having all univariate marginal distributions continuous. This paper is concerned with testing
the null hypothesis

H0 : X1, . . . ,Xp are mutually independent,(1.1)

based on n independent realizations X1, . . . ,Xn of X. Testing H0 is a core problem in multi-
variate statistics that has attracted the attention of statisticians for decades; see, for example,
the exposition in Anderson (2003), Chapter 9 or Muirhead (1982), Chapter 11. Traditional
methods such as the likelihood ratio test, Roy’s largest root test (Roy (1957)) and Nagao’s
L2-type test (Nagao (1973)) target the case where the dimension p is small and perform
poorly when p is comparable to or even larger than n. A line of recent work seeks to address
this issue and develops tests that are suitable for modern applications involving data with
large dimension p. This high-dimensional regime is in the focus of our work, which develops
distribution theory based on asymptotic regimes where p = pn increases to infinity with n.

Many tests of independence in high dimensions have been proposed recently. For exam-
ple, Bai et al. (2009) and Jiang and Yang (2013) derived corrected likelihood ratio tests for
Gaussian data. Using covariance/correlation statistics such as Pearson’s r , Spearman’s ρ and
Kendall’s τ , Bao, Pan and Zhou (2012), Gao et al. (2017), Han, Xu and Zhou (2018) and Bao
(2019) proposed revised versions of Roy’s largest root test. Schott (2005) and Leung and Dr-
ton (2018) derived corrected Nagao’s L2-type tests. Finally, Jiang (2004), Zhou (2007) and
Han, Chen and Liu (2017) proposed tests using the magnitude of the largest pairwise cor-
relation statistics. Subsequently, we shall refer to tests of this latter type as maximum-type
tests.
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The aforementioned approaches are largely built on linear and simple rank correlations.
These, however, are incapable of detecting more complicated nonlinear, nonmonotone depen-
dences as Hoeffding (1948) noted in his seminal paper. Recent work thus proposed the use of
consistent rank (Bergsma and Dassios (2014)), kernel-based (Gretton et al. (2008), Pfister et
al. (2018)) and distance covariance/correlation statistics (Székely, Rizzo and Bakirov (2007)).
However, much less is known about high-dimensional tests of H0 that use these more in-
volved statistics. Notable exceptions include Leung and Drton (2018) and Yao, Zhang and
Shao (2018). There, the authors combined Nagao’s L2-type methods with rank and distance
covariance statistics that in a tour de force are shown to weakly converge to a Gaussian limit
under the null. In addition, Yao, Zhang and Shao (2018) proved that an infeasible version
of their test is rate-optimal against a Gaussian dense alternative (Gaussian distribution with
equal correlation), while still little is known about optimality of Leung and Drton’s.

In this paper, we derive maximum-type tests that are counterparts of Leung–Drton and
Yao–Zhang–Shao L2-type ones. As noted in Han, Chen and Liu (2017), Leung and Drton
(2018) and Yao, Zhang and Shao (2018), maximum-type tests will be more sensitive to strong
but sparse dependence. Designed to assess pairwise independence consistently, our tests are
formed using statistics based on pairwise rank correlation measures such as Hoeffding’s D

(Hoeffding (1948)), Blum–Kiefer–Rosenblatt’s R (Blum, Kiefer and Rosenblatt (1961)) and
Bergsma–Dassios–Yanagimoto’s τ ∗ (Bergsma and Dassios (2014), Yanagimoto (1970)). In
particular, assuming the pair of random variables Xi and Xj to have a joint distribution that is
not only continuous but also absolutely continuous, these measures all satisfy the following
three desirable properties summarized in Weihs, Drton and Meinshausen (2018):

I-consistency. If Xi and Xj are independent, the correlation measure is zero.
D-consistency. If Xi and Xj are dependent, the correlation measure is nonzero.
Monotonic invariance. The correlation measure is invariant to monotone transformations.

We remark that invariance under invertible (and not just monotonic) transformations was
considered in work on self-equitable measures of dependence (Kinney and Atwal (2014)).
This leads to notions of mutual information whose estimates are different from and usually
more challenging to handle than the rank correlation measures we consider here; see Berrett
and Samworth (2019) and references therein. Indeed, as we shall review in Section 2, the
aforementioned correlation measures are naturally estimated via U-statistics, which despite
being degenerate have important special properties.

The contributions of our work are threefold. First, we prove that all the maximum-type
test statistics proposed in Section 3 have a null distribution that converges to a (nonstandard)
Gumbel distribution under high-dimensional asymptotics. This is in contrast to the results
in Han, Chen and Liu (2017), where those rank correlation measures that permit consistent
assessment of pairwise independence are excluded from the analysis. This exclusion is due
to the lack of necessary probability tools like Cramér-type moderate deviation bounds for de-
generate U-statistics, which are newly developed in this paper. Additionally, no distributional
assumption except for marginal continuity is required for this result, and the parameters for
the Gumbel limit can be explicitly given. This allows one to avoid permutation analysis in
problems of larger scale. Second, we conduct a power analysis and give explicit conditions
on a sparse local alternative under which our proposed tests have power tending to one. Third,
we show that the maximum-type tests based on Hoeffding’s D, Blum–Kiefer–Rosenblatt’s R,
and Bergsma–Dassios–Yanagimoto’s τ ∗ are all rate-optimal in the class of Gaussian (copula)
distributions with sparse and strong dependence as characterized in the power analysis. To
our knowledge, this is the first rate-optimality result for a feasible test that permits consistent
assessment of pairwise independence. These results are developed in Section 4. The theoret-
ical advantages of our tests are highlighted in simulation studies (Section 5). Lastly, we note
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that, as an interesting by-product of the study, we give an identity among the above three
statistics that helps make a step toward proving Bergsma–Dassios’s conjecture about general
D-consistency of τ ∗. This observation, along with other discussions, is given in Section 6. All
proofs and additional simulation results are deferred to the Supplementary Material (Drton,
Han and Shi (2020)).

Notation. The sets of real, integer and positive integer numbers are denoted R, Z and
Z

+, respectively. The cardinality of a set A is written #A. For m ∈ Z
+, we define [m] =

{1,2, . . . ,m} and write Pm for the set of all m! permutations of [m]. Let v = (v1, . . . , vp)⊤ ∈

R
p , M = [Mjk] ∈ R

p×p , and I, J be two subsets of [p]. Then vI is the subvector of v

with entries indexed by I , that is, vI = (vi1, vi2, . . . , vi#I
)⊤ with i1 < i2 < · · · < i#I and

{i1, . . . , i#I } = I . Both MI,J and M[I, J ] are used to refer to the submatrix of M with
rows indexed by I and columns indexed by J . The matrix diag(M) ∈ R

p×p is the diago-
nal matrix whose diagonal is the same as that of M. We write Ip and Jp for the identity
matrix and all-ones matrix in R

p×p , respectively. For a function f : X → R, we define
‖f ‖∞ := maxx∈X |f (x)|. The greatest integer less than or equal to x ∈ R is denoted by
⌊x⌋. The symbol 1(·) is used for indicator functions. For any two real sequences {an} and
{bn}, we write an � bn, an = O(bn), or equivalently bn � an, if there exists C > 0 such that
|an| ≤ C|bn| for any large enough n. We write an ≍ bn if both an � bn and an � bn hold.
Write an = o(bn) if for any c > 0, |an| ≤ c|bn| holds for any large enough n. Throughout, c

and C refer to positive absolute constants whose values may differ in different parts of the
paper.

2. Rank correlations and degenerate U-statistics. This section introduces the pairwise
rank correlations that will later be aggregated in a maximum-type test of the independence
hypothesis in (1.1). We present these correlations in a general U-statistic framework. In the
sequel, unless otherwise stated, the random vector X is assumed to have continuous margins,
that is, its marginal distributions are continuous, though not necessarily absolutely continu-
ous.

Let X1, . . . ,Xn be independent copies of X, with Xi = (Xi,1, . . . ,Xi,p)⊤. Let j �= k ∈

[p], and let h : (R2)m →R be a fixed kernel of order m. The kernel h defines a U-statistic of
order m:

Ûjk =

(
n

m

)−1 ∑

1≤i1<i2<···<im≤n

h

{(
Xi1,j

Xi1,k

)
, . . . ,

(
Xim,j

Xim,k

)}
.(2.1)

For our purposes, h may always be assumed to be symmetric, that is, h(z1, . . . ,zm) =

h(zσ(1), . . . ,zσ(m)) for all permutations σ ∈ Pm and z1, . . . ,zm ∈ R
2. Letting zi = (zi,1,

zi,2)
⊤, if both vectors (z1,1, . . . , zm,1) and (z1,2, . . . , zm,2) are free of ties, that is, have

marginal distinct entries, then we have well-defined vectors of ranks (r1,1, . . . , rm,1) and
(r1,2, . . . , rm,2), and we define r i = (ri,1, ri,2)

⊤ for 1 ≤ i ≤ n. Now a kernel is rank-based

if

h(z1, . . . ,zm) = h(r1, . . . , rm)

for all z1, . . . ,zm ∈ R
2 with (z1,1, . . . , zm,1) and (z1,2, . . . , zm,2) free of ties. In this case, we

also say that the “correlation” statistic Ûjk as well as the corresponding “correlation measure”
EÛjk is rank-based.

