

1 Formatted for *Genetics*

2

3 **Genetic Basis of Aerobically Supported Voluntary Exercise: Results from a**
4 **Selection Experiment with House Mice**

5

6 David A. Hillis¹, Liran Yadgary^{2,3}, George M. Weinstock⁴, Fernando Pardo-Manuel
7 de Villena², Daniel Pomp², Alexandra S. Fowler⁵, Shizhong Xu⁶, Frank Chan⁷, and
8 Theodore Garland, Jr.⁵

9

10 ¹ Genetics, Genomics, and Bioinformatics Graduate Program, University of
11 California, Riverside, California 92521

12

13 ² Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill,
14 North Carolina 27599

15

16 ³ Present Address: Hazera Seeds Ltd. in Israel, Berurim M.P Shikmim, Israel
17 7983700

18

19 ⁴ The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032

20

21 ⁵ Department of Evolution, Ecology, and Organismal Biology, University of
22 California, Riverside, California 92521

23

24 ⁶ Department of Botany and Plant Sciences, University of California, Riverside,
25 California 92521

26

27 ⁷ Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany

30

31 **Running Title:**

32 Genetics of aerobic voluntary exercise

33

34

35 **Key Words:**

36 artificial selection, behavior, complex traits, experimental evolution, population
37 differentiation

38

39

40 **Corresponding Author**

41 Theodore Garland, Jr.

42 Department of Evolution, Ecology, and Organismal Biology

43 University of California, Riverside

44 Riverside, CA 92521

45 tgarland@ucr.edu

46 (951) 827-3524

47

48

49 **Article Summary**

50 House mice from 4 replicate lines selectively bred for 61 generations for voluntary
51 wheel-running behavior were compared with 4 non-selected control lines using
52 multiple genome-wide analytical techniques on both haplotype and single
53 nucleotide polymorphism data. Twelve genomic regions were consistently found
54 differentiated across all analytical approaches. These regions are associated with
55 a diverse set of genes that appear related to exercise ability or motivational
56 systems. Genes related to various organ systems (e.g. heart, brain) known to be
57 physiologically different between test groups were identified. These results
58 highlight candidate genes for detailed studies of exercise behavior and
59 physiology.

60

61 **ABSTRACT**

62 The biological basis of exercise behavior is increasingly relevant for maintaining healthy
63 lifestyles. Various quantitative genetic studies and selection experiments have conclusively
64 demonstrated substantial heritability for exercise behavior in both humans and laboratory
65 rodents. In the “High Runner” selection experiment, 4 replicate lines of *Mus domesticus* were
66 bred for high voluntary wheel running (HR), along with 4 non-selected control (C) lines. After
67 61 generations, the genomes of 79 mice (9-10 from each line) were fully sequenced and single
68 nucleotide polymorphisms (SNPs) were identified. We used nested ANOVA with MIVQUE
69 estimation and other approaches to compare allele frequencies between the HR and C lines for
70 both SNPs and haplotypes. Approximately 61 genomic regions, across all somatic
71 chromosomes, showed evidence of differentiation. Twelve of these regions were differentiated
72 by all methods of analysis. Gene function was inferred largely using Panther gene ontology
73 terms and KO phenotypes associated with genes of interest. Some of the differentiated genes
74 are known to be associated with behavior/motivational systems and/or athletic ability,
75 including *Sorl1*, *Dach1*, and *Cdh10*. *Sorl1* is a sorting protein associated with cholinergic neuron
76 morphology, vascular wound healing, and metabolism. *Dach1* is associated with limb bud
77 development and neural differentiation. *Cdh10* is a calcium ion binding protein associated with
78 phrenic neurons. Overall, these results indicate that selective breeding for high voluntary
79 exercise has resulted in changes in allele frequencies for multiple genes associated with both
80 motivation and ability for endurance exercise, providing candidate genes that may explain
81 phenotypic changes observed in previous studies.

82

83 **INTRODUCTION**

84 Most traits of interest in biology are complex, modulated by numerous genetic and
85 environmental factors, and comprised of multiple lower-level (subordinate) traits that often
86 influence higher-level traits in nonintuitive ways (Garland *et al.* 2016; Sella and Barton 2019).
87 Examples of complex traits include human height, which is influenced by more than 9,500
88 quantitative trait loci (QTL) (Wood *et al.* 2014), as well as one's susceptibility to various
89 psychological diseases (Horwitz *et al.* 2019).

90 One complex trait of great interest to medicine is exercise behavior. Exercise has been
91 linked to numerous health benefits, including muscle and bone strength, weight control,
92 reduced cardiac disease, and improved mental health (Manley 1996; Lightfoot *et al.* 2018).
93 Nonetheless, the majority of Americans are not getting sufficient exercise and this problem is
94 common world-wide (Guthold *et al.* 2018). Not only does insufficient exercise contribute to
95 such health issues as obesity and diabetes (Booth *et al.* 2002; Cornier *et al.* 2008; Myers *et al.*
96 2017), but it also increases healthcare costs in the United States, e.g., by more than \$100 billion
97 annually between the years of 2006-2011 (Carlson *et al.* 2015). Conversely, higher levels of
98 physical activity promote physical fitness and cardiovascular health, while lowering risk for
99 depression, anxiety-related disorders, obesity, Type 2 diabetes, and mortality (Blair and Morris
100 2009; Matta Mello Portugal *et al.* 2013; Mok *et al.* 2019).

101 The health benefits of exercise occur by various mechanisms (Neufer *et al.* 2015), as do
102 the adverse effects of a lack of exercise (Booth *et al.* 2012). Acute exercise can have beneficial
103 effects on immune function (Sellami *et al.* 2018) and cognition (Park and Etnier 2019). Chronic
104 exercise training can cause changes in muscle fiber type composition that benefit regulation of

105 energy metabolism and other metabolic pathways (Fan *et al.* 2013). Furthermore, exercise has
106 been linked to lower blood pressure by reducing systemic vascular resistance (Cornelissen and
107 Fagard 2005). Reduced blood pressure, in turn, reduces risk of cardiac disease (Benjamin *et al.*
108 2019). The release of endorphins and vascular endothelial growth factors have shown promise
109 as explanations for the growth of new neurons in the brain, which may be the cause of reduces
110 symptoms of neurological diseases such as depression (Ernst *et al.* 2006).

111 Identifying genetic determinants of exercise behavior could potentially lead to drug
112 targets that would help promote motivation for exercise and/or benefits derived from exercise.
113 Additionally, by identifying genetic causes of motivation for exercise we may also gain insight
114 regarding higher-level structures or pathways that control this motivation. A variety of human
115 studies have been conducted to determine the genes or chromosomal regions that modulate
116 various components of exercise behavior, including both motivation and/or capability to
117 exercise (Lightfoot *et al.* 2018). Many of these studies use observational methods to compare
118 humans who engage in either frequent and/or strenuous exercise with those who are less
119 active (Kostrzewska and Kas 2014; Lin *et al.* 2017). Historically, the most common approach to
120 measuring human exercise levels was by use of questionnaires, which can be of dubious
121 reliability, but an increasing number of studies use accelerometers (Prince *et al.* 2008; Dyrstad
122 *et al.* 2014). Detecting QTL in these studies is generally done with genome-wide association
123 studies (GWAS), which rely on phenotypic and genetic data from many individuals within a
124 population and can identify particularly strong correlations between the phenotype and key
125 genetic markers and loci.

