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ABSTRACT

Meazuring fizhing effort iz one important element for effective management of recreational fizheries. Traditional
intensive angler intercept survey methods collect many observations on a few water bodies per year to produce
highly accurate estimates of fishing effort. However, scaling up thiz approach to understand landscapes with
many systems, such az lake districts, iz problematic. In these situations, spatially extenzive sampling might be
preferable to the traditional intensive sampling method. Here we walidate a model-based approach that uses a
smaller number of observations collected using multiple methods from many fishing sites to estimate total fishing
effort across a fisheries landscape. We distributed on-site and aerial obzervations of fizhing effort acrozz 44 lakes
in Vilas County, Wizconsin and then used generalized linear mixved models (GLMMs) to account for seasonal and
daily trends as well as lake-zpecific differences in mean fishing effort. Estimates of total summer fishing effort
predicted by GLMMs were on average within 11 % of those produced by traditional mean expansion. Thesze
estimates required less sampling effort per lake and can be produced for many more lakes per year. In spite of the
with the addition of only three aerial observations per lake highlighted the potential for improved precizion with
relatively few additional observations. Thus, the combination of GLMMs and extensive data collection from
multiple zources could be uzed to estimate fishing effort in regions where intensive data collection for all fishing
zites iz infeasible, such as lake-rich landscapes. By using these methods of extensive data collection and model-
bazed analysis, managers can produce frequently updated azzessmentz of system statez, which are important in
developing proactive and dynamic management policies.

1. Introduction

Recreational fisheries

them particularly vulnerable to overfishing (Cocke and Cowx, 2004; Cox
et al., 2002; Post and Parkinzson, 201 2). Anglers exhibit heterogencous

are widespread and zocioeconomically preferences, which leads them to adjust the location and intensity of

important, with about 118 million estmated participantz in North
America, Europe, and Oceania (Arlinghaus et al | 2015; Tufts et al |
2015). Inland and marine reereational fisheries are responsible for
substantial removal of biomass, but in many systeme, insufficient data
are available to make proactive management decisions with the goal of
maintaining sustainable harvest (Cooks and Cowx, 2004; [hde =t al |
2011). In addition, these fisheries are frequently open-aceess, leaving
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their fishing =ffort in response to changing conditions. Thiz complicates
managers” ability to predict fish population dynamiecs (Carruthers et al |
2018; Wilon et al, 2020). Suceessful management of recreational
different spatial and temporal scales.

Recreational fisheries are diverse in their spatial extent; their dis-
trbuticon across the landscape; and their availability of cateh, effort, and
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harvest data (FAO, 2012; Kaemingk et al., 2019). Different systems
therefore rely on different methods for quantifying fishing effort dy-
namics, which can include intensive and/or extensive observations of
water bodies or access points. The number of water bodies surveyed
depends on the abundance of water bodies present in the region as well
as the budget limitations of the managing agency (e.g. Cass-Calay and
Schmidt, 2009; Chizinski et al., 2014; Malvestuto et al., 1978). Intensive
data collection on relatively few locations permits more in-depth sam-
pling of these locations over a wide range of conditions. For example,
access point creel surveys assign clerks to select water bodies or access
points for stratified-random shifts over much of the year. During these
shifts, clerks interview anglers and collect instantaneous counts of
angler effort (Newman et al., 1997; Pollock, 1994). For landscapes
where water bodies are relatively scarce, intensive data collection
satisfactorily balances costs of data collection with accuracy of fishing
effort and catch rate estimates. However, intensive data collection reg-
imens can also leave many water bodies with no available data
describing fishing effort, catch rates or harvest (Post et al., 2002). Many
fisheries landscapes could therefore benefit from extensive data collec-
tion, where fewer observations are collected per site, but more water
bodies or access points are surveyed (Beard et al., 2011). Fisheries
already applying these methods tend to rely on multiple data sources to
find the right balance between collecting sufficient observations per site
while also surveying as many sites as possible (e.g. Steffe et al., 2008). In
contrast, many fisheries that have historically been classified as small
scale are surveyed through intensive methods in spite of their large
spatial extent and/or their high number of access points or fishing sites,
such as lake districts (Deroba et al., 2007) and river systems (West and
Gordon, 1994). The pool of harvesters within a recreational fisheries
landscape is mobile and heterogeneous, and their fishing effort dy-
namics cannot always be understood by treating small water bodies and
fishing sites as independent fisheries (Matsumura et al., 2017; Martin
et al., 2017). Many of these fisheries landscapes therefore benefit from a
more extensive form of data collection and the integration of multiple
data sources (e.g. Smallwood et al., 2012; Askey et al., 2018).

Redistributing data collection to sample all water bodies or access
points is not a trivial issue, particularly in lake-rich landscapes or for
very large water bodies. For large water bodies with many access points,
roving creel survey methods are used to cover more area (Roop et al.,
2018; West and Gordon, 1994). Additional extensive survey methods
include the use of aerial surveys (Askey et al., 2018; Smucker et al.,
2010), cameras (van Poorten et al., 2015), and vehicle counters
(Simpson, 2018; van Poorten and Brydle, 2018), often in combination
with intensive creel methods (Hartill et al., 2016; van Poorten and
MacKenzie, 2020). However, when adapting these mixed methods for a
particular system, it will not always be possible to produce data
compatible with design-based estimates of fishing effort. Traditional
methods of estimating fishing effort rely on specific creel designs
intended to accommodate variation in fishing effort by temporal strata,
such as month or day of the week. Mean effort of a stratum is a mean of
means: the mean of daily total effort means within the stratum (Newman
et al.,, 1997). This mean expansion process leverages the central limit
theorem to allow Gaussian error propagation to estimate confidence
intervals around total fishing effort estimates (Sarndal et al., 1978).
Disparate systems use different creel designs to achieve this goal (e.g.
Chizinski et al., 2014; Lockwood and Rakoczy, 2005; Smallwood et al.,
2012), and they are difficult to adapt to non-standard data from sup-
plemental sources.

In contrast, model-based estimation of fishing effort can more easily
accommodate multiple data sources and is flexible to system-specific
sampling methods. An example of earlier model-based approaches in-
cludes a regression method predicting on-site estimates of total fishing
effort from instantaneous observations collected by aerial surveys in
British Columbia (Tredger, 1992). Askey et al. (2018) demonstrated that
the previously employed regression method produced biased estimates
and rigorously demonstrated the effectiveness of a generalized linear
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mixed model-based estimation approach using aerial surveys and on-site
data collection from time-lapse cameras. Model-based approaches to
estimating fishing effort across multiple fishing sites or water bodies are
therefore not new methods, but they have generally been applied to test
for differences in fishing effort dynamics among groups (Merten et al.,
2018), or to understand ecological and fishery influences on fish growth
and productivity (Varkey et al., 2018). Similar models could instead be
applied to extensively collected data from multiple sources to estimate
waterbody-specific fishing effort over many potential fishing sites.