Rank-based statistics have many appealing properties with regard to independence. The
following three will be of particular importance for us. Proofs can be found in, for example,
Chapter 31 in Kendall and Stuart (1979), Lemma C4 in the supplement of Han, Chen and Liu
(2017) and Lemma 2.1 in Leung and Drton (2018). We also note that, in finite samples, the
statistics {Ûjk; j < k} are generally not mutually independent.
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PROPOSITION 2.1. Under the null hypothesis in (1.1) and assuming continuous margins,
we have:

(i) The rank statistics {Ûjk, j �= k} are all identically distributed and are distribution-

free, that is, the distribution of Ûjk does not depend on the marginal distributions of

X1, . . . ,Xp;
(ii) Fix any j ∈ [p], then the rank statistics {Ûjk, k �= j}, are mutually independent;

(iii) For any j �= k ∈ [p], the rank statistic Ûjk is independent of {Ûj ′k′; j ′, k′ /∈

{j, k}, j ′ �= k′}.

Our focus will be on those rank-based correlation statistics and the corresponding mea-
sures that are induced by the kernel h(·) and are both I- and D-consistent. The kernels of
these measures satisfy important additional properties that we will assume in our general
treatment. Further concepts concerning U-statistics are needed to state this assumption. For
any kernel h(·), any number ℓ ∈ [m], and any measure PZ , we write

hℓ(z1 . . . ,zℓ;PZ) := Eh(z1 . . . ,zℓ,Zℓ+1, . . . ,Zm)

and

h(ℓ)(z1, . . . ,zℓ;PZ)

:= hℓ(z1, . . . ,zℓ;PZ) −Eh −

ℓ−1∑

k=1

∑

1≤i1<···<ik≤ℓ

h(k)(zi1, . . . ,zik ;PZ),
(2.2)

where Z1, . . . ,Zm are m independent random vectors with distribution PZ and Eh :=

Eh(Z1, . . . ,Zm). The kernel as well as the corresponding U-statistic is degenerate under
PZ if h1(·) has variance zero. We use the term completely degenerate to indicate that the
variances of h1(·), . . . , hm−1(·) are all zero. Finally, let P0 be the uniform distribution on
[0,1], and write P0 ⊗ P0 for its product measure, the uniform distribution on [0,1]2. Note
that by Proposition 2.1(i), the study of Ûjk under independent continuous margins Xj and
Xk can be reduced to the case with (Xj ,Xk)

⊤ ∼ P0 ⊗ P0.

ASSUMPTION 2.1. The kernel h is rank-based, symmetric, and has the following three
properties:

(i) h is bounded.
(ii) h is mean-zero and degenerate under independent continuous margins, that is,

E{h1(Z1;P0 ⊗ P0)}
2 = 0 as Z1 ∼ P0 ⊗ P0.

(iii) h2(z1,z2;P0 ⊗ P0) has uniformly bounded eigenfunctions, that is, it admits the ex-
pansion

h2(z1,z2;P0 ⊗ P0) =

∞∑

v=1

λvφv(z1)φv(z2),

where {λv} and {φv} are the eigenvalues and eigenfunctions satisfying the integral equation

Eh2(z1,Z2)φ(Z2) = λφ(z1) for all z1 ∈ R
2,

with Z2 ∼ P0 ⊗ P0, λ1 ≥ λ2 ≥ · · · ≥ 0, � :=
∑∞

v=1 λv ∈ (0,∞), and supv‖φv‖∞ < ∞.

The first boundedness property is satisfied for the commonly used rank correlations, in-
cluding Kendall’s τ , Spearman’s ρ and many others. The latter two properties are much more
specific, but exhibited by the classical rank correlation measures for which consistency prop-
erties are known. We discuss the main examples below. Note also that the assumption � > 0
implies λ1 > 0, so that h2(·) is not a constant function.
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EXAMPLE 2.1 (Hoeffding’s D). From the symmetric kernel,

hD(z1, . . . ,z5)

:=
1

16

∑

(i1,...,i5)∈P5

[{
1(zi1,1 ≤ zi5,1) − 1(zi2,1 ≤ zi5,1)

}{
1(zi3,1 ≤ zi5,1) − 1(zi4,1 ≤ zi5,1)

}]

×
[{

1(zi1,2 ≤ zi5,2) − 1(zi2,2 ≤ zi5,2)
}{

1(zi3,2 ≤ zi5,2) − 1(zi4,2 ≤ zi5,2)
}]

,

we recover Hoeffding’s D statistic, which is a rank-based U-statistic of order 5 and gives
rise to the Hoeffding’s D correlation measure EhD . The kernel hD(·) satisfies the first two
properties in Assumption 2.1 in view of the results in Hoeffding (1948). To verify the last
property, we note that under the measure P0 ⊗ P0, hD,2(·) is known to have eigenvalues

λi,j ;D = 3/
(
π4i2j2)

, i, j ∈ Z
+;

see, for example, Proposition 7 in Weihs, Drton and Meinshausen (2018) or Theorem 4.4 in
Nandy, Weihs and Drton (2016). The corresponding eigenfunctions are

φi,j ;D

{
(z1,1, z1,2)

⊤}
= 2 cos(πiz1,1) cos(πjz1,2), i, j ∈ Z

+.

The eigenvalues are positive and sum to �D :=
∑

i,j λi,j ;D = 1/12, and supi,j‖φi,j ;D‖∞ ≤ 2.
For any pair of random variables, the correlation measure EhD ≥ 0 (Hoeffding (1948), p.
547). Furthermore, it has been proven that, once the pair is absolutely continuous in R

2,
the correlation measure EhD = 0 if and only if the pair is independent (Hoeffding (1948),
Yanagimoto (1970)). This property, however, generally does not hold for discrete data or data
generated from a bivariate distribution that is continuous but not absolutely continuous; see
Remark 1 in Yanagimoto (1970) for a counterexample.

EXAMPLE 2.2 (Blum–Kiefer–Rosenblatt’s R). The symmetric kernel

hR(z1, . . . ,z6)

:=
1

32

∑

(i1,...,i6)∈P6

[{
1(zi1,1 ≤ zi5,1) − 1(zi2,1 ≤ zi5,1)

}{
1(zi3,1 ≤ zi5,1) − 1(zi4,1 ≤ zi5,1)

}]

×
[{

1(zi1,2 ≤ zi6,2) − 1(zi2,2 ≤ zi6,2)
}{

1(zi3,2 ≤ zi6,2) − 1(zi4,2 ≤ zi6,2)
}]

yields Blum–Kiefer–Rosenblatt’s R statistic (Blum, Kiefer and Rosenblatt (1961)), which is
a rank-based U-statistic of order 6. One can verify the three properties in Assumption 2.1
similarly to Hoeffding’s D by using that hR,2 = 2hD,2. In addition, for any pair of random
variables, the correlation measure EhR ≥ 0 with equality if and only if the pair is independent,
and no continuity assumption is needed at all; cf. page 490 of Blum, Kiefer and Rosenblatt
(1961).

EXAMPLE 2.3 (Bergsma–Dassios–Yanagimoto’s τ ∗). Bergsma and Dassios (2014) in-
troduced a rank correlation statistic as a U-statistic of order 4 with the symmetric kernel

hτ∗(z1, . . . ,z4)

:=
1

16

∑

(i1,...,i4)∈P4

{
1(zi1,1, zi3,1 < zi2,1, zi4,1) + 1(zi2,1, zi4,1 < zi1,1, zi3,1)

− 1(zi1,1, zi4,1 < zi2,1, zi3,1) − 1(zi2,1, zi3,1 < zi1,1, zi4,1)
}

×
{
1(zi1,2, zi3,2 < zi2,2, zi4,2) + 1(zi2,2, zi4,2 < zi1,2, zi3,2)

− 1(zi1,2, zi4,2 < zi2,2, zi3,2) − 1(zi2,2, zi3,2 < zi1,2, zi4,2)
}
.
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Here, 1(y1, y2 < y3, y4) := 1(y1 < y3)1(y1 < y4)1(y2 < y3)1(y2 < y4). It holds that hτ∗,2 =

3hD,2 and all properties in Assumption 2.1 also hold for hτ∗(·). Theorem 1 in Bergsma and
Dassios (2014) shows that for a pair of random variables whose distribution is discrete, ab-
solutely continuous or a mixture of both, the correlation measure Ehτ∗ ≥ 0 where equality
holds if and only if the variables are independent. It has been conjectured that this fact is
true for any distribution on R

2. In Section 6.2 of this paper, we make new progress along
this track. This progress is based on early but apparently little known results of Yanagimoto
(1970) that prompted us to add his name in reference to τ ∗.