126 Various QTL identified in humans are associated with motivation, e.g., dopaminergic

127 regulation. Dopamine is a well-established modulator of exercise motivation or reward
128 (Garland *et al.* 2011b). Various genes associated with the dopamine pathway are associated
129 with exercise behavior in humans (Simonen *et al.* 2003; Loos *et al.* 2005; De Moor *et al.* 2009).
130 The large body of evidence that dopamine signaling is a major component of exercise
131 motivation dwarfs other motivational systems that have been associated with exercise,
132 including serotonin and endocannabinoids (Dietrich 2004; Cordeiro *et al.* 2017), though
133 serotonin has been implicated in GWAS of hyperactivity disorders (Aebi *et al.* 2016).

134 Other human studies have detected QTL associated with physical traits related to
135 exercise abilities, including maximal oxygen consumption ($VO_{2\max}$) (Williams *et al.* 2017), bone
136 density (Herbert *et al.* 2019), and more (Lin *et al.* 2017). The list of possible biological traits
137 affiliated with exercise and their associated QTL is extensive (Sarzynski *et al.* 2016; Lightfoot *et*
138 *al.* 2018).

139 Observational studies of human exercise behavior are limited by measurement error
140 and environmental cofactors that cannot always be accounted for in statistical models
141 (Garland *et al.* 2011b; Lightfoot *et al.* 2018). One alternative is to use animal models derived
142 from selective breeding experiments (Garland and Rose 2009). Selective breeding will alter the
143 proportions of alleles that affect a trait of interest, thus allowing for easier detection of such
144 alleles (Britton and Koch 2001; Konczal *et al.* 2016). Finding the genetic factors that underlie a
145 complex trait is also facilitated by reducing environmental variation ("noise"), as is possible with
146 laboratory colonies of rodents (Parker and Palmer 2011).

147 To elucidate the biological basis of voluntary aerobic exercise behavior, a selection
148 experiment was begun in 1993 using a base population of outbred Hsd:ICR mice. Four replicate

149 lines have been bred for high voluntary wheel-running behavior and another four bred without
150 regard to their wheel running as controls for founder effects and random genetic drift (Swallow
151 *et al.* 1998). Since the beginning of this experiment, over 150 papers have been published that
152 document a variety of phenotypic differences between the High Runner (HR) and Control (C)
153 lines. These previous studies establish morphological and physiological differences in bone,
154 kidney, heart, skeletal muscle, brain, and other organs and systems (Rhodes *et al.* 2005;
155 Swallow *et al.* 2005; Kolb *et al.* 2013b; Wallace and Garland 2016) and, more generally,
156 reaffirm the diversity of the systems involved in voluntary exercise behavior (Garland *et al.*
157 2011b; Lightfoot *et al.* 2018). The previous studies also give potential directions for informed
158 analyses of the genome. For example, we would expect divergence in allele frequencies related
159 to the reward system in the brain and to muscle function. The HR selection experiment is the
160 world's "largest" involving a behavioral trait in rodents in terms of the number of lines and
161 generations. Therefore, addressing the genomic differences between the HR and C mice is
162 expected to provide novel insights into the underpinnings of exercise behavior.

163 Previously, Xu and Garland (2017) used a mixed model (nested ANOVA) with minimum
164 variance quadratic unbiased estimation (MIVQUE) to analyze medium-density single nucleotide
165 polymorphism (SNP) data for the HR and control lines sampled from generation 61 (Xu and
166 Garland 2017). This statistical method proved more powerful than the commonly used
167 regularized F test and Generalized Linear Mixed Model (GLMM) methods when incorporating
168 permutation-based multiple testing correction. The data used included 7-10 females from each
169 of eight lines (four HR and four C). Genotypes were determined with the MegaMUGA SNP-chip
170 (Morgan and Welsh 2015). After removing markers with missing data, 25,318 markers were

171 analyzed with the mixed models, finding 152 markers to be significantly differentiated between
172 the HR and C linotypes (i.e. test group). Although Xu and Garland (2017) demonstrated
173 numerous SNP loci with evidence of differentiation between the HR and control lines, biological
174 interpretations were not presented. Additionally, as demonstrated by the whole-genome
175 sequence (WGS) data addressed in this paper, various differentiated loci were not detected in
176 the previous SNP-chip analysis.

177 Here, we apply the mixed model with MIVQUE estimation method to WGS data
178 obtained from the same individuals as in Xu and Garland (2017). We analyze both SNP and
179 haplotype data to take full advantage of the information provided by each data type (Shim *et*
180 *al.* 2009; Taliun *et al.* 2016). We also use simulations to explore some of the statistical
181 properties of the MIVQUE estimation method for this application, and we implement
182 procedures aimed at improving model fit and potentially statistical power. We identify
183 numerous SNP and haplotype loci as potential candidates for functionally relevant genetic
184 differentiation between the HR and C lines. Many of these can be tied to specific lower-level
185 traits that should influence exercise behavior, through use of gene ontology terms and KO
186 phenotype analyses of nearby genes.

187 Using information on known morphological and physiological differences between the
188 HR and control lines, we were able to perform both broad and directed strategies to detecting
189 significantly differentiated loci. We show that the method of Xu and Garland (2017) can be
190 improved by allowing for different among- and within-line variance structures. We identified
191 several potentially differentiated genes associated with bone, heart, and brain morphology.
192 We also identified a few candidates with potential large-scale influences on the HR mice,

193 including *Sorl1*, *Dach1*, and *Cdh10*.

194 MATERIALS AND METHODS

195 High Runner Mouse Model

196 As described previously (Swallow *et al.* 1998; Careau *et al.* 2013), 112 males and 112 females of
197 the outbred Hsd:ICR strain were purchased from Harlan Sprague Dawley in 1993. These mice
198 were randomly bred in our laboratory for 2 generations. Ten males and 10 females were then
199 randomly chosen as founders for each of 8 closed lines (generation 0). Four of these lines were
200 randomly picked to be “High Runner” (HR) lines, in which mice would be selected for breeding
201 based on voluntary wheel running. The remaining 4 lines were used as Control (C) lines,
202 without any selection. At approximately 6-8 weeks of age, all mice were given access to wheels
203 for six days. The amount of running (total revolutions) on days 5 and 6 was used as the
204 selection criterion. For the non-selected C lines, one male and one female from each of 10
205 families were chosen as breeders to propagate the line. For the HR lines, the highest-running
206 male and female from within each of 10 families were chosen as breeders (within-family
207 selection). Sib-mating was disallowed in all lines (Swallow *et al.* 1998).

208 Whole-genome Sequencing

209 DNA was collected from 80 mice (10 from each line), from generation 61, via phenol-
210 chloroform extraction and sequenced on an Illumina HiSeq 2500 1T platform. Libraries were
211 constructed using Nextera kit and reads were trimmed and aligned to the GRCm38/mm10
212 mouse genome assembly as described in Didion *et al.* (2016). This generated an average read
213 depth of 12X per mouse. SNPs were filtered based on genotype quality ("GQ") >5, read depth
214 >3, MAF <0.0126 for all samples, and Mapping Quality ("MQ") >30. One of the 80 mice was

215 excluded due to likely contamination (as in Xu and Garland 2017), leaving 79 for the following
216 analyses. SNPs not found to be present in at least two of the 80 mice were also removed from
217 analysis. Although Xu and Garland (2017) had identified these as females, they were in fact all
218 males with exception of one female from line 5.

219 [Heterozygosity Calculations](#)

220 Individual mouse heterozygosity (multi-locus heterozygosity) was calculated by dividing the
221 number of heterozygous loci for each mouse by the total number of segregating loci across all
222 80 mice (n=5,932,124). Heterozygosity per line is the average of the heterozygosity of all
223 sequenced mice within that line.