Despite the availability of multiple data sources for estimating fish-
ing effort, it is not always feasible to survey all fishing sites across a
landscape. Models used to estimate total fishing effort could therefore be
extended to predict angling effort based on empirical relationships be-
tween fishing effort and abiotic and biotic lake variables. Studies of
stated and revealed angler preferences have already identified lake
characteristics that are particularly attractive to anglers. For example,
large lakes that are easily accessible and present high-quality fishing
opportunities are more likely to be chosen as angling sites (Hunt, 2005;
Reed-Andersen et al., 2000; Hunt and Dyck, 2011). However, anglers
have heterogeneous preferences, so it is not immediately clear whether
these differences in characteristics among lakes may influence the
overall distribution of angling effort (Beardmore et al., 2013; Breffle and
Morey, 2000; Curtis and Breen, 2016; Kane et al., 2020). Lake-specific
predictors could include some of the many lake morphometric and
landscape variables known to influence fishing effort either directly or
indirectly through their influence on fish community composition and
abundance. In a study estimating total harvest across Wisconsin, Embke
et al. (2020) used generalized linear mixed models (GLMMs) with lake
characteristics as predictors to estimate harvest on unobserved lakes. If
lake characteristics as well as the confounding effects of weather, time of
day, and seasonality are also consistent predictors of fishing effort
among lakes (i.e. Deroba et al., 2007), at least coarse estimates of fishing
effort at unobserved lakes can be produced based on observed lake
characteristics.

We tested a model-based approach to estimating fishing effort using
extensive data collected in Vilas County, Wisconsin. To accomplish this
goal, we examined annual summer fishing effort predictions of GLMMs
fit to three datasets. These datasets were collected using different
methods that demonstrated tradeoffs between the number of observa-
tions per lake and the number of lakes surveyed (Table 1). One dataset
was classified as intensive because it included many observations of
fewer lakes per year. The second and third datasets were extensive
because they contained fewer observations per lake, but many more
lakes were surveyed each year. The third dataset additionally included
aerial survey observations of the same lakes to test for the value of
including a supplemental data source. We completed a series of tests
using these datasets to address the following questions: 1) When fit to
extensive data, can models detect annual, seasonal, and daily changes in
fishing effort? 2) How do fishing effort estimates derived from extensive
observations compare to those derived from intensive observations? 3)
How well can models fit to extensive data predict total fishing effort on

Table 1
Characteristics of the three datasets we evaluated when estimating lake-specific
total fishing effort.

Intensive Extensive Extensive dataset
dataset dataset with aerial surveys
Sampling methods On-site On-site On-site observations
observations observations Aerial surveys
Number of years 25 2 2
surveyed
Number of lakes 65 38 44
surveyed
Mean number of lakes 4.9 (2.6) 21(7.1) 29.5 (19.1)
surveyed per year
(SD)
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unobserved lakes? 4) How can these model-based methods be applied to
predict fishing effort acroes a fisheries landscape?

2. Methods

2.1. Swmudy area

All observations of angling effort tock place In Vilas County, Wis-
consin. Vilaz County iz part of the Northern Highlande Lake District
(NHLD), a highly forested, lake-rich region known for ite fishing touriem
(Peterson =t al., 2002). With increasing choreline residential develop-
ment and the continued effects of global climate change, the NHLD lake
fisheries have shown marked changes in species composition and size
structure (Christensen et al., 1996; Sass et al., 2006; G. Hansen et al,
2015a, b; Embke et al., 2019). The high density of lakes in this region
means that intensive creel data are collected infrequently for each sur-
wveyed lake If accurate estimates of fishing effort could instead be
derived from extensive data colleeted over more lakes, managers’ un-
derstanding of effort dynamics at many lakes of interest could be
updated more frequently. Vilas County has 1318 lakes, of which 175
have public access points maintasined by the WDNR (Wizconsin
Department of Matural Resources, 2009). Sines 1995, the Wisconsin
Department of Natural Resources (WDNE) has conducted intensive creel
surveys on 65 Vilaz county lakes (Fiz. 1, Tabls 1). Intensive data
collection on lakes inhabited by walleve (Sander vitreuz) in the Ceded
Terrtory (the northern third of Wisconsin) was imitiated by the WDNR
and the Great Lakes Indian Fich and Wildhife Commission (GLIFWC) m
1987 after the US Seventh Circuit Court of Appeals affirmed the
off-reservation hunting, fishing, and gathering nghts of Ojibwe tribal
members. The WDNR annually selects among all lakes containing
walleye using a stratified random desizn to complete adult walleye
population estimates, age-0 walleye relative abundance surveys, and
nine-month creel surveye. In addition, each year four “trend™ lakes are
selected, which are sampled every three years, and moet other lakes are
surveyed about onee every ten years (Cichosz, 201 2). The data collected
from these surveys are used to manage the joint tribal spearing and
recreational angling fishery for walleye in the Ceded Territory of Wis-

conein (Hansen =t al., 1991).

2.2, Data collection

Intensive observations of instantanecus boat counts were collected
by the WDNR during 1995-2019 acrosz 65 lakes using a stratified
random survey design. On average, five Vilas County lakes were sur-
wveyed per year (Tables 1 and Al), and only lakes containing walleye
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were surveyed (Cichosz, 2019). Survey dates and times were stratified
by month, weekend, and momings and evenings. A creel elerk’s 40 -h
workweek was randomly assigned to days and times based on these
strata. In general, lakes were surveyed for nine monthe each and visited
for about 20 creel shifis per month. November, March, and April were
usually omitted from sampling due to perilous ice conditions. Instanta-
neous counts were completed at two randomly selected times during
each shift. Creel elerks cireled the lake by beat, counting the number of
anglers that were either actively fishing or known to be moving between
fiehing locations (Gilbert =t al, 2013; Rasmussen et al., 1998).