3. Maximum-type tests of mutual independence. We now turn to tests of the mu-
tual independence hypothesis H0 in (1.1). As in Han, Chen and Liu (2017), we propose
maximum-type tests. However, in contrast to Han, Chen and Liu (2017), we suggest the
use of consistent and rank-based correlations with the practical choices being the ones from
Examples 2.1–2.3. As these measures are all nonnegative, it is appropriate to consider a one-
sided test in which we aggregate pairwise U-statistics Ûjk in (2.1) into the test statistic

M̂n := (n − 1)max
j<k

Ûjk.

We then reject H0 if M̂n is larger than a certain threshold. Note that we tacitly assumed
Ûjk = Ûkj when maximizing over j < k; this symmetry holds for any reasonable correla-
tion statistic. We emphasize once more that, since the statistic is constructed based on pairs
{Xi,j ,Xi,k}i∈[n], the proposed tests are designed to assess pairwise independence consis-
tently.

By Proposition 2.1(i), the statistic M̂n is distribution-free in the class of multivariate dis-
tributions with continuous margins. An exact critical value for rejection of H0 could thus be
approximated by Monte Carlo simulation. However, as we will show, extreme-value theory
yields asymptotic critical values that avoid any extra computation all the while giving good

finite-sample control of the test’s size. When presenting this theory, we write X
d
= Y if two

random variables X and Y have the same distribution, and we use
d

−→ to denote “weak
convergence.”

If, under H0, the studied statistic (n − 1)Ûjk weakly converged to a chi-square distribu-
tion with one degree of freedom, as in Theorems 1 and 2 of Han, Chen and Liu (2017), then
extreme-value theory combined with Proposition 2.1 would imply that a suitably standard-
ized version of M̂n would weakly converge to a type-I Gumbel distribution with distribution
function exp{−(8π)−1/2 exp(−y/2)}. However, the degeneracy stated in Assumption 2.1(ii)
rules out this possibility. Classical theory yields that instead of a single chi-square variable,
we encounter convergence to much more involved infinite weighted series (Serfling (1980),
Chapter 5.5.2).

PROPOSITION 3.1. Let X have continuous margins, and let j �= k. If h(·) satisfies As-

sumption 2.1, then under H0,
(
m

2

)−1

(n − 1)Ûjk
d

−→

∞∑

v=1

λv

(
ξ2
v − 1

)
,

where {ξv, v = 1,2, . . .} are i.i.d. standard Gaussian random variables.

Note that the weak convergence result for degenerate U-statistics in Proposition 3.1 holds
under much weaker conditions than Assumption 2.1; see the main theorem in Serfling (1980),
Chapter 5.5.2, for detailed conditions. Our intuition for the asymptotic forms of the maxima
now comes from the following fact, though the analysis of maxj<k Ûjk requires more refined
techniques since {Ûjk; j ≤ k} are in general not mutually independent.
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PROPOSITION 3.2. Let Y1, . . . , Yd be d = p(p − 1)/2 independent copies of ζ
d
=∑∞

v=1 λv(ξ
2
v − 1). Then, as p → ∞,

max
j∈[d]

Yj

λ1
− 4 logp − (μ1 − 2) log logp +

�

λ1

d
−→ G.

Here, G follows a Gumbel distribution with distribution function

exp
{
−

2μ1/2−2κ

Ŵ(μ1/2)
exp

(
−

y

2

)}
,

where μ1 is the multiplicity of the largest eigenvalue λ1 in the sequence {λ1, λ2, . . . }, κ :=∏∞
v=μ1+1(1 − λv/λ1)

−1/2, and Ŵ(z) :=
∫ ∞

0 xz−1e−x dx is the gamma function.

Obviously, when setting λ1 = 1, λ2 = λ3 = · · · = 0 in Proposition 3.2, we recover the
Gumbel distribution derived by Han, Chen and Liu (2017). Based on Propositions 3.1 and
3.2, for any prespecified significance level α ∈ (0,1), our proposed test is

(3.1) Tα := 1

{
n − 1

λ1
( m

2

) max
j<k

Ûjk − 4 logp − (μ1 − 2) log logp +
�

λ1
> Qα

}
,

where

Qα := log
2μ1−4κ2

{Ŵ(μ1/2)}2
− 2 log log(1 − α)−1

is the 1 − α quantile of the Gumbel distribution of distribution function exp{−2μ1/2−2κ/

Ŵ(μ1/2) · exp(−y/2)}. However, note that so far the test results merely from heuristic
arguments. Theoretical justifications regarding the test’s size and power under the high-
dimensional regime will be given in Section 4.

EXAMPLE 3.1 (“Extreme D”). Hoeffding’s D statistic introduced in Example 2.1 is

D̂jk :=

(
n

5

)−1 ∑

i1<···<i5

hD(Xi1,{j,k}, . . . ,Xi5,{j,k}).

According to (3.1), the corresponding test is

TD,α := 1

{
π4(n − 1)

30
max
j<k

D̂jk − 4 logp + log logp +
π4

36
> QD,α

}
,

where QD,α := log{κ2
D/(8π)} − 2 log log(1 − α)−1 and

κD :=

{
2

∞∏

n=2

π/n

sin(π/n)

}1/2

≈ 2.467.

EXAMPLE 3.2 (“Extreme R”). Blum–Kiefer–Rosenblatt’s R statistic from Example 2.2
is

R̂jk :=

(
n

6

)−1 ∑

i1<···<i6

hR(Xi1,{j,k}, . . . ,Xi6,{j,k}).

According to (3.1), the corresponding test is

TR,α := 1

{
π4(n − 1)

90
max
j<k

R̂jk − 4 logp + log logp +
π4

36
> QR,α

}
,

where QR,α := QD,α .
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EXAMPLE 3.3 (“Extreme τ ∗”). Bergsma–Dassios–Yanagimoto’s τ ∗ statistic from Ex-
ample 2.3 is

τ̂ ∗
jk :=

(
n

4

)−1 ∑

i1<···<i4

hτ∗(Xi1,{j,k}, . . . ,Xi4,{j,k}).

According to (3.1), it yields the test

Tτ∗,α := 1

{
π4(n − 1)

54
max
j<k

τ̂ ∗
jk − 4 logp + log logp +

π4

36
> Qτ∗,α

}
,

where Qτ∗,α := QD,α .

Note that, by the definitions of the kernels and the identity (6.1) that will be introduced in
Section 6.2, as long as there is no tie in the data, for any j, k ∈ [p],

D̂jj = R̂jj = τ̂ ∗
jj = 1 and 3D̂jk + 2R̂jk = 5τ̂ ∗

jk.(3.2)

REMARK 3.1. In applying the above tests, we have intrinsically assumed that there are
no ties among the entries X1,j , . . . ,Xn,j for each j ∈ [p]. This is based on the assumption
that X = (X1, . . . ,Xp)⊤ has continuous margins. In practice, however, data in finite accuracy
might feature ties or may indeed be drawn from a distribution that is not of a continuous
margin. In such cases, conducting the above tests on the original data may distort the size.
To fix this, as was discussed in Remark 2.1 in Heller et al. (2016), one may break the ties
randomly so that the above tests remain distribution-free. Also see Chapter 8 in Hollander,
Wolfe and Chicken (2014) for more discussions on how to break ties for rank-based tests.

4. Theoretical analysis. This section provides theoretical justifications of the tests pro-
posed in Section 3. The section is split into two parts. The first part rigorously justifies the
proposed asymptotic critical values. The second part gives a power analysis and shows opti-
mality properties.

4.1. Size control. In this section, we derive the limiting distribution of the statistic M̂n

under H0. The below Cramér-type moderate deviation theorem for degenerate U-statistics
under a general probability measure is the foundation of our theory. There has been a large lit-
erature on deriving the moderate deviation theorem for nondegenerate U-statistics (see, e.g.,
Shao and Zhou (2016) for some recent developments) as well as Berry–Esseen-type bounds
for degenerate U-statistics (see Zhou and Götze (1997) and Götze and Zaitsev (2014) among
many). However, to our knowledge, the literature does not provide a comparable moderate
deviation theorem for degenerate U-statistics.