224 [SNP Analysis](#)

225 Individual Single Nucleotide Polymorphisms (SNPs) were initially analyzed using a mixed model
226 approach with the Minimum Variance Quadratic Unbiased Estimation of variance (MIVQUE)
227 method of estimating variance parameters as described in Xu and Garland (2017). However,
228 rather than removing loci or mice (which had been necessary in the Xu and Garland paper,
229 resulting in 7-10 mice per line analysed) with missing data, code was modified to remove only
230 the missing values themselves. The MIVQUE analysis provides a p-value for each locus for
231 rejecting the null hypothesis of no differentiation between the HR and C lines. Xu and Garland
232 had performed the analysis using two different encoding schemes to represent genotypes as 0,
233 0.5 and 1 vs. as twin vectors of 0-0, 0-1 and 1-1. We have since determined that the twin
234 vectors encoding was preferable, and we report only those results (File S7).

235 [Multi-Model Analysis of SNP Data from Whole-genome Sequences](#)

236 The analyses performed in Xu and Garland (2017) used a single statistical model in R for all loci

237 (our comparable SAS model being "Simple" in Table 1). This model did not allow for several
238 possibilities that might be expected a priori and that were in fact observed, such as differing
239 variances among the 4 replicate HR and C lines (designated "SepVarLines" in Table 1), as is the
240 case for wheel-running behavior (Garland *et al.* 2011a). Beyond this, the amount of variation
241 among individual mice within the replicate lines might differ for the HR and C lines ("Full"
242 model). Interpretation of these different models is presented in the Discussion. In total, we
243 applied four alternate models to the data for each locus, and followed a model selection
244 procedure for the one with the lowest the Aikake Information Criterion, corrected for small
245 sample sizes (AICc), and retained the p-value for its linetype effect (differentiation between the
246 HR and C lines). All Multi-Model analyses were performed in SAS using PROCEDURE MIXED
247 with the mivque0 method (File S10). We elected to prioritize SAS over R for its performance
248 gains over large number of loci. For a direct comparison, we reanalyzed the MegaMUGA data in
249 Xu and Garland (2017) the multi-model method (Figures S1 and S2).

250 Loci that contained no within-line variance (i.e. each line was fixed for one allele or the
251 other) could not be analyzed with the foregoing procedures. We analyzed these loci by
252 counting the net number of alternatively fixed lines among the HR and C linetypes. Those loci
253 with greater difference in allele frequency between the HR and C linetypes are regarded as
254 being more "significant."

255

256

Table 1 Summary of covariance models

Model	d.f.	Covariance Parameters	Description	HR and C different among-line variance	HR and C different within-line variance	HR and C same among-line variance	HR and C same within-line variance	SAS Code
Full	6	4	Random effects for replicate line within selection treatment (linetype) and for mouse within line and linetype, allowing for separate variance estimates for both lines within linetype and mouse within line and linetype Random effects for replicate line within selection treatment (linetype) and for mouse within line and linetype, allowing for separate variance estimates for both lines within linetype and mouse within line and linetype	x	x			proc mixed data=locus method=mivque0; class pop sub mouse; model COL1 =pop/solution; random sub(pop) /group=pop; random mouse(sub pop) /group=pop;
SepVarLines	6	3	Random effects for replicate line within selection treatment (linetype) and for mouse within line and linetype, allowing for separate variance estimates for line within linetype Random effects for replicate line within selection treatment (linetype) and for mouse within line and linetype, allowing for separate variance estimates for mouse within line and linetype	x			x	proc mixed data=locus method=mivque0; class pop sub mouse; model COL1=pop/solution; random sub(pop) /group=pop; random mouse(sub pop);
SepVarInd	6	3	Random effects for replicate line within selection treatment (linetype) and for mouse within line and linetype, allowing for separate variance estimates for mouse within line and linetype		x	x		proc mixed data=locus method=mivque0; class pop sub mouse; model COL1=pop/solution; random sub(pop); random mouse(sub pop) /group=pop;
Simple	6	2	Random effects for replicate line within selection treatment (linetype) and for mouse within line and linetype (as used by Xu and Garland 2017)			x	x	proc mixed data=locus method=mivque0; class pop sub mouse; model COL1=pop/solution; random sub(pop); random mouse(sub pop);

Multiple models^a used to analyze the allelic SNP data (two values per mouse) for whole-genome sequences from 79 mice. For each model, we used SAS Procedure Mixed with MIVQUE estimation (Xu and Garland 2017) to obtain the test statistic (F), significance level (P), and AICc (d.f. method was containment).

^a For some loci, the within-line variance was zero for all 8 lines. In those cases, we used direct enumeration to calculate a significance level, i.e., the probability of observing the pattern versus the 23 possible combinations. See text for further details.

Table 2 Basic descriptive statistics for the primary analyses

Dataset	Total "Loci"	Significant Loci	Critical Threshold	Significant Genes
MegaMUGA	25,332	162 ^a	p<0.00526 (5% FWER)	174 ^b
Whole-Genome SNPs	5,932,124	84	p<0.001 (Local Maximum)	27
Haplotypes	16,901	102 ^c (28 regions)	p<0.00526 (See text)	154 ^b
All HR Fixed, All C Polymorphic	5,932,124	2,562 (46 regions)	See text	135 ^b

^aIn Xu and Garland (2017), 152 SNPs were identified as statistically significant with a single model and the MIVQUE procedure, after use of a permutation procedure to control the family-wise Type I error rate (FWER) at 5% (p < 0.00343).

^bThese are not genes that SNPs fell into. These are genes close to significant SNPs or haplotypes.

^cFrom 28 closely linked groups.

260 [Multiple Testing Correction](#)

261 [Permutations for MegaMUGA Data](#)

262 This approach is based on the permutation method used by Xu and Garland (2017), but
263 modified to account for the multiple models. All permutations were performed using SAS PROC
264 MIXED as described above in the section on multi-model approach. The mouse IDs, line, and
265 linetype were randomly permuted as a block to break their original associations with the allelic
266 data but not with each other. The permuted data for each locus were then analyzed with each
267 of the four models listed in Table 1 (i.e., for the MegaMUGA SNP data, 4 X 25,332 analyses were
268 performed). For each of the four models, the AICc was recorded, and the corresponding F-
269 statistics were retained. From these 25,332 loci (for the MegaMUGA data), the F-statistic
270 corresponding to the model with the lowest AICc was saved. The foregoing process was
271 repeated 5,000 times, the resulting F-statistics were sorted from largest to smallest, and the
272 250th largest F-statistic was used to establish the critical value for the 5% FWER.

273 [Permutations for Haplotype Data](#)

274 Permutations done for haplotypes were performed separately for 2-allele haplotype blocks and
275 3-allele blocks, using 1,000 permutations to keep computational times manageable. As in the
276 unpermuted haplotype analyses, blocks with three alleles (n=5,869) were analyzed with two
277 dummy variables, each individual dummy variable was tested using the multi-model method,
278 and the two p-values generated were combined using Fisher's method (Fisher 1925). However,
279 some permutations of the 3-allele blocks produced erroneous low p-values (apparently due to
280 numerical issues), which, if included in subsequent calculations would have caused an
281 artifactual reduction of the critical value needed to obtain the true 5% FWER. The

282 permutations of the 2-allele blocks (n=11,032) did not produce any artifactually low p-values.
283 Given the problems with the 3-allele haplotype permutations, we elected to apply the
284 MeguMUGA permutation threshold (P<0.00526) to the haplotype blocks because of their
285 similar sample size (MegaMUGA=25,332; Haplotypes=16,901) and the fact that they should be
286 highly correlated.

