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Abstract

We study a transportation network company (TNC) that offers on-demand solo and pool-
ing e-hail services in an aggregate mobility service market, while competing with transit for
passengers. The market equilibrium is established based on a spatial driver-passenger match-
ing model that determines the passenger wait time for both solo and pooling rides. We prove,
under mild conditions, this system always has an equilibrium solution. Built on the mar-
ket equilibrium, three variants of pricing problems are analyzed and compared, namely, (i)
profit maximization, (ii) profit maximization subject to regulatory constraints, and (iii) social
welfare maximization subject to a revenue-neutral constraint. A comprehensive case study
is constructed using TNC data collected in the city of Chicago. We found pooling is desir-
able when demand is high but supply is scarce. However, its benefit diminishes quickly as
the average en-route detour time (i.e., the difference between the average duration of solo
and pooling trips) increases. Without regulations, a mixed strategy—providing both solo and
pooling rides—not only achieves the highest profit and trip production in most scenarios, but
also gains higher social welfare. The minimum wage policy can improve social welfare in the
short term. However, in the long run, the TNC could react by limiting the size of the driver
pool, and consequently, render the policy counterproductive, even pushing social welfare be-
low the unregulated level. Moreover, by maintaining the supply and demand of ride-hail at
an artificially high level, the minimum wage policy tends to exacerbate traffic congestion by
depressing the use of collective modes (transit and pooling). A congestion tax policy that
penalizes solo rides promotes pooling, but may harm social welfare. However, it promises to
increase both social welfare and pooling ratio when jointly implemented with the minimum
wage policy.
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1 Introduction

The rise of transportation network companies (TNCs), such as Uber, Lyft and Didi Chuxing, has
reshaped the ride-hail industry in the past decade. The e-hail service offered by TNCs is praised
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for its advanced real-time matching, dynamic pricing and flexible labor supply (Azevedo and
Weyl, 2016; Cramer and Krueger, 2016; Nie, 2017). Many TNCs also provide on-demand ride-
sharing (e.g., UberPool and LyftShared), referred to as pooling hereafter. Unlike conventional
ride-sharing (e.g., carpooling), pooling occurs in real time and is served by dedicated drivers
who are dispatched and paid by TNCs. When requesting a ride, a passenger may select a full-
price solo ride or a discounted pooling ride. If she chooses to pool, the platform would search
for fellow passengers who may share a portion of her trip. Generally, pooling tends to increase
the distance and duration of a trip due to detours. Hence, for passengers, the primary trade-
off is between a lower trip fare and a longer travel time. As for TNCs, pooling helps increase
the service capacity without hiring more drivers. Also, as drivers are primarily paid according
to the time and distance associated with the passenger-delivering portion of the trip1, referred
to as occupied time and distance hereafter, TNCs may generate a greater profit by serving more
pooling rides. However, the detours due to pooling consume extra vehicle time, which, if not
properly controlled, could compromise the overall level of service and compel passengers to
choose alternative modes, notably transit. Therefore, the TNCs often have to cut the price of
pooling to make it sufficiently attractive, which creates a downward pressure on the profit. On
the other hand, pooling promises a smaller fleet size that can be used more efficiently. Hence, it
is also an effective response to the outcry of the cities that have been blaming TNCs for, among
other things, intensified traffic congestion (Schaller, 2017, 2018; Erhardt et al., 2019).

Central to the complex interdependent relationship among the stakeholders—passengers,
drivers, the TNCs and the regulator—are two choices: (i) the passengers’ mode choice among
solo ride, pooling ride and transit; and (ii) the TNCs’ pricing strategies for solo and pooling
rides and for the compensation to drivers. The objective of this paper is to model these decision
processes, identify various factors that may influence them and quantify their relative effects on
the conditions of an aggregate personal mobility service market. Of particular interests are the
TNCs’ profitability, the market share of the collective modes (pooling and transit) and the social
welfare. We shall also examine how regulations might affect these outcomes.

To the above end, we consider an e-hail platform (referred to as the platform hereafter) that
offers both solo and pooling rides. The two services are jointly priced, along with the payment
received by drivers2. On the demand side, passengers choose a mode from solo ride, pooling ride
and transit based on a generalized cost that incorporates trip fare, wait time and trip duration. On
the supply side, the platform has access to a pool of qualified drivers who enter the service only
if the average earning rate exceeds a reservation rate (which may be considered as the opportunity
cost for drivers). We note that, even though the platform dominates the e-hail service, it does
not monopolize the whole mobility market since we assume the three modes (transit, solo ride
and pooling ride) substitute each other. The platform possesses no monopoly power over its
supply either, because TNC drivers are allowed to choose flexible work schedules based on their
reservation rates and the earning rate of the platform.

The interaction between passengers and drivers is captured by a physical matching process
that dictates the passenger wait time. We extend the spatial matching theory developed in Chen

1See e.g., Uber (https://www.uber.com/us/en/drive/services/shared-rides/) and Lyft (https://help.lyft.
com/hc/en-us/articles/115012926987-Shared-ride-driver-pay) policies.

2Unlike a typical wage, this payment fluctuates with market conditions. We note that drivers are considered as
“contractors” rather than “employees”, and hence they do not earn a wage.
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et al. (2018) and Zhang et al. (2019) to model the case of pooling between two passengers. Specif-
ically, the wait time of each pooling ride is separated into two parts. The first corresponds to
the pickup process of the passenger closer to the matched vehicle, while the second is the detour
to pickup the other passenger. Accordingly, the total wait time depends on both the density
of vacant vehicles and the density of pooling passengers in the market. The market equilib-
rium is formulated as a nonlinear equation system, on which we build the platform’s pricing
problem with the objective of (i) profit maximization, (ii) profit maximization subject to a reg-
ulatory constraint, and (iii) social welfare maximization subject to a revenue neutral constraint.
We investigate two regulatory policies that have already been enacted or are currently under
consideration in major US cities, namely, a minimum wage policy and a congestion tax policy.
Our case study, built on TNC data collected in Chicago, reveals that the two policies each have
pros and cons, and yet combining them promises to simultaneously promote collective modes
and improve social welfare.

The rest of this paper is organized as follows. Section 2 briefly reviews related work. Section 3
presents the physical model that describes the matching process with pooling, from which the
expected wait times are derived. A model of the aggregate market equilibrium is presented in
Section 4, along with a discussion of its existence. Optimal pricing problems are formulated
in Section 5, as well as corresponding solution algorithms. Section 6 reports and discusses the
results of the case study. Section 7 summarizes the main findings and comments on the directions
for future research.

2 Related work

The ride-hail market, traditionally dominated by taxis, has been studied extensively. Douglas
(1972) and Arnott (1996) characterize the aggregate equilibrium between passenger demand and
vehicle supply in street-hail and radio-dispatch taxi services, respectively. In both studies, as
well as in many following studies, passenger demand is assumed to decrease with trip fare and
expected wait time. In addition, the wait time—a primary measure of the level of service (LOS)—
is typically modeled as a decreasing function of vacant vehicle density (Douglas, 1972; Beesley
and Glaister, 1983; Arnott, 1996; Zha et al., 2018b). This gives the salient feature of the ride-hail
market: to achieve a desired LOS, a portion of the supply has to be “wasted” deliberately in the
form of vacant vehicle time. In this regard, the radio-dispatch service differs from the street-
hail taxis because it wastes supply not only on searching, but also on the pickup time spent by a
“matched” vehicle to reach a passenger. This difference turns out to be rather consequential for
e-hail, which is our focus here and can be viewed as a modern and more sophisticated version of
radio-dispatch. Castillo et al. (2018) shows that this extra pickup phase can lead the system to an
inefficient state called Wild Goose Chase (WGC), where most vehicles are stuck on the way to pick
up passengers due to demand surge or suboptimal dispatching polices. The central question
for the equilibrium analysis of ride-hail is how passenger wait time is jointly determined by
demand, supply and the matching process that links them. Hence, in what follows, we first
review previous studies on matching, before turning to pricing and regulations. We end with
recent studies on modeling e-hail with pooling.
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2.1 Matching

The matching process has been characterized by different approaches in the literature. Some
studies assume it is frictionless, i.e., the number of matched trips simply equals to the demand
or the supply, whichever is smaller (e.g., Lagos, 2000; Bimpikis et al., 2019). Others introduce
an aggregate matching function to describe the pickup rate as a function of two primary inputs:
the number of unmatched vehicles and the number of waiting passengers. One widely used
function is the Cobb-Douglas function (e.g., Yang et al., 2010b; Yang and Yang, 2011; He and Shen,
2015; Wang et al., 2016; Zha et al., 2016), and the other is the urn-ball matching function (e.g.,
Shapiro, 2018; Buchholz, 2019), which models the matching process as Bernoulli trials. Another
possibility to obtain an aggregate matching function is through simulation (e.g., Frechette et al.,
2019). The third line of research attempts to simplify the matching process as a queue (e.g.,
Banerjee et al., 2015; Afeche et al., 2018; Xu et al., 2019). However, the queuing models often
rely on the assumptions that passengers are picked up immediately after being matched with
a vacant vehicle. The two exceptions are Besbes et al. (2018a) and Feng et al. (2017). Both
studies incorporate a state-dependent pickup time into the service rate of an M/M/n queuing
system. However, the impact of passenger competition on the pickup time is described by the
total number of passengers in the system, including those that are waiting for pickup and those
that are en-route to their destination. Further, empirical evidence has shown that the pickup time
in e-hail does not follow an exponential distribution, as usually assumed in the queuing models
(Yan et al., 2019; Zhang et al., 2019).

A few recent studies start to pay closer attention to the physical nuances that are unique in
the matching problem for ride-hail. Zha et al. (2018b) propose a geometric matching model to
estimate the average matching and pickup time, though it still relies on a hypothetical functional
form of matching. Yang et al. (2020a) propose a physical matching model based on the notion of
the “dominant-zone”, within which there is only one waiting passenger, and thus she is always
matched to the closest idle vehicle. Chen et al. (2018) and Zhang et al. (2019) develop a spatial
matching theory that encapsulates the matching process of both cruising taxi and e-hail as spe-
cial cases. Their model yields closed-form expected passenger wait time, and is calibrated and
validated by empirical data.

2.2 Pricing

The pricing problem has attracted a great deal of interest in ride-hail research, with a significant
amount of work devoted to the real-time pricing and price-aware dispatching (e.g., Asghari and
Shahabi, 2018; Tong et al., 2018; Xu et al., 2018; Nourinejad and Ramezani, 2019). The focus
of the present study, however, is pricing in the context of equilibrium analysis. In this line of
research, the most popular topic is surge pricing, i.e., dynamically adjusting price in response to
demand surge (e.g., Cachon et al., 2017; Besbes et al., 2018b; Hu et al., 2018; Garg and Nazerzadeh,
2019). Castillo et al. (2018) show that surge pricing helps prevent the system from falling into a
catastrophic failure caused by WGC. Others have demonstrated that surge pricing is more robust
than static pricing policies (Banerjee et al., 2015) and, contrary to the conventional wisdom, could
be useful even in areas that are less profitable or have excessive supply as it incentivizes drivers
to relocate (Besbes et al., 2018b; Guda and Subramanian, 2018). Although the platform and
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drivers in general benefit from surge pricing, passengers are the ones who have to bear the cost.
Thus, it has been argued that regulations may be needed to check this practice, especially when a
platform has de facto monopoly (Zha et al., 2018a). Yang et al. (2020b) demonstrate that capping
the surge price leads to losses in profit and social welfare. They suggest integrating a reward
scheme with surge pricing to solve this problem.

Pricing strategies are also designed to achieve a spatial balance between demand and supply,
often known as spatial pricing (e.g., Zha et al., 2018b). Recently, Bimpikis et al. (2019) show that
both the platform’s profit and the consumer surplus can be maximized by an optimal pricing
policy under a “balanced” demand pattern. In addition, a few studies examine the impacts of
demand sensitivity to wait time and the service capacity on the optimal price of an on-demand
service platform (e.g., Bai et al., 2018; Taylor, 2018).

Our focus here is the joint pricing problem for a mixture of solo and pooling rides, which has
not been fully examined in the literature. It is worth emphasizing that the objective of “pricing”
here is not to split the cost between passengers and drivers to achieve a stable match, as pursued
by Furuhata et al. (2014) and Wang et al. (2018), but rather to maximize the platform’s profit.
While the potential of pooling has been well established in the literature (e.g., Santi et al., 2014;
Alonso-Mora et al., 2017), it remains unclear how much of this potential can be achieved by a
profit-maximizing platform.

2.3 Regulations

Before the launch of Uber in 2009, the ride-hail industry in most cities around the world had
been tightly regulated, in terms of both price and entry. As explained above, conventional taxi
firms must supply vacant vehicles to maintain certain LOS but cannot directly price this part
of the operation. Since a greater use could help offset this uncovered cost, ride-hail is essen-
tially a decreasing-average-cost industry (Douglas, 1972; Beesley and Glaister, 1983). This in turn
implies that the industry should display increasing returns to scale, and thereby is subject to
natural monopoly that would produce below the efficient level (Hotelling, 1938; Arnott, 1996).
On the other hand, full competition in a ride-hail market is unlikely to maximize social welfare
(Douglas, 1972; De Vany, 1975; Cairns and Liston-Heyes, 1996). Both observations suggest regu-
latory interventions may help, prompting recurrent debates about whether and how to regulate
(Frankena and Pautler, 1986; Cairns and Liston-Heyes, 1996; Flores-Guri, 2003; Yang et al., 2005,
2010a). Other than controlling price and entry, some even argue the taxi industry should be
subsidized in order to achieve the social optimum (e.g., Arnott, 1996).

