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Abstract

Ethologically relevant chemical senses and behavioral habits are likely to coadapt in response
to selection. As olfaction is involved in intrinsically motivated behaviors in mice, we hypothesized
that selective breeding for a voluntary behavior would enable us to identify novel roles of the
chemosensory system. Voluntary wheel running (VWR) is an intrinsically motivated and naturally
rewarding behavior, and even wild mice run on a wheel placed in nature. We have established 4
independent, artificially evolved mouse lines by selectively breeding individuals showing high VWR
activity (High Runners; HRs), together with 4 non-selected Control lines, over 88 generations. We
found that several sensory receptors in specific receptor clusters were differentially expressed between
the vomeronasal organ (VNO) of HRs and Controls. Moreover, one of those clusters contains multiple
single-nucleotide polymorphism loci for which the allele frequencies were significantly divergent
between the HR and Control lines, i.e., loci that were affected by the selective breeding protocol.
These results indicate that the VNO has become genetically differentiated between HR and Control
lines during the selective breeding process. Although the role of the vomeronasal chemosensory
receptors in VWR activity remains to be determined, the current results suggest that these
vomeronasal chemosensory receptors are important quantitative trait loci (QTLs) for voluntary
exercise in mice. We propose that olfaction may play an important role in motivation for voluntary

exercise in mammals.
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Introduction

Chemical senses are involved in many aspects of behavior. Olfaction is especially
important for controlling such intrinsically motivated behaviors as food-seeking, social
interactions, and reproductive- and fear-driven behaviors (1). An ethologically relevant cue is
sensed by chemosensory receptors expressed in the sensory organs, which activate a specific
neural circuitry for behavioral motivation and induces an appropriate behavioral output in a
specific context (2-5). Comparative functional studies involving insect model species propose a
model wherein molecular evolution of chemosensory receptors is sufficient to induce changes in
neural circuit activity and behavioral patterns (6). Thus, ethologically relevant cues, receptors,
neural circuitries, and behavioral habits are likely to evolve together (coadapt) in response to

natural and sexual selection.

One olfactory organ, the vomeronasal organ (VNO), occurs in some amphibians,
squamates, and some mammals, including rodents. The VNO is known to detect intraspecific
signals known as pheromones that trigger behavioral and physiological changes in receivers (7).
Pheromones are non-volatile peptides and small molecular weight compounds that are excreted in
such fluids as urine and tears. These molecules are taken up from the environment to the VNO by
direct contact and activate the vomeronasal sensory neurons (VSNs) (8, 9). Generally, each VSN
expresses a member of the vomeronasal receptor families: type I vomeronasal receptors
(Vmnlrs), type 2 vomeronasal receptors (Vmn2rs), and formyl peptide receptors (Fprs), with
some exceptions (10-14). The signals detected by these receptors in the VSNs are axonally sent to
glomerular structures and synaptically transmitted to the postsynaptic neurons, also known as

mitral-tufted cells, in the accessory olfactory bulb (AOB) (15, 16). The signals are then processed
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in the amygdala and hypothalamus, which induce the animal’s instinctive behavioral responses

and endocrinological changes (7, 17, 18).

Rapid evolution of the receptor genes is a pronounced feature of the vomeronasal system
(19-32). Different species of animals have divergent family members of vomeronasal receptor
genes (24, 27-29, 33, 34). Even within the Mus musculus (house mouse) species complex,
variation in the coding sequence is frequently observed (19). Moreover, the abundance of receptor
genes expressed in the VNO varies even among different inbred mouse strains (35). Distributions
of single nucleotide polymorphisms (SNPs) observed in lab-derived strains are non-random, and
correlated with vomeronasal receptor phylogeny as well as genomic clusters (19). These
observations led us to hypothesize that selective breeding for a behavior that is modulated by
chemosensory signals would induce an alteration in genomic clusters of vomeronasal receptors

that are potentially involved in the behavior.