THEOREM 4.1 (Cramér-type moderate deviation for degenerate U-statistics). Let Z1, . . . ,

Zn be (not necessarily continuous) i.i.d. random variables with distribution PZ . Consider the

U-statistic

Ûn =

(
n

m

)−1 ∑

1≤i1<···<im≤n

h(Zi1, . . . ,Zim),

where the kernel h(·) is symmetric and such that (i) ‖h‖∞ < ∞, (ii) h1(Z1;PZ) = 0 almost

surely, and (iii) h2(z1, z2;PZ) admits the eigenfunction expansion,

h2(z1, z2;PZ) =

∞∑

v=1

λvφv(z1)φv(z2),
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with λ1 ≥ λ2 ≥ · · · ≥ 0, � :=
∑∞

v=1 λv ∈ (0,∞), and supv‖φv‖∞ < ∞. We then have, for

any sequence of positive scalars en → 0,

lim
n→∞

sup
xn∈[−�,ennθ ]

∣∣∣∣
P{

( m
2

)−1
(n − 1)Ûn > xn}

P{
∑∞

v=1 λv(ξ2
v − 1) > xn}

− 1
∣∣∣∣ = 0,

where {ξv, v = 1,2, . . .} are i.i.d. standard Gaussian, and θ is any absolute constant such

that

(4.1) θ < sup
{
q ∈ [0,1/3) :

∑

v>⌊n(1−3q)/5⌋

λv = O
(
n−q)}

if infinitely many of eigenvalues λv are nonzero, and θ = 1/3 otherwise.

In Theorem 4.1, when there are only finitely many nonzero eigenvalues, the range o(n1/3)

is the standard one for Cramér-type moderate deviation. When there are infinitely many
nonzero eigenvalues, it is still unclear if the range o(nθ ) is the best possible one. It is certainly
an interesting question to investigate the optimal range for degenerate U-statistics in the fu-
ture. With the aid of Theorem 4.1 and combining it with Proposition 3.2, we can now show
that, under H0, even if p is exponentially larger than the sample size n, our maximum-type
test statistic still weakly converges to the Gumbel distribution specified in Proposition 3.2.
Hence, the proposed test Tα in (3.1) can effectively control the size.

THEOREM 4.2 (Limiting null distribution). Assume X1, . . . ,Xp are continuous and the

independence hypothesis H0 holds. Let Ûjk , j < k, have a common kernel h that satisfies

Assumption 2.1. Define the parameter θ as in (4.1). Then if p = pn goes to infinity with n

such that logp = o(nθ ), it holds for any absolute constant y ∈ R that

P

{
n − 1

λ1
( m

2

) max
j<k

Ûjk − 4 logp − (μ1 − 2) log logp +
�

λ1
≤ y

}

= exp
{
−

2μ1/2−2κ

Ŵ(μ1/2)
exp

(
−

y

2

)}
+ o(1).

Consequently,

PH0(Tα = 1) = α + o(1),

where PH0 represents the probability under the null hypothesis H0.

Note that the proof of Theorem 4.2 uses the Chen–Stein method, via Theorem 1 of Arratia,
Goldstein and Gordon (1989), which is able to handle our case where the random variables
are not mutually independent. We emphasize that our theory holds without any distributional
assumption on X except for marginal continuity. This property of being distribution-free in
the class of multivariate distributions with continuous margins is essentially shared by all
rank-based correlation measures, but is clearly not satisfied by other measures like linear or
distance covariance as was illustrated, for example, by Jiang (2004) and Yao, Zhang and Shao
(2018).

As a simple consequence of Theorem 4.2, the following corollary shows that the tests in
Examples 3.1–3.3 have asymptotically correct sizes, with θ being explicitly calculated.

COROLLARY 4.1. Let X1, . . . ,Xp be continuous. Let p go to infinity with n in such a

way that logp = o(n1/8−δ) for some arbitrarily small prespecified constant δ > 0. Then

PH0(TD,α = 1) = α + o(1), PH0(TR,α = 1) = α + o(1) and

PH0(Tτ∗,α = 1) = α + o(1).
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4.2. Power analysis and rate-optimality. We now investigate the power of the proposed
tests from an asymptotic minimax perspective. The key ingredient is the choice of a suitable
distribution family as an alternative to the null hypothesis in (1.1). Recall the definition of
h(1)(·) in (2.2). For any kernel function h(·) and constants γ > 0 and q ∈ Z

+, define a general
q-dimensional (not necessarily continuous) distribution family as follows:

D(γ, q;h) :=
{
L(X) : X ∈ R

q,Varjk

{
h(1)(·;Pjk)

}
≤ γEjkh for all j �= k ∈ [q]

}
,

where L(X) is the distribution (law) of X, and Pjk , Ejk(·), and Varjk(·) stand for the proba-
bility measure, expectation and variance operated on the bivariate distribution of (Xj ,Xk)

⊤,
respectively.

The family D(γ, q;h) intrinsically characterizes the slope of the function Varjk{h
(1)(·;

Pjk)} with regard to the dependence between Xj and Xk , characterized by the “correlation
measure” Ejkh. Intuitively, consider Ejkh as a rank correlation measure of dependence be-
tween Xj and Xk . When Xj is independent of Xk , we have that

Varjk

{
h(1)(·;Pj ⊗ Pk)

}
= 0 = Ejkh

as long as Assumption 2.1 holds for h(·). Therefore, heuristically, as the dependence between
Xj and Xk increases, it is possible that the variance Varjk{h

(1)(·;Pjk)} will deviate from 0
at the same or a slower rate compared to Ejkh. Note that both parameters are nonnegative.
The next lemma firms up this intuition by establishing that the Gaussian family belongs to
D(γ, q;h) for all the kernels h(·) considered in Examples 2.1 to 2.3, provided γ is large
enough.

LEMMA 4.1. There exists an absolute constant γ > 0 such that for all q ∈ Z
+, any

q-dimensional Gaussian distribution is in D(γ, q;hD), D(γ, q;hR), and D(γ, q;hτ∗).

Next, we introduce a class of matrices indexed by a positive constant C as

Up(C) :=
{
M ∈ R

p×p : max
j<k

{Mjk} ≥ C(logp/n)
}
.

Such matrices will define a “sparse local alternative” as considered also in Section 4.1 in
Han, Chen and Liu (2017). Note, however, that in our case the scale is at the order of logp/n

as opposed to (logp/n)1/2 in Han, Chen and Liu (2017). This is due to our statistics being
degenerate under independence. Hence, the variance of h(1)(·) is zero under the null, while
nonzero for these statistics investigated in Han, Chen and Liu (2017). It should also be noted
that these two classes cannot be directly compared; intuitively the consistent measures are
defined on a squared scale when contrasted to the nonconsistent measures. As will be shown
later, in the example of the Gaussian case, both classes correspond to a condition on the
Pearson correlation obeying the rate (logp/n)1/2.

The following theorem now describes “local alternatives” under which the power of our
general test Tα tends to one as both n and p go to infinity.

THEOREM 4.3 (Power analysis, general). Given any γ > 0 and a kernel h(·) satisfying

Assumption 2.1, there exists some sufficiently large Cγ depending on γ such that

lim inf
n,p→∞

inf
U∈Up(Cγ )

PU(Tα = 1) = 1,

where, for each specified (n,p), the infimum is taken over all distributions in D(γ,p;h) that

have the matrix of population dependence coefficients U = [Ujk] in Up(Cγ ). Here, Ujk :=

EÛjk .
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The proof of Theorem 4.3 only uses the Hoeffding decomposition for U-statistics, Bern-
stein’s inequality for the sample mean part and Arcones and Giné’s inequality for the degen-
erate U-statistics parts (Arcones and Giné (1993)). Consequently, we do not have to assume
any continuity of X. The theorem immediately yields the following corollary, characterizing
the local alternatives under which the three rank-based tests from Examples 3.1–3.3 have
power tending to 1.

COROLLARY 4.2 (Power analysis, examples). Given any γ > 0, we have, for some suffi-

ciently large Cγ depending on γ ,

lim inf
n,p→∞

inf
D∈Up(Cγ )

PD(TD,α = 1) = 1, lim inf
n,p→∞

inf
R∈Up(Cγ )

PR(TR,α = 1) = 1,

lim inf
n,p→∞

inf
T∗∈Up(Cγ )

PT∗(Tτ∗,α = 1) = 1,

where, for each specified (n,p), the infima are taken over all distributions in D(γ,p;hD),
D(γ,p;hR), and D(γ,p;hτ∗) with population dependence coefficient matrices D = [Djk],
R = [Rjk], and T∗ = [τ ∗

jk] for Djk := ED̂jk , Rjk := ER̂jk and τ ∗
jk := Eτ̂ ∗

jk , respectively.

We now turn to optimality of the proposed tests. There have been long debates on the power
of consistent rank-based tests compared to those based on linear and simple rank correlation
measures. As a matter of fact, Blum, Kiefer and Rosenblatt (1961) have given interesting
comments on this topic, stating that the required sample size for the bivariate independence
test based on hR(·) is of the same order as that in common parametric cases, hinting that even
under a particular parametric model these nonparametric consistent tests of independence
can be as rate-efficient as tests that specifically target the considered model. Leung and Drton
(2018) and Han, Chen and Liu (2017), among many others, derived rate-optimality results for
rank-based tests. However, their results do not cover those that permit consistent assessment
of pairwise independence. Recently, Yao, Zhang and Shao (2018) made a first step toward a
minimax optimality result for consistent tests of independence. Their result shows an infeasi-
ble version of a test based on distance covariance to be rate-optimal against a Gaussian dense
alternative. However, it remained an open question if there exists a feasible (consistent) test
of mutual independence in high dimensions that is rate-optimal against certain alternatives.
Below we are able to give an affirmative answer.