While e-hail appears to share a similar cost structure with taxi (Zha et al., 2016), it has a
radically different supply model that challenges both operators and regulators. In particular, e-
hail drivers are considered “independent contractors” who neither earn a fixed wage nor commit
to a fixed work schedule. In other words, the platform does not have a full control over its service
capacity. The regulations currently under consideration focus on capping the number of licences
and setting a minimum “wage” to protect drivers (Joshi et al., 2019). Gurvich et al. (2019) analyze
the service capacity management problem for a service provider relying on a flexible supply
model similar to that of e-hail. The authors argue that imposing a minimum wage will force
the provider to restrict the number of agents on the platform during certain time periods. This
implies that, in response to a minimum wage regulation, e-hail platforms may cap the number
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of drivers online when the supply is sufficient, effectively limiting their scheduling flexibility. A
similar argument is given by Asadpour et al. (2019). The authors show that, under certain market
conditions, the platform cannot satisfy the required wage floor while maintaining a non-negative
profit. As a result, it would respond to the regulation by either exiting the market, or reducing
drivers’ flexibility. However, Parrott and Reich (2018) conclude that TNCs “could easily absorb
an increase in driver pay with a minimal fare adjustment and little inconvenience to passengers”.
Specifically, their simulation results indicate the minimum wage policy proposed by the New
York City will only lead to a relatively minor increase in passenger wait time. A recent study by
Li et al. (2019) shows that a cap on the number of vehicles benefits the platform but hurts drivers.
On the other hand, imposing a minimum wage benefit both drivers and passengers because it
pushes the platform to hire more drivers. Yu et al. (2019) analyze the welfare effects of the entry
control policy in a market where e-hail and traditional taxi services compete for passengers. They
conclude that there exists an optimal capacity cap that can best balance competing objectives of
various stake holders. Our reading of literature above suggests no study has examined what
partially motivates our study: the impact of regulations on an e-hail platform serving both solo
and pooling rides.

2.4 E-hail with pooling

Studies on modeling e-hail with pooling in the context of equilibrium analysis emerged only
recently. In Jacob and Roet-Green (2018), a TNC platform offers solo and/or pooling rides to
passengers with two different levels of willingness to pay. They derive the optimal operational
and pricing strategies under various demand conditions. The analysis only considers two dis-
crete price levels and assumes drivers are paid at a fixed commission rate. Since passenger wait
time is not explicitly considered, the model is unable to fully capture the spatial demand-supply
interaction in the ride-hail market. Yan et al. (2019) propose and analyze a pool-matching model
called dynamic waiting. Assuming pooling passengers be picked up simultaneously at the mid-
point of their origins, they model and calibrate the pickup time as as a power function of the
number of idle vehicles nearby. The model, however, seems to lack an explicit mechanism to
link important features in pooling, such as detours and pooling demand, to passenger wait time.
Ke et al. (2020) formulate the market equilibria with either solo or pooling rides. The authors
show that, under certain conditions, the equilibrium price in a pooling market is lower than that
in a market without pooling at the monopoly equilibrium, the social optimum, or a second-best
equilibrium. This is because, in a pooling market, a unit decrease in trip fare not only attracts
more passengers due to negative price elasticity, but also improves the level of service by reduc-
ing the detour, which is negatively correlated with demand. The latter, however, is derived from
the assumption that the average detour time is inversely proportional to passenger demand. An-
other main difference from this study is that, when solving the optimal pricing problem, Ke et al.
(2020) treat the vehicle fleet size as a decision variable that is fully controlled by the platform.
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3 Matching with pooling

In this study, a pooling ride is defined as a trip shared by two passengers. It starts when an idle
driver is assigned to pick up both passengers, one at a time, and ends when both passengers
arrive at their destinations. A solo ride is referred to a regular e-hail trip with only one passenger.
A driver cannot be assigned to another ride until he finishes serving his current ride, solo or
pooling.

To simplify notations, we name the passengers who choose solo rides as solo passengers, and
those choosing pooling as pooling passengers. If the platform does not offer pooling rides, all
passengers must choose solo rides. We name passengers in such a case as e-hail passengers to
distinguish them from solo passengers who have the pooling option. Accordingly, we use sub-
scripts s, p and e to denote variables associated with solo, pooling and e-hail rides, respectively.
Notations used in this study are listed in Table A1 in Appendix A.

𝑤"#
Δ%

Pooling ridesSolo rides

𝑤"&

Dispatched vehicle Solo/pooling passenger

Figure 1: Pickup process of solo and pooling rides.

Figure 1 illustrates how passenger wait times for solo and pooling rides are modeled in this
study. The wait time for a solo ride, denoted as w̃s

3, depends on the distance between the
passenger and the vehicle assigned to her (see the left panel in Figure 1).

A pooling ride is matched as follows. After a passenger makes a request, she will be paired
with another passenger with relatively close origin and destination. Then, an idle driver is
assigned to the pair. This process is similar to what is employed in Jacob and Roet-Green (2018)
and Ke et al. (2020) except that no upper bound is imposed on the maximum matching interval
in our model. Instead, we rely on the matching mechanism itself to dissuade passengers from
choosing pooling, when the matching interval becomes unbearably long. Specifically, the wait
time for a pooling ride consists of two parts (see the right panel of Figure 1). The first part,
denoted as w̃p, is the pickup time for the passenger closer to the matched vehicle. The second
part, denoted as ∆̃, is the detour time consumed in picking up the other passenger, determined
by the distance between the two passengers sharing the trip. Since the pooling trip starts when
both passengers are picked up, ∆̃ is included in both passengers’ wait time, even though the first
passenger is already in the vehicle in this period. Note that the demand for pooling is closely
related to ∆̃: the lower is the demand, the longer is ∆̃.

3Random variables used in this study are labelled with a header “˜”.
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Before presenting the matching model, we wish to emphasize that the objective here is to
represent the relationship between macroscopic variables that can be meaningfully measured
and predicted in a highly idealized macroscopic market, such as average wait time, and the
density of passengers/vacant vehicles. As a compromise, most details of the matching process,
including matching time (i.e., the duration from the moment when the platform receives a request
to the moment when it assigns a vehicle to serve the ride), matching criteria (e.g., distance,
shareability), and dynamic pooling strategies, are left out. Because these details vary strongly
across time, space and platform, it is difficult to represent them explicitly and satisfactorily by
the equilibrium state of our model. In addition, their effects on wait time and detour time, which
are the most important attributes of the ride-hail service, appear to be of secondary importance.
For example, the matching time is usually at least an order of magnitude smaller than the pickup
time (Zha et al., 2018b), whether vehicles are assigned to requests immediately (Castillo et al.,
2018) or in a batching process (Yang et al., 2020a). The only exception is when there is a severe
supply-demand imbalance and passengers must wait to be matched in a virtual queue. However,
such an extreme case need not concern us because (i) the focus here is on a relatively long-term
market equilibrium; and (ii) transit would serve as a fallback option. Although we do not model
the detailed matching process, we shall implicitly capture its aggregate effect on wait time and
detour time by introducing exogenous parameters that can be calibrated from empirical data.

3.1 Expected wait time of e-hail passengers

Consider a passenger who requests a ride from an e-hail platform. Her wait time depends
on the density of vacant vehicles Λ and the density of waiting passengers Π in the market
(Zhang et al., 2019). Vacant vehicles consists of unmatched vehicles, with a density Λ0 = bΛΛ,
and matched vehicles, with a density Λ1 = (1 − bΛ)Λ. Similarly, waiting passengers can be
divided into unmatched passengers, with a density Π0 = bΠΠ, and matched passengers, with
a density Π1 = (1 − bΠ)Π. In this study, an unmatched passenger (vehicle) is waiting to be
matched, whereas a matched passenger (vehicle) is waiting to be picked up (en-route to pick up
the passenger). To simplify the analysis, the following assumptions are introduced (Chen et al.,
2018; Zhang et al., 2019),

Assumption 1 Vacant vehicles and waiting passengers, matched or unmatched, are all uniformly dis-
tributed with their respectively densities. In addition,

1. all vehicles are cruising at the same speed v, and

2. passengers keep waiting at the same location before pickup.

Assumption 2 Through its matching algorithm, the platform can achieve a stable ratio between bΛ and
bΠ, defined as k := bΛ/bΠ. k is a parameter that measures the matching efficiency. A larger k indicates a
higher efficiency.

Define Ñv(d) as the counting process of the number of unmatched vehicles within a distance
d from the passenger. With Assumption 1, Chen et al. (2018) prove Ñv(d) is an Inhomogeneous
Poisson process with intensity function 2πdΛ0

4. Due to the competition from fellow passengers,

4For the convenience of the reader, a proof is provided in Appendix C.

8



the passenger can only be matched with a fraction of unmatched vehicles. In the case of e-hail,
such a fraction may be approximated by 1/Π0, which dictates unmatched vehicles are evenly
distributed among unmatched passengers (Zhang et al., 2019)5. Accordingly, the number of
matchable vehicles forms a subprocess Ñmv(d) with intensity function 2πdΛ0/Π0. Per Assumption
2, we have

Λ0

Π0
=

bΛΛ
bΠΠ

=
kΛ
Π

, (1)

and thus the intensity function for Ñmv(d) can be written as 2πdkΛ/Π.
Suppose an e-hail passenger is picked up by the closest matchable vehicle at distance D̃e,

then her wait time is given by w̃e = δD̃e/v. Here, δ is defined as the ratio between line distance
and path distance between two points in the road network. Previous studies (e.g., Boscoe et al.,
2012; Yang et al., 2018) suggest δ is primarily determined by the network topology, and its value is
relatively stable (ranging between 1.1 and 1.3) . Therefore, for simplicity, we set δ as an exogenous
constant in this study. The probability that at least one matchable vehicle is within d from the
passenger is given by (see Zhang et al., 2019, for detail)

FD̃e
(d) = Pr(D̃e ≤ d) = 1− Pr

(
Ñmv(d) = 0

)
(2)

= 1− exp
(
−
∫ d

0

2πkΛ
Π

udu
)
= 1− exp

(
− kΛ

Π
πd2

)
,

and accordingly, the expected wait time is

we =
δ

2v

√
Π
kΛ

. (3)

3.2 Expected wait time of solo and pooling passengers

To accommodate the pooling service with the model presented above, we first add one more
assumption about the distribution of passenger densities.

Assumption 3 Passengers waiting for solo rides and pooling rides are uniformly distributed with den-
sities Πs and Πp. Among those waiting for pooling rides, the unmatched passengers are uniformly dis-
tributed with a density Πp

0 = bΠp.

Similar to bΛ and bΠ, b is related to the efficiency of pairing pooling passengers, and it is also
treated as an exogenous variable in this study.

Recall the wait time of solo passengers is w̃s and that of the pooling passengers consists of
two parts, i.e., w̃p and ∆̃. We first discuss the detour time ∆̃, which only depends on the distance
between the two passengers involved.

Denote Ñmp(l) as the number of matchable passengers (i.e., other unmatched pooling passen-
gers) within a distance l from a passenger. With Assumptions 1 and 3, and following exactly

5Although this assumption is reasonable, in reality the actual fraction may still depend on the matching strategies
employed by the platform. In order to capture such a dependence, without modeling the underlying mechanism, one
may adjust the fraction with another parameter (e.g. 1/Πε

0) that can be calibrated against data. We leave an in-depth
analysis of such a possibility to a future study.
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Matched vehicle Waiting passenger

Solo rides Pooling rides

Search area

Figure 2: Access to unmatched vehicles through search area for solo passengers (Left) vs. pooling
passengers (Right).

the same reasoning used in proving Proposition A2, we can show Ñmp(l) is an Inhomogeneous
Poisson process with intensity function 2πlΠp

0 = 2πlbΠp. Assume the passenger be matched
with the closest matchable passenger at distance L̃. Accordingly, we derive the expectations of L̃
and ∆̃ as, respectively,

L =
1

2
√

bΠp
; ∆ =

δL
v

=
δ

2v
√

bΠp
. (4)

We next examine the derivation of the expected solo wait time ws and the expected pickup
time for pooling wp. In both cases, the wait time is determined by the distance to the closest
matchable vehicle. For a solo passenger, the probability of finding a matchable vehicle with a
distance d from her depends on the circular search area; see Figure 2 (left panel). A pair of pooling
passengers, however, should be viewed as a team when it comes to competing for unmatched
vehicles; see Figure 2 (right panel). Since either member of the team has its own search area,
together they have a greater access to unmatched vehicles. As illustrated in Figure 2, the solo
passenger in the left panel fails to find a match within her own search area. However, if she
chooses to pool, she would succeed because the vehicle falls in her peer’s search area. Therefore,
pooling passengers enjoy collective competing power in the market, which implies wp ≤ ws in gen-
eral. Nevertheless, this advantage diminishes with the distance between the pooling passengers.
This is because their search areas begin to overlap when they are getting too close to each other.
Evidently, if the two passengers happen to wait at the same location, their competing advantage
will be wiped out as their search areas completely overlap.

The fact that pooling passengers compete as a team also means the total level of competi-
tion for unmatched vehicles will drop. In the extreme case, when everyone is pooling, the total
number of vehicles required will be cut in half. Thus, compared to e-hail passengers, the solo
passengers in a ride-pooling market tend to have a lower wait time, even if they choose not to
pool. Taking the above observations into consideration, the following main result provides a
closed-form formula for both ws and wp. The latter is obtained through some mild approxima-
tions, as explained in detail in Appendix D.
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Proposition 1 With Assumptions 1 and 3, the expected wait time of solo passengers and the expected
pickup time of pooling passengers are respectively

ws =
δ

2v

√
Πs + Πp/2

kΛ
, (5)

wp '
δ

2v

√
Πs + Πp/2

kΛ
m + 4bΠp

2m + 4bΠp
, (6)

where m is a parameter introduced to approximate the overlapping portions of the pooling passengers’
search areas.

Proof. See Appendix D.
In this study, we assume passengers are always pooled together before their trips start. In

reality, TNC platforms often allow more flexibility. For example, they may let a pooling passenger
leave for her destination without a partner, and attempt to find one en-route. In what follows,
we consider the case when each pooling passenger is matched to the closest matchable vehicle,
which may be fully or partially vacant. If the passenger rides alone, she could be detoured to
pick up another pooling passenger en-route.

Let D̃0 and D̃h be the distance between the passenger and the closest matchable vehicles that
are, respectively, fully and partially vacant. Then, the expected pickup time and detour to pick
up a second passenger may be specified as

wp =
δ

v
(
E[D̃0]Pr(D̃0 < D̃h) + E[D̃h]Pr(D̃0 ≥ D̃h)

)
; (7)

∆ =
δ

v
E[D̃h]

(
1− Prβ(D̃0 < D̃h)

)
, (8)

where β is the average number of potential pooling passengers along the route.
To interpret Eq. (7), note that the passenger may be picked up by either a fully or partially

vacant vehicle, and thus her expected pickup time is the average weighted by the probability
of each scenario. As for Eq. (8), the detour trip occurs only if at least one potential pooling
passenger cannot find a closer and fully vacant vehicle. Since D̃0, D̃h and β above depend on
the density of partially and fully vacant vehicles and the density of pooling passengers, it seems
rather difficult to specify the probabilities in Eqs. (7) and (8) in a way that can be empirically
calibrated and validated.