287 [Local Maxima Selection for WGS Data](#)

288 In the original paper, which analyzed 25,332 SNPs from a commercial chip, a permutation
289 procedure was used to control the family-wise Type I error rate (FWER) at 5% (Xu and Garland
290 2017). Those procedures were not computationally practical for the 5,932,124 SNPs from the
291 whole-genome sequences, nor are linked SNPs within a haplotype block truly independent from
292 each other. Accordingly, significant loci were chosen via a combination of -logP cutoff and local
293 maximum (LM) determination, the latter acting as a filter to focus on actual selected loci over
294 their hitchhikers. Similar methods have been previously described (Nicod *et al.* 2016). Briefly,
295 suggestive loci with -logP >3.0 were clustered with a maximum gap of 1 Mbp. For each such
296 cluster, the global peak, and a set of local maxima were determined for every 500 kbp spanned
297 by the cluster. The set of local maxima were chosen as peaks separated by dips in the signal
298 below the median -logP in the cluster. These LM SNPs were annotated using R libraries
299 GenomicFeatures and VariantAnnotation, with the mm10 knownGene.sqlite database provided
300 by the Genome Browser team at the University of California, Santa Cruz.

301 [Haplotype Determination](#)

302 From the whole-genome sequences, haplotypes were determined using JMP 11 and JMP
303 Scripting Language (SAS Institute Inc., Cary, NC). To construct haplotypes, we first defined the

304 genomic block segments as consecutive 20 kbp windows that did not transition between
305 homozygous and heterozygous states. For each block region, we performed a hierarchical
306 clustering analysis using SNP genotype data (of homozygous regions only) as input. Preliminary
307 haplotype analysis showed that the HR population at generation 61 rarely had more than 3
308 alleles in a given haplotype. Therefore, the analysis was restricted to a maximum of three
309 clusters (haplotype alleles) per block (File S5).

310 [Haplotype Analysis](#)

311 As for the SNP data, haplotype data were analyzed using the multi-model method described
312 above. Haplotype blocks with only two alleles (n=11,032) were analyzed the same way as for
313 the SNP data (File S10). Blocks with three alleles (n=5,869) were analyzed with two dummy
314 variables, with the base allele chosen as the most common one, and then two dummy variables
315 coding for presence of the other two alleles. Each individual dummy variable was tested using
316 the multi-model method. The two p-values generated from the two dummy variables were
317 combined using Fisher's method (Fisher 1925). Different models potentially were used for each
318 dummy variable based on AICc, allowing for up to two models to contribute to the final p-value
319 of a locus (File S6).

320 [SNPs Fixed in One Treatment but Polymorphic in the Other](#)

321 As noted previously with the SNP chip data (Xu and Garland 2017), we observed no loci that
322 were fixed for one allele in all four HR lines while being fixed for the alternate allele in all four C
323 lines (see Results). We did, however, observe loci fixed for a given allele in all 4 HR lines, which
324 is symptomatic of a complete selective sweep (caused by directional selection) as described by
325 Burke (2012), while remaining polymorphic in all 4 C lines. All loci that were fixed in the HR

326 mice and simultaneously polymorphic in all C lines (FixedHR/PolyC) were extracted from the
327 multi-model results and grouped such that those fixed loci that were within 100,000 bp of other
328 fixed loci would be part of the same group. This process was then repeated for loci fixed in the
329 Control lines but polymorphic in all HR lines (FixedC/PolyHR).

330 [General Ontology Analysis](#)

331 Transcribed regions (N = 56, as indicated in Table 2) found to contain LM based on the whole-
332 genome sequence analyses were analyzed using The Gene Ontology Resource (GO). GO
333 analyses were performed based on biological process, molecular function, and cellular
334 component. Ontologies reported as significant at raw $p < 0.05$ for any of these three categories
335 are reported here. Analysis of these genes was also performed using the Database for
336 Annotation, Visualization and Integrated Discovery (DAVID). The results of these analyses did
337 not vary greatly from the GO results.

338 [Targeted Ontology Analysis](#)

339 Previous papers show that the HR lines of mice have diverged from the C lines for many
340 different phenotypes (reviews in Rhodes *et al.* 2005; Garland *et al.* 2011b; Wallace and Garland
341 2016). Many of these phenotypes can be tied to specific neurobiological or physiological
342 functions. In such cases, a logical approach is to analyze separately some candidate genes
343 known to be affiliated with relevant functions and find differentiated SNPs for those genes. We
344 used this approach for several ontologies. Specifically, lists of genes affiliated with dopamine,
345 serotonin, brain, bone, cardiac muscle, and skeletal muscle were extracted from the Mouse
346 Genome Informatics website. SNPs found within these genes were separated from the full
347 WGS data and the most differentiated among these were recorded.

348 [Data Availability Statement](#)

349 Any additional intermediary or results file are available upon request. Supplemental files are
350 available at FigShare. File S1 contains supplemental figures and brief descriptions of all other
351 supplemental files and tables. File S2 contains allelic SNP data. File S3 contains mouse data
352 with line and lintype. File S4 contains all results for analyses of individual SNPs. File S5 contains
353 all haplotype data. Files S6 contains all results for analyses of haplotype data. File S7 contains
354 justification for use of allelic coding of alleles. File S8 includes simulations of Type I error rates
355 for Mixed Model analyses using MIVQUE variance estimation. File S9 expands on the discussion
356 of genes in consistent regions (see Results). File S10 includes all R and SAS code used for the
357 SNP and haplotype analyses. Table S1 includes local maxima associated genes. Table S2
358 contains groups of loci fixed in all lines of one lintype but polymorphic in all lines of the other.
359 Table S3 includes heterozygosity for each individual mouse. Table S4 includes top ten genes for
360 each of the targeted ontologies analyses. Table S5 includes allele frequency by line of each loci
361 identified as a local maximum. Table S6 includes genomic regions identified as suggestive
362 ($p < 0.001$) by the SNP analyses.

363

RESULTS

364

Variation in Genetic Diversity

365 After 61 generations of the High Runner mouse selection experiment, and based on a sample of
366 79 mice, we found SNPs segregating at 5,932,124 loci (~2.2 SNPs per kbp or 0.22%) across the
367 entire set of lines (i.e., at least 2 mice containing an alternate allele were found across the 79
368 mice sequenced) with at least 1.5% minor allele frequency. Individual lines contained 2.04 –
369 2.82M SNPs (34–48% of the total diversity) (Table 3), with no appreciable loss in diversity for
370 the HR lines compared to the Control replicates (Mann-Whitney U-test, $W=6$; $p\text{-value}=0.6857$).
371 SNP heterozygosity ranged from 10.3% to 20.6% among individual mice (Table S3) and averaged
372 12.7% to 18.1% per line (Table 3).

373
374

Table 3 Summary of polymorphism and heterozygosity by line

Line	Polymorphic SNP loci	SNP %	Polymorphic Haplotypes	Haplotype %	SNP Het	Haplotype Het
C1	2,333,951	39.3%	7,773	46.0%	14.7%	17.8%
C2	2,436,225	41.1%	7,652	45.3%	13.7%	16.6%
C3	2,602,007	43.9%	7,841	46.4%	15.8%	17.8%
C5	2,102,405	35.4%	7,160	42.4%	12.7%	16.5%
HR3	2,819,828	47.5%	8,717	51.6%	18.1%	19.6%
HR6	2,220,487	37.4%	7,060	41.8%	13.5%	16.2%
HR7	2,042,309	34.4%	6,304	37.3%	13.0%	14.7%
HR8	2,226,282	37.5%	7,315	43.3%	14.4%	16.6%

375
376

377 Initial haplotype analysis demonstrated that there were rarely more than three alleles
378 for any given haplotype block (region with little to no discernable recombination events within
379 the 79 mice analyzed). Therefore, for the final haplotype analysis, hierarchical clustering was
380 performed with a limit of 3 clusters. 16,901 of these blocks remained variable across the 8 lines

381 in generation 61. As would be expected, the number of haplotypes that have not gone to
382 fixation in each line appears to be proportional to the number of SNPs that have not gone to
383 fixation (Table 3). Heterozygosity for the haplotypes ranged from 12.2% to 25.5% for individual
384 mice (Table S3), and 14.7% to 19.6% when averaged per line (Table 3). Heterozygosity for the
385 haplotype data were not significantly different between HR and C lines (Mann-Whitney U-test,
386 $W=8$; $p\text{-value}=1.0$ and $W=6$; $p\text{-value}=0.6857$, respectively).