For our extensive experimental creel survey, we completed on-site,
instantaneous counts of fishing activity at 38 lakes in Vilas County, WI
from mid-May to mid-August of 2018 and 2019 (Fiz. 1, Appendix A1)
Sixty creel shifte in 2018 and 120 shafts in 2019 were stratified by
weekendes and weekdays as well az by morming (5:30 to 13:30) and
evening (13:30 to 21:30) shifts. We randomly assigned at least four of
these shifts to each lake, with the restriction that each lake needed to be
surveyed at least onee on a weekend or holiday. In addibion, morning
and evening shifts were required to take place at each lake. During each
creel shift, we completed three instantaneous boat counts at randomly
selected times. If randomly selected count times were less than one hour
apart, count tfimes were re-drawn until thie eriterion was met. If a count
wae selected to take place before sunnee or after dark, the count was
instead completed at sunnse or sunset, respectively, and the new count
time was recorded. On average, 13 Instantancous counts were
completed per lake during the 6 months total of experimental creel
surveye from 2018 and 2019 (Tables Al and A2). We completed on-site
instantaneous counts of fishing effort from a boat, counting the number
of fishing boats and shore anglers who were actively fishing at the count
time. For each boat or shore angler observed, we recorded whether or
not they were angling, the number of passengers, and whether the boats
were moving or stationary. Because we counted fishing vessels while the
intensive ereel survey counted anglers, we converted the ntensive raw
counts to an approximate number of fishing boats bazed on the mean
number of passengers per boat observed during our extensive on-site
counts (|1 = 2.04, ¢ = 0.95).

In addition, we completed three aerial surveys of the same 38 lakes
(pluz 6 others) on June &6, July 10, and July 27, 2019. Flight= were
scheduled based on pilot availability and weather conditions. Voluntesr
pilots flew a pre-planned flight path in low-wing, single-engine aireraft
The pilot circled each of the target lakes at an altitude of 760 m while the
counts took place. Two passengers were present for data collechon: one
identifying lakes and recording counts and the second locating and
counting boats. When conditions allowed, we used binoculars to identify
boats containing anglers. We could not always vigually identify fishing

Imensive
chsersations

Exlensive
absarvations

Bath extensive
and intansne

Fig. 1. Map of Vilaz County, WI showing location of lakes intenzively surveyed by WDNR (green), extenzively surveyed by our experimental creel survey (blue), and
surveyed by both (red) (For interpretation of the references to colour in thiz figure legend, the reader iz referred to the web verzion of thizs article].
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boats, so unassigned stationary or slow-moving boats were therefore
probabilistically classified as fishing or non-fishing based on the pro-
portion of fishing boats among all stationary and slow-moving boats
observed during on-site counts. We observed 62 % of stationary boats
and 80 % of slow-moving boats to be fishing during our on-site counts,
so each unassigned stationary and slow-moving boat was randomly
assigned a classification with a 0.62 or 0.80 probability, respectively, of
being classified as a fishing boat.

2.3. Traditional mean expansion estimates of fishing effort

Mean expansion estimates of total fishing effort from intensive data
compute the sum of mean fishing effort over several strata. Every month
of observations makes up one level, and then each month is subdivided
into weekday and weekend/holiday strata. Two counts of fishing effort
were collected every shift, and these were averaged to estimate each
day s mean effort. Daily mean effort was multiplied by the number of
daylight hours to estimate that day s total boat hours. The mean of this
daily mean total effort was then calculated separately by month and
weekday strata, and the sum of these grand means estimated the lake
year s total fishing effort. The standard deviation (SD) of angler counts
within a stratum was completed according to Rasmussen et al. (1998),
and summer fishing effort SD for each lake was calculated as the square
root of the summed variance of all strata. This protocol of mean
expansion has been demonstrated to accurately estimate total annual
fishing effort relative to a census count (Newman et al., 1997). We
calculated fishing effort from intensive data only for summer months
between May and August. Seven lakes were surveyed intensively and
extensively on different years. This overlap allowed us to compare the
accuracy and precision of mean-expansion total summer fishing effort
estimates with our model-based estimates from extensive data.

2.4. When fit to extensive data, can models detect annual, seasonal, and
daily changes in fishing effort?

We modeled instantaneous boat counts as a response to the effects of
lake, year, day of year, and time of day using GLMMs. We tested the fit of
different distributions to our count data using the R package fitdistr-
plus (Delignette-Muller and Dutang, 2015) in R version 3.6.1 (R Core
Team, 2019). Because the count data were overdispersed, we fit nega-
tive binomial regressions with a log link function. We used autocorre-
lation function (ACF) plots of standardized residuals to detect significant
temporal autocorrelation. Random intercepts incorporated variation
due to lake identity that was not accounted for in the explanatory var-
iables (Zuur et al., 2009). By including random intercepts to accom-
modate lake-specific variation in fishing effort, we allowed the model to
pool information across lakes in order to detect general patterns in
seasonal and daily fishing effort dynamics. This model was then used to
predict hourly instantaneous counts across a summer for each lake. The
area under the curve of these predictions then provide estimates of
annual summer fishing effort that can be compared to estimates ob-
tained by mean expansion of intensive data.

We used two datasets, the intensive WDNR observations and the
extensive experimental data, and compared the ability of GLMMs to
detect changes in fishing effort on three subsets of this data: (1) the
intensive observations, (2) the extensive on-site observations, and (3)
our combined extensive on-site and aerial survey observations. We
completed forward model selection of a pre-specified set of increasingly
specific predictors by comparing Akaike Information Criterion (AIC) of
candidate models. We used a AIC cutoff of -2 for selecting the best-
fitting model. The simplest model consisted of only a random inter-
cept by lake. We sequentially added in effects for year, day of year, and
hour of day. Seasonality and time of day are already well known pre-
dictors of fishing effort (e.g. Mann and Mann-Lang, 2020; Powers and
Anson, 2016). By completing forward-selection of nested models, we
were able to compare the ability of different datasets to detect
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increasingly granular dynamics of fishing effort. For the models fit to
intensive observations, the year effect was a second random intercept.
For the two extensive datasets conducted only over two years, we
included a year fixed effect using a dummy variable. To aid conver-
gence, all continuous predictor variables were centered and scaled. We
fit these models using the Ime4 package version 1.21 (Bates et al., 2015).
Validity of the models was assessed using the DHARMa package v.0.2.6
(Hartig, 2019), and marginal and conditional r?> were estimated using
the trigamma method with the MuMIn package v.1.43.15 (Barton,
2019).

2.5. How do fishing effort estimates derived from extensive observations
compare to those derived from intensive observations?