Additionally, it is unclear whether explicitly modeling en-route pooling would make a mean-
ingful difference in an idealized macroscopic market. The proposed pooling model centers on
two basic trade-offs: pooling helps increase the competing power of pooling passengers, and it
becomes more attractive when its market share increases (because higher demand reduces the
detour distance). In en-route pooling, these basic trade-offs not only exist, but also are expected
to play the same dominating role. Because the origin and destination of all trips are uniformly
distributed, fully and partially vacant vehicles would also be evenly distributed relative to pas-
sengers waiting for pooling rides. Accordingly, pooling passengers still enjoy a greater access to
supply because they can hail both fully and partially vacant vehicles. Also, a higher density of
pooling passenger still leads to a shorter detour, even if it occurs en-route. Therefore, the total
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trip time of a pooling ride (inclusive of detour and wait time) should not vary much in en-route
pooling. The main difference is where detours occur, which need not concern us.

For the above reasons, en-route pooling is not explicitly modeled in this study.

3.3 Discussion

We end this section with a few remarks on the key assumptions that underlie the matching model.
Assumptions 2 and 3 imply that the platform can and will dynamically adjust the matching
and dispatching algorithms to achieve a desired efficiency. We make these assumptions for
two reasons. First, the e-hail matching is such a complex process that itself is being actively
researched. Previous studies have shown that decision variables like matching interval, matching
radius and maximum allowed detour in pooling are all critical to matching performance (e.g.,
Yang et al., 2020a; Xu et al., 2019; Ke et al., 2020). In this study, we choose not to explicitly model
these details. Instead, we use k and b to represent the overall efficiency obtained by the platform’s
matching policy, and calibrate them from empirical observations. This enables us to focus on the
main effect of the demand-supply relationship on the matching process. Secondly, by setting k
and b as exogenous, the platform’s pricing strategies—the focus of this study— is isolated from
its matching strategies. This simplification allows the former to drive the passenger demand and
vehicle supply, while the latter’s effect is incorporated through the parameters k and b.

We note that Assumptions 2 and 3 may be violated in some cases. If the platform employs a
fixed matching strategy (e.g., a constant matching interval), it may not be able to maintain k and
b at a stable level when the market conditions vary. While an increasing number of studies con-
sider dynamic matching policies (e.g., Özkan and Ward, 2020; Qin et al., 2021), using a constant
matching interval/radius is common in practice (e.g., Yan et al., 2019). Such a potential violation
of the assumptions may introduce estimation errors in passenger wait time and market equilib-
rium. Assumptions 2 and 3 may also be violated when the market enters a hyper-congested state
known as Wild Goose Chase (WGC) (Castillo et al., 2018), which is often accompanied by exceed-
ingly long matching time. The reader is referred to Appendix E for additional discussions about
WGC. Nevertheless, as mentioned before, WGC is unlikely to arise in our setting because the
demand for e-hail services is elastic, in the sense that transit is always a feasible fallback option.
Hence, passengers would begin to leave the e-hail market long before WGC is materialized.

In summary, Assumptions 2 and 3 not only simplify the matching model significantly but also
separate the optimization of pricing from matching. However, as these assumptions sometimes
deviate from the practice in the industry, they may also become a source of estimation errors.
We leave it to a future study to relax these assumptions and to refine the matching model for
equilibrium analysis.

4 Market equilibrium

The market equilibrium is dictated by the interaction between demand and supply. On the
demand side, passengers choose among solo, pooling and transit based on their generalized
cost. On the supply side, drivers decide whether or not to enter the market according to the
average earning rate. The matching model presented in Section 3 connects the demand and
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the supply, by characterizing the passenger wait time and vehicle occupancy that directly affect
passengers’ mode choice and drivers’ entry choice.

Before we present the equilibrium model, let us first state the main assumptions as follows

Assumption 4 Transit is a viable mode to all passengers, and is supplied at a constant generalized cost.
Also, the transit operator always breaks even, i.e., the fare equals the marginal cost.

Assumption 5 Registered e-hail drivers enjoy flexible working schedules. Their decision to enter the
service solely depends on the average earning rate offered by the platform relative to that provided by other
job opportunities that they can freely pursue.

Assumption 6 The amount of vehicular traffic contributed by e-hail services is small, and hence the extra
congestion effect is not explicitly considered in the utility of all three modes.

4.1 Passenger demand

We characterize passengers’ choice from a discrete set of modesM = {s, p, t}, where s, p, and t
refers to solo, pooling and transit, respectively. Let ν be the value of time, and fi and τi, i ∈ M be,
respectively, the trip fare and the average duration of mode i. Typically, τp > τs because pooling
tends to prolong a trip due to the pair’s different destinations . We define the generalized cost
for passengers choosing one of the three modes as follows.

Solo ride: us = fs + ν(ws + τs), (9a)

Pooling ride: up = fp + ν(wp + ∆ + τp), (9b)

Transit: ut = ft + (ν + ζ)τt. (9c)

According to Assumptions 4 and 6, ft, τs and τt are all treated as constants. In theory, τp

should be endogenous, as a decreasing function of the pooling passenger density. Two recent
studies investigate this issue for pooling rides shared by two passengers. By simulating the
matching process of on-demand pooling using empirical demand data collected in three large
cities, Ke et al. (2021) found that the ratio between the detour distance and the average trip
distance is inversely proportional to a function of the batch demand (i.e., the number of requests
accumulated in a matching interval). Lobel and Martin (2020) analyze the detour and the value
associated with pooling. The latter is measured by the reduced total travel distance. The authors
define the detour (value) ratio as the total detour (value) normalized by the total travel distance
when both passengers take solo rides. They show that the sum of the two ratios is bound by
0.5, which also implies the detour ratio cannot exceed 0.5. Although these results bring valuable
insights, implementing them in our framework is impractical. On the one hand, the model
proposed in Ke et al. (2021) cannot be properly calibrated with the data we have. On the other
hand, Lobel and Martin (2020) only set an upper bound on the detour ratio. Hence, in this
study, we simply assume τp to be a constant, which is calibrated from the empirical data (see
Appendix B). In Section 6.3, we test our model’s sensitivity to τp. For the reader who wonders
how much a difference an endogenized detour time could make, in Appendix J, we implement
a version of our equilibrium model using the detour model of Ke et al. (2021), and perform a
sensitivity analysis against key coefficients.
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Note that ζ in Eq. (9c) represents additional disutility of transit relative to ride-hail services
(associated with privacy, comfort, crowdedness, etc.). Following Schwieterman (2019), we set
ζ = 0.25ν in this study.

Suppose the total demand is D0 and the share of each mode is a continuous and differentiable
function q : R3

+ → (0, 1) of the general costs of all three modes, i.e.,

Qi = D0q(ui, u−i), i ∈ M,−i :=M\ {i}, (10)

where u−i refers to modes except for i. Without loss of generality, we assume ∂Qi/∂ui < 0 and
∂Qi/∂u−i > 0. Accordingly, the pooling ratio is given as rQ = Qp/(Qs + Qp).

4.2 Vehicle supply

Let S0 be the potential supply, which may be viewed as the total number of drivers registered on
the platform. As per Assumption 5, we define ẽ0 as the earning rate of the alternative employ-
ment opportunity available to the drivers. Often known as the reservation rate, ẽ0 is modeled as
a random variable with a cumulative distribution function (CDF) g(·). Drivers enter the e-hail
market only if doing so yields an earning rate e ≥ ẽ0. This assumption aligns with several studies
that empirically observe a positive wage elasticity of supply among ride-hail drivers (e.g., Angrist
et al., 2017; Chen and Sheldon, 2017; Sun et al., 2019) Accordingly, the fleet size is derived as

N = S0Pr(ẽ0 ≤ e) = S0g(e). (11)

The earning of an e-hail driver is determined by the compensation rate per unit occupied
time, denoted as η. In addition, a driver serving pooling rides may also be paid a fixed fee cp for
each additional pickup. Thus, the average earning rate of a driver is computed as

e =
1
N

[
η

(
Qsτs +

1
2

Qpτp

)
+

1
2

cpQp

]
, (12)

where Qsτs +
1
2 Qpτp is the total occupied time and 1

2 Qp denotes the number of additional pick-
ups.

4.3 Equilibrium

With the demand and supply specified above and the wait and detour times derived in Section 3,
the aggregate equilibrium in a unit time period is characterized by the following system of
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equations:

mode choice: Qi = D0q(ui, u−i), i ∈ {s, p}, (13a)

Fleet size: N = S0g
(

1
N

[
η

(
Qsτs +

1
2

Qpτp

)
+

1
2

cpQp

])
, (13b)

Flow conservation: N = V + Qsτs +
1
2

Qpτp, (13c)

Solo wait time: ws =
δ

2v

√
Qsws + Qp(wp + ∆)/2

kV
, (13d)

Pooling wait time: wp = ws

√
m + 4bQp(wp + ∆)

2m + 4bQp(wp + ∆)
, (13e)

∆ =
δ

2v
1√

bQp(wp + ∆)
. (13f)

Eq. (13c) states that the total vehicle operation time (represented by the fleet size N) consists of
three parts: (i) the vacant vehicle time (V) that includes both idle and pickup time; (ii) the time
spent on delivering solo passengers; and (iii) the time spent on delivering pooling passengers.
Since the market equilibrium is established over unit time period, V substitutes Λ in Eqs. (5) and
(6). Eqs. (13d)–(13f) are obtained from substituting Πs and Πp in Eq. (4)–(6) by Πs = Qsws and
Πp = Qp(wp + ∆) as per Little’s formula (Little, 1961).

Define x = (ws, wp, ∆). Then, Qs, Qp, N and V can be viewed as functions of x according
to Eqs. (13a)–(13c). Plugging them into Eqs. (13d)–(13f) thus reduces the equilibrium to a fixed-
point system x = F(x). With mild assumptions, we prove the solution existence of such a fixed-
point system by invoking Brouwer’s theorem (Brouwer, 1911), as summarized in the following
proposition.

Proposition 2 Suppose x is bounded from above by x̄ = (ws, wp, ∆)T. Then, there exists an x∗ =

(w∗s , w∗p, ∆∗)T that satisfies Eq. (13).

Proof. see Appendix F �
The assumption made in Proposition 2 effectively sets upper bounds on passenger wait times

for both solo and pooling rides. At first glance, this seems at odds with Eqs. (13d)–(13f), which
allow these wait times to grow infinitely. Nevertheless, if passengers have to wait exceedingly
long, the demand would be suppressed below a level of practical interest. In other words, Propo-
sition 2 ensures a solution always exists provided that the demand for solo and pooling rides has
a lower bound that can, in theory, be arbitrarily close to zero.

An equilibrium solution to Eq. (13) can be obtained through an iterative fixed-point algorithm.
While implementing such an algorithm is straightforward, we note that, as a highly nonlinear
system, Eq. (13) may not have a unique equilibrium. In addition, an equilibrium solution may or
may not be stable. Appendix H summarizes the efforts of detecting the occurrence of multiple
equiliria and unstable solutions in numerical experiments. In a nutshell, we found that both
events are too rare to be of a practical concern, at least for the range of parameters tested in our
experiments.
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5 Optimal pricing

5.1 Profit-maximization pricing without regulation

By choosing a combination of fs, fp and η, the platform could control the demand split between
solo and pooling rides, thereby the pooling ratio, to maximize its profit. If pooling is not prof-
itable, the platform can simply set its price equal to or higher than solo rides (i.e., fs ≤ fp) to
eliminate pooling. On the other hand, the platform may increase the gap between fs and fp to
encourage pooling during a demand peak. In addition to raising the service capacity, pooling
rides could also help boost profits. Drivers are largely paid based on the occupied duration and
distance, regardless of how many riders may share the vehicle at any given time. Hence, the
platform is poised to reap most extra revenues contributed by pooling rides.

Without loss of generality, we assume the transit fare ft is fixed, and the platform aims to
maximize its gross profit by choosing a price vector y = ( fs, fp, η)T. The pricing problem is then
formulated as

(P1) max
y

R = fsQs + fpQp − η

(
Qsτs +

1
2

Qpτp

)
− 1

2
cpQp. (14)

Here, the platform’s gross profit R equals the total revenue less the expense directly related to the
production of trips. Specifically, the first two terms (i.e., fsQs and fpQp) are revenues generated
from solo and pooling rides, respectively, while η

(
Qsτs +

1
2 Qpτp

)
is the payment to drivers based

on their occupied time and 1
2 cpQp is the payment to drivers due to additional pickups in pooling.

To simplify the notation, let Q(1)
s , Q(2)

s and Q(3)
s denote the partial derivative of Qs with

respect to fs, fp, η, respectively. Q(1)
p , Q(2)

p and Q(3)
p are defined similarly. Accordingly, the first-

order conditions of P1 are reduced to

fs = ητs −
QsQ(2)

p −QpQ(1)
p

Q(1)
s Q(2)

p −Q(2)
s Q(1)

p

; (15a)

fp =

(
1
2

ητp +
1
2

cp

)
−

QpQ(1)
s −QsQ(2)

s

Q(1)
s Q(2)

p −Q(2)
s Q(1)

p

; (15b)

Qs

[
1 +

(
τs +

1
2

Qp

Qs
τp

)
Q(1)

s

Q(3)
s

]
= 0; (15c)

Qp

[
1 +

(
Qs

Qp
τs +

1
2

τp

)
Q(2)

p

Q(3)
p

]
= 0. (15d)

Eqs. (15a) and (15b) bear similarity with the Lerner formula (Lerner, 1934), where the first term
represents the marginal cost of each solo (pooling) ride (i.e., compensation paid to the driver) and
the second term is a mark-up that measures the market power of the platform. It also aligns with
the optimal trip fare derived in Zha et al. (2016) and Ke et al. (2020). Eqs. (15c) and (15d) imply
that, at the optimal solution, either solo (pooling) demand equals 0 or Q(1)

s /Q(3)
s (Q(2)

p /Q(3)
p ) is

dictated by the market shares and average journey times of the two modes.
For comparison, we derive the first-order conditions under single-mode operation, i.e., when

only solo or pooling rides are served. In the case of pure solo rides, the single-mode operation
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yields

fs = ητs −
Qs

Q(1)
s

; (16a)

Qs

(
1 + τs

Q(1)
s

Q(3)
s

)
= 0, (16b)

and for pure pooling rides,

fp =
1
2

ητp +
1
2

cp −
Qp

Q(2)
p

; (17a)

Qp

(
1 +

1
2

τp
Q(2)

p

Q(3)
p

)
= 0. (17b)

Eqs. (16) and (17) share the same structures as Eq. (15)—the optimal trip fare is the marginal
cost plus the platform’s mark-up, and the marginal changes of demand with respect to trip fare
and compensation rate should be a constant when demand is positive.