Voluntary wheel running (VWR) is an intrinsically motivated behavior, and even wild
mice run on a wheel placed in nature (36). Notably, VWR is one of the most widely studied
behaviors in laboratory rodents (37-39). Individual differences in VWR are highly repeatable on a
day-to-day basis, the trait is heritable within outbred populations of rodents, and genes and
genomic regions associated with VWR are being identified (40). Moreover, some of the
underlying causes of variation in VWR have been elucidated, in terms of both motivation and
ability for voluntary exercise (38, 41, 42). Importantly, a previous study demonstrated that the
presence of conspecific urine increased VWR activity level in adult wild-derived mice (43),

suggesting that external chemosensory cues also have a modulatory role in VWR activity.

We have established 4 independent, artificially evolved mouse lines by selectively

breeding individuals showing high VWR activity (High Runners; HRs), along with 4 independent,
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non-selected Control lines over 88 generations (44, 45). Briefly, all 4 HR lines run ~2.5-3.0-fold
more revolutions per day as compared with the 4 Control lines (46, 47). Studies of mice allowed
access to clean wheels or those previously occupied by a different mouse revealed that HRs show
higher sensitivity to previously-used wheels and display greater alteration in daily wheel running
activities than the Controls (48). This result suggests that selective breeding for high running
activity was accompanied by altered sensitivity to other individuals, suggesting a potential

coadaptation of the chemosensory system with voluntary wheel running.

In this study, we examined whether selective breeding for VWR has differentiated the
vomeronasal receptor genes between HR and Control lines. We found that a repertoire of receptor
genes was differentially expressed between the VNO of HR and Control lines, which resulted
from reduction or increase of specific vomeronasal receptor-expressing cells in the VNO of HR
lines. We also found that this gene expression change was partially due to the genetic alteration
upon selective breeding for VWR, suggesting a relationship between high running activity and the
function of the VNO in HR lines. Taken together, our results indicate vomeronasal receptors as

QTL for voluntary exercise behavior in mice.

Results

Differential expression of vomeronasal receptors in the VNO of HR and Control lines

To examine the impact of selective breeding for VWR activity on receptor gene expression
in the VNO, we conducted transcriptome analysis of the VNO from both males and females of HR
and Control lines. For each sex and replicate line of the 4 HR and 4 Control lines, total RNA

samples were prepared, each consisting of the combined VNOs from 3 individual mice. After
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RNA sequencing, we identified 132 differentially expressed (DE) genes in the HR line group
compared to the Control line group (Figure 1). We identified 19 vomeronasal receptor genes in the
DE gene set, which belong to either the Fpr, Vmnlr or Vmn2r family (Figure 1, shown in red). Of
the 19 DE receptor genes, the Reads Per Kilobase Million (RPKM) of Fpr3, Vmn2r8, Vmn2r9,
Vmn2rll, Vmn2r96, Vmn2r98, Vmn2r102 and Vmn2r110 were significantly up-regulated, while
Vmnlrl88, Vmnlr236, Vmn2rl5, Vmn2rl6 and Vmn2r99 were significantly down-regulated in the
VSNs of HR lines compared to Control lines (Figure 2A). The RPKM of olfactory marker protein
(OMP), which is abundantly and exclusively expressed in all mature VSNs in the VNO (49), was
not different between HR and Control lines (data not shown), indicating that receptor gene
expression changes were not due to variation in VSN number. The log, fold change of
normalized expression of the DE genes varied from -3.3 to 2.1 (Figure 2B). Fpr-rs4 and Vmn2rl6
showed the largest upregulation and downregulation, respectively. To examine sexually-biased
expressions, we separated RPKMs of each DE receptor gene into sex and linetype groups
(Supplemental Figure 1) and performed a two-way ANOVA test to examine sex and linetype
differences. As shown in Supplemental Figure 2, p values for sexually-biased expression and
interaction were above 0.05 in all DE receptor genes, demonstrating that there are no sex-
dimorphic expression changes between HR and Control lines. These results suggest that
expression of the chemosensory receptor genes is differentially regulated in the VSNs between HR

and Control lines without a sex difference.