Before comparing model-based to mean expansion predictions, we
first validated that generalized linear models fit separately to each lake
year of intensive data produced total fishing effort estimates comparable
with those produced through mean expansion (Appendix A2, Fig. Al
and A2, Tables A3 and A4). After this validation, we then tested the
accuracy and precision of total summer fishing effort estimates derived
from each of the candidate GLMMs fit in section 2.4. We compared
predictions generated by each GLMM with the estimates calculated by
mean expansion for the seven lakes surveyed in both datasets. Hourly
predictions of instantaneous boat counts from May 1 to August 31 for
these lakes were obtained by predicting boat counts at each daylight
hour of each day. Continuous prediction variables were centered and
scaled according to the mean and standard deviation of the original fit
data. Predictions for all models and datasets were produced for all
daylight hours of summer, conditional on a mean year effect using the
merTools v.0.5.0 R package (Knowles and Frederick, 2019). The area
under the curve of each lake s summer predictions was then calculated
using the trapezoidal rule, which produced an estimate of total summer
fishing effort for each lake. By bootstrapping the model predictions for
5000 iterations, we obtained a mean estimate of total fishing effort as
well as upper and lower 95 % prediction intervals. This process was
repeated for each of the candidate models. These prediction intervals of
model-based estimates of fishing effort were then compared to fishing
effort estimates calculated through mean expansion of intensive data. To
summarize correspondence between predicted and observed fishing
effort for each dataset and model, we compared indices of relative ac-
curacy and precision (Ira and Irp, defined below) of each model s pre-
dicted total summer fishing effort versus expanded mean estimates as in
Steffe et al. (2008). Some lakes were intensively surveyed over several
years. For these lakes, we compared model-based total effort estimates
to the mean of all years mean expansion estimates. The Ir4 specifies the
similarity of two estimates relative to the magnitude of the estimate of
interest. A positive Ir4 indicates that the model-based estimate is higher
than that of the mean expansion by some proportion of its overall value,
while a negative value indicates a lower estimate.

The Izp describes the similarity of each estimates relative standard
error (RSE) as a percentage of the RSE of the estimate of interest. A
positive Izp value indicates that the model-based estimate is more pre-
cise than that of the mean expansion, or in other words, its standard
error is a smaller proportion of its estimate.

Mean Izs and Ip were then calculated for all lakes surveyed inten-
sively and extensively.
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2.6. How well can models fit to extensive data predict total fishing effort
on unobserved lakes?

We chose the most accurate predictive model from section 2.5 and
added covariates describing lake characteristics. We chose variables
representing landscape predictors of boating density as described by
Hunt et al. (2019). Hunt et al. (2019) modeled the distribution of
boating activity in Ontario, Canada as a function of lake surface area,
accessibility, human development, and fishing quality. We restricted
ourselves to data that were easily obtained for all lakes in a fisheries
landscape. Lake surface area is a well-established predictor of fishing
effort (e.g. Hunt, 2005), and it is available for all Wisconsin lakes. We
also had access to lake-specific availability of public boat ramps and
presence of walleye, a popular target species. Each of these variables
were obtained from the WDNR lake database (Wisconsin Department of
Natural Resources, 2009). Distance from a resident pool of anglers,
either from a nearby urban center or from lake residents, has also been
demonstrated to predict fishing effort (Hunt et al., 2011; Wilson et al.,
2020). However, given the low and relatively homogeneous population
density of Vilas County (Peterson et al., 2003; U.S. Census Bureau,
2010), we judged housing density of the lakeshore to be a more influ-
ential source of nearby anglers. We calculated building density (build-
ings per km shoreline) within 200 m of each lake s shoreline using GIS
data obtained from the WDNR and Vilas County. As an additional
measure of accessibility, distance to the nearest secondary road was
calculated as Euclidean distance from the centroid of a lake to the closest
point of the road. Latitude and longitude of each lake was obtained from
the WDNR 24 K Hydro Geodatabase ( 24 K Hydro Full Geodatabase for
Download, 2017), and road data came from the United States
Geological Survey National Transportation Dataset for Wisconsin
( USGS National Transportation Dataset Downloadable Data Collection,
” 2017). Continuous variables were scaled and centered. These models
were fit as described in section 2.4, and p-values were estimated based
on Wald tests with the null hypothesis that the predictors have no effect
on fishing effort and an alpha  0.05.

Models ability to predict total effort on unobserved lakes was tested
using leave-one-group-out (LOGO) cross validation for models fit to
intensive and extensive datasets. All observations from each lake were
iteratively removed from the dataset, the models were refit, and the
missing values predicted. These predictions were bootstrapped for 5000
iterations to obtain upper and lower 95 % prediction intervals for the
effort estimates. The Iz and Izp of these estimates were then estimated
relative to those produced by mean expansion of intensive data.

2.7. How can these methods be applied to predict fishing effort across a
fisheries landscape?

The best-performing predictive GLMM was used to estimate total
summer fishing effort across all lakes and years surveyed either inten-
sively or extensively in Vilas County. We fit the model to the combined
intensive and extensive datasets, including random lake and year effects
and fixed effects of weekend, day of year, and a dummy variable indi-
cating the survey method. A full summer of fishing effort was then
predicted for each lake over each year represented in the full combined
dataset. We obtained 95 % prediction intervals by bootstrapping the
model predictions for 5000 iterations. Predictions were completed for
100 lakes over 25 years.

3. Results
3.1. When fit to extensive data, models detect presence and shape of
annual, seasonal, and daily changes in fishing effort, but underestimate

their magnitude

The best-fit models included a year effect and quadratic effects of day
of year and hour of day, which suggests that seasonal and daily patterns
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of fishing effort were detected by models fit even with few observations
per lake (Table 2). The quadratic effect of time of day was the best fitting
of all of the functional forms tested for this variable (Tables A5-A7).
Weekends and holidays had a consistently positive effect on fishing
effort for all datasets. However, the models fit to the intensive dataset
were the only models to detect significant quadratic effects of day of
year and hour of day on fishing effort (Tables A8-A10). Therefore, while
including annual, daily, and hourly effects improved model fit for all of
the data sets, it was only the annual and weekend effects that were
detectable in the models fit to extensive data. Fixed effects such as day of
year, weekend/weekday, and hour of day, explained very little variance
in fishing effort (Table 3). Although lake and year random effects
consistently explained around 40 % of the variance in fishing effort,
marginal 2 values for hourly and daily fixed effects were very low,
indicating that they explained 5% of the variance in instantaneous
fishing effort.