We shall focus on the proposed tests in Examples 3.1–3.3 and show their rate-optimality
in the Gaussian model. To this end, we define a new alternative class of matrices

V(C) :=

{
M ∈ R

p×p : M � 0,diag(M) = Ip,M = M⊤,max
j �=k

|Mjk| ≥ C

√
logp

n

}
,

where M � 0 denotes positive semidefiniteness. We then have the following theorem as a
consequence of Corollary 4.2. It concerns the proposed tests’ power under a Gaussian model
with some nonzero pairwise correlations but for which these are decaying to zero as the
sample size increases, and is immediate from the fact that, as (Xj ,Xk)

⊤ is bivariately normal
with correlation ρjk , we have

Djk,Rjk, τ
∗
jk ≍ ρ2

jk as ρjk → 0.

Since the test statistics are all rank-based, and thus invariant to monotone marginal transfor-
mations, extension of the following result to the corresponding Gaussian copula family with
continuous margins is straightforward.
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THEOREM 4.4 (Power analysis, Gaussian). For a sufficiently large absolute constant

C0 > 0, we have, as long as n,p → ∞,

inf
�∈V(C0)

P�(TD,α = 1) = 1 − o(1), inf
�∈V(C0)

P�(TR,α = 1) = 1 − o(1) and

inf
�∈V(C0)

P�(Tτ∗,α = 1) = 1 − o(1),

where infima are over centered Gaussian distributions with (Pearson) covariance matrix � =

[�jk].

The proof of Theorem 4.4 is given in the Supplementary Material. It relies on Lemma 4.1
and the fact that Djk,Rjk, τ

∗
jk ≍ �2

jk as �jk → 0. Combined with the following result from
Han, Chen and Liu (2017), Theorem 4.4 yields minimax rate-optimality of the tests in Exam-
ples 3.1–3.3 against the sparse Gaussian alternative.

THEOREM 4.5 (Rate optimality, Theorem 5 in Han, Chen and Liu, 2017). There exists

an absolute constant c0 > 0 such that for any number β > 0 satisfying α + β < 1, in any

asymptotic regime with p → ∞ as n → ∞ but logp/n = o(1), it holds for all sufficiently

large n and p that

inf
Tα∈Tα

sup
�∈V(c0)

P�(Tα = 0) ≥ 1 − α − β.

Here, the infimum is taken over all size-α tests, and the supremum is taken over all centered

Gaussian distributions with (Pearson) covariance matrix �.

5. Simulation studies. In this section, we compare the finite-sample performance of the
three tests (Extreme D, Extreme R and Extreme τ ∗) from Section 3 to eight existing tests
proposed in the literature via Monte Carlo simulations. The first eight tests are rank-based
and hence distribution-free in the class of multivariate distributions with continuous margins,
while the other three tests are distribution-dependent:

DHSD: the maximum-type test in Example 3.1;
DHSR: the maximum-type test in Example 3.2;
DHSτ∗ : the maximum-type test in Example 3.3;
LDτ : the L2-type test based on Kendall’s τ (Leung and Drton (2018));
LDρ : the L2-type test based on Spearman’s ρ (Leung and Drton (2018));
LDτ∗ : the L2-type test based on Bergsma–Dassios–Yanagimoto’s τ ∗ (Leung and Drton
(2018));
HCLτ : the maximum-type test based on Kendall’s τ (Han, Chen and Liu (2017));
HCLρ : the maximum-type test based on Spearman’s ρ (Han, Chen and Liu (2017));
YZS: the L2-type test based on the distance covariance statistic (Yao, Zhang and Shao
(2018));
SC: the L2-type test based on Pearson’s r (Schott (2005));
CJ: the maximum-type test based on Pearson’s r (Cai and Jiang (2011)).

5.1. Computational aspects. Throughout this section, {zi = (zi,1, zi,2)
⊤}i∈[n] is a bivari-

ate sample that contains no tie. We first discuss how to compute the U-statistics D̂, R̂ and τ̂ ∗

for Hoeffding’s D, Blum–Kiefer–Rosenblatt’s R and Bergsma–Dassios–Yanagimoto’s τ ∗,
respectively. As we review below, efficient algorithms are available for D̂ and τ̂ ∗. The value
of R̂ may then be found using the relation in (3.2).
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Hoeffding (1948) himself observed that D̂ can be computed in O(n logn) time via the
following formula:

D̂

30
=

P − 2(n − 2)Q + (n − 2)(n − 3)S

n(n − 1)(n − 2)(n − 3)(n − 4)
.

Here,

P :=

n∑

i=1

(ri − 1)(ri − 2)(si − 1)(si − 2),

Q :=

n∑

i=1

(ri − 2)(si − 1)ci, S :=

n∑

i=1

ci(ci − 1),

and ri and si are the ranks of zi,1 among {z1,1, . . . , zn,1} and zi,2 among {z1,2, . . . , zn,2},
respectively. Moreover, ci is the number of pairs zi′ for which zi′,1 < zi,1 and zi′,2 < zi,2.

Weihs, Drton and Leung (2016) and Heller and Heller (2016) proposed algorithms for
efficient computation of the Bergsma–Dassios–Yanagimoto statistic τ̂ ∗. Without loss of gen-
erality, let z1,1 < · · · < zn,1, that is, ri = i. Weihs, Drton and Leung (2016) proved that
2τ̂ ∗/3 = Nc/

( n
4

)
− 1/3 with

Nc =
∑

3≤ℓ<ℓ′≤n

(
B<

[
ℓ, ℓ′

]

2

)
+

(
B>

[
ℓ, ℓ′

]

2

)
,

where for all ℓ < ℓ′,

B<

[
ℓ, ℓ′] := #

{
i : i ∈ [ℓ − 1], zi,2 < min(zℓ,2, zℓ′,2)

}
and

B>

[
ℓ, ℓ′] := #

{
i : i ∈ [ℓ − 1], zi,2 > max(zℓ,2, zℓ′,2)

}
.

Weihs, Drton and Leung (2016) went on to give an algorithm to compute these counts, and
thus τ̂ ∗, in O(n2 logn) time with little memory use. Heller and Heller (2016) showed that
the computation time can be further lowered to O(n2) via calculation of the following matrix
based on the empirical distribution of the ranks ri and si :

B[r, s] :=

n∑

i=1

1(ri ≤ r, si ≤ s), 0 ≤ r, s ≤ n.

Here, B[r,0] := 0 and B[0, s] := 0. We may then find B<[ℓ, ℓ′] = B[ℓ − 1,min(sℓ, sℓ′) −

1] and B>[ℓ, ℓ′] = ℓ − B[ℓ,max(sℓ, sℓ′)] for all ℓ < ℓ′; recall that si is the rank of zi,2 in
{z1,2, . . . , zn,2}. As a consequence, formula (3.2) now also yields an O(n2) algorithm for R̂.

Regarding other competing statistics, note that Pearson’s r and Spearman’s ρ can be
naively computed in time O(n) and O(n logn), respectively. Knight (1966) proposed an ef-
ficient algorithm for computing Kendall’s τ that has time complexity O(n logn). Finally, the
algorithm of Huo and Székely (2016) computes the distance covariance statistic in O(n logn)

time.
Table 1 shows empirical computation times for the considered statistics on 1000 bi-

variate samples of size n = 100,200,400, and 800, respectively, randomly generated as
i.i.d. standard bivariate normal. The timings are based on available functions in R. Pear-
son’s r and Spearman’s ρ were computed using the basic cor() function, with option
method="spearman" for ρ. Kendall’s τ was computed with the function cor.fk()

from package pcaPP, Hoeffding’s D with hoeffD() from SymRC, Bergsma–Dassios–
Yanagimoto’s τ ∗ with tStar() from TauStar, and the distance covariance with
dcov2d() from energy. Blum–Kiefer–Rosenblatt’s R̂ was then obtained using identity
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TABLE 1
A comparison of computation time for all the correlation statistics considered. The computation time here is the

averaged elapsed time (in milliseconds) of 1000 replicates of a single experiment

n Hoeffding’s D BDY’s τ∗ Pearson’s r Spearman’s ρ Kendall’s τ Distance correlation

100 0.270 0.167 0.060 0.121 0.064 0.667
200 0.962 0.543 0.080 0.144 0.085 1.194
400 4.419 2.364 0.099 0.206 0.106 2.313
800 9.683 20.860 0.103 0.327 0.148 4.410

(3.2), and its computation time is thus omitted. All experiments are conducted on a laptop
with a 2.6 GHz Intel Core i5 processor and a 8 GB memory.