Eqs. (16b) and (17b) further imply that, at the optimal solution with positive demand, the
marginal change of demand due to an increase in trip fare should be proportional to that due to
an increase in compensation rate. Specifically, the rate is −1/τs for solo and −2/τp for pool. In
other words, in response to an increased trip fare, the platform must raise the compensation rate
to improve LOS so that the service remains attractive to passengers. In the mix-mode scenario,
however, the pressure to raise LOS is relieved, i.e., the absolute value of the rate is smaller in
Eqs. (15c) and (15d). Because increasing the trip fare of one mode would make the other more
attractive, the platform need not increase the compensation rate as much as in the single mode
operation in order to hold on to the market share.

We proceed to compare the platform’s market power under single and mixed operation
modes. Dividing both the numerator and the denominator of the second term in Eq. (15a) by

Q(2)
p yields Qs−QpQ(1)

p /Q(2)
p

Q(1)
s −Q(2)

s Q(1)
p /Q(2)

p
. Here, Q(1)

p /Q(2)
p < 0 as fs and fp have opposite influences on Qp,

and Q(2)
s > 0 because increasing fp makes solo rides more appealing. Also, |Q(1)

s | > |Q(2)
s | and

|Q(2)
p | > |Q(1)

p | because a change in the trip fare of one mode has larger impact on that mode
than the other mode. These observations lead to∣∣∣∣∣ Qs −QpQ(1)

p /Q(2)
p

Q(1)
s −Q(2)

s Q(1)
p /Q(2)

p

∣∣∣∣∣ >
∣∣∣∣∣ Qs

Q(1)
s

∣∣∣∣∣ ,

indicating that serving both pooling and solo rides has the potential to boost the platform’s
market power (hence profit) compared to the case when only solo rides are served. However,
the change of total trips served by the platform is unclear, because the impact on pooling rides
is unclear.

Since P1 is a non-convex program, we implement a gradient ascent algorithm to search lo-
cal optimal solutions. In each iteration, given the current solution (corresponding to a market
equilibrium), we compute the gradient and update the solution with the following iteration rule:

y(i+1) = y(i) + α∇R(y(i)), (18)
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where ∇R is the gradient of the revenue function with respect to y and α is a predefined learning
rate (or step size).
∇R is not easy to evaluate because it involves the differentiation of market equilibrium.

Appendix I explains how to obtain the gradient in each iteration. In brief, the method bears
some similarities with the sensitivity-analysis-based algorithm for network design problems (e.g.
Tobin and Friesz, 1988; Yang, 1995; Patriksson, 2004). That is, given the current solution, it guides
the movement towards the next solution according to the sensitivity of the equilibrium solution
to the decision variables.

Finally, as per Eqs. (15c) and (15d), P1 could have multiple local optima. Hence, in numerical
experiments, we solve P1 with multiple initial solutions and select the one with the highest
objective value. The same strategy is applied to other two problems defined in the rest of this
section.

5.2 Profit-maximization pricing under regulations

Two regulatory policies have received much attention lately: (i) minimum wage, which requires
the platform to ensure an average pay rate6 no less than an minimum value; and (ii) fleet cap,
which caps the number of on-line drivers to serve the platform. Both regulations have been
implemented in New York City (Wodinsky, 2019; Hawkins, 2019). These two policies, however,
display rather similar effects in our framework, because the fleet size N and the average earning
rate e are linked to each other through a one-to-one mapping; see Eq. (11). The difference is,
while a fleet cap bounds the fleet size from above, a minimum wage sets a bound from below.
Hence, which policy leads to a greater social welfare depends on the difference in the fleet sizes
achieved by maximizing profit and maximizing social welfare. In general, profit maximization
results in a lower-than-socially-optimum production level (Douglas, 1972). Thus, by pushing up
the fleet size, the minimum wage policy seems to have a greater potential for social good. With
the above discussions in mind, we focus on the minimum wage policy hereafter.

Mathematically, the effect of regulation can be captured by adding an inequality constraint to
the original problem, leading to

(P2) max
y

R = fsQs + fpQp − η

(
Qsτs +

1
2

Qpτp

)
− 1

2
cpQp, (19)

s.t. h(y) ≤ 0, .

To solve P2, we introduce a Lagrangian multiplier λ and write the dual problem as

(P2’) min
λ

max
y
L(λ, y) = R(y)− λh(y) (20)

s.t. λ ≥ 0.

P2’ can thus be solved by a dual gradient ascent algorithm as follows:

y(j+1) = arg max L(λj, y), (21a)

λ(j+1) = max
(

0, λ(j) + ρh(y(j+1))
)

, (21b)

6Note that this is different from the compensation rate η, but rather corresponds to the earning rate e.
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where ρ is a constant penalty parameter. In each iteration, the maximization problem (21a) is
first solved using the same gradient ascent method used for solving P1, with the current estimate
of the multiplier λ. Then, Eq. (21b) is invoked to update λ.

For the minimum wage policy (with a wage floor e), the constraint h(y) is given by

e− 1
N

[
η

(
Qsτs +

1
2

Qpτp

)
+

1
2

cpQp

]
≤ 0 . (22)

Accordingly, the Lagrangian of P2 is equivalent to

L = fsQs + fpQp −
(

1− λ

N

) [
η

(
Qsτs +

1
2

Qpτp

)
+

1
2

cpQp

]
, (23)

and the first-order conditions are reduced to

fs =

(
1− λ

N

)
ητs −

QsQ(2)
p −QpQ(1)

p

Q(1)
s Q(2)

p −Q(2)
s Q(1)

p

(24a)

+
λ

N2

[
η

(
Qsτs +

1
2

Qpτp

)
+

1
2

cpQp

]
N(1)Q(2)

p − N(2)Q(1)
p

Q(1)
s Q(2)

p −Q(2)
s Q(1)

p

;

fp =

(
1− λ

N

)(
1
2

ητp +
1
2

cp

)
−

QpQ(1)
s −QsQ(2)

s

Q(1)
s Q(2)

p −Q(2)
s Q(1)

p

(24b)

+
λ

N2

[
η

(
Qsτs +

1
2

Qpτp

)
+

1
2

cpQp

]
N(2)Q(1)

s − N(1)Q(2)
s

Q(1)
s Q(2)

p −Q(2)
s Q(1)

p

;

Qs

[
1 +

(
τs +

1
2

Qp

Qs
τp

)
Q(1)

s

Q(3)
s

]
= 0; (24c)

Qp

[
1 +

(
Qs

Qp
τs +

1
2

τp

)
Q(2)

p

Q(3)
p

]
= 0, (24d)

where N(1) and N(2) denote the partial derivatives of the total vehicle supply to fs and fp, re-
spectively.

On the one hand, Eqs. (24c) and (24d) suggest that the regulation does not affect the opti-
mal conditions regarding the compensation rate. On the other hand, comparing Eq. (24a) with
Eq. (15a) reveals how minimum wage affects the optimal ride price: the first term is discounted
by a factor 1 − λ/N, and the newly added third term tends to reduce the platform’s market
power, as N(1) and N(2) are positive in general. Hence, the platform’s profit is likely to suffer un-
der the minimum wage policy. However, the actual change in the ride price is not clear, because
it also depends on η.

Recently, the City of Chicago proposed to charge a congestion tax on TNC trips starting
and/or ending in designated areas during peak times7. In order to encourage ride-sharing, the
proposed tax is lower for a pooling ride than a solo one. Although such a tax is likely to be
fully passed on to passengers, the platform is expected to adjust its pricing strategy and fleet
size in order to accommodate potential mode shift. To analyze the impact of such a policy in our

7https://www.chicago.gov/city/en/depts/bacp/supp_info/city_of_chicago_congestion_pricing.html
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framework, we assume a constant extra tax cs is charged on each solo ride while pooling rides
are not subject to such a tax. Then, we only need to incorporate cs as a fixed cost into the utility
of solo passengers. Accordingly, Eq. (9a) becomes

us = fs + ν(ws + τs) + cs. (25)

Since the congestion tax does not introduce a new constraint, it should have less impact on
the platform’s pricing strategies than minimum wage. However, a larger shift toward pooling is
expected, because the congestion tax is precisely levied against solo rides.

5.3 Social optimal pricing

We finally consider a second-best social optimal pricing problem that seeks to maximize social
welfare. The policy is “second-best” because, while the goal is to maximize social welfare, the
platform is not allowed to run a deficit. The corresponding optimization problem is formulated
as follows:

(P3) max
y

W = D0∆u + fsQs + fpQp (26)

−
∫ N

0
g−1(n/S0)dn− c0N + csQs

s.t. R ≥ 0.

The social welfare W consists of five parts: (i) the surplus of passengers, measured by the total
expected general cost saving because of switching from transit to ride-hail services, where ∆u
denotes the saving of each passenger and will be specified in Section 6.1; (ii) the total platform
revenue fsQs + fpQp; (iii) the opportunity cost of drivers

∫ N
0 g−1(n/S0)dn, where g−1(·) is the

inverse function of the CDF of the reservation rate; (iv) the approximate congestion cost caused by
the ride-hail fleet, where c0 is a constant cost caused by the entry of each driver (see Appendix B
for the estimation of c0); and (v) the tax revenue due to the congestion tax csQs, if implemented.

It is worthwhile to clarify several issues before we continue the analysis:

1. Ideally, capturing congestion externality of ride-hail requires an explicit traffic flow model.
However, since the number of ride-hail trips is expected to be small relative to other trips
(see Assumption 6)8, it is reasonable to assume each additional vehicle’s contribution to
congestion (i.e., the marginal cost) would be roughly the same. Moreover, as our modeling
framework is highly aggregate, the complexity of introducing a more complicated traffic
flow model may not be justified.

2. The congestion tax is a transfer payment within the system and hence should neither in-
crease nor decrease the social welfare. Accordingly, the tax revenue (i.e., item (v)) is in-
cluded in the social welfare to offset the reduction in the passenger surplus of solo rides.

3. According to Assumption 4, the decisions related to ride-hail (pricing and regulations) do
not affect transit operations and the transit system always breaks even. Therefore, neither
the supply cost nor the revenue of the transit service is included in the social welfare.

8For example, Nie (2017) estimates that the extra traffic brought by the introduction of e-hail in Shenzhen, China
is no more than 1% of the traffic already on road.
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We close this section by noting that, like P2, P3 can also be solved using the dual gradient
ascent algorithm.

6 Numerical experiments

In this section, numerical experiments are conducted to (i) examine passenger wait time of dif-
ferent modes (Section 6.2); (ii) analyze mode choice at the market equilibrium with fixed pricing
(Section 6.3) under various market conditions; (iii) assess the performance and welfare implica-
tions of profit-maximization pricing (Section 6.4), and (iv) evaluate the effects of different regula-
tions on pooling and social welfare (Section 6.5). In Section 6.1, we first specify the demand and
supply models, as well as discuss default parameters used in the experiments.

Table 1: Default values and ranges of the main parameters used in numerical experiments.

Parameter Unit Default
value

Variation

Detour ratio of road network δ 1.3
Cruising speed v mph 13.6
Matching efficiency k /mi2 0.16
Pooling efficiency b 0.05
Approximation parameter m 4
Average solo trip duration τs hr 0.28
Average pooling trip duration τp hr 0.40
Average transit trip duration τt hr 0.53
Passengers’ value of time ν $/hr 27.69
Relative disutility rate of transit ζ $/hr 6.92
Mode choice uncertainty θ 1
Average reservation rate e0 $/hr 19.84
Vacant vehicle density Λ /mi2 70 40–100
Waiting passenger density Π /mi2 24 8–40
Fraction of waiting passenger for pooling rΠ 0.4 0.2–0.6
Total demand D0 /mi2/hr 1200 500–2000
Potential supply S0 /mi2/hr 550 200–800
Solo trip fare fs $/ride 14
Pooling trip fare fp $/ride 10
Transit trip fare ft $/ride 2.69
Compensation rate η $/hr 20
Additional pickup fare cp $/ride 0 0–2
Congestion cost per vehicle c0 $/hr 2.9

6.1 Experiment setting

We characterize passengers’ choice based on the random utility theory (Ben-Akiva and Lerman,
1985) and adopt the Multinomial Logit (MNL) model. Therefore, the share of each mode q(·) is
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estimated as

Qi = D0
exp(−θui)

∑j∈M exp(−θuj)
, i ∈ M, (27)

where θ is a non-negative parameter that reflects the degree of uncertainty in mode choice.
Accordingly, the upper bounds in Proposition 2 can be set based on the minimum demand

level considered as meaningful by the modeler. More details are provided in Appendix G.
It is well known that in the MNL model the logsum term measures the expected utility of all

alternatives (Small and Rosen, 1981; De Jong et al., 2007). Since we treat transit as a benchmark
mode, the expected general cost saving of each passenger is given as

∆u =
1
θ

log ∑
i∈M

exp[θ(ut − ui)], i ∈ M. (28)

For simplicity, we assume the drivers’ reservation rate ẽ0 follows a uniform distribution on
[0, 2e0], where e0 is the average reservation rate. Therefore, Eq. (11) is simplified as

N = S0
e

2e0
=

S0

2e0N

[
η

(
Qsτs +

1
2

Qpτp

)
+

1
2

cpQp

]
, (29)

which yields

N =

√
S0

2e0

[
η

(
Qsτs +

1
2

Qpτp

)
+

1
2

cpQp

]
. (30)

Accordingly, the drivers’ opportunity cost defined in Eq. (26) is reduced to∫ N

0
g−1(n/S0)dn =

1
2

[
η

(
Qsτs +

1
2

Qpτp

)
+

1
2

cpQp

]
. (31)

We set up the experiments based on empirical TNC data collected in the City of Chicago; see
Appendix B for details. Table 1 reports the default values of key model parameters and the range
of parameter values tested in sensitivity analyses. Note that the default prices, i.e., fs, fp and η,
are only used in the sensitivity analysis presented in Section 6.3.