3.2. Models fit to extensive data produce similar estimates to mean
expansion of intensive data, with some reduction in accuracy and precision

With the exception of Irving Lake (IV), all models fit to the extensive
data produced fishing effort estimates with prediction intervals that
overlapped with those produced by mean expansion of intensive data
(Fig. 2). These models all produced mean estimates of fishing effort
within 20 % of the value of those produced by mean expansion of
intensive data (Table 4). The best performing model for the extensive
dataset, which included day of year and weekend fixed effects, produced
estimates that were, on average, within 11 % of the mean expansion
estimate. As expected, when the models were fit to intensive data, they
produced estimates of fishing effort that were nearly identical to those
produced by mean expansion (Table 4, Fig. 2).

On an individual lake basis, the effects on accuracy of increasing
model complexity were relatively subtle and depended on lake identity.
Fishing effort on Irving Lake (IV), for example, was continuously
underestimated by all models fit to extensive data. Estimates for Little
Arbor Vitae Lake (LV), however, were quite accurate for simple models
but became more negatively biased as more parameters were added.
Note the differences in total fishing effort predictions for this lake be-
tween Figs. 2A and 2D. The addition of aerial survey data tended to
marginally improve the mean accuracy of predictions for all lakes. More
notably, aerial survey data on average improved the precision of fishing
effort estimates as measured by Izp (Table 4). Prediction intervals of
model estimates based only on on-site extensive observations tended to
be, on average, 7 10 times wider than the confidence intervals associ-
ated with mean expansion. Adding only 3 aerial observations per lake
reduced the average width of estimate prediction intervals by nearly
half. This improvement in precision suggests that a moderate number of
additional samples could result in a substantial reduction in uncertainty

Table 2

AIC values for each model fit to each dataset. Each model contains its listed
predictors as well as all predictors listed for the models above it. Values for AIC
are the difference between that model s AIC and that of the model containing
only a random lake effect. The best fit model for all datasets is in bold.

Model Intensive data On-site extensive On-site and aerial
data survey extensive
data
AIC AIC AIC AIC AIC AIC
1 Lake 90,206 1360.1 1725.8
Year 89,883 323 1350.2 9.9 1713.3 12.5
Day of year 88,766 1440 1346.6 13.5 1708.5 17.3
Day of year?
Weekend

87,948 2258 1338.9 21.2 1700.0 25.8
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Table 3
Marginal and conditional r* values for each model fit to each dataset. Each model contains itz listed predictors az well as all predictors listed for the models above it.
Model Intengive data Om-gite extengive data Omn-gite and aerial extencive dats
Marginal Conditional Marginal GConditional = Marginal r* Conditional
(1| Lakee) 0.36 038 0.39
+ Yeor 039 0.035 046 0021 043
+ Day of year+ Day of year + Weckend 0.023 0.43 0047 050 0.031 0.45
+ Hour of doy+ Hour of day® 0.044 046 0.065 0.52 0044 046
) potentially imiting our ability to compare estimates of fishing effort. To
. A ~ investigate the influence of year effects on our estimates, we caleulated
5000 t; ectimates of total fiching effort for each year surveyed using our best-
. E performing model Fishing effort eshimates varied substantially be-
. T = tween years, especially for Little Arbor Vitae and Oxbow lakes (Fig. 2).
50 "... - ™ é These two lakes had produced the least accurate model-based pre-
o - . dictions conditional on a mean year effect, but for each of these lakes,
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Flg. 2. Comparizon of total summer fishing effort estimates between mean
expansion (black), and area under the curve of GLMM predictions ft to
extensive data (colors). Parameters added to each model are indicated by the
labels on the right Pointz are mean estimates, and bars show 95 % prediction
intervals. Lakes that were intensively surveyed multiple years by the WDNR
have multiple estimates depicted along with their 95 % prediction intervals.

associated with these estimates of fishing effort. An exaggerated version
of thiz change can be zeen in the predictions for Oxbow Lake (OB), on
which fewer on-site cbeervations were recorded. When three aerial
observations were added for thiz lake, the span of the estimate’s pre-
dichon interval decreased from a width of 16,147 boat houre to 7724
boat hours, or over 50 % (Fiz. 2C).

Intensive and extensive datasets were collected on different years,

Table 4

the total =ffort prediction produced for cne year was substantially closer
to the mean expansion estimates. Much of the difference between mean
expansion and model-based fishing effort estimates could therefore be a
result of the mismateh In years between intensive and extensive
sampling.

3.3. Model-bazed predictions of fishing effort on out-of-sample lakes
showed mixed performance

Predicting fishing effort for epecific unobserved lakes required add-
ing covariates deseribing lake characteristics that may influence fishing
effort. Adding these lake vanables caused marked changes to the
model’s conditional and marginal = values (Table 5). Although the fixed
effects in GLMMe predicting fishing effort from year, seasonal, and daily
effects explained only around 5% of the varance in fishing effort, fixed
effects in models containing lake vanables explained between 20 and 30
%. Because these lake wanables toock over some of the explanatory
ability previcusly held by the random effects, these models could predict
at least a portion of the vanation in out-of-sample lakes, 1e. lakes
without their own random intercept.

The effect zize and significance of these lake variables depended on
the dataset to which the model was fit (Table 5). Lake area had a sig-
nificant positive effect on metantaneous fishing effort in models fit to all
three datasets. Distance from lake to the nearest secondary road had no
significant effect in any models. In the model fit to intensive data, all
lake variables with the exception of distance to road and walleye pres-
ence have a significant effect on fishing effort. In the model fit to
extensive data, however, lake area and walleye presence were the only
LOGO cross validation were mixed (Fig. 4). On average, the model fit to
the extensive dataset containing aerial survey data produced estimates
of fishing effort within 11 % of those produced by mean expansion
[Table 6). Howewver, this small Ig4 value was largely due to the very hagh
predictions for Black Oak Lake (BE) and the very low predictions for
Little Arbor Vitae (LV) offectting each other. Model-based predictions of

Mean indices of accuracy and precizion for model-based estimates of total summer fiching boat hours relative to mean expansion estimates. (N = 7) Each model

contains its listed predictors as well az all predictors lizted for the models abowve it