387 [Multi-Model vs Single-Model Comparisons](#)

388 As expected, we found that many, indeed most, loci were better fit by models other than the
389 "Simple" model used by Xu and Garland (2017). Generally, the "Full" model was the most
390 preferred, followed by the "Simple" model (Table 4). In general, differences between the p-
391 values determined by the single and multi-model methods were negligible (Figure S2).

392 When analyzing data generated under the null hypothesis, the mixed models with
393 MIVQUE estimation for both single and multi-model produced a deflated Type I error rate for α
394 = 0.05 (File S8). The multi-model approach helped to correct this, but the Type I error rate did
395 not improve greatly with the multi-model approach alone. We attempted to utilize the
396 Kenward Rogers method of determining degrees of freedom to correct this low Type I error
397 rate, but this did not bring Type I error rate to 0.05 and effectively dropped the nested line
398 effect for many loci. We did not want to drop the nested line effect because this ignores the
399 fundamental experimental design of the selection experiment. However, the permutation and
400 local maxima methods of determining loci of interest are robust to this deflated Type I error
401 rate (File S8), so we proceeded with our analyses using conservative results produced by the
402 MIVQUE variance estimation method.

403
404

Table 4 Model preference by data set, test, and allele counts

Model	MegaMUGA ^a	WGS ^a	Hap 2-allele ^b	Hap 3-allele ^b
Full	9,875 (39.0%)	2,441,601 (41.2%)	4,512 (40.9%)	5,510 (46.9%)
SepVarLine	3,105 (12.3%)	504,946 (8.5%)	1,052 (9.5%)	1,583 (13.5%)
SepVarInd	2,983 (11.8%)	716,265 (12.1%)	726 (6.6%)	748 (6.4%)
Simple	8,654 (34.2%)	2,186,803 (36.9%)	4,594 (41.6%)	3,615 (30.8%)
# with no within-line variance	715 (2.8%)	82,533 (1.4%)	148 (1.3%)	282 (2.4%)

^aNumber of SNPs whose lowest AICc match the indicated model

^bNumber of haplotype blocks whose lowest AICc match the indicated model (one for each dummy variable for 3-allele blocks)

405

406

407

408

409

Three Major Analyses

410

Whole-Genome Haplotype

411

No haplotypes were identified as being fixed in all HR lines for one allele and fixed in all C lines

412

for the opposite allele. The multi-model haplotype analysis produced 102 blocks of significant

413

differentiation at the p<0.005 (permutations) level. Significant blocks could be found on 13

414

chromosomes (Figure 1). We consider haplotype blocks within 1,000,000 bp of each other to

415

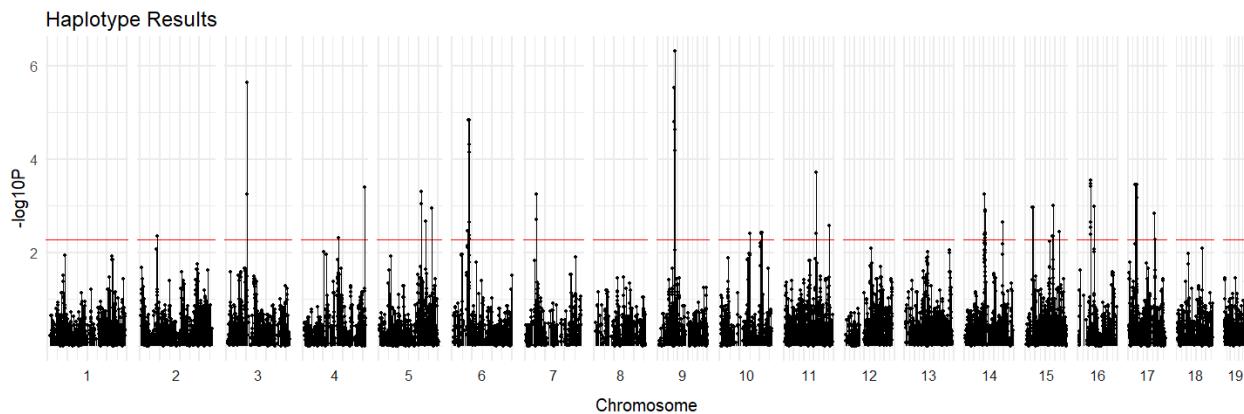
be linked and therefore part of the same haplotype group: 28 such groups were determined

416

(Table 5). These groups include a total of 154 transcribed sequences recognized by the Panther

417

database for gene ontology. The largest of these groups was found on chromosome

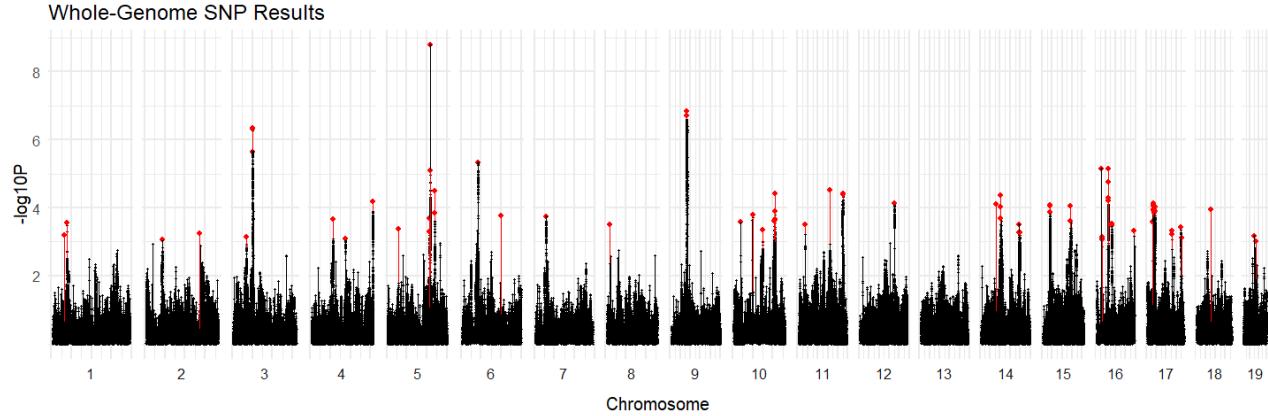

418

14:52,100,155-54,334,868 bp (Table 5).

419

420

421 **Figure 1** Manhattan plot for haplotype data. Red line indicates p-value <0.005 (see Methods
 422 and Materials), which yielded 28 haplotype groups (see Table 5).