Interestingly, 15 out of 19 DE receptor genes are co-localized in specific vomeronasal
receptor clusters. Vmn2rS, Vmn2r9, Vmn2rl 1, Vmn2ri3, Vmn2rl5, and Vmn2r16 are localize in a
~1 Mb vomeronasal receptor cluster on chromosome 5, and Fpr3, Fpr-rs4, Vmn2r96, Vmn2r98,

Vmn2r99, Vmn2ri102, Vmn2rl107, Vmn2r110, and Vmnlr236 are localized in a ~3 Mb
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vomeronasal receptor cluster on chromosome 17 (Figure 3). Vmn2r23, Vmn2r45, Vmniri88, and
Vmn2rl14 exist on chromosome 6, 7, 10, and 17, respectively (Figure 3), and they are surrounded
by vomeronasal receptors which are not differentially expressed between HR and Control lines.
These results suggest the correlation of differential expression of vomeronasal receptors and

genomic chromosomal locations, as well as other unknown causes.

Accumulation of all-or-none SNPs in a vomeronasal receptor cluster

We then hypothesized that differences between HR and Control lines in vomeronasal
receptor gene expression may be associated with differences in genomic sequences, especially
allele frequencies between HR and Control lines caused by the selective breeding. Previous
genome-wide SNP analysis detected 152 out of 25,318 variable SNP loci for which allele
frequencies are significantly different between HR and Control lines after correction for multiple
comparisons (50). As explained in the previous paper, the differentiation in allele frequencies for
these 152 loci cannot be attributed to random genetic drift. Of the 152 SNP loci, we particularly
focused on 61 loci that are fixed for the same allele in all 4 replicate HR lines but not fixed in any
of the 4 replicate Control lines, or vice versa (which we term “all-or-none SNPs”, Supplemental
table 1). The 61 SNP loci are not randomly distributed throughout the genome (Supplemental
Figure 3A). The majority of them (59 of 61) exist as a member of groups of 3 or more which are
located in close proximity on the genomic chromosomes (Supplemental Figure 3B). As a result,

only 11 all-or-none SNP clusters are observed in the genome (Supplemental Figure 3A)

Interestingly, 8 of the 61 all-or-none SNP loci are located in a ~3 Mb interval on
chromosome 17 that contains clusters of Vmnlirs (14), Vmn2rs (21), and Fprs (7) (Figure 4A).
Strikingly, 9 out of the 19 DE vomeronasal receptors are located in this all-or-none SNP cluster.

Five of the all-or none SNPs are localized near the differentially expressed vomeronasal receptors
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(Fig 2B): SNP ID rs29503987 at 30 kb downstream and 20 kb upstream of Fpr3 and Fpr-rs4,
respectively, rs33447983 at 8.4 kb downstream of Vmn2r99, rs6224641 at 30 kb downstream of
Vmn2r99, 1s33649277 at 44 kb upstream of Vmn2ri02, 1s29522462 at 524 bp downstream of
Vmn2r110, and rs33120398 at the intron 1 of Vmn2ri10. Other SNPs, such as rs33463529, are
also closely located near vomeronasal receptors, though changes in expression of the nearby
receptors were not observed. These results strongly suggest that changes in vomeronasal receptor
gene expression between HR and Control lines are at least partially caused by changes in allele

frequencies at multiple loci in response to selective breeding for VWR activity.

The rest of the DE vomeronasal receptors, which are located in another vomeronasal
receptor cluster on chromosome 5, as well as other solitary ones, are not surrounded by SNP loci
that are significantly differentiated between HR and Control lines (50). Therefore, expression
changes of the receptor genes may be mediated by SNPs that remain polymorphic in both lines, or

by different mechanisms.

Differential number of Fpr3-expressing VSNs in the VNO of HR and Control lines

To determine the significance at the cellular level in the VNO of the DE chemosensory
receptor genes, we chose one representative gene to determine whether there are differences in the
number of receptor-expressing VSN, or alternatively, differences in transcript abundance in each
receptor-expressing VSN. We performed in situ hybridization to detect Fpr3 in the VNO of 2-3
individual mice from each of the 4 HR and 4 Control lines, together with a probe for the Gao
(Gnaol). Expression of Fpr3 is ~3 times higher in HR lines compared to Control lines in RNAseq
analysis (Figure 2B). Although Fpr3-expressing VSNs were observed in the VNO of both HR and