6.2 Sensitivity analysis on passenger wait times

Eqs. (3) and (5) suggest that offering pooling always lowers the wait time of solo passengers.
However, the benefit is less clear for pooling passengers. Therefore, we first conduct a sensitivity
analysis on the wait time of e-hail, solo and pooling rides.

Figure 3 examines how waiting passenger density Π, vacant vehicle density Λ and fraction of
waiting passenger for pooling rΠ = Πp/Π9 affect the total passenger wait time and the fraction
of pickup detour. Note that the total wait time for both passengers in a pooling ride is wp + ∆,
because the first passenger to be picked up also endures the pickup detour on the way to pick
up the other passenger.

9Note that rΠ is close to, yet not exactly equal to rQ because it involves the wait time
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As shown in Figure 3(a), while the wait times of solo and e-hail passengers increase with the
waiting passenger density, that of pooling passengers decreases, thanks to shorter pickup detours.
In other words, pooling becomes more desirable when the demand level is high. Although a
larger waiting passenger density intensifies the competition and increases the total wait time, its
impact on pooling passengers is better mitigated by the collective competing power and the re-
duction of the pickup detours. Nevertheless, when the system becomes overly congested (larger
than 30 passengers per square mile in this example), the benefit of pooling diminishes, slightly
pushing up wait time. On the other hand, when the vacant vehicle density increases, all passen-
ger wait times drop, as shown in Figure 3(b). Yet, pooling benefits less than the other two due to
the existence of pickup detour. According to Figure 3(c), while both solo and pooling passengers
benefit substantially from the increase in the fraction of waiting passenger for pooling, pooling
passengers’ gain is greater thanks to the collective competing power of the pair. Figure 3 also
reveals that the fraction of detour time in the pooling passengers’ wait time drops quickly as the
waiting passenger density and fraction of pooling passenger among them increase.
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Figure 3: Sensitivity of total wait time and fraction of pickup detour to (a) waiting passenger
density, (b) vacant vehicle density and (c) fraction of waiting passenger for pooling.

To summarize, pooling becomes more appealing as the demand level grows, and the rise of
fraction of waiting passenger for pooling further reduces the wait time and thereby attracts more
demand. However, this seemingly positive feedback leaves out an important caveat—pooling
tends to prolong a trip due to the pair’s different destinations, on top of the detour time incurred
in the pickup phase. This en-route detour time also squeezes the supply because a vehicle serving
pooling rides will be occupied longer on average. We will show how this effect is captured in an
equilibrium model in the next section.

6.3 Mode choice with fixed trip fare

In this section, we examine how mode shares at the market equilibrium vary with the total
demand D0, potential supply S0, additional pickup fee cp and en-route detour τp − τs. Other
parameters, including the platform’s pricing strategy, will be fixed as reported in Table 1.

As shown in Figure 4(a), the share of pooling rides first increases and then decreases with the
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Figure 4: Sensitivity of mode share, vehicle supply and passenger wait time to (a) total demand
D0, (b) potential supply S0, (c) additional pickup fee cp and (d) en-route detour τp − τs.
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total demand. The share of solo rides drops faster yet remains higher than pooling for most parts.
This shift is related to the different impacts of the rising demand on the wait time for the two
modes. The rising demand intensifies the competition among waiting passengers, thus steadily
increasing the solo wait time. On the other hand, higher demand helps reduce the pickup detour
for pooling rides, leading to its initial growth of market share. On the supply side, the growth
of total demand induces more drivers to enter the market (top plot). However, it only leads to a
mild increase of vacant vehicle density at the very beginning (bottom plot). As the total demand
further increases, the level of service for both solo and pooling modes deteriorates.

The growth of S0 reveals a different pattern; see Figure 4(b). The total share of ride-hail
increases with the potential supply, while solo rides gain more popularity (top plot). Although
the vacant vehicle density increases linearly with the potential supply, passengers enjoy a milder
(sub-linear) improvement, owing to competitions on the demand side.

Figure 4(c) reveals that the effect of the additional pickup fee for pooling rides (cp) is almost
negligible. When cp increases from $0 to $2, the share of both pooling and solo modes rises less
than 0.5% (top plot). Thus, it cannot serve as an effective incentive to encourage drivers to take
more pooling rides. Nor could it bring a meaningful improvement to the level of service (the
wait time barely changes, see the bottom plot). Given these observations, the additional pickup
fee will not be discussed in following experiments, and will be simply set to zero hereafter.

Figure 4(d) highlights the importance of the en-route detour time. Specifically, the share of
pooling drops sharply as the detour rises from 0. As per Eq. (4), the loss of pooling demand
results in a longer pickup detour (hence a longer wait time) for pooling passengers, which fur-
ther discourages pooling. On the other hand, the loss of pooling demand reduces the overall
demand level, and as a result, the solo wait time drops despite a shrinking fleet size (top plot).
Overall, these findings suggest that promoting pooling may not be a good strategy for the platform if
trip destinations are too scattered to keep the average en-route detour time under control.

It is worth noting that results in Figure 4 may overestimate the market share of pooling
in real practice. In Chicago, from which many of our model’s inputs are drawn, the average
pooling ratio is less than 15%; see Figure A2 in Appendix B. A few factors might contribute
to this discrepancy. First, our model assumes the trip origins and destinations are uniformly
distributed in an aggregate market. The heterogeneous distribution of the real demand is likely
to produce strong spatiotemporal imbalance that could undermine the matching efficiency for
pooling. The high en-route detour time in Chicago (around 7 min, close to the upper bound in
Figure 4(d)) may reflect such inefficiency. Second, our model excludes some negative features
of pooling (e.g., the loss of privacy and comfort) in favor of simplicity and tractability. Ignoring
these factors might underestimate the general cost of pooling.

6.4 Performance of optimal pricing

In this section, we examine the performance of the profit-maximization pricing problem P1 under
various operational strategies and market conditions (i.e., combinations of total demand D0 and
potential supply S0). The platform may use one of the following three operational strategies: (i)
offering both solo and pooling rides, (ii) only offering solo rides, and (iii) only offering pooling
rides. These strategies are referred to as “mix-mode”, “pure-solo” and “pure-pool”, respectively.

Figures 5 presents contours of the platform’s profit and total trip output (i.e., Qs + Qp) gained
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by P1 under the three operational strategies. It can be read from Figures 5(a) that mix-mode
always achieves the highest profit, followed by pure-solo strategy. This finding is predicted
by the analytical solutions, as a platform serving both solo and pooling rides enjoys a higher
market power (see Eqs. (15a) and (15b)). As expected, pure-pool is the least profitable because
the platform has to keep the price sufficiently low to sustain a reasonable level of service for
pooling (otherwise it would lose much of the market share to transit). On the other hand, mix-
mode and pure-pool produce much more trips than pure-solo, and the difference increases as
the market expands; see Figures 5(b). When the potential supply becomes scarce, pure-pool
gradually achieves a leading position in terms of trip production. Overall, mix-mode achieves a
more favorable balance between trip production and profitability than the other two strategies.

mix-mode
pure-solo
pure-pool

C

A B

D

(a) Platform’s profit

mix-mode
pure-solo
pure-pool

(b) Trip production

Figure 5: System performance under different operational strategies and market conditions.

We further pick four corner cases (labeled in Figure 5(a)), namely, low-demand-and-low-
supply (A: “low-low”), low-demand-and-high-supply, (B: “low-high”), high-demand-and-low-
supply (C: “high-low”), and high-demand-and-high-supply (D: “high-high”), and examine more
details of the system performance. Besides the three operational strategies, we also solve the
second-best pricing problem (P3) under mix-mode, denoted as “SO”, for comparison.

Figure 6(a) compares the social welfare obtained by the three operational strategies with the
social optimal (SO) state. The different patterns indicate the passenger surplus (logsum term
in Eq. (26)), the platform profit and the driver surplus (income less opportunity and congestion
cost). We plot the ratio of these three components in each market scenario with respect to the total
welfare at SO (normalized as one). We first note that mix-mode consistently yields the highest
social welfare, around 80% of the SO level. Pure-pool is the worst in three out of the four corner
cases. It slightly outperforms pure-solo only when demand is high but supply is low (Case C:
high-low), which is expected because pooling is most helpful in such a case. Combined with the
results from Figure 5, we conclude that serving a mixture of solo and pooling rides benefit both the
platform and the society. On the other hand, only serving pooling rides does not necessarily yield
a higher social welfare than the regular ride-hail service, because the passengers suffer from a
degraded level of service and the drivers earn a lower wage.
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Figure 6: System performance under different operational strategies and representative market
conditions.

Under profit-maximizing pricing, the platform’s profit dominates the total social welfare;
see Figure 6(a). In contrast, the SO pricing clearly prioritizes the surplus of passengers and
drivers. Interestingly, SO did not wipe out the platform’s profit completely (even it is allowed
to do so). This suggests that the only constraint in P3 (that the profit should not be negative) is
inactive at the optimum. In other words, the solution obtained here is indeed a true SO, rather
than a second-best optimum. Incidentally, this finding also implies that no subsidy is needed to
sustain an SO solution, which seems at odds with previous findings about taxi markets (Douglas,
1972; Arnott, 1996, e.g.,). Upon further inspection, we note that the discrepancy arises from the
externality term (congestion cost c0N) included in the objective function. When that term is
removed, a negative profit would indeed show up and the profitability constraint would be
activated. Effectively, the congestion externality discourages over-supply in the ride-hail market.

Figure 6(b) examines the service rate, defined as the ratio between trip production and fleet
size, i.e., (Qs + Qp)/N. As expected, pure-pool achieves the highest service rate while pure-
solo has the lowest. The service rate under mix-mode is almost the same as that at SO, which
suggests a profit-maximizing platform serving both solo and pooling rides could operate at a
socially optimal service rate.

Figures 6(c) and (d) present, respectively, the average passenger wait time for ride-hail ser-
vices (weighted by solo and pooling demand) and the average driver wage. In all cases, pure-solo
offers the shortest wait time because it serves fewer passengers with a relatively large fleet of
drivers. Also, the wait time is the highest in the case of high-demand-and-low-supply (high-low)
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and the lowest in the case of low-demand-and-high-supply (low-high). Except for the low-high
case, mix-mode always leads to the longest average passenger wait time but the highest driver
wage. Yet, the difference from the second place is minor (less than half minus in wait time and
$1/hr in earning rate). Pure-pool is the worst strategy for driver income in all cases. At SO, how-
ever, the drivers are treated much better than all operational strategies under profit-maximizing
pricing. Their hourly income more than doubled in some case (e.g., high-low). This is clearly
linked to higher driver surplus of SO solution shown in Figure 6(a).

In summary, the mix-mode strategy seems the ideal choice for a profit-maximizing platform.
Compared to the other two strategies, it maximizes both profit and social welfare, and brings
greater benefits to passengers and drivers. Interestingly, although a profit-maximizing platform
would not operate at the socially optimal scale, it tends to achieves a service rate (the number of
trips served per vehicle) close to the SO level.

6.5 Impact of regulations

6.5.1 Minimum wage

To assess the impact of the minimum wage policy, we first solve P3 to obtain the “socially opti-
mal” earning rates. These rates are then imported in P2 to derive a profit-maximizing platform’s
pricing strategy with an SO minimum wage constraint. A moment of reflection suggests that the
policy would encourage more drivers to enter the service, which, in turn, attracts more passen-
gers and boosts trip production. Indeed the entire system could move closer to SO. However,
such a policy could be potentially detrimental to profitability, as the platform is now obligated
to guarantee a minimum earning rate to anyone entering the market. Note that the price is the
only “legal” tool available to the platform to manage the fleet size in the short term, and con-
sequently, it has little recourse to reduce the fleet size below the lower bound now dictated by
the government-mandated minimum wage. In the long run, however, the platform can reduce
its driver pool S0 to manage this downward pressure on profits. In fact, after New York City
enacted the minimum wage policy, both Uber and Lyft have stopped hiring drivers (Edelstein,
2019b). Over the time, such a hiring freeze, along with other tactics, could reduce S0. To examine
this effect, we assume that the platform seeks to achieve a profit-maximizing S0 for the minimum
wage imposed by the regulator. More specifically, by solving P2 over a range of possible values
for S0, we identify the S0 that yields the highest profit and the scenario is then used to represent
the long-term impact of the minimum wage policy.

Below, we compare the system performance under the four representative market condi-
tions. For each condition, four scenarios are examined: profit maximization without minimum
wage (“MO”), profit maximization with minimum wage and a fixed potential supply (“short”),
profit maximization with minimum wage and an “optimized” potential supply (“long”), and
SO (“SO”). Note that in Scenario “long”, the value of S0 differs from those used the other three
scenarios due to the platform’s presumed reaction. In all scenarios, the platform is assumed to
adopt the mix-mode strategy.

Figure 7(a) plots the normalized welfare under each market condition. As expected, the
minimum wage policy significantly improves social welfare in the short term, especially when
the potential supply is relatively small. This improvement can be attributed to prioritizing driver
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Figure 7: System performance under the minimum wage policy.

and passenger surplus at the expense of the platform’s profit, which is related to the reduced
market power predicted in Eqs. (24a) and (24b). Interestingly, the welfare distribution among the
three stakeholders in Scenario “short” closely resembles that at SO. However, the result looks
rather different in Scenario “long”, where the platform is allowed to manipulate S0 to its own
advantage. By doing so, it manages to take back some of the lost profits, but unfortunately
inflicts greater damages on driver and passenger surplus. Under all conditions, the minimum wage
policy ends up lowering the welfare in the long term, and the effect is more damaging when the supply pool
is small to begin with.