423
 424 **Table 5** Significant haplotype groups

Group	Chr	Start (BP)	End (BP)	Size (BP)	P-value
1	2	43,100,041	43,214,647	114,606	4.42E-03
2	3	51,580,020	51,659,891	79,871	2.25E-06
3	4	89,300,145	89,357,884	57,739	4.92E-03
4	4	155,480,343	155,654,426	174,083	3.94E-04
5	5	108,000,623	108,679,807	679,184	4.85E-04
6	5	118,824,587	119,299,787	475,200	2.15E-03
7	5	132,540,807	133,720,551	1,179,744	1.12E-03
8	6	37,440,411	37,659,588	219,177	3.47E-03
9	6	41,584,862	43,431,434	1,846,572	1.47E-05
10	7	29,640,243	29,697,093	56,850	5.67E-04
11	9	41,240,184	42,275,833	1,035,649	4.90E-07
12	10	75,061,742	75,456,261	394,519	3.99E-03
13	10	103,363,232	104,139,953	776,721	3.94E-03
14	10	105,220,041	105,699,704	479,663	3.72E-03
15	11	79,724,263	81,409,849	1,685,586	1.89E-04
16	11	114,466,946	114,489,018	22,072	2.69E-03
17	14	52,100,155	54,334,868	2,234,713	5.62E-04
18	14	98,380,090	98,679,965	299,875	2.22E-03
19	15	18,960,135	19,759,996	799,861	1.09E-03
20	15	69,120,025	70,219,737	1,099,712	4.53E-03
21	15	71,480,090	71,559,595	79,505	9.91E-04
22	15	86,541,805	86,599,823	58,018	3.55E-03
23	16	31,540,757	33,178,952	1,638,195	2.79E-04
24	16	40,742,298	41,357,426	615,128	1.01E-03
25	17	18,020,933	18,039,390	18,457	3.54E-04
26	17	20,700,046	20,939,819	239,773	3.54E-04
27	17	23,000,233	23,599,776	599,543	3.54E-04
28	17	65,458,617	65,738,255	279,638	1.46E-03

425
426
427 Whole-Genome SNP
428 Similarly to haplotypes, no individual SNPs were identified as being fixed in alternative alleles
429 across all HR on one hand and all C lines on the other. At the $p < 8.4E-09$ critical level
430 (Bonferroni-corrected), only two SNPs in chromosome 5 were identified to be significantly
431 differentiated across the entire genome (Figure 2), both in an intron of an uncharacterized gene
432 (GM34319). The syntenic/orthologous region of both the human and cat genomes correspond
433 to a coding region (exon 3) of the MYL5 gene (Myosin light chain 5). Due to the small number
434 of significant SNPs under Bonferroni and the computational difficulties of using permutations
435 with the multi-model method, we focus on local maxima SNPs.

436
437 **Figure 2** Manhattan plot for WGS SNP data. Red dots represent local maxima (N = 84).
Whole-Genome SNP Results

438
439
440 In the local maxima (LM) analyses, the suggestive cutoff ($-\log P > 3.0$) produced 38,065
441 SNPs for analysis. 44 clusters were found, ranging in size from 1 SNP to 3,787 SNPs (Chr9:
442 41,303,824-42,478,817 bp). The largest single group in terms of genome spanned is on chr17:
443 17,846,983-23,586,163 bp (Table 6). From these groups, a total of 84 LM were determined. 31
444 of these SNPs were associated with 27 unique transcribed regions. 26 of the 27 genes could be

445 utilized for GO analysis. Although chromosome 3 had no LM fall into specific genes (despite
446 clear significance based on the Manhattan plot), the cluster on chr3 (chr3:51,190,735-
447 52,498,029 bp) includes about 10 validated coding genes and various predicted genes, but none
448 of the LMs fall in these. However, all three LMs in this group are upstream of Setd7, a
449 methyltransferase.

450 The most significant SNPs with no within-line variance fell into three regions. One of
451 these regions is on chromosome 5 (105-109 mbp), which is close to the LM identified in this
452 chromosome. Another is on chromosome 16 (44 mbp), about 2.5 million base pair from the LM
453 on chromosome 16 containing Lsamp, a gene which codes for a neuron-associated membrane
454 protein. However, the last region falls in chromosome 7 (115 mbp), a chromosome which
455 contained no LM. This location is downstream of Sox6, a developmental regulator broadly
456 associated with muscle fiber type composition (van Rooij *et al.* 2009), hematopoiesis, bone
457 growth and heart function (Smits *et al.* 2001).

458
459 **Table 6 Top 5 largest suggestive regions**

Chr	Start (BP)	End (BP)	Size	Lowest P
17	17,846,983	23,586,163	5,739,180	7.54E-05
10	103,429,623	105,529,701	2,100,078	3.73E-05
16	31,440,034	33,128,268	1,688,234	7.05E-06
15	18,958,730	20,635,226	1,676,496	8.49E-05
16	16,235,542	17,805,005	1,569,463	7.04E-04

460
461
462 SNPs Fixed in One Treatment and Polymorphic in the Other
463 SNPs that were fixed in all HR lines and polymorphic in all C lines (FixedHR/PolyC) were grouped
464 into 95 regions, based on their being separated by at least 100 kbp (Table S2). Here, we were
465 more strict on the definition of a group than for the haplotype groups (1 mbp) to limit the

466 potential for single SNPs to greatly expand the size of a group by their spacing, whereas
467 haplotypes, being made up of several SNPs, are naturally resilient to such inflation. Some of
468 these regions are probably not independently segregating (e.g. chr17: 17,895,909-22,546,405
469 bp) and might therefore be combined further. Regions varied in size from 1 to 1,626,783 bp.
470 These regions include or are proximal to (in the case of 1 bp regions) 135 transcribed regions,
471 including genes, miRNA, and predicted genes. SNPs that were fixed in all C lines and
472 polymorphic in all HR lines (FixedC/PolyHR) were combined into 64 regions. The size of each
473 region varies from 1 to 753,066 bp. We expect the 1 bp loci may be spurious but chose to
474 include them in results for completeness, especially given that the mini-muscle locus involves
475 only a single base pair (Kelly *et al.* 2013). These regions include or are proximal to 63
476 transcribed regions, again including genes, miRNA, and predicted genes. FixedHR/PolyC regions
477 were also identified in haplotypes. These haplotype blocks overlapped with the SNP regions
478 identified by FixedHR/PolyC; however, some of the single unlinked loci that met these criteria
479 were not identified using haplotypes.

480 [Ontology Analyses](#)

481 [General Ontology](#)

482 GO analysis of biological process for the haplotype data reveal “sensory perception of chemical
483 stimulus” to be a major term of interest (Table 7). This appears to be caused by various clusters
484 of olfactory and vomeronasal genes. Many of the most prominent terms appear to be
485 correlated to these olfactory and vomeronasal gene clusters. Although a single, large group of
486 closely linked olfactory genes may overrepresent olfactory’s role in selection, we were able to
487 identify two distinct genomic regions of vomeronasal genes and three such regions of olfactory

488 genes.

489 The biological process GO terms for LM include many results that are consistent with
490 our previous findings involving the HR mice, including cardiac and myoblast related terms
491 (Table 8). Regulation of locomotion is among the most statistically significant GO terms.

492 The FixedHR/PolyC GO analyses indicate terms: complement receptor mediated
493 signaling pathway and response to pheromone. These terms were significant with a false
494 discovery rate correction (FDR<0.05), p=7.11E-04 and p=2.40E-07, respectively) (Table 9). For
495 FixedC/PolyHR, no GO terms were significantly enriched with FDR correction, some novel GO
496 terms were deemed most significant. Included in these results is also CDP-choline pathway,
497 which had also been implicated in the haplotype data. The full list of regions for both
498 FixedHR/PolyC and FixedC/PolyHR can be found in (Table S2).