Model Intengive dats Om-gite extengive data Om-gite and asrial extenzive data

Mean [, (5D) Mean [y, (5D Mean [, (5T Mean Iy, (5D Meamn Iy, (5D} Mean [y (GD)
(1| Lake) 777 (6.66) —53.34 (2Z7.07) —5.58 (44.03) —777.03 (331 26) 1.80 (42.B5) —537.65 (143.04)
+ Yeor 4.54(12.17) —9201 (33.14) 1811 (53500 —7o0.14 (335.32) 11.79 (48.67) —544.33 (134.47)
+ Day of year+ Day of year* + Weckend —1.16 (11.69) —59.73 (33.02) —8.28 (51.51) —016.03 (362.26) —11.01 (39.41) —620.51 (139.96)
+ Hour of day+ Hﬂw’#dﬂf —4.82 (12.54) —7T6.05 (39.63) —11.45 (#6.64) —030.99 (335.73) —13.86 (36.17) —648.57 (137.16)
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Table 5
Parameters of a GLMM predicting fishing effort from seasonality and lake variables as fit to each dataset. Parameters with signiftcant effects are in bold.
Mosdel parameters Intenzive data On-gite extengive data Omroite and aerial extengive data
Coefficient (5E) P wvalue Coefficient (5E) P value Coefficient (5E) P value
Irtereept —0.66 [0.55) 0.23 —1.51 (0.39) 0.0001 —1.35 (0.31) <0.0001
Lake area (fha) 056 (0.12) <L 01 0.47 (0.13) 0.0002 0.50 (0.10) <0001
Building density 025 (0.100 0ol 0.09 (0.13) 0.50 0.06 (0,100 0.55
Boat ramp present 0L.71 (0.22) 0001 014 (0.42) 0.74 019 (0.33) 0.56
Walleye present 072 (0.54) 018 L.40(0.34) <L 001 1.23 (0.25) <0001
Distonee o road —0.02 (0.09) 078 —0.06 (0.11) 0.6l —0.10 (0.09) 0.25
Year 2018 —0.25 (0.09) 0.006 —0.21 (0.06) 00009
Day of yeor 1.21 (0.09) <L 01 1.06 (0.78) 017 0.75 (0.58) 0.27
.Duy’ﬁ_‘pbm‘z —1.22 [0.09) <L 01 =113 (077} 014 —0LBS (0.67) 0.21
Wedkend 047 (0.01) <L 01 0.21 (0.11) 0.05 0.18 (0.09) .04
Marginal 0.23 0.26 0.28
Conditional = 0.43 0.34 0.35
£ 15000
o
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c estimates
& 100004 +
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Fig. 4. Out-of-zample total summer fshing effort predictions for lakes that were surveyed both extensively and intensively. Lakes that were intensively surveyed
multiple years by the WDNE. have multiple estimates depicted along with their 95 % prediction intervals. Estimates were predicted bazed on lake characteristics,
seazonality, and the grand mean random lake intercept through LOGO eross validation

(I¥]), Birch (BH]}, Oxbow (OB), and Whate Birch (WEB] lakes. Howewver,
thiz model produced much less accurate predictions for Allequash (AQ),
Black Oak, and Little Arbor Vitae lakes. These results could have stem-
med from two problems: 1) no lake-specific random intercept was
available for the cut-of-eample lakes, or 2) the selected lake varnables

were inconeistent predictors of fshing effort.

To evaluate these two options, the LOGO cross validation process
was repeated while retaining the acrial survey observations for the “out-
of-eample™ lake. This process simulated the seenano of predicting fish-
ing effort based on limited observations az well az lake variable pre-
dictors. Retaiming these obeervations, however, did not substantially
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Table &
Mean indicezs of relative accuracy and precizion of out-of-zample model predictions relative to mean expansion estimates of intensive data. (M = 7L
Model Intengive data Om-gite extengive data On-gite and aerial extenzive
data
Mean Mean Iyp Mean Mean [p Mean Meam Iy,
Ty (BLY) (5D Ty (5D (500 Ty (5D (5D
{1|Lake) + Year+ Day of year+ Day of year® + Weekend+ Lake area+ —26.39 80.03 —16.30 —76.55 —10.78 —68.84
Building density + Boat ramp+ Walleye presence + Distonee to roed (76.33) (45.15) (64.55) (8.64) (58.60) (10.21)

improve the predictions of total fishing effort (Figure A4). The models fit
to the intensive dataset had to be simplified due to an upper limit on
computation ime. Rather than including both year and daily covariates,
the model included only a vear random effect, in addition to the lake
random effect and lake charactenistics that were included mn the other
models. Qut-of-sample predictions of models fit to iIntensive data tended
Lake (IV), where these predictions were much closer to the mean
expansion value.

3.4. Model-bazed methods can integrate multiple data sources to predict
fishing effort across a fistheries landzcape

By fitting a GLMM to the combined intensive and extensive datazets,
we could fit a random intereept to each lakes and year surveyed and then
predict total summer fishing effort across all lakes for each of the years
reprezented in the datasetz. Average hourly fishing effort 15 highly het-
erogencous across the county (Fiz. 54, Table A11). Several lakes stood
out az having exceptionally high mean hourly fishing effort. For
example, Lac Vieux Dezgert and Little Saint Germain Lake had 603 % and
518 % higher effort, respectively, than the mean In addition, while
fishing effort varied by year, no trend in overall fishing effort was
evident (Fiz. 5B). Fishing effort in 1995, however, was very high
compared to other years.

4. Discussion

Extensive data collection from multiple data sourees 15 an effective
tool for managers to understand fishing effort dynamics acroes a fish-
eries landseape. A model-based approach to analyzing this data allows
managers to leverage multiple sources of extensive fishing effort data
available within their system. By relving on extensively collected data,
managers can estimate total fishing effort for many more fishing sites or
water bodies than would be possible under an intensive sampling
regimen. Purther coverage of fisheries landecapes by spatially extensive

A

M=an hourly

fishing effort 3 0§ @

Tatal surmmer angler hours

approaches could be achieved through supplemental data sourees such
ag aecrial surveys, camera trape, and drones. With further understanding
of predictors of lake use, out-of-eample estimates of fishing «ffort can
further improve landscape coverage.

4.1. Evaluating the success of extensive data collection for model-bazed
estimates

On average within the seven lakes evaluated, a model incorporating
the effects of lake identity, wear, day of year, and weekends predicted
total summer fiching effort estimate values within 11 % of the value of
those obtained by mean expansion. Because the extensive dataset con-
tained fewer observations per lake, some reduction in accuracy was
expected. Purther, the intensive and extensive observations took place
on different years. We therefore remain encouraged that estimation
methods using much less data produced similar results to data-rich mean
expansion. Mean differences in accuracy among the seven lakes sur-
veyed intensively and extensively were primanly drven by a tendency
to underestimate fishing effort on Irving and Little Arbor Vitae lakes and
to overcstimate fishing effort on Oxbow Lake. The underestimation of
the use of extensively collected data. By chanee, two out of four of our
experimental ereel survey shifts at thiz lake took place during inclement
weather. As a result, the mean instantaneous boat counts collected for
thiz site were not representative of typical fishing effort, and these
predictions showed no overlap of predichon intervals with those of
survey data, which by necessity tock place during fair weather, pre-
dictions of a eimple GLMM were very similar to those of mean expansion
of intensive data (Figure A3). The effects of poor weather could be
accounted for in future applications by including a covariate for severe
weather effects in the GLMM. Weather conditions did not obviously
influence obeervations on Little Arbor Vitae, but a higher variation in
total annual effort for this large, busy lake may have contributed to the
reduced accuracy and precizion of ite model-based total fishing «ffort
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Fig. 5. Lake-specific values of the random intercept for each of the 100 lakes surveyed either intenzively or extensively in Vilas County, WI (A), and a time series of
total annual summer fishing effort across each of these lakes for every year of observations (B).
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estimates.