Figure 7(b) visualizes the platform’s optimal pricing strategies. The bar chart in the plot
represents the difference in trip fare between pooling and transit (solid filled) and between solo
and pooling (pattern filled). In the short run, the platform tends to lower the trip fare of solo
rides to attract passengers from transit. In this way, the platform could exhaust the additional
service capacity induced by the minimum wage. An exception is the case of “high-high”, where
the platform raises both solo and pooling fares, but more for pooling than solo rides. As a result,
no passenger would choose pooling at all; see Figure 7(c). Here, the rationale is to shift all
pooling demand to solo rides, which not only keeps every driver busy but also generates higher
revenue. These findings imply that in a dense market, pooling may be completely eliminated by the
minimum wage policy. In the long-term, as the platform takes back more control on the supply
side, it is able to keep the price close to the pre-regulation level for both pooling and solo rides.

Figures 7(c) and (d) show SO induces the highest demand and supply, followed by Scenario
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“short”. This result again confirms, in the short run, imposing a socially optimal minimum wage
will force the platform to scale up and discourage pooling by adjusting its pricing strategy. In
addition, Scenario “short” significantly increases both occupied and vacant vehicle time. In fact,
under all market conditions tested, the vacant vehicle time induced by the minimum wage policy
in the short run is even higher than that at SO. In the long run, the ride-hail market is scaled back
to the unregulated level. However, the pooling ratio does not fully recover. Instead, it remains
modestly lower than what is achieved in both unregulated scenario and SO. Although the long-
term adjustment made by the platform will largely eliminate the supply surge achieved by the
minimum wage policy, the supply in Scenario “long” remains above the unregulated level.

To summarize, although regulating the minimum wage does protect drivers from being un-
fairly exploited, it could create a host of problems. For one thing, the policy will surely draw
opposition from the platform (e.g., Edelstein, 2019a). More importantly, by maintaining the sup-
ply and demand of ride-hail at an artificially high level, it could depress the use of collective
modes (transit and pooling), thus exacerbating traffic congestion. In the long run, the platform
might limit the potential supply in order to recover the lost profits. As a result, the regulation in
the name of social justice might even hurt the social welfare.

6.5.2 Congestion tax

We set the congestion tax cs = $1, which is in par with the actual policy implemented in
Chicago10. Figure 8 compares the social welfare and pooling ratio in four scenarios: profit maxi-
mization without regulation (“MO”); profit maximization with minimum wage (“min-wage”)11;
profit maximization with congestion tax (“cong-tax”); and SO. The results show the congestion
tax actually hurts the social welfare, though it slightly improves the passenger surplus; see Fig-
ure 8(a). Interestingly, the seemingly small congestion tax diverts a large number of passengers
from solo to pooling rides. As shown in Figure 8(b), with the congestion tax, the pooling ratio
rises by more than 20% under all market conditions. In fact, a close look reveals that this effect
is so dramatic that it significantly reduces the wait time for pooling rides, which is eventually
translated to a greater passenger surplus.

Therefore, while the minimum wage policy improves the social welfare (at least in the short
run) but undermines ride-sharing, the congestion tax has exactly the opposite effect. One won-
ders, naturally, whether or not jointly implementing these two policies would lead to a win-win
solution. The results reported in Figure 9 offers a preliminary but promising answer to the
question. The joint policy achieves a higher social welfare than each individual policy in all but
one case. The exception is the case of “high-low”, where the minimum wage policy delivers a
slightly higher social welfare. Several factors contribute to the rise of social welfare. First, the
higher earning rate attracts more drivers to enter the market. The improvement in LOS of ride-
hail services thus retains the demand for solo rides, which translates into a significantly higher
tax revenue compared to the congestion tax itself. Second, the increase in vehicle supply, along

10The current policy charges congestion tax on all TNC trips, yet differently, based on the trip origin and des-
tination as well as the time period. The price difference between solo and pooling rides is $1.75 with downtown
zone and $0.6 otherwise. More details see https://www.chicago.gov/city/en/depts/bacp/supp_info/city_of_

chicago_congestion_pricing.html
11This is equivalent to Scenario “short” in the previous section.
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Figure 8: System performance under congestion tax.

with the higher solo trip fare due to the congestion tax, makes pooling rides more appealing to
passengers. Although the pooling ratio under the joint policy falls behind that only with the con-
gestion tax policy, it is consistently higher than the pooling ratio at SO. It is reasonable to expect
that the joint policies considered here is not “optimal” for a combined objective of minimizing
social welfare, maximizing toll revenue and promoting ride-sharing. We leave the problem of
finding such an optimal policy to a future study.

Passenger surplus Platform profit Driver surplus Tax revenue

(a)

cong-tax

(b)

Figure 9: System performance under joint regulation of minimum wage and congestion tax.

7 Conclusions

To pool or not to pool? This is the primary question for both passengers and the e-hail platform
in our idealized aggregate market of personal mobility service. On the one hand, passengers
choose a mode among pooling, solo and transit to maximize their own utility, in response to
prices set by the platform. On the other hand, the platform determines an ideal pooling ratio
and achieves that through pricing, while anticipating the movement of the market equilibrium.

To answer this question, we formulated the market equilibrium as a nonlinear equation sys-
tem based on a spatial driver-passenger matching model that captures the operational character-
istics of e-hail with pooling. We showed that, under mild conditions, this system always has an
equilibrium that can be found using a simple iterative fixed-point algorithm. We then examined
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and compared the platform’s pricing decisions under three scenarios: profit maximization sub-
ject to market equilibrium constraint, profit maximization subject to both market equilibrium and
regulatory constraints, and social welfare maximization subject to both market equilibrium and
revenue neutral constraints. Main findings from numerical experiments are summarized below.

• As expected, pooling is desirable when demand is high but supply is scarce. However, its
benefit diminishes quickly as the average en-route detour time (i.e., the difference between
the average duration of solo and pooling trips) increases. Therefore, keeping this value
under control is the key to the success of pooling.

• Without regulations, a mixed strategy, i.e., providing both solo and pooling rides, is the best
choice for a profit-maximizing platform. Besides profit, it also achieves the highest social
welfare compared to alternative strategies. Importantly, maintaining the system optimal
output does not require subsidies if traffic congestion externality is considered in social
welfare.

• The minimum wage policy can improve social welfare in the short term. However, in the
long run, the platform might limit supply in an effort to recover the lost profits. As a result,
the policy could end up undermining social welfare, and the damage is greater when the
potential supply is small. Moreover, by maintaining the supply and demand of ride-hail at
an artificially high level, it could depress the use of collective modes (transit and pooling),
thus exacerbating traffic congestion.

• The congestion tax policy encourages pooling but hurts social welfare. Combining it with
the minimum wage policy, however, achieves a desired balance between the two seemingly
conflicting objectives in the short term.

In this study, we assume a single e-hail platform monopolizes the ride-hail market, even
though it does not have full control on either side of the market. In reality, however, it is com-
mon to have multiple platforms competing with each other, as well as with conventional taxis.
Hence, extending the analysis to accommodate such competitions is our immediate next step.
A future study can also relax the assumptions made to simplify the matching process. Such an
extension may endogenize the “matching parameters” (k and b) by linking them to such vari-
ables as matching interval/radius and maximum allowed detour. Accordingly, the platform may
consider jointly optimizing the matching and the pricing decisions.

As argued in Castillo et al. (2018), surge pricing can protect the system from the “catastrophic
consequence” of WGC. The underlying logic is that certain amount of demand must be “priced
out” so that the system can return to an efficient state of operation. Could pooling solve WGC
without leaving a portion of demand unserved? This is also an intriguing question worthy of
consideration in future studies. Another possible direction is to extend the aggregate equilibrium
model to a network equilibrium model. We expect that the spatiotemporal demand pattern in
a network would become a crucial factor that influences the pooling ratio in each local market.
Moreover, the platform may control the supply across local markets by encouraging or discour-
aging pooling. Hence, the spatial pricing problem would become more complex when pooling
is involved.
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E. Özkan and A. R. Ward. Dynamic matching for real-time ride sharing. Stochastic Systems, 2020.

J. A. Parrott and M. Reich. An earning standard for new york city app-based drivers: Economic
analysis and policy assessment, 2018.

M. Patriksson. Sensitivity analysis of traffic equilibria. Transportation Science, 38(3):258–281, 2004.

G. Qin, Q. Luo, Y. Yin, J. Sun, and J. Ye. Optimizing matching time intervals for ride-hailing
services using reinforcement learning. Transportation Research Part C: Emerging Technologies,
129:103239, 2021.

36



P. Santi, G. Resta, M. Szell, S. Sobolevsky, S. H. Strogatz, and C. Ratti. Quantifying the benefits of
vehicle pooling with shareability networks. Proceedings of the National Academy of Sciences, 111
(37):13290–13294, 2014.

B. Schaller. Unsustainable? the growth of app-based ride services and traffic, travel and the
future of new york city, 2017.

B. Schaller. The new automobility: Lyft, Uber and the future of American cities, 2018.

J. P. Schwieterman. Uber economics: evaluating the monetary and travel time trade-offs of trans-
portation network companies and transit service in chicago, illinois. Transportation Research
Record, 2673(4):295–304, 2019.

M. H. Shapiro. Density of Demand and the Benefit of Uber. Availabel at http://www.shapiromh.
com., 2018.

K. A. Small and H. S. Rosen. Applied welfare economics with discrete choice models. Economet-
rica: Journal of the Econometric Society, pages 105–130, 1981.

S. H. Strogatz. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and
engineering. CRC Press, 2018.

H. Sun, H. Wang, and Z. Wan. Model and analysis of labor supply for ride-sharing platforms in
the presence of sample self-selection and endogeneity. Transportation Research Part B: Method-
ological, 125:76–93, 2019.

T. A. Taylor. On-demand service platforms. Manufacturing & Service Operations Management, 20
(4):704–720, 2018.

R. L. Tobin and T. L. Friesz. Sensitivity analysis for equilibrium network flow. Transportation
Science, 22(4):242–250, 1988.

Y. Tong, L. Wang, Z. Zhou, L. Chen, B. Du, and J. Ye. Dynamic pricing in spatial crowdsourcing:
A matching-based approach. In Proceedings of the 2018 International Conference on Management
of Data, pages 773–788. ACM, 2018.

X. Wang, F. He, H. Yang, and H. O. Gao. Pricing strategies for a taxi-hailing platform. Transporta-
tion Research Part E: Logistics and Transportation Review, 93:212–231, 2016.

X. Wang, H. Yang, and D. Zhu. Driver-rider cost-sharing strategies and equilibria in a ridesharing
program. Transportation Science, 52(4):868–881, 2018.

S. Wodinsky. In major defeat for Uber and Lyft, New York City votes to limit ride-
hailing cars, 2019. Available at https://www.theverge.com/2018/8/8/17661374/

uber-lyft-nyc-cap-vote-city-council-new-york-taxi (Accessed: 2019-09-20).

Z. Xu, Z. Li, Q. Guan, D. Zhang, Q. Li, J. Nan, C. Liu, W. Bian, and J. Ye. Large-scale order dis-
patch in on-demand ride-hailing platforms: A learning and planning approach. In Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages
905–913. ACM, 2018.

37



Z. Xu, Y. Yin, and J. Ye. On the supply function of ride-hailing systems. Transportation Research
Part C: Emerging Technologies, 00, 2019.

C. Yan, H. Zhu, N. Korolko, and D. Woodard. Dynamic pricing and matching in ride-hailing
platforms. Naval Research Logistics (NRL), 2019.

H. Yang. Heuristic algorithms for the bilevel origin-destination matrix estimation problem. Trans-
portation Research Part B: Methodological, 29(4):231–242, 1995.

H. Yang and T. Yang. Equilibrium properties of taxi markets with search frictions. Transportation
Research Part B: Methodological, 45(4):696–713, 2011.

H. Yang, M. Ye, W. H. Tang, and S. C. Wong. Regulating taxi services in the presence of congestion
externality. Transportation Research Part A: Policy and Practice, 39(1):17–40, 2005.

H. Yang, C. Fung, K. Wong, and S. Wong. Nonlinear pricing of taxi services. Transportation
Research Part A: Policy and Practice, 44(5):337–348, 2010a.

H. Yang, C. W. Leung, S. Wong, and M. G. Bell. Equilibria of bilateral taxi–customer searching
and meeting on networks. Transportation Research Part B: Methodological, 44(8):1067–1083, 2010b.

H. Yang, J. Ke, and J. Ye. A universal distribution law of network detour ratios. Transportation
Research Part C: Emerging Technologies, 96:22–37, 2018.

H. Yang, X. Qin, J. Ke, and J. Ye. Optimizing matching time interval and matching radius in
on-demand ride-sourcing markets. Transportation Research Part B: Methodological, 131:84–105,
2020a.

H. Yang, C. Shao, H. Wang, and J. Ye. Integrated reward scheme and surge pricing in a rides-
ourcing market. Transportation Research Part B: Methodological, 134:126–142, 2020b.

J. J. Yu, C. S. Tang, Z.-J. Max Shen, and X. M. Chen. A balancing act of regulating on-demand
ride services. Management Science, 2019.

L. Zha, Y. Yin, and H. Yang. Economic analysis of ride-sourcing markets. Transportation Research
Part C: Emerging Technologies, 71:249–266, 2016.

L. Zha, Y. Yin, and Y. Du. Surge pricing and labor supply in the ride-sourcing market. Trans-
portation Research Part B: Methodological, 117(PB):708–722, 2018a.

L. Zha, Y. Yin, and Z. Xu. Geometric matching and spatial pricing in ride-sourcing markets.
Transportation Research Part C: Emerging Technologies, 92:58–75, 2018b.

K. Zhang, H. Chen, S. Yao, L. Xu, J. Ge, X. Liu, and Y. M. Nie. An efficiency paradox of uberiza-
tion. Availabel at: SSRN 3462912 (Accessed: 2019-10-15), 2019.