Control lines, the number of Fpr3-expressing VSNs in each VNO slice varied among lines (Figure
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5A, B). In 3 Control lines (line 1, 4, and 5), Fpr3 signal was barely observed in each VNO tissue
slice, while Control line 2 had a significantly higher number of Fpr3-expressing VSNs (Figure
5B). This result was consistent with the RNAseq data, in which the amount of Fpr3 transcripts in
line 2 was higher than other Control lines (Figure 2A). We consistently observed multiple Fpr3-
expressing VSNs in most of the VNO tissue slices from the 4 HR lines and Control line #2 (Figure
5B, C). Generally, there were significantly more Fpr3-expressing VSNs in the HR versus the
Control lines (Figure 5C, Mann-Whitney test (p < 0.05)). The fluorescent intensity derived from
Fpr3 gene transcripts in each VSN was not distinguishable between the VNO tissues from HR and
Control lines (Figure 5D and E). Taken together, these results demonstrate that the different
expression levels of the chemosensory receptors result from changes in the number of the
receptor-expressing VSNs. The results observed here are consistent with a previous finding in the
main olfactory system, which has a similar monoallelic pattern of receptor gene expression in each
sensory neuron (51): a positive correlation between tissue RNA levels of olfactory receptor genes
and numbers of OSNs expressing the receptors. Thus, the number of VSNs expressing specific

sets of chemosensory receptors are differentially regulated after selective breeding for VWR.

Discussion

In this study, we utilized a unique animal model: 4 replicate mouse lines that have been
experimentally evolved by selectively breeding individuals showing high VWR activity (HR
lines), along with their 4 independent, non-selected Control lines maintained over 88 generations
(44). The HR and Control lines provide a strong model for determining the contribution of
genetics to voluntary-exercise related traits (45, 52). In addition to the exercise ability-related

genetic adaptations found after selective breeding (38, 45), several changes at the level of the
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central nervous system have also been identified, which contribute to elevation of VWR for HR
mice (38, 41, 53). Through SNP mapping analysis (Supplemental Fig 1), we found that 3 of the
61 all-or-none SNP loci that were fixed in all 4 replicate HR lines (but none of the 4 replicate
Control lines) were located in a genomic cluster exclusively containing T-box genes on

Chromosome 5. These genes are associated with GO terms of “bundle of His development,”

99 ¢¢ 99 ¢

“embryonic forelimb morphogenesis,” “cardiac septum morphogenesis,” “ventricular septum
development,” and “cardiac muscle cell differentiation”. Indeed, compared with their 4 non-
selected Control line counterparts, mice from the 4 replicate HR lines have been shown to have
increased ventricular mass (46, 54-56), as well as altered cardiac functions (56-58). Thus, the

genome-wide SNP analysis of HR and Control lines of mice (50) could robustly identify QTL

associated with voluntary exercise behavior.

Vomeronasal receptors are among the most rapidly evolving genes in vertebrates (19-32).
Different taxonomic groups have divergent family members of vomeronasal receptor genes (22,
24, 27-29, 33, 34), and the abundance of receptor genes expressed in the VNO is different even
among inbred mouse strains (35). Moreover, many of the mouse pheromones identified as ligands
for vomeronasal receptors show strain specificity. For example, expression of the male pheromone
ESP1 is only observed in a few inbred strains, although males of wild-derived strains all secrete
abundant ESP1 peptide into their tears (59). Likewise, expression of juvenile pheromone ESP22 is
missing in some inbred strains (60). Major urinary proteins (MUPs) are potential ligands for
vomeronasal receptors, and all male mice of a given inbred strain secrete identical MUP members,
whereas wild-derived mice each exhibit a unique profile of emitted MUPs (61). Thus, pheromones

and vomeronasal receptors in the vomeronasal system may have evolved in response to various

10
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environmental changes, including domestication, which resulted in alteration of coding sequences

and expression patterns.