While the above statistics can all be computed efficiently using special purpose algorithms,
our theory also covers general rank-based statistics for which only a naive algorithm that
follows the U-statistic definition may be available. The complexity of computing the statistic
could then be a high degree polynomial of the sample size. We note that in this case, it may
become necessary to use resampling and subsampling techniques to decrease computational
effort, as was done by Bergsma and Dassios (2014), Section 4, when applying their statistics
before efficient algorithms for its computation were developed.

5.2. Simulation results. We evaluate the empirical sizes and powers of the eleven com-
peting tests introduced above for both Gaussian and non-Gaussian distributions. The values
reported below are based on 5000 simulations at the nominal significance level of 0.05, with
sample size n ∈ {100,200} and dimension p ∈ {50,100,200,400,800}. All data sets are gen-
erated as an i.i.d. sample from the distribution specified for the p-dimensional random vector
X.

We investigate the sizes of the tests in four settings, where X = (X1, . . . ,Xp)⊤ has mu-
tually independent entries. In the following, with slight abuse of notation, we write f (v) =

(f (v1), . . . , f (vp))⊤ for any univariate function f :R→R and v = (v1, . . . , vp)⊤ ∈ R
p .

EXAMPLE 5.1.

(a) X ∼ Np(0, Ip) (standard Gaussian).
(b) X = W 1/3 with W ∼ Np(0, Ip) (light-tailed Gaussian copula).
(c) X = W 3 with W ∼ Np(0, Ip) (heavy-tailed Gaussian copula).
(d) X1, . . . ,Xp are i.i.d. with a t-distribution with 3 degrees of freedom.

The simulated sizes of the eight rank-based tests are reported in Table 2. Those of the three
distribution-dependent tests are given in Table 3. As expected, the tests derived from Gaus-
sianity (SC, CJ) fail to control the size for heavy-tailed distributions. In contrast, the other
tests control the size effectively in most circumstances. A slight size inflation is observed for
DHSD at small sample size, which can be addressed using Monte Carlo approximation to set
the critical value. In addition, when considering different pairs of (n,p) in Table 2, as long
as n and p grow simultaneously, a trend to the nominal level 0.05 is clear; for example, as
(n,p) grows from (100,200) to (200,400), the empirical size of DHSD changes from 0.076
to 0.064, that of DHSR changes from 0.028 to 0.040, and that of DHSτ∗ changes from 0.036
to 0.045. These phenomena back up Corollary 4.1, and this trend persists in more simulations
as n and p become even larger.
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TABLE 2
Empirical sizes of the eight rank-based tests in Example 5.1

n p DHSD DHSR DHSτ∗ LDτ LDρ LDτ∗ HCLτ HCLρ

100 50 0.070 0.042 0.047 0.054 0.048 0.056 0.037 0.028
100 0.073 0.035 0.042 0.055 0.047 0.066 0.034 0.021
200 0.076 0.028 0.036 0.058 0.050 0.059 0.028 0.015
400 0.084 0.025 0.035 0.054 0.045 0.065 0.025 0.012
800 0.088 0.021 0.032 0.055 0.049 0.062 0.023 0.008

200 50 0.054 0.042 0.044 0.048 0.044 0.051 0.037 0.034
100 0.057 0.042 0.044 0.052 0.047 0.052 0.038 0.032
200 0.059 0.038 0.042 0.052 0.050 0.055 0.037 0.032
400 0.064 0.040 0.045 0.051 0.048 0.053 0.038 0.027
800 0.065 0.034 0.040 0.051 0.047 0.055 0.034 0.024

In order to study the power properties of the different statistics, we consider three sets of
examples. We remark that, regarding the power, for L2-type and maximum-type tests, one
cannot dominate the other; compare the power analyses in Section 3.3 in Cai, Liu and Xia
(2013) and Section 5.2 in Leung and Drton (2018). To reflect this, we consider two sets of
examples that focus on relatively sparse settings (modified based on Yao, Zhang and Shao
(2018) and Han, Chen and Liu (2017)) but also include a very dense third setup (modified
based on Leung and Drton (2018) with an adjustment to dimension as suggested in Cai and
Ma (2013), Theorems 1 and 4).

EXAMPLE 5.2.

(a) The data are generated as X = (X⊤
1 ,X⊤

2 )⊤, where

X1 =
(
ω

⊤, sin(2πω)⊤, cos(2πω)⊤, sin(4πω)⊤, cos(4πω)⊤
)⊤

∈ R
10

with ω ∼ N2(0, I2), and X2 ∼ Np−10(0, Ip−10) independent of X1.
(b) The data are generated as X = (X⊤

1 ,X⊤
2 )⊤, where

X1 =
(
ω

⊤, log
(
ω

2)⊤)⊤
∈ R

10

with ω ∼ N5(0, I5), and X2 ∼ Np−10(0, Ip−10) independent of X1.

TABLE 3
Empirical sizes of the three distribution-dependent tests in Example 5.1

n p YZS SC CJ YZS SC CJ YZS SC CJ YZS SC CJ

Results for Case (a) Results for Case (b) Results for Case (c) Results for Case (d)
100 50 0.048 0.051 0.029 0.052 0.052 0.036 0.055 0.210 0.974 0.055 0.081 0.479

100 0.054 0.052 0.018 0.048 0.047 0.032 0.052 0.206 1.000 0.053 0.083 0.781
200 0.059 0.051 0.013 0.055 0.055 0.024 0.052 0.207 1.000 0.058 0.089 0.974
400 0.049 0.049 0.011 0.053 0.051 0.022 0.052 0.210 1.000 0.055 0.089 1.000
800 0.050 0.045 0.005 0.050 0.048 0.018 0.055 0.222 1.000 0.051 0.092 1.000

200 50 0.050 0.044 0.032 0.050 0.052 0.040 0.054 0.194 0.955 0.050 0.086 0.527
100 0.049 0.049 0.029 0.049 0.051 0.036 0.048 0.190 1.000 0.052 0.089 0.850
200 0.053 0.049 0.030 0.052 0.053 0.035 0.055 0.193 1.000 0.050 0.085 0.996
400 0.051 0.049 0.022 0.050 0.048 0.035 0.050 0.193 1.000 0.050 0.091 1.000
800 0.050 0.053 0.018 0.051 0.053 0.033 0.052 0.188 1.000 0.049 0.088 1.000
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EXAMPLE 5.3.

(a) The data are drawn as X ∼ Np(0,R∗) with R∗ generated as follows: Consider a ran-
dom matrix � with all but eight random nonzero entries. We select the locations of four
nonzero entries randomly from the upper triangle of �, each with a magnitude randomly
drawn from the uniform distribution in [0,1]. The other four nonzero entries in the lower
triangle are determined to make � symmetric. Finally,

R∗ = (1 + δ)Ip + �,

where δ = {−λmin(Ip + �) + 0.05} · 1{λmin(Ip + �) ≤ 0} and λmin(·) denotes the smallest
eigenvalue of the input.

(b) The data are drawn as X = sin(2πZ1/3/3), where Z ∼ Np(0,R∗) with R∗ as in (a).
(c) The data are drawn as X = sin(πZ3/4), where Z ∼ Np(0,R∗) with R∗ as in (a).

EXAMPLE 5.4. The data are drawn as X ∼ Np(0,R∗), where R∗ = (1 − ̺)Ip + ̺Jp

with ̺ such that

(a)
( p

2

)
(2 arcsin̺/π)2 = p/n;

(b)
( p

2

)
(2 arcsin̺/π)2 = (3/2) · p/n;

(c)
( p

2

)
(2 arcsin̺/π)2 = 2p/n.

The powers for Examples 5.2–5.4 are reported in Tables 4–6. Several observations stand
out. First, throughout the sparse examples, we found that the proposed tests have the highest
powers on average. Among the three proposed tests, the power of DHSD is highest on aver-
age, followed by DHSτ∗ . Recall, however, that DHSD can be subject to slight size inflation.
Second, focusing on the results in Example 5.2, we note that, as more independent compo-
nents are added, the power of YZS significantly decreases. This is as expected and indicates
that YZS is less powerful in detection of sparse dependences. In addition, both HCLτ and
HCLρ perform unsatisfactorily in Example 5.2, indicating that they are powerless in detect-
ing the considered nonlinear, nonmonotone dependences, an observation that was also made
in Yao, Zhang and Shao (2018). Fourth, Tables 4 and 5 jointly confirm the intuition that,
for sparse alternatives, the proposed maximum-type tests dominate L2-type ones including
both YZS and LDτ∗ , especially when p is large. In addition, we note that, under the setting
of Example 5.3, the performances of HCLτ and HCLρ are the second best to the proposed
consistent rank-based tests, indicating that there exist cases in which simple rank correlation
measures like Kendall’s τ and Spearman’s ρ can still detect aspects of nonlinear nonmono-
tone dependences. Fifth, under a Gaussian parametric model, Table 5 (the first part) shows
that CJ, the maximum-type test based on Pearson’s r , indeed outperforms all others, though
the difference between it and the proposed rank-based ones is small. Lastly, Table 6 shows
that, as the signals are rather dense, L2-type tests dominate the maximum-type ones, con-
firming the intuition and also the theoretical findings that L2-type ones are more powerful in
the dense setting.