38



A Notations

Table A1: List of notations

Variable Description Unit
we (ws) e-hail (solo) passenger wait time hr
wp first part of pooling passenger wait time (matching time plus

pickup time of the first passenger)
hr

∆ second part of pooling passenger wait time (pickup time of the
second passenger)

hr

Λ (Λ0) vacant (unmatched) vehicle density /sqmi
Π (Π0) waiting (unmatched) passenger density /sqmi
Πs (Πp) solo (pooling) waiting passenger density /sqmi
Ñv(d) (Ñmv(d)) number of unmatched (matchable) vehicle within a distance d

from a passenger
Ñp(l) (Ñmp(l)) number of pooling (matchable) passenger within a distance l

from a passenger
v cruising speed of vacant vehicles mph
k coefficient of matching efficiency /sqmi
b coefficient of pooling efficiency
m approximation parameter /sqmi
δ detour ratio of road network
D̃e (D̃p) the distance between the e-hail (pooling) passenger and the

closest matchable vehicle (passenger)
mi

D0 total demand rate /hr/sqmi
Qs (Qp) solo (pooling) demand rate /hr/sqmi
rΠ fraction of waiting passenger for pooling
rQ pooling ratio
fs ( fp, ft) trip fare of solo rides (pooling rides, transit) $
τs (τp, τt) travel time of solo rides (pooling rides, transit) hr
us (up, ut) general cost of solo rides (pooling rides, transit) $
∆u average saving of each passenger due to switching from transit

to ride-hail service
$

ν value of time $/hr
θ Mode choice uncertainty /$
ζ disutility factor of transit trips $/hr
S0 potential supply /sqmi
N fleet size (number of drivers in operation) /sqmi
V vacant vehicle time hr/sqmi
ẽ0 (e0) random (average) reservation rate $/hr
e driver’s earning rate $/hr
η compensation rate (payment per unit occupied time) $/hr
cs congestion tax on each solo ride $
cp additional pickup fare in each pooling ride $
c0 congestion cost of each ride-hail vehicle $
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Figure A2: Histogram of pooling ratio in the study area and period.

B Data

Most of the parameters used in this study are estimated using a Chicago TNC dataset12. The data
contain 7.66 million trips recorded in September 2019 with both pickup and dropoff locations in
the City of Chicago. The total number of registered drivers is around 48K. We select ten of
77 communities in Chicago as the study area, which have the most pickups and dropoffs and
collectively cover over 70% trips in the city. In addition, we only consider trips starting between
6 AM - 9 PM from Monday to Thursday, during which the demand patterns are relatively stable.

Parameters such as pickup rates, average travel time and distance can be directly obtained
from the trip data. The cruising speed is approximated using the average speed of occupied
trips. The detour ratio is computed as the average ratio between the recorded trip distance
and the length of the straight line connecting the trip’s origin and destination (located based on
the geometric center of the corresponding census tracts). Drivers’ hourly compensation rate is
estimated based on hourly trip fare and the platform’s commission rate (assumed to be 20%).
The transit fare is obtained from Schwieterman (2019), while the transit trip duration is taken
as the average of travel time estimates by Google Map API between OD pairs in the study area
(weighed by trip numbers).

The data contains two pieces of information about pooling. The first indicates whether the
passenger chooses to pool, and the other stores the number of passengers sharing the trip. If the
pooling indicator is “true” whereas the number of passengers is one, then it means the passenger
had failed to find a partner to share the trip. Using these information, we specify the average
travel time and trip fare of solo and pooling rides. We note that this method might underestimate
these parameters because we may only observe pooling rides that are more attractive to passen-
gers (with shorter travel time and lower trip fare). Given this consideration, the travel time and
trip fare of pooling rides in Table 1 are selected to be slightly higher than the actual estimates
(0.26 hr and $8/ride). The fraction of passengers waiting for pooling, rΠ, is estimated based on
the observed pooling ratio rQ (see Figure A2).

The congestion cost per vehicle is approximated based on recent studies on TNC. Erhardt
et al. (2019) estimate the launch of TNC services in San Francisco has caused about 26,000 extra

12Available at https://data.cityofchicago.org.
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vehicle delayed hours (VDH) per day in 2016 compared to 2010. Castiglione et al. (2016) report
that over 6500 TNC vehicles operate in San Francisco during peak hour on a typical weekday in
2016. If we assume the average number of TNC vehicles in operation is 5000 over the day, then
roughly about 0.22 hr of VDH per hour can be attributed to each vehicle. According to Cookson
and Pishue (2017), an average American driver lost 99 hours to traffic congestion, translated to a
monetary value of $1377. Thus, we estimate the congestion cost per TNC vehicle is $2.9/hr.

The value of time is estimated based on the value of business trips reported in US Bureau
of Labor Statistics13, adjusted to 2019 US dollar value. The total demand D0 is approximated
by summing up the ride-hail demand and transit ridership reported by CTA14, while the total
supply is based on the total number of registered drivers, adjusted according to the size of the
study area and period.

The matching efficiency k and pooling efficiency b are not estimated from the Chicago TNC
data. The value of k is taken from Zhang et al. (2019), who calibrate the e-hail matching model
using TNC data collected in Shenzhen, China. By definition, b is the ratio between unmatched
and total waiting pooling passenger densities. Hence, it is set to be the ratio between the average
matching time (taken as 15 s) and the average total wait time (take as 5 min).

To determine the parameter m in Eq. (A8), we tested a range of values between 1 and 6.
We found Â(d, l) tends to overestimate (underestimate) A(d, l) when m = 6 (1). Also, a value
between 2 and 4 delivers similar approximation quality. Importantly, within this range, the
performance of the equilibrium model seems insensitive to the choice of m. Based on the above
tests, m = 4 is finally selected in numerical experiments.

C Number of vacant vehicles as Poisson Process

Proposition A2 (Chen et al. (2018) Proposition 1) Under Assumption 1, the counting process Ñv(d) is
an Inhomogeneous Poisson processes with intensity functions ηv(d) = 2πdΛ0.

Proof: Due to Assumption 1.1, Ñv(d) = 0 and the increments of Ñv(d) are independent. Consider
a ring area defined by d and d + ∆d, and equally cut it into n small pieces with area ∆s. Then,
the number of vacant vehicle in the ring area follows binomial distribution where each piece
contains one vacant vehicle with probability Λ0∆s. As n approaches to infinity, such a binomial
distribution can be approximated by a Poisson distribution with rate

np =
π(d + ∆d)2 − πd2

∆s
Λ0∆s = πΛ0(2d + ∆d)∆d. (A1)

Hence,

Pr(Ñv(d + ∆d)− Ñv(d) = 1) = πΛ0(2d + ∆d)∆d exp[−πΛ0(2d + ∆d)∆d]

⇒ lim
∆d→0

Pr(Ñv(d + ∆d)− Ñv(d) = 1)
∆d

= 2πdΛ0, (A2)

Pr(Ñv(d + ∆d)− Ñv(d) > 1) = 1− exp[−πΛ0(2d + ∆d)∆d]− 2πdΛ0

⇒ lim
∆d→0

Pr(Ñv(d + ∆d)− Ñv(d) > 1)
∆d

≈ lim
∆d→0

1− [1− πΛ0(2d + ∆d)∆d]
∆d

− 2πdΛ0 = 0. (A3)

13Available at https : / / www . transportation . gov / office-policy / transportation-policy /

guidance-value-time
14Available at https://www.transitchicago.com/ridership
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Therefore, Ñv(d) is an Inhomogeneous Poisson Process with intensity function η(d) = 2πdΛ0.
�

Following the same reasoning, it can be proved that the counting process Ñmp(l) defined in
Section 3.2 is an Inhomogeneous Poisson process with intensity function 2πlbΠp.

D Proof of Proposition 1

Because the pooling passengers are viewed as a single unit competing for unmatched vehicles,
we first define the effective density of waiting passenger as

Π′ ≈ Πs + Πp/2. (A4)

Hence, ws is derived the same as we except that Π is replaced with Π′. From Eq.(3), we have

ws =
δ

2v

√
Π′

kΛ
=

δ

2v

√
Πs + Πp/2

kΛ
. (A5)

The derivation of wp, however, is more complicated. Let us define D̃p as the minimum
distance from either passenger to the closest matchable vehicle. For any given distance d, a search
area is defined for each passenger as the area enclosed by a circle of radius d and centered at the
passenger waiting location. We further define effective search area as the union of the two search
areas. Accordingly, Pr(D̃p ≤ d|l) gives the probability that at least one matchable vehicle appears
inside the effective search area with parameter d conditional on the distance between the pooling
pair l.

Pooling passenger

d < L/2 d > L/2

𝑙
𝑑 𝑑

𝑙

Search area Effective search
area

Figure A3: Illustration of search area and effective search area.

Let A(d, l) denote the area of the effective search area. As illustrated in Figure A3, when
d ≤ l/2, the two passengers’ search areas do not overlap. Hence, A(d, l) simply equals 2πd2.
When d > l/2, A(d, l) is the total search area less the intersection. To summarize,

A(d, l) =

 2πd2 , d ≤ l/2

2πd2 − 2 cos−1
(

l
2d

)
d2 + dl

√
1−

(
l

2d

)2
, d > l/2

. (A6)
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Therefore, Pr(D̃p ≤ d|l) can be written as

Pr(D̃p ≤ d|l) = 1− exp
(
− Λ

kΠ′
A(d, l)

)
. (A7)

Compared to Eq. (2), pooling passengers double their competing power when d ≤ l/2, though
this advantage diminishes as l decreases. In an extreme case, when l = 0, the pooling passengers
are expected to have the same wait time as solo passengers.

The fact that A(d, l) is not smooth makes it difficult to evaluate the expectation of D̃p. Hence,
we propose to approximate it with a smooth function as follows:

Â(d, l) =
(

2− 1
1 + ml2

)
πd2. (A8)

It is easy to verify that Â(d, l) → πd2 as l = 0 and Â(d, l) → 2πd2 as l → ∞. Thus, Â(d, l) well
captures the lower and upper bounds of A(d, l) and the parameter m may be adjusted to achieve
good approximation.

Using Â(d, l), the conditional expectation of D̃p|l is derived as

E[D̃p|l] =
1
2

√
Π′

kΛ

(
2− 1

1 + ml2

)−1/2

. (A9)

Recall that l is a realization of random variable L̃. Thus, the expectation of D̃p is given by

Dp = E[E[D̃p|L̃]] =
∫ ∞

0
E[D̃p|l]dFL̃(l), (A10)

where FL̃(l) is CDF of L̃.
The above integral cannot be derived analytically due to the functional form of Eq. (A9).

Instead, we introduce the following approximation:

Dp = E[E[D̃p|L̃] ≈ E[D̃p|E[L̃]] =
1
2

√
Π′

kΛ

(
2− 1

1 + mL2

)−1/2

. (A11)

Plugging Eq. (4) into Eq. (A11) thus yields

wp =
δ

v
Dp =

δ

2v

√
Π′

kΛ
m + 4bΠp

2m + 4bΠp
. (A12)

The approximation made in Eq. (A11) warrants some discussions. Introduce a new function

g(l) =
(

2− 1
1 + ml2

)−1/2

. (A13)

Then, the approximation made in Eq. (A11) is equivalent to E[g(l)] ≈ g(E[l]) = g(L). The
approximation quality depends on the functional form of g(l). As per Jensen’s inequality, if g(l)
is a linear function, the approximation is subject to no error. Otherwise, E[g(l)] ≥ g(L) holds
when g(l) is convex, and E[g(l)] ≥ g(L) if g(l) is concave.

Figure A4(a) plots the function value, first and second derivatives of g(l) with m = 4. It can be
seen that g(l) is convex when l > 0.25 and quickly converges to 1/

√
2. Hence, Eq. (A11) is likely

43



to underestimate Dp (hence wp). This finding is confirmed in Figure A4(b), which compares the
approximated value and the analytical result given by Eq. (A10) (the analytical result is computed
by numerical integration). Specifically, we fix the total waiting passenger density Π and vacant
vehicle density Λ at the default values in Table 1, and vary the waiting passengers density for
pooling Πp. All other parameters are set according to Table 1. As shown in Figure A4(b), the
approximated value slightly underestimates Dp except when Πp is close to 0. For most values
of Πp, the error is within 5% and it decreases as Πp increases. Therefore, Eq. (A11) does offer a
reasonable approximation for Dp.
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Figure A4: Analysis of approximation quality

E Constant matching efficiency k prevents Wild Goose Chase (WGC)

Castillo et al. (2018) defines WGC as a state when the system throughput Q decreases with
passenger wait time w. From Eq. (3), we have

we =
δ

2v

√
Π
kΛ

⇒ w2
e =

δ

4v2
Qwe

kV
⇒ V =

δ

4v2
Q

kwe
.

Plugging into the flow conservation N = V + Qτ yields

N =
δ

4v2
Q

kwe
+ Qτ ⇒ Q =

N
τ + δ

4v2kwe

.

When N and other parameters, including k, are fixed, Q is monotonically increasing with
we and thus WGC would never emerge. This violation is due to the assumption that k remains
constant over time. In reality, it is expected that the matching process becomes inefficient under
extreme demand-supply imbalance. In other words, k is more likely to be a piece-wise function of
we. That is, when we is below certain threshold, k is a constant; and as we exceeds the threshold,
k would decrease with we, i.e., k′(we) < 0. Accordingly,

∂Q
∂we

=
N(

τ + δ
4v2k(we)we

)2
δ

(4v2k(we)we)2

(
k(we) + k′(we)we

)
,

and the system enters WGC when we > −k(we)/k′(we)→ ∂Q
∂we

< 0.
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F Proof of Proposition 2

Brouwer’s fixed-point theorem (Brouwer, 1911) states that: if a continuous function f : Ω ⊂ Rn →
Ω maps a compact and convex set Ω to itself, then there exists x∗ ∈ Ω such that x∗ = F(x∗).

We first prove Ω is compact and convex. By definition, x = (ws, wp, ∆)T ∈ Ω ⊂ R3
+. From

the assumption made in the proposition, ws, wp and ∆ must all be bounded from the above,
otherwise the demand for solo and/or pooling rides will disappear all together. We now show
that these three variables must also have lower bounds. First, passenger wait times reach lower
bounds ws =

δ
2v
√

S0
and wp = δ

2v
√

2S0
, when the fleet size approaches its upper bound S0 and the

demand D0 approaches zero. Second, as Πp is bounded from above by D0(wp + ∆), the lower
bound of ∆ is given by ∆ = δ

2v [bD0(wp + ∆)]−1/2. Consequently, Ω can be defined as the cubic
space [ws, ws]× [wp, wp]× [∆, ∆], which is compact and convex.