499

500

Table 7 Top Biological process terms from GO analysis for Haplotype

GO Term	Total Genes	Input Genes	Expected	Fold Enrichment	Raw P-Value
detection of chemical stimulus involved in sensory perception of smell	3	1	0.02	47.88	2.74E-02
sensory perception of smell	1,128	27	7.85	3.44	2.46E-08
sensory perception of chemical stimulus	1,228	34	8.55	3.98	5.71E-12
sensory perception	1,641	36	11.42	3.15	7.12E-10
detection of chemical stimulus involved in sensory perception	59	7	0.41	17.04	3.65E-07
detection of stimulus involved in sensory perception	136	8	0.95	8.45	7.40E-06
detection of stimulus	236	9	1.64	5.48	5.40E-05
detection of chemical stimulus	85	7	0.59	11.83	3.53E-06
G protein-coupled receptor signaling pathway	1,853	37	12.9	2.87	4.86E-09
regulation of systemic arterial blood pressure by aortic arch baroreceptor feedback	1	1	0.01	> 100	1.38E-02
system process	2,594	42	18.06	2.33	2.12E-07
multicellular organismal process	7,307	74	50.87	1.45	1.43E-04
nervous system process	2,085	39	14.51	2.69	9.97E-09
sensory perception of sour taste	5	1	0.03	28.73	4.08E-02
sensory perception of taste	71	7	0.49	14.16	1.15E-06
detection of chemical stimulus involved in sensory perception of bitter taste	47	6	0.33	18.34	1.74E-06
sensory perception of bitter taste	51	6	0.36	16.9	2.69E-06
detection of chemical stimulus involved in sensory perception of taste	51	6	0.36	16.9	2.69E-06

501

Table 8 Top biological process terms from GO analysis for LM

GO Term	Total Genes	Input Genes	Expected	Fold Enrichment	Raw P-Value
locomotory exploration behavior	16	1	0.02	53.6	1.96E-02
locomotory behavior	240	4	0.28	14.29	1.72E-04
behavior	685	6	0.8	7.51	1.17E-04
positive regulation by host of viral release from host cell	5	1	0.01	> 100	6.97E-03
positive regulation of viral release from host cell	15	1	0.02	57.17	1.85E-02
regulation of viral release from host cell	31	1	0.04	27.66	3.66E-02
regulation of locomotion	1040	7	1.21	5.77	1.47E-04
negative regulation of cardiac muscle cell proliferation	17	2	0.02	> 100	2.20E-04
negative regulation of cell population proliferation	684	3	0.8	3.76	4.46E-02
negative regulation of cardiac muscle tissue growth	29	2	0.03	59.14	5.94E-04
regulation of cardiac muscle tissue growth	74	2	0.09	23.18	3.53E-03
regulation of cardiac muscle tissue development	98	2	0.11	17.5	6.02E-03
regulation of striated muscle tissue development	160	2	0.19	10.72	1.52E-02
regulation of muscle tissue development	163	2	0.19	10.52	1.57E-02
regulation of muscle organ development	164	2	0.19	10.46	1.59E-02
regulation of heart growth	80	2	0.09	21.44	4.09E-03
regulation of organ growth	114	2	0.13	15.04	8.02E-03
negative regulation of cardiac muscle tissue development	40	2	0.05	42.88	1.09E-03
negative regulation of striated muscle tissue development	64	2	0.07	26.8	2.67E-03
negative regulation of muscle organ development	66	2	0.08	25.99	2.83E-03
negative regulation of muscle tissue development	67	2	0.08	25.6	2.92E-03
negative regulation of heart growth	29	2	0.03	59.14	5.94E-04
bundle of His cell-Purkinje myocyte adhesion involved in cell communication	6	1	0.01	> 100	8.13E-03
bundle of His cell to Purkinje myocyte communication	13	1	0.02	65.96	1.62E-02
cell communication involved in cardiac conduction	32	1	0.04	26.8	3.78E-02

multicellular organismal signaling	109	2	0.13	15.73	7.37E-03
cardiac muscle cell-cardiac muscle cell adhesion	7	1	0.01	> 100	9.28E-03
cell-cell adhesion	389	3	0.45	6.61	1.04E-02
cell adhesion	789	6	0.92	6.52	2.50E-04
biological adhesion	799	6	0.93	6.44	2.68E-04
negative regulation of cellular extravasation	8	1	0.01	> 100	1.04E-02
negative regulation of leukocyte migration	41	2	0.05	41.83	1.14E-03
regulation of leukocyte migration	209	2	0.24	8.21	2.49E-02
regulation of cell migration	912	5	1.06	4.7	3.71E-03
regulation of cell motility	963	5	1.12	4.45	4.67E-03
negative regulation of cell migration	276	4	0.32	12.43	2.91E-04
negative regulation of cell motility	289	4	0.34	11.87	3.46E-04
negative regulation of cellular component movement	323	4	0.38	10.62	5.24E-04
definitive hemopoiesis	21	2	0.02	81.67	3.25E-04

503

504

505

506

Table 9 Top GO results for FixedHR/PolyC implicated genes

GO Term	Total Genes	Input Genes	Expected	Fold Enrichment	Raw P-value
response to pheromone	104	8	0.63	12.7	3.93E-07
complement receptor mediated signaling pathway	13	4	0.08	50.82	2.81E-06
phospholipase C-activating G protein-coupled receptor signaling pathway	91	5	0.55	9.07	2.89E-04
exocytic insertion of neurotransmitter receptor to postsynaptic membrane	8	3	0.05	61.93	3.40E-05
regulation of postsynaptic membrane neurotransmitter receptor levels	62	3	0.38	7.99	7.09E-03
neurotransmitter receptor transport to postsynaptic membrane	20	3	0.12	24.77	3.46E-04
neurotransmitter receptor transport to plasma membrane	21	3	0.13	23.59	3.93E-04
vesicle-mediated transport to the plasma membrane	90	3	0.54	5.51	1.87E-02
neurotransmitter receptor transport	40	3	0.24	12.39	2.21E-03
establishment of protein localization to postsynaptic membrane	21	3	0.13	23.59	3.93E-04
protein localization to postsynaptic membrane	44	3	0.27	11.26	2.85E-03
protein localization to synapse	76	3	0.46	6.52	1.21E-02
receptor localization to synapse	51	3	0.31	9.72	4.23E-03
calcium ion import across plasma membrane	9	2	0.05	36.7	1.91E-03
calcium ion import into cytosol	10	2	0.06	33.03	2.28E-03
calcium ion transport into cytosol	69	3	0.42	7.18	9.40E-03
positive regulation of cytosolic calcium ion concentration	292	7	1.77	3.96	2.26E-03
regulation of cytosolic calcium ion concentration	340	8	2.06	3.89	1.25E-03
cellular calcium ion homeostasis	446	10	2.7	3.7	4.48E-04
calcium ion homeostasis	463	10	2.8	3.57	5.95E-04

507

508

509

510 [Targeted Ontology](#)
511 The gene search for specific ontologies produced 45-820 genes and 7,315-143,507 SNPs
512 associated with each search (Table 10). The top ten genes were chosen based on the most
513 significant SNP within the gene (Table S4). The most significantly differentiated SNPs were
514 generally found in genes associated with the brain, followed by bone and muscle related genes.
515 Surprisingly, the reward-related ontologies (dopamine and serotonin) did not contain as strong
516 evidence for differentiation as the others.