We end this section with a discussion of the simulation-based approach. In view of Propo-
sition 2.1, the distributions of rank-based test statistics are invariant to the generating distri-
bution, and hence we may use simulations to approximate the exact distribution of

S :=
n − 1

λ1
( m

2

) max
j<k

Ûjk − 4 logp − (μ1 − 2) log logp +
�

λ1
.

In detail, we pick a large integer M to be the number of independent replications. For each
t ∈ [M], compute S(t) as the value of S for an n×p data matrix X(t) ∈ R

n×p drawn as having
i.i.d. Uniform(0,1) entries. Let F̂n,p;M(y) = 1

M

∑M
t=1 1{S(t) ≤ y}, y ∈ R, be the resulting



3222 M. DRTON, F. HAN AND H. SHI

TABLE 4
Empirical powers of the eleven competing tests in Example 5.2

n p DHSD DHSR DHSτ∗ LDτ LDρ LDτ∗ HCLτ HCLρ YZS SC CJ

Results for Example 5.2(a)
100 50 1.000 1.000 1.000 0.058 0.049 1.000 0.089 0.033 0.442 0.047 0.024

100 1.000 1.000 1.000 0.055 0.045 1.000 0.070 0.025 0.156 0.049 0.018
200 1.000 1.000 1.000 0.052 0.046 1.000 0.049 0.017 0.071 0.048 0.011
400 1.000 1.000 1.000 0.058 0.049 0.973 0.043 0.014 0.057 0.050 0.011
800 1.000 0.827 1.000 0.061 0.052 0.520 0.029 0.009 0.054 0.050 0.007

200 50 1.000 1.000 1.000 0.053 0.045 1.000 0.099 0.038 0.955 0.053 0.033
100 1.000 1.000 1.000 0.055 0.051 1.000 0.080 0.038 0.435 0.050 0.032
200 1.000 1.000 1.000 0.048 0.045 1.000 0.060 0.028 0.142 0.045 0.023
400 1.000 1.000 1.000 0.052 0.047 1.000 0.049 0.023 0.078 0.048 0.023
800 1.000 1.000 1.000 0.057 0.052 1.000 0.044 0.020 0.053 0.050 0.021

Results for Example 5.2(b)
100 50 1.000 1.000 1.000 0.065 0.049 1.000 0.106 0.037 0.984 0.049 0.026

100 1.000 1.000 1.000 0.054 0.046 1.000 0.078 0.026 0.660 0.046 0.020
200 1.000 1.000 1.000 0.059 0.052 1.000 0.055 0.018 0.266 0.051 0.014
400 1.000 1.000 1.000 0.059 0.052 0.996 0.039 0.014 0.107 0.046 0.010
800 1.000 0.897 1.000 0.059 0.051 0.642 0.030 0.007 0.067 0.052 0.005

200 50 1.000 1.000 1.000 0.062 0.053 1.000 0.120 0.042 1.000 0.050 0.033
100 1.000 1.000 1.000 0.053 0.047 1.000 0.087 0.040 0.996 0.045 0.036
200 1.000 1.000 1.000 0.051 0.047 1.000 0.061 0.030 0.729 0.045 0.023
400 1.000 1.000 1.000 0.053 0.050 1.000 0.050 0.023 0.272 0.053 0.023
800 1.000 1.000 1.000 0.047 0.044 1.000 0.042 0.021 0.102 0.046 0.016

empirical distribution function. For a specified significance level α ∈ (0,1), we may now use
the simulated quantile Q̂α,n,p;M := inf{y ∈ R : F̂n,p;M(y) ≥ 1 − α} to form the test

T
exact
α := 1

{
n − 1

λ1
( m

2

) max
j<k

Ûjk − 4 logp − (μ1 − 2) log logp +
�

λ1
> Q̂α,n,p;M

}
.

The test becomes exact in the large M limit, immediately by the Dvoretzky–Kiefer–
Wolfowitz inequality for empirical distribution functions (e.g., Kosorok (2008), Theo-
rem 11.6), and is shown explicitly in the following proposition.

PROPOSITION 5.1. Under the independence hypothesis H0, for each (n,p), we have

with probability at least 1 − 2/M2 that

sup
α∈[0,1]

|P
[
S > Q̂α,n,p;M |

{
X(t)}M

t=1

]
−

{
1 − F̂n,p;M(Q̂α,n,p;M)

}
| ≤

(
logM

M

)1/2
.

Table A.1 in the Supplementary Material gives the sizes and powers of the proposed
tests with simulation-based critical values (M = 5000). The table shows results only for
Examples 5.1, 5.3 and 5.4 as the simulated powers under Example 5.2 were all perfectly
one. It can be observed that all sizes are now well controlled, with powers of the pro-
posed tests only slightly different from the ones without using simulation. An alternative
to the simulation-based approach would be a permutation-based approach, but we find
simulation based on the pivotal null distribution simpler to analyze and with the advan-
tage that approximation errors can be made arbitrarily small via larger Monte Carlo sam-
ples.
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TABLE 5
Empirical powers of the eleven competing tests in Example 5.3

n p DHSD DHSR DHSτ∗ LDτ LDρ LDτ∗ HCLτ HCLρ YZS SC CJ

Results for Example 5.3(a)
100 50 0.967 0.962 0.964 0.705 0.586 0.946 0.970 0.966 0.555 0.624 0.973

100 0.959 0.952 0.954 0.392 0.259 0.914 0.960 0.956 0.252 0.283 0.962
200 0.950 0.938 0.942 0.161 0.107 0.840 0.950 0.943 0.109 0.115 0.950
400 0.936 0.924 0.928 0.089 0.064 0.727 0.938 0.931 0.064 0.073 0.941
800 0.931 0.911 0.918 0.061 0.049 0.539 0.929 0.916 0.051 0.051 0.931

200 50 0.991 0.991 0.991 0.912 0.891 0.988 0.993 0.992 0.871 0.906 0.993
100 0.984 0.985 0.985 0.728 0.627 0.974 0.988 0.987 0.579 0.650 0.989
200 0.984 0.983 0.983 0.408 0.278 0.954 0.987 0.985 0.255 0.299 0.988
400 0.986 0.983 0.983 0.166 0.110 0.917 0.986 0.985 0.111 0.115 0.989
800 0.980 0.976 0.978 0.073 0.060 0.839 0.983 0.980 0.058 0.063 0.986

Results for Example 5.3(b)
100 50 0.759 0.642 0.687 0.244 0.167 0.623 0.623 0.553 0.277 0.260 0.786

100 0.747 0.624 0.670 0.131 0.091 0.555 0.607 0.540 0.131 0.125 0.758
200 0.720 0.583 0.635 0.082 0.062 0.444 0.578 0.502 0.080 0.075 0.714
400 0.702 0.557 0.615 0.065 0.054 0.333 0.549 0.471 0.060 0.061 0.678
800 0.679 0.512 0.577 0.057 0.048 0.218 0.517 0.431 0.052 0.051 0.638

200 50 0.897 0.843 0.866 0.423 0.343 0.825 0.810 0.767 0.577 0.550 0.928
100 0.880 0.819 0.846 0.248 0.170 0.753 0.784 0.732 0.287 0.273 0.912
200 0.855 0.789 0.818 0.128 0.088 0.670 0.757 0.714 0.129 0.128 0.891
400 0.849 0.768 0.799 0.074 0.059 0.571 0.743 0.689 0.065 0.064 0.875
800 0.820 0.738 0.772 0.051 0.045 0.450 0.713 0.654 0.053 0.051 0.852

Results for Example 5.3(c)
100 50 0.654 0.579 0.608 0.209 0.137 0.541 0.582 0.513 0.111 0.106 0.365

100 0.656 0.566 0.599 0.109 0.072 0.464 0.580 0.502 0.071 0.064 0.344
200 0.635 0.527 0.571 0.069 0.055 0.364 0.539 0.455 0.056 0.051 0.311
400 0.617 0.496 0.546 0.068 0.059 0.256 0.516 0.421 0.053 0.058 0.277
800 0.597 0.455 0.507 0.055 0.049 0.164 0.487 0.370 0.055 0.049 0.238

200 50 0.824 0.789 0.803 0.396 0.302 0.750 0.785 0.753 0.238 0.211 0.606
100 0.812 0.773 0.788 0.219 0.143 0.681 0.768 0.732 0.113 0.100 0.570
200 0.792 0.752 0.767 0.101 0.072 0.596 0.750 0.711 0.063 0.059 0.543
400 0.776 0.728 0.744 0.070 0.054 0.499 0.730 0.689 0.058 0.057 0.513
800 0.755 0.699 0.723 0.052 0.048 0.360 0.699 0.646 0.044 0.051 0.473

6. Discussion.

6.1. Discussion of Assumption 2.1. Assumption 2.1 plays a key role in our analysis. It
synthesizes crucial properties satisfied by the three rank correlation statistics from Examples
2.1–2.3.