Considering the extensive evolution of receptor genes, selective breeding for a
chemosensory-mediated behavior is an attractive alternative approach to reveal the functions of
vomeronasal receptors. VWR activity of a mouse strain that recently derived from the wild has
been shown to be increased by urinary chemosignals from other individuals (43). Therefore, if the
function of the VNO is involved in the modulation of VWR activity, then we would expect that
selective breeding for high VWR activity should impact vomeronasal receptors. Indeed, we found
that expression levels of several vomeronasal receptor genes as well as a few SNPs near the DE
receptor genes were different between HR and Control lines. Although the role of each DE
receptor in VWR activity needs to be determined in future studies, the current results suggest that

vomeronasal chemosensory receptors could be important QTLs for voluntary exercise in mice.

One of the important remaining questions is how the vomeronasal system modulates VWR
behavior in HR lines. One study measuring patterns of brain activity using c-Fos
immunoreactivity revealed multiple areas in the brain that appear to be associated with motivation
for VWR in HR lines (62). These areas include brain nuclei known to be motivation-related, such
as the prefrontal cortex, medial frontal cortex, and nucleus accumbens (NAc) (62). In addition, it
was recently shown in mice that VNO-mediated signals regulate the mesolimbic dopaminergic
system, especially by upregulating the ventral tegmental area (VTA)-NAc circuit, and that they
enhance reproductive motivation in mice (16). Thus, it is possible that the VNO-mediated
chemosensory signals also upregulate VWR activity by stimulating the VTA-NAc circuit.
Moreover, one of the hypothalamic targets of the vomeronasal system, the medial preoptic area

(MPOA), has been shown to regulate wheel-running activity in a hormone-dependent manner (63-
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66). It is therefore also conceivable that the VNO-mediated chemosensory signals upregulate
VWR by directly activating MPOA neurons. Combined with these previous observations, we
propose that chemosensory signals detected by the VNO activate specific areas of the central
nervous system that contribute to VWR activity. Future studies are expected to reveal the role of

the VNO in modulating physical exercise and other voluntary behaviors in rodents.

Materials and Methods

Animals

The experimental procedures were approved by the UCR Institutional Animal Care and
Use Committee and were in accordance with the National Institutes of Health Guide for the Care
and Use of Laboratory Animals. The VNOs studied were from 12-week old male and female mice
of 4 lines selected for high voluntary wheel running and 4 Control lines. The studied mice were
derived from generation 88 of a replicated selective breeding experiment for increased voluntary
wheel running behavior that began with a base population of the outbred Hsd:ICR strain (44).
Wheel revolutions were recorded in 1-minute intervals continuously for 6 days, and mice were
selected within-family for the number of revolutions run on days 5 and 6. In each selected HR
line, the highest-running male and female within 10 individual families were selected per
generation and each mouse was mated to a mouse from another family, within its line. This
within-family selection regimen minimized inbreeding such that the effective population size was
approximately 35 in each line (44). In the Control lines, one female and one male within each
family were chosen at random, though full sibling mating was again prevented. The mice in the

present study were neither full nor half-siblings.
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RNA sequencing

The VNO tissues were harvested from 3 male and 3 female mice from each of the 4 HR
and 4 Control lines, immediately transferred to RNA later (Sigma-Aldrich), then stored at —80°C
until use for RNA-seq. VNO tissues from the same sex and line of mice were pooled and
homogenized in Trizol Reagent (Life Technologies, Carlsbad, CA) and processed according to the
manufacturer's protocol. Trizol-purified RNA samples were quantified using Qubitl 2.0 (Life
Technologies). The integrity of isolated RNA was measured by the 28S/18S rRNA analysis using
the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara CA) with RNA Nano chip
(Agilent Technologies, Palo Alto, CA). Samples had RNA integrity number values of at least 8.30.
Using the Ultra II Directional RNA Library Prep kit (NEB), each RNA sample was depleted of
ribosomal RNA and used to prepare an RNA-seq library tagged with a unique barcode at the UCR
IIGB Genomics Core. Libraries were evaluated and quantified using Agilent 2100 Bioanalyzer
with High Sensitivity DNA chip, then sequenced with the Illumina NextSeq 500 system (Illumina,
San Diego, CA, USA) and 75nt-long single-end reads were generated at the UCR IIGB Genomics
Core. A total of 8 libraries (4 HR lines and 4 Control lines) were multiplexed and sequenced in a

single lane which yielded ~11,000 M reads, averaging ~1,400 M reads per sample.