Oxbow Lake produced fishing effort estimates with extremely wide
prediction intervals. Only 6 instantaneous counts of fishing effort (3 on-
site, 3 aerial) took place on this lake, less than half the number of ob-
servations collected for other lakes, which likely explains the discrep-
ancy in total effort estimates. Although it was only possible to evaluate
predictions for a small number of lakes, these examples demonstrate
some of the strengths and limitations of our spatially extensive, model-
based method. An extensive data collection scheme can produce
reasonably accurate estimates of total fishing effort, but lake specific
fishery characteristics and chance conditions during the survey will in-
fluence the optimal distribution of observations.

Our results highlight the tradeoffs that managers face in designing
surveys to estimate lake-specific fishing effort. For landscapes where
potential fishing sites are numerous, conducting extensive rather than
intensive surveys may allow improved understanding of fishery dy-
namics across a broader scale. If, for example, an agency is limited to
500 observations for one summer, there are tradeoffs to consider when
deciding how many lakes over which to spread those observations.
These data could be used to obtain a highly accurate estimate for three
lakes by following the traditional mean expansion protocol. In this case,
each of the three lakes would be surveyed on 80 days of the summer with
2 instantaneous boat counts on each day (i.e., 3 lakes x 80 days x 2
observations per day = 480 observations). Alternatively, the agency
could survey 31 lakes, spending 8 days surveying each one and
completing two instantaneous fishing effort counts per day (i.e. 31 lakes
x 8 days x 2 observations per day 496 observations). Based on our
results, transitioning from an intensive sampling regime to extensive
sampling should result in, on average, a 3x increase in the width of the
prediction intervals, but, in this example, a more than order of magni-
tude increase in the total number of lakes for which effort estimates are
available. The acceptability of these tradeoffs in accuracy and precision
associated with greater water body coverage will depend on the man-
agement priorities for the region in question.

Some limitations exist in our ability to compare our estimates of
fishing effort from extensive data collection to traditional mean expan-
sion of intensive data. When evaluating the accuracy of model-based
total fishing effort predictions, we compared prediction intervals for
an average survey year with the confidence intervals of the expanded
mean total effort calculations. There was no way to account for the effect
of the year of the intensive survey when calculating indices of relative
accuracy and precision, and year effects appear to be the reason for
much of the difference in total fishing effort estimates. An additional
design-related limitation is the relatively small number of lakes avail-
able for comparison of model-based with mean-expansion total effort
estimates. Our summary statistics of Ir4 and Izp generalize the accuracy
and precision of estimates within the seven lakes surveyed intensively
and extensively, but we have no way of knowing the accuracy and
precision of total fishing effort estimates for the other 31 lakes that were
extensively surveyed. We can, however, compare our methods and re-
sults with those of Askey et al. (2018). Askey et al. (2018) rigorously
validated the use of GLMM-based estimates of fishing effort with
different sample sizes selected from a large dataset collected by aerial
surveys and time-lapse cameras. The smallest sample sizes tested in their
article were 10 and 20 observations. Within our limited selection of
lakes with extensive and intensive data available, we found similar mean
percent inaccuracies for our total effort estimates.

4.2. Opportunities for further landscape coverage

Total fishing effort estimates can be improved by integrating sup-
plemental data sources, such as aerial surveys. By including only three
additional aerial observations per lake, we substantially improved the
accuracy and precision of our estimates. Even without including on-site
observations, a small number of aerial observations per lake produced
reasonably accurate, if coarse, estimates of total fishing -effort
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(Figure A3). Aerial surveys are ideal for measuring the distribution of
fishing effort across many lakes. This method is particularly useful for
surveying fisheries with a large spatial extent, such as lake districts
(Askey et al., 2018; Hunt et al., 2019; Tredger, 1992), major river sys-
tems, (Sindt, 2012) and marine and Great Lakes fisheries (Lockwood and
Rakoczy, 2005; Zellmer et al., 2018). Despite its strengths, this method
may be too expensive to implement consistently in many fisheries sys-
tems and can be limited by severe weather conditions.

Traffic counters and boat launch cameras have also been used to
quantify fishing effort and boat traffic (Hunt and Dyck, 2011; Simpson,
2018; van Poorten et al., 2015; van Poorten and Brydle, 2018). These
methods can passively collect effort data without the need for creel
clerks, but cameras and counters are still expensive and prone to
vandalism (van Poorten et al., 2015). The use of drones in fisheries
science has been advocated (Kopaska, 2014), and they have been suc-
cessfully used for identifying derelict or illegal fishing gear (Bloom et al.,
2019), counting fish in shallow rivers (Tyler et al., 2018), and moni-
toring marine protected areas (Miller et al., 2013). Privacy concerns and
aviation laws, however, complicate their use in monitoring angling ac-
tivity for inland fisheries (Duncan, 2016; Lally et al., 2019). Although
each of these methods has costs and benefits, they are all potentially
fruitful supplemental data sources for model-based estimates of angler
effort for different fishery systems.

As we demonstrated, fishing effort data collected through an exten-
sive sampling scheme from multiple sources can be used to understand
differences in fishing effort across a broad spatial and temporal scale.
Through two years of extensive data collection using on-site and aerial
observations, we added coverage of 44 lakes to the combined intensive
and extensive fishing effort dataset describing Vilas County. Based on
the year effects estimated from 25 years of intensive data, we were able
to predict total fishing effort for all lake-year combinations. Although
the empirical data does not exist to validate these estimates, this analysis
remains a useful demonstration for the potential of extensive data
collection and GLMM-based analysis for estimating fishing effort across
a lake-rich landscape. Further annual extensive data collection would
quickly expand this coverage, as well as allow for the direct comparison
of fishing effort between years on a broader scale. These data also have
promise for detecting seasonal and daily patterns in fishing effort, which
can assist fisheries managers in choosing optimal times for management
interventions.