From a more general perspective, one might ask whether there is an exact relation between
Assumption 2.1 and the properties of I- and D-consistency summarized in Weihs, Drton and
Meinshausen (2018). As a matter of fact, to our knowledge, most existing test statistics (in-
cluding rank-based, distance covariance-based, and kernel-based ones) that permit consistent
assessment of pairwise independence are asymptotically equivalent to U-statistics with the
corresponding kernels degenerate under the null, which echoes Assumption 2.1(ii). The only
exception is a new rank correlation measure that was just proposed (Chatterjee (2020)), whose
limiting distribution is normal. Its analysis uses the permutation theory and, in particular, is
not based on the U-statistic framework. Assumption 2.1(iii), on the other hand, is much more



3224 M. DRTON, F. HAN AND H. SHI

TABLE 6
Empirical powers of the eleven competing tests in Example 5.4

n p DHSD DHSR DHSτ∗ LDτ LDρ LDτ∗ HCLτ HCLρ YZS SC CJ

Results for Example 5.4(a)
100 50 0.102 0.068 0.074 0.532 0.524 0.350 0.062 0.046 0.474 0.578 0.042

100 0.104 0.056 0.066 0.578 0.560 0.361 0.052 0.036 0.492 0.620 0.033
200 0.096 0.035 0.048 0.583 0.565 0.343 0.037 0.022 0.488 0.620 0.018
400 0.104 0.040 0.050 0.542 0.534 0.320 0.038 0.018 0.471 0.610 0.012
800 0.095 0.018 0.032 0.570 0.552 0.344 0.027 0.007 0.487 0.620 0.005

200 50 0.104 0.080 0.086 0.564 0.544 0.357 0.081 0.072 0.478 0.614 0.068
100 0.073 0.052 0.059 0.590 0.580 0.357 0.054 0.043 0.509 0.654 0.052
200 0.085 0.061 0.064 0.594 0.585 0.336 0.052 0.040 0.488 0.652 0.040
400 0.075 0.040 0.049 0.604 0.591 0.332 0.038 0.028 0.498 0.668 0.024
800 0.067 0.036 0.044 0.586 0.573 0.320 0.034 0.027 0.488 0.640 0.026

Results for Example 5.4(b)
100 50 0.130 0.078 0.086 0.792 0.782 0.554 0.076 0.064 0.722 0.836 0.055

100 0.110 0.056 0.062 0.808 0.800 0.584 0.052 0.035 0.746 0.848 0.032
200 0.099 0.046 0.060 0.810 0.800 0.553 0.042 0.026 0.738 0.850 0.021
400 0.110 0.030 0.041 0.808 0.797 0.587 0.034 0.014 0.738 0.854 0.012
800 0.098 0.020 0.033 0.816 0.804 0.579 0.023 0.008 0.745 0.872 0.006

200 50 0.116 0.094 0.098 0.802 0.801 0.546 0.103 0.084 0.718 0.858 0.098
100 0.098 0.072 0.076 0.827 0.822 0.571 0.075 0.062 0.768 0.878 0.058
200 0.063 0.040 0.042 0.848 0.840 0.570 0.036 0.030 0.764 0.888 0.030
400 0.070 0.048 0.055 0.834 0.829 0.578 0.042 0.032 0.752 0.883 0.030
800 0.081 0.036 0.046 0.866 0.862 0.560 0.041 0.028 0.788 0.907 0.030

Results for Example 5.4(c)
100 50 0.157 0.102 0.116 0.904 0.900 0.731 0.093 0.069 0.864 0.926 0.076

100 0.124 0.067 0.082 0.914 0.909 0.738 0.058 0.036 0.878 0.943 0.042
200 0.115 0.051 0.059 0.918 0.913 0.748 0.046 0.028 0.880 0.947 0.018
400 0.112 0.034 0.046 0.930 0.926 0.738 0.038 0.017 0.888 0.954 0.009
800 0.101 0.030 0.039 0.927 0.924 0.744 0.029 0.012 0.879 0.946 0.012

200 50 0.120 0.100 0.098 0.935 0.932 0.740 0.110 0.098 0.894 0.952 0.118
100 0.107 0.082 0.085 0.941 0.939 0.740 0.072 0.066 0.892 0.960 0.065
200 0.096 0.062 0.072 0.962 0.960 0.768 0.064 0.048 0.930 0.976 0.046
400 0.077 0.042 0.046 0.964 0.962 0.792 0.037 0.028 0.930 0.978 0.024
800 0.090 0.043 0.054 0.956 0.956 0.776 0.044 0.028 0.922 0.980 0.016

specific and related to the particular properties of rank-based consistent tests. This assump-
tion, however, is key to the establishment of Theorem 4.2.

6.2. Discussion of τ ∗. In this section, we give new perspectives on Bergsma–Dassios–
Yanagimoto’s correlation measure τ ∗ := Ehτ∗ , introduced in Example 2.3. Hoeffding (1948)
stated a problem about the relationship between equiprobable rankings and independence that
was solved by Yanagimoto (1970). In the proof of his Proposition 9, Yanagimoto (1970) pre-
sented a correlation measure that is proportional to τ ∗ of Bergsma–Dassios if the pair is ab-
solutely continuous. Accordingly, we term the correlation “Bergsma–Dassios–Yanagimoto’s
τ ∗”. Yanagimoto’s key relation gives rise to an interesting identity between Hoeffding’s D,
Blum–Kiefer–Rosenblatt’s R, and Bergsma–Dassios–Yanagimoto’s τ ∗ statistics. This iden-
tity appears to be unknown in the literature. In detail, if z1, . . . ,z6 ∈ R

2 have no tie among
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their first and their second entries, respectively, then

3 ·

(
6
5

)−1 ∑

1≤i1<···<i5≤6

hD(zi1, . . . ,zi5) + 2hR(z1, . . . ,z6)

= 5 ·

(
6
4

)−1 ∑

1≤i1<···<i4≤6

hτ∗(zi1, . . . ,zi4).

(6.1)

Equation (6.1) can be easily verified by calculating all 6! entrywise permutations of
{1,2, . . . ,6}, but may be false when ties exist. Using the identity, we can make a step to-
wards proving the conjecture raised in Bergsma and Dassios (2014), that is, for an arbitrary
random pair (Z1,Z2)

⊤ ∈ R
2, do we have Ehτ∗ ≥ 0 with equality if and only if Z1 and Z2 are

independent?

THEOREM 6.1. For any random vector Z = (Z1,Z2)
⊤ ∈ R

2 with continuous marginal

distributions, we have Ehτ∗ ≥ 0 and the equality holds if and only if Z1 is independent of Z2.

Similarly, a monotonicity property of EhD and EhR proved by Yanagimoto (1970), Sec-
tion 2, extends to Ehτ∗ . We state the Gaussian version of this property.

THEOREM 6.2. If Z = (Z1,Z2)
⊤ ∈R

2 is bivariate Gaussian with (Pearson) correlation

ρ, then EhD and EhR , and, thus, also Ehτ∗ are increasing functions of |ρ|.

Theorem 6.1 complements the results in Theorem 1 in Bergsma and Dassios (2014) to
include random vectors with continuous margins and a bivariate joint distribution that is
continuous (implied by marginal continuity) but need not be absolutely continuous. Such an
example of distribution on R

2 that has continuous margins but is not absolutely continuous
has been constructed in Remark 1 in Yanagimoto (1970), where it is used to illustrate an
inconsistency problem about Hoeffding’s D. A simpler example is the uniform distribution
on the unit circle in R

2. For this, we revisit a comment of Weihs, Drton and Meinshausen
(2018) who noted that based on existing literature “it is not guaranteed that Ehτ∗ > 0 when
(X,Y )⊤ is generated uniformly on the unit circle in R

2.” We are able to calculate the values
of D and R for this example, and thus, can deduce the value of τ ∗.

PROPOSITION 6.1. For (X,Y )⊤ following the uniform distribution on the unit circle in

R
2, we have EhD = EhR = Ehτ∗ = 1/16.
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SUPPLEMENTARY MATERIAL

Supplement to “High-dimensional consistent independence testing with maxima of

rank correlations” (DOI: 10.1214/19-AOS1926SUPP; .pdf). This supplement contains all
the technical proofs and additional simulation results.
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