The RNA-seq data files are available in the National Center for Biotechnology Information

Gene Expression Omnibus (GEO) database (accession identifier GSE146644).

Differential gene expression analysis

13
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The analysis compared the transcriptome profiles from both males and females of the HR
and Control lines of mice. Quality control of the sequence reads included a minimum average
Phred score of 30 across all positions using FastQC. Sequencing reads were aligned to the mouse
reference genome (GRCm38/mm10), using STAR aligner ver. 2.6.1d (67) with an increased
stringency unforgiving any of mismatches per each read (‘-outFilterMismatchNmax 0’). Any reads
that map to multiple locations in the genome are not counted (‘-outFilterMultimapNmax 1) since
they cannot be assigned to any gene unambiguously. In order to determine the differentially
expressed (DE) genes, generated BAM files were accessed with Cuffdiff (68), a program included
in Cufflinks. Cuffdiff reports reads per kp per million mapped reads (RPKM), log, fold change,
together with p-value, and adjusted p-values (g-values). After Benjamini-Hochberg false discovery
correction, genes with g-values less than 0.05 were considered as DE genes. To examine sexual
differences, RPKM of DE vomeronasal receptor genes in male and female HR and Control mice
were subjected to two-way ANOVA tests using Prism (GraphPad). Notably, p-values for linetype-
biased expression of 4 DE receptor genes (Vmn2r13, Vmn2r23, Vmn2r45, and Vmn2r107) were >
0.05 due to differences of statistical tests: the negative binomial regression in DE gene detection

and the general linear model in two-way ANOVA.

Analysis of all-or-none SNPs

SNP data in supplemental table 7 (Data S7) in Xu and Garland (2017) (50) were used for
this analysis. SNPs that separate all 4 HR and 4 Control lines (which we term all-or-none SNPs)
were selected (Supplemental Table 1) and mapped onto mouse genome (NCBI37/mm?9) using

UCSC Genome Browser (https://genome.ucsc.edu). We noticed that most of the all-or-none SNPs

occurred in groups. Thus, we mapped those SNP clusters onto genomes (Supplemental Figure

14
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3A). Each cluster was defined - and + 0.1 Mb from the first and last SNP, respectively, observed
in a specific location of the genome. Information of coding genes in each SNP cluster were

extracted (Supplemental Figure 3B). For some clusters, Gene-to-GO mappings was performed

with PANTHER (http://pantherdb.org).

RNAscope in situ hybridization

Female mice (11 Controls and 10 HRs) were utilized for this analysis. The animals were
intracardially perfused with 4% Paraformaldehyde in Phosphate Buffered Saline (PBS). VNOs
were dissected from perfused animals and fixed overnight. The VNO samples were decalcified in
EDTA pH 8.0 for 48 hours, then cryoprotected in 15% sucrose in PBS followed by 30% sucrose in
PBS. All samples were ultimately embedded in optimal cutting temperature (OCT) medium
(Electron Microscopy Sciences) above liquid nitrogen and sectioned at 20 pm using Leica
CM3050S Cryostat. The cross sections analyzed were from the VNO regions with clearly
discernible two crescent shapes. They were collected approximately 120 um apart from each other
spanning approximately 360 um of the VNO containing regions from each mouse. Slides were

stored at -80°C until use for in sifu hybridization staining.