As we found, however, a granular understanding of shifts in angler
effort dynamics requires more data than we collected in our extensive
sampling scheme. By allowing partial pooling of observations between
lakes using lake random intercepts, some generalizable patterns were
observed, but more observations per year may be needed to estimate the
magnitude of seasonal and daily effects. Alternatively, different lakes
may have different diel and seasonal fishing effort patterns. Although
the extensive creel survey included fewer lakes than the intensive sur-
vey, a wider variety of lakes were surveyed, including lakes with no
walleye population, no boat ramp, and lakes with smaller surface areas.
Because of this greater variation in lake characteristics, concurrent dif-
ferences in diel and seasonal fishing effort patterns may have been
washed out to non-significance when the GLMMs were fit. In this case,
more intensive data collection with more observations per lake may be
required to understand lake-specific seasonal and daily patterns. A hy-
pothetical fisheries manager is therefore left to decide whether their
goals are best served by investing their limited resources in extensive
data collection over a wider spatial extent or intensive data collection
within a limited number of systems.

This question of appropriate tradeoffs could be sidestepped if man-
agers could effectively predict fishing effort for unobserved lakes based
on lake characteristics. We attempted to predict unobserved fishing
effort using easily obtained data, with mixed results. Model predictions
overlapped with mean expansion estimates for five out of the seven lakes
tested, but total fishing effort for the other two were substantially over-
or underestimated. Lakes associated with inaccurate predictions did not
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have any obvious characteristics in common that could explain this
discrepancy. These results could be explained by our use of only easily
obtained predictor variables, or they could be an indication that lake
characteristics are not consistent, linear predictors of lake-specific
fishing effort. We chose lake variables that aligned with characteristics
found to predict recreational boating density by Hunt et al. (2019),
including lake surface area, walleye presence, and indices of human
development and accessibility. Differences in sampling frame between
our intensive and extensive data collection resulted in differences in
parameter values between models fit to different datasets. For example,
intensive data collection in Wisconsin takes place only on lakes con-
taining walleye. Because no contrast was available for this parameter, no
walleye effect could be tested. In summer, walleye are also almost
exclusively available to boat anglers, potentially explaining the presence
of a boat ramp effect in the intensive but not the extensive dataset.
Distance to secondary road had no effect on instantaneous fishing effort
in any dataset. Most likely, this result stems from measuring distance to
road from the centroid of each lake. This metric does not account for the
location of boat launches, so the nearest secondary road as measured
here may still be inconveniently far away from any access points. Po-
tential explanations for the absence of a building density effect in the
extensive data are less clear. The lakes surveyed for both datasets had a
similar range in building density values (0 70 buildings per km in the
intensive data and 0 80 buildings in the extensive data). It is possible
that, similar to diel and seasonal patterns, housing density has a
different effect on fishing effort for different lakes. Not all lake residents
are interested in fishing, and the presence of some building types such as
resorts may be a better predictor of resident fishing effort than the
presence of family homes.

Indicators of fishing quality such as angler catch rates or fish popu-
lation estimates, rather than indirect measurements of accessibility, may
improve the predictive ability of these models, but these data are labor-
intensive to produce and therefore did not exist for every lake in our
extensive dataset. By applying model-based fishing effort predictions
over every lake- year combination in the combined intensive and
extensive datasets, we identified a handful of extremely high fishing
effort lakes, which allowed us to explore potential commonalities be-
tween them. The primary characteristic these lakes had in common was
their surface area; the lakes with highest mean fishing effort ranged from
350 to over 1600 ha in surface area (Table A11). In contrast, no obvious
correlation was found between fishing effort and population abundance
or catch rates of popular target species. However, very high fishing effort
lakes all tended to have moderate, rather than high or low, catch rates
for panfish and muskellunge (Figures A5-A8). Most likely, predicting
fishing effort based on lake characteristics would require accounting for
nonlinear responses and interactions of lake characteristics, potentially
using nonparametric methods such as random forests (e.g. van Poorten
et al., 2013). Although out-of-sample predictions of fishing effort were
not consistently accurate, we argue that extensive data collection for
GLMM-based estimates of total fishing effort is a promising approach for
understanding effort dynamics in highly distributed and/or data poor
fisheries.

4.3. Applications to fisheries management

Our modeling approach proved effective for predicting angler effort
across a fisheries landscape; however, other metrics derived from
traditional angler intercept surveys, such as angler catch rates and es-
timates of total catch, are also important for fisheries management. That
said, our approach could compliment existing efforts to address these
important, additional aspects of fisheries. For example, recent research
by Embke et al. (2020) used GLMMs to produce recreational harvest
estimates for 267 lakes that were surveyed intensively as well as all
unobserved inland lakes across Wisconsin based on abiotic variables and
an angler access metric. Coarse estimates of fishing effort based on
spatially extensive observations could further refine harvest estimates
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on these otherwise unobserved lakes. Additional catch and harvest data
can also be collected during spatially extensive sampling of fishing effort
through angler intercept interviews (Iwicki et al., in prep). Perhaps most
importantly, the different levels of variability associated with fishing
effort and harvest estimates based on extensively collected data can
identify lakes of greater uncertainty where additional sampling re-
sources should be directed. For example, high-effort and high-variance
lakes such as Little Arbor Vitae likely need to be allocated more sam-
pling effort than lakes such as White Birch (Fig. 3).

In addition to its applicability to data-poor fisheries, a model-based
approach to generating fishing effort estimates from fewer observa-
tions at more fishing sites could be a practical tool for managers who
want to implement ecosystem-based management strategies that can
respond to fast and slow changes across a fisheries landscape (sensu
Walker et al., 2012). A transition from a one-size-fits-all management
policy to a more diverse set of policies may contribute to a more
persistent and resilient fisheries system (Carpenter and Brock, 2004; van
Poorten and Camp, 2019). These policies would ideally be dynamic
across space and time, which requires faster feedback from data
collection describing how interventions have affected fishing effort,
catch, and harvest. Although implementing highly dynamic and
lake-specific policies is probably an unrealistic goal in lake-rich fish-
eries, tailored management of different categories of lakes may simul-
taneously improve system resilience and angler satisfaction by
accommodating the preferences of heterogeneous groups of anglers.
Strategic collection of fishing effort data over many lakes may therefore
be an effective bridge between one-size-fits all policy and model-based
implementation of diverse and dynamic policies.
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