We proceed to show the self-map F(·), i.e., Eqs. (13d)–(13f), is continuous. Recall that
Eqs. (13d)–(13f) are continuous functions of Qs, Qp and V, along with ws, wp and ∆. From
(13c), we know V is a continuous function of Qs, Qp and N. Therefore, to show F is continuous,
we only need to prove Qs, Qp and N are continuous functions of ws, wp and ∆. The continuity
of previous two are directly shown from Eqs. (13a) and (9). The last one is more complicated as
it involves the implicit function Eq. (13b). We prove this result in Lemma 1.

Lemma 1 The fleet size N defined in Eq. (13b) can be represented as a continuous function of x =

(ws, wp, ∆)T.

Proof: We apply the implicit function theorem (Krantz and Parks, 2012) to prove the result.
Consider a continuously differentiable function L : Rn+m → Rm and a point (x0, y0), x0 ∈

Rn, y0 ∈ Rm such that L(x0, y0) = 0. The theorem states that, if the Jacobian matrix

JL,y(x0, y0) =

[
∂Li

∂yj
(x0, y0)

]
, i = 1, . . . , m, j = 1, . . . , m (A14)

is invertible, then there is a neighborhood of x0, denoted as U ⊂ Rn, and a unique continuously
differentiable function g : U → Rm such that y = g(x), ∀x ∈ U.

To apply the above result, let us rewrite Eq. (13b) as

L(x, N) = S0G
(

1
N

[
η

(
Qs(x)τs +

1
2

Qp(x)τp

)
+

cp

2
Qp(x)

])
− N = 0. (A15)

Therefore, for any point that satisfies Eq. (A15), N is a continuous function of x in a neighborhood
of that point provided ∂L

∂N is invertible, or equivalently,

∂L
∂N

= −S0G′
1

N2

[
η

(
Qs(x)τs +

1
2

Qp(x)τp

)
+

cp

2
Qp(x)

]
− 1 6= 0. (A16)

To see why (A16) must hold, note that G′ is the probability density function of the drivers’
reservation rate. Thus, G′, as well as all other variables, must be nonnegative. Accordingly,
∂L/∂N ≤ −1 and hence it cannot be zero. This completes the proof. �

Therefore, both conditions stated in Brouwer’s fixed-point theorem are satisfied. We hence
conclude that the existence of a solution to Eq. (13) is guaranteed.
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G Determination of upper bounds for ∆, ws and wp

The MNL model implies that the mode share decreases exponentially with its general cost but
never reaches zero. However, in reality no one would choose solo or pooling if the correspond-
ing wait time (ws and wp + ∆) are too long. Let ε be the minimum demand considered to be
meaningful for analysis. We next show the upper bound for ∆, denoted as ∆, can be derived as
a function of ε. Note that

Qp = D0
e−θup

∑i e−θui
≤ D0

e−θup

2e−θu + e−θup
, (A17)

where u = min{us, ut} = min{ fs + ν(ws + τs), ft + ντt} (recall ws = δ
2v
√

S0
; see the proof of

Proposition 2). Setting

D0
e−θup

2e−θu + e−θup
≤ ε

yields (
D0

ε
− 1
)

e−θup ≤ 2e−θu ⇒ up ≥ u +
1
θ

log
D0/ε− 1

2

⇒ ∆ ≥ 1
ν
(u− fp) +

1
θν

log
D0/ε− 1

2
− wp. (A18a)

In other words, whenever Eq. (A18a) is satisfied, the demand for pooling would reduce to no
more than ε. Since wp ≥ 0, we may set

∆ ≡ 1
ν
(u− fp) +

1
θν

log
D0/ε− 1

2
. (A19)

It is clear that the upper bound established this way is likely to be loose. However, it suffices for
our purpose to show a finite upper bound does exist. ws and wp can be obtained in a similar
fashion, and the details are omitted for brevity.

H Equilibrium stability

Because Eq. (13) is a highly nonlinear equation system, theoretically it could have more than one
solution. In addition, a solution may or may not be stable. An equilibrium is said to be stable if
the system always returns to it after a small perturbation. We are particularly interested in stable
solutions.

Recall that the solution to Eq. (13) can be represented as a fixed point, i.e., x∗ = F(x∗), where
x∗ = (w∗s , w∗p, ∆∗)T. The stability theory (e.g., Strogatz, 2018) states that a solution x∗ is stable
if and only if all eigenvalues of the Jacobian matrix of F(·) at x∗, denoted by Jx∗ , have absolute
values less than 1. Using this result, we screen each equilibrium solution obtained from fixed-
point iterations and only keep those that pass the stability test. Since F(·) is explicitly expressed,
i.e., Eq. (13), we could evaluate Jx∗ using automatic differentiation (Baydin et al., 2017).

Figure A5 reports the convergence performance of the iterative fixed-point algorithm in two
examples, both using the default parameters given in Table 1 except for the pricing strategies
( fs, fp and η). The algorithm is terminated when the gap drops below a predefined threshold,
set at 10−8 in this study. Each convergence curve (gap vs. number of iteration) in the plots
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Figure A5: Convergence performance of the iterative fixed-point algorithms. (a) All initial so-
lutions lead to the same stable equilibrium; (b) All initial solutions lead to the same unstable
equilibrium.

represents a different initial solution. These results are representative of our overall experience
with the fixed-point algorithm, which is that it generally converges quite fast and the choice of the
initial solutions tends to have a negligible impact on convergence. In this particular experiment,
the pricing strategy on the left leads to a stable equilibrium and the algorithm is able to locate
it regardless of where it starts. However, an unstable equilibrium emerges when the pricing
strategy on the right is employed. This happens because the general cost of a pooling ride is close
to that of a solo ride when there is no demand for pooling. As a result, a small perturbation in
the inputs could make pooling more attractive, forcing the solution to significantly deviate from
the pre-perturbation one. Still, the algorithm converges faithfully to this unstable equilibrium,
starting from all tested initial points.

In light of the above observations, whenever the market equilibrium is sought, we run the
fixed-point algorithm multiple times with randomly generated initial solutions. If all runs con-
verge to the neighborhood of the same fixed point, we take their average as the final equilibrium
solution. If there is more than one equilibrium solution, we test their stability and only keep the
stable ones. Curiously, in all numerical experiments conducted in this study, we did not come
across a single case where multi equilibrium were found.

I Derivation of ∇R

Gradient ∇R is evaluated as

∂R
∂ fs

= Qs + ( fs − ητs)
∂Qs

∂ fs
+

(
fp −

1
2

ητp −
1
2

cp

)
∂Qp

∂ fs
; (A20a)

∂R
∂ fp

= Qp + ( fs − ητs)
∂Qs

∂ fp
+

(
fp −

1
2

ητp −
1
2

cp

)
∂Qp

∂ fp
; (A20b)

∂R
∂η

= ( fs − ητs)
∂Qs

∂η
+

(
fp −

1
2

ητp −
1
2

cp

)
∂Qp

∂η
−Qsτs −

1
2

Qpτp = 0. (A20c)
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In what follows, we explain how to compute ∂R/∂ fs in each iteration. ∂R/∂ fp and ∂R/∂η

can be computed similarly. The two components to be evaluated in Eq. (A20a) are ∂Qs/∂ fs and
∂Qp/∂ fs. Take ∂Qs/∂ fs as an example. We expand it as

∂Qs

∂ fs
= D0

[
∂q
∂ fs

+
∂q

∂ws

∂ws

∂ fs
+

∂q
∂wp

∂wp

∂ fs
+

∂q
∂∆

∂∆
∂ fs

]
. (A21)

Here, the partial derivatives of the function q with respect to fs, ws, wp and ∆ can be evaluated
numerically using automatic differentiation (Baydin et al., 2017).

To obtain the implicit partial derivatives ∂ws/∂ fs, ∂wp/∂ fs and ∂∆/∂ fs, we first rewrite
Eq. (13) as follows:

ws =
δ

2v
√

k

√
Π′

V
, (A22a)

wp =
δ

2v
√

k

√
Π′

V
m + 4bΠp

2m + 4bΠp
, (A22b)

∆ =
δ

2v
√

b
1√
Πp

, (A22c)

where Π′ is defined in (A4). Also, Π′, V and Πp can be viewed as functions of fs, ws, wp, ∆ as per
Eqs. (13a)-(13c).

Taking logarithm and then differentiating with respect of fs on both sides of Eq. (A22) yields

1
ws

∂ws

∂ fs
=

1
2Π′

∂Π′

∂ fs
− 1

2V
∂V
∂ fs

, (A23a)

1
wp

∂wp

∂ fs
=

1
2Π′

∂Π′

∂ fs
− 1

2V
∂V
∂ fs

+
1
2

(
4b

m + 4bΠp
− 4b

2m + 4bΠp

)
∂Πp

∂ fs
, (A23b)

1
∆

∂∆
∂ fs

= − 1
2Πp

∂Πp

∂ fs
. (A23c)

∂Π′/∂ fs can be evaluated similarly as ∂Qs/∂ fs. Recall that Π′ = wsQs + (wp + ∆)Qp. We may
represent Π′ as a function Π′ = π(ws, wp, ∆, Qs, Qp). Accordingly,

∂Π′

∂ fs
=

∂π

∂ws

∂ws

∂ fs
+

∂π

∂wp

∂wp

∂ fs
+

∂π

∂∆
∂∆
∂ fs

+
∂π

∂Qs

∂Qs

∂ fs
+

∂π

∂Qp

∂Qp

∂ fs
. (A24)

Again, the partial derivatives of π can be computed by automatic differentiation.
In other words, ∂Π′/∂ fs can be expressed as a linear function of ∂ws/∂ fs, ∂wp/∂ fs and ∂∆/∂ fs.

∂V/∂ fs and ∂Πp/∂ fs in Eq. (A23) can be derived in the same way. Consequently, Eq. (A23) turns
into a linear equation system with respect to ∂ws/∂ fs, ∂wp/∂ fs and ∂∆/∂ fs.

Plugging the solution of Eq. (A23) into Eq. (A21), we can obtain ∂Qs/∂ fs. The computation
of ∂Qp/∂ fs is similar and omitted here for brevity.

J Sensitivity of market equilibrium to en-route detour

As discussed in Section 4.1, the en-route detour τp − τs is expected to decrease with pooling
demand. Yet, in all numerical experiments presented in the main text, we have assumed the
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detour to be constant for simplicity. In this appendix, we adopt the results of Ke et al. (2021)
and Lobel and Martin (2020) to test the sensitivity of our findings to the endogeneous en-route
detour.

Ke et al. (2021) empirically observe the passenger detour distance ∆l follows

∆l
l̄

=
1

αN + β
, (A25)

where l̄ is the average trip distance, N is the number of requests accumulated in a matching
interval, and α, β are coefficients15.

Since vehicles travel at a constant speed v, ∆l/l = (τp− τs)/τs. In addition, the batch demand
N in Eq. (A25) can be replaced with bΠp, which is the unmatched pooling passenger density.
Accordingly, we adjust the average trip duration of pooling rides as follows:

τp = τs

(
1 + min

(
0.5,

1
αbΠp + β

))
. (A26)

Note that the upper bound 0.5 on 1/(αbΠp + β) follows from the result proved in Lobel and
Martin (2020).

Ke et al. (2021) calibrated the coefficients α, β for New York City and two other cities in China
with various matching radius. We take the range of coefficient values associated with New York
City and calculate the market equilibrium with default total demand (D0 = 1200/hr/sqmi) and
potential supply (S0 = 550/sqmi).

Figure A6 shows how the key outputs of the equilibrium model vary with α and β. First,
the market equilibrium is clearly insensitive to α, mainly because the first term αbΠp is much
smaller compared to β. In other words, the pooling demand has a minor impact on the en-route
detour, as long as the pooling demand is not too large. The differences in passenger wait times
and average trip duration of pooling rides are small (less 10%), and those in fleet size and vacant
vehicle density are almost negligible (less than 1%). The mode split of pooling rides is the most
sensitive to β. As shown in Figure A6(b), the share of pooling increases in the adjusted model by
more than 8%, when β increases from 2.25 to 3.5. As a larger β corresponds to a smaller detour
ratio, this result is expected.

We continue to examine the sensitivity of market equilibrium to different supply-demand
levels using the adjusted model. Since the results are demonstrated insensitive to α, we fix it
as 0.05 and consider two extreme cases of β, i.e., β = 2.25 and β = 3.5. The results, along
with the market equilibria with constant en-route detour, are illustrated in Figures A7 and A8.
As expected, when β = 2.25, the adjusted model barely causes any meaningful changes in the
equilibrium solution. The most prominent sensitivity is again shown in the mode split when β

is large. Specifically, the difference in pooling share reaches about 10% when the total demand
is low or the potential supply is high. The difference in solo share, on the other hand, is quite
stable across different supply and demand levels, at around 3-5%. The differences in passenger
wait time is even smaller, less than half of an minute in most scenarios.

The above findings imply that by assuming a constant detour, our model may underestimate
the attractiveness of pooling, especially when β is large. However, the values of α and β used
in the sensitivity analyses, calibrated for New York City, may not fit our case study (based in

15Here, we follow the same notations in Ke et al. (2021), hence there are a few conflicts with the notations in our
main text
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Figure A6: Differences in equilibrium outputs between the original model (with constant τp) and
the adjusted model (with τp being specified by Eq.(A26)).

Chicago) well. Hence, without further empirical investigation, we cannot properly qualify how
much our simplified model may deviate from reality. Also, the results suggest that the en-route
detour is stable when the pooling demand is low. Therefore, assuming it as a constant seems
reasonable, given that the pooling ratio in Chicago is mostly below 20% (see Figure A2).

Another difficulty that comes with the endogenous en-route detour is that it would turn the
pooling demand into an implicit function, as Qp appears on both sides of Eq. (13a). This would
further complicate the derivation of analytical results.
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Figure A7: Sensitivity of market equilibrium to (a) total demand D0 and (b) potential supply S0

with α = 0.05, β = 2.25.
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Figure A8: Sensitivity of market equilibrium to (a) total demand D0 and (b) potential supply S0

with α = 0.05, β = 3.5.
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