RNA detection in VNOs were performed with ACD RNAscope® control and target
GNAOI1 (ACD # and FPR3 (ACD #503451) using RNAscope® Multiplex Fluorescent Reagent
Kit v2 (ACD# 323100) Assay. Probe binding was detected with Akoya Biosciences’ Opal 690
(FP1497001KT) and 570 (FP1488001KT) Dyes at 1:750 dilution in RNAscope TSA Buffer.
Nuclear staining was visualized with DAPI (EMS #17989-20). Images were acquired at 20X or

40X magnification on Zeiss Axio Imager.M2, and FPR3-positivity was quantified with a

15
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proprietary script using QuPath software (69). Fluorescent intensity was measured by Fiji
software. 4-8 slices in each animal were examined. Mann-Whitney test was used to examine

statistical significance in Figure 5C and E.
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Figure Legends

Figure 1. RNAseq analysis of the vomeronasal organs of High Runner and Control mice

Heatmap of differentially expressed (DE) genes between HR and Control lines. DE vomeronasal

receptors are shown in red. Fpr3 (analyzed in Figure 4) is highlighted with a red underline.
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Figure 2. RPKM comparison of DE vomeronasal receptors between High Runner and Control

mice

(A) Scatter plots showing the RPKM of DE vomeronasal receptor genes in each line of HR or C
mice. Black bars represent medians. . (E) Bar graph denoting log» fold change of the relative

expression of DE vomeronasal receptor genes between the HR and Control lines.

Figure 3. Chromosomal locations of DE vomeronasal receptors

A plot showing the log, fold change of 336 vomeronasal receptor genes in their relative positions
along the chromosomes. Each circle represents a member of Vmnlr, Vmn2r, or Fpr family genes.

DE vomeronasal receptors are shown in filled circles.

Figure 4. A genomic cluster containing both SNPs and DE vomeronasal receptors

(A) A genomic cluster containing DE vomeronasal receptor genes in the mouse chromosomes 17.
Vomeronasal receptors in red and blue indicate up- and down-regulations, respectively. Non-DE
genes are shown in black. Purple arrowheads indicate locations of SNPs that are significantly

differentiated between HR and Control groups (50), as shown in a table (B).

Figure 5. RNA scope in situ hybridization analysis of a DE vomeronasal receptor gene in the VNO

(A) Images showing RNAscope-derived fluorescent signals for Fpr3 (left) and Graol (middle)

transcripts. In merged images (right), Fpr3 and Gnaol are shown in red and yellow, respectively,
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398

together with DAPI staining (blue). Upper and lower panels show representative images from the
VNO of a Control (line 5) line and a HR (line 3) line, respectively. (B) A scatter plot showing the
number of Fpr3 signals in 1,000 vomeronasal sensory neurons per VNO slice for each line of
mice. n = 12 slices in 2 - 3 mice per line. Black bars represent medians. (C) The mean number of
Fpr3 signals in 1,000 VSNs in Control and HR lines. Each dot indicates the mean of one line.
Black bars represent medians. * indicates p < 0.05 in Mann-Whitney test. (D) Representative
images showing Fpr3 signals (red) observed in the VNO of Control and HR lines of mice. DAPI
signals are shown in blue. (E) The mean of Fpr3 signal intensity (arbitrary unit, AU) per VSN in

the Control and HR lines. Each dot indicates the mean of one line. Black bars represent medians.

Supplemental Figure 1. RPKM comparison of DE vomeronasal receptors between males and

females in High Runner and Control mice

Scatter plots showing the RPKM of DE vomeronasal receptor genes in males and females from

each line of HR or Control mice. Black bars represent medians.

Supplemental Figure 2. Two-way ANOVA tests of DE vomeronasal receptors

A table showing p-values for interactions, sex differences, and linetype differences in the RPKM
of DE vomeronasal receptor genes in two-way ANOVA analyses. n.s., *, ** *¥% gnd #***

represent not significant, p < 0.05, p <0.01, p <0.001, and p < 0.0001, respectively.

Supplemental Figure 3. Analysis of all-or-none SNP loci in HR and Control lines of mice
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(A) A schematic diagram showing the relative positions of loci containing 1 or more all-or-none
SNPs. Blue triangles indicate non-chemosensory clusters, and a red triangle indicates clusters
containing only chemosensory (vomeronasal) receptors. (B) A table showing chromosomal
location and length of each all-or-non SNP cluster, and the number of SNPs and genes within the

clusters. The row highlighted in red is the cluster containing only the vomeronasal receptor genes.

Supplemental Table 1.

Genomic locations, p-value by the mixed model approach (50), and allele frequencies of the 61

all-or-on SNP loci.
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