517
518 **Table 10 Summary of ontology search.**

Search Term	Total Genes	Total SNPs	Top Genes	Top P-value
Dopamin*	254	43,890	<i>Gnb1, Fpr^a, Adora2a</i>	1.33E-04
Serotonin	45	7,315	<i>Htr7, Chrm2, Btbd9</i>	9.33E-03
Osteo*	491	56,091	<i>Noct, Nf1, Mmp14</i>	3.76E-05
Cardiac	820	143,507	<i>Myh11, Tbx5, Dlg1</i>	7.25E-06
"Skeletal Muscle"	295	39,383	<i>Kel, Foxp1, Nf1</i>	5.23E-06
Brain	667	123,416	<i>Sorl1, Gak, Fbxo45</i>	1.92E-07

519 Genes are listed from most significant to least significant by SNP with lowest p-value

520 ^a Includes: *Fpr1, Fpr2, Fpr3, Fpr-rs4* (all closely linked)

521
522 [Consistent Regions Identified Across Multiple Analyses](#)

523 The major analyses (LM, haplotype, and FixedHR/PolyC) individually implicate about 80, 24, and
524 46 differentiated genomic regions, respectively. Combined, 61 unique regions across the
525 genome are indicated, including at least one region on every chromosome. Of these 61
526 regions, 12 are found in all three analyses (Table 11). These 12 consistent regions span just
527 over 27.4 mbp and include 300 validated and predicted genes. Of the 300 genes, 77 are either
528 olfactory or vomeronasal genes, which are predominantly located in two large regions on
529 chromosomes 14 and 17. Surprisingly, many of these regions do not contain many of the most
530 differentiated SNPs according to the multi-model MIVQUE analyses, but do have at least one

531 SNP with $p \leq 0.001$ by the LM criteria.

532

533 **Table 11 Genomic regions implicated by LM, haplotype, and FixedHR/PolyC analyses**

Chr	First BP	Last BP	Included Genes
5	108,000,623	108,679,807	<i>Tmed5, Ccdc18, Pigg, Mfsd7a, Gak, Tmem175, Slc26a1</i>
6	41,584,862	41,918,440	<i>Trpv5, Trpv6, Ephb6, Kel, Llcfc1, Olfr459</i>
7	29,603,841	29,697,093	<i>Catsperg2</i>
9	41,240,184	42,275,833	<i>Sorl1, Mir100hg, Mir100, Mir125b-1, Mirlet7a-2, Tbcel^a</i>
11	79,724,263	80,090,780	<i>Atad5, Suz12, Utp6, Crlf3</i>
11	112,227,183	114,489,018	<i>BC006965, Sox9</i>
14	52,072,148	53,779,979	<i>Olfr^b, Trav^b</i>
14	97,645,171	98,679,965	<i>Dach1</i>
15	18,960,135	20,609,074	<i>Cdh10, Gm35496</i>
15	71,023,429	71,559,595	<i>Fam135b</i>
16	31,540,757	33,178,952	<i>Gm536, Rnf168, Ubxn7, Fbxo45, Tnk2, Tnk2os</i>
17	17,895,909	22,396,753	<i>Vmn2r^b</i>

534 ^a Tbcel is most differentiated gene in genome based on median p-value

535 ^b Several genes in this gene family were represented in this region

536 **DISCUSSION**

537 **Variation in Genetic Diversity**

538 For the present sample of 79 mice from generation 61, based on the polymorphic SNPs within
539 each line (Table 2), each of the lines continues to retain approximately 34-48% of the total
540 diversity across all 8 lines. Such a drop in genetic diversity would be expected after 61
541 generation with ~10 breeding pairs per generation per each line. We found no evidence that
542 HR and C lines had differing levels of genetic diversity, averaged across the whole genome.

543 **Consistent Regions from Multiple Analyses**

544 Many of the identified regions span too many genes to allow ready identification of a
545 candidate. However, a few of the regions contain a limited number of genes for which the
546 reported functions make sense in the context of directional selection for high voluntary wheel-
547 running behavior (from first principles of physiology and neurobiology) and/or given previously
548 identified differences between the HR and C lines (see Introduction). Given the rich
549 phenotyping literature on the HR mouse selection experiment (more than 150 publications), we
550 discuss a relatively large number of genes. Additional regions are covered in supplemental
551 material (File S9).

552 The region identified on chromosome 5 includes 16 genes (excluding predicted and non-
553 coding), three of which were previously identified as differentially expressed in the striatum of
554 the HR and C mice (Saul *et al.* 2017). These genes include *Tmed5*, *Gak*, and *Mfsd7a*. *Tmed5* is a
555 trafficking protein associated with cell proliferation and WNT7B expression in HeLa cells (Yang
556 *et al.* 2019). Mice knockouts in *Gak* are generally lethal to adult and developing mice causing
557 various abnormal symptoms, including altered brain development (Lee *et al.* 2008). *Mfsd7a*

558 (aka *Slc49a3*) has been associated with ovarian cancer, but much remains unknown about this
559 gene (Khan and Quigley 2013).

560 The region on chromosome 6 includes *Trpv5* and *Kel*, both of which are associated with
561 KO phenotypes that may be tied to known differences between the HR and C lines. *Trpv5* KO is
562 associated with phenotypes related to structural changes in the femur and kidney physiology
563 (Hoenderop *et al.* 2003; Loh *et al.* 2013), both of which differ between HR and C lines (Swallow
564 *et al.* 2005; Castro and Garland 2018). *Trpv5* is also associated with calcium homeostasis
565 (Hoenderop *et al.* 2003; Loh *et al.* 2013). *Kel* is a blood group antigen with KO phenotypes
566 affiliated with weakness, gait and motor coordination, neurological development, and heart
567 function (Zhu *et al.* 2009, 2014). Previous experiments have shown the HR and C mice to have
568 differences in heart physiology (Kolb *et al.* 2013a), gait and motor coordination (Claghorn *et al.*
569 2017), and brain development (Kolb *et al.* 2013b).

570 The region on chromosome 9 contains various predicted genes and miRNA, but also one
571 large gene of interest, *Sorl1* (aka *SorlA*). This gene is also implicated in our targeted search for
572 genes related to the brain (Table 10). *Sorl1* codes for a sorting receptor that has been
573 associated with various neural and metabolic diseases (Schmidt *et al.* 2017). Although some of
574 the associated phenotypes, such as obesity, may have some correlation to phenotypic
575 differences between HR and C mice, such as difference in body fat (Swallow *et al.* 2001;
576 Vaanholt *et al.* 2008; Hiramatsu and Garland 2018), this does not directly answer the question
577 of how *Sorl1* influences running behavior. Mouse knockouts in this gene have not shown
578 changes in running gait (Rohe 2008), whereas differences in gait do exist between HR and C
579 mice (Claghorn *et al.* 2017). However, these treadmill tests do not address exercise motivation,

580 which might be influenced by such a neurobiologically relevant gene. Additionally, a more
581 significantly differentiated haplotype can be found over 150,000 bp downstream of *Sor1*,
582 containing various predicted genes and miRNA. Therefore, further studies will be required to
583 determine precisely the elements of this region that modulate wheel running. Although *Tbcel* is
584 near this consistent region rather than included in it, it is the most differentiated gene in the
585 genome (based on median p-value of included SNPs, p= 4.01E-07). This gene is known to
586 regulate tubulin activity in sperm and the nervous system (Nuwal *et al.* 2012; Frédéric *et al.*
587 2013).

588 One region on chromosome 11 contains numerous genes of potential interest. One LM
589 within this region is proximal to a handful of genes that may be influencing the HR phenotype,
590 including: *Tefm*, *Adap2*, *Crlf3*, and *Suz12*. These genes are associated with KO phenotypes
591 including enlarged heart and decreased body weight (Jiang *et al.* 2019), blood cell
592 concentration (White *et al.* 2013), and brain morphology (Miro *et al.* 2009). All of these
593 phenotypes have been found to differ between HR and C mice (Kolb *et al.* 2013b; Thompson
594 2017; Singleton and Garland 2019).

595 One region on chromosome 14 includes almost exclusively *Dach1*, which is an important
596 regulator for various early developmental genes. *Dach1* is a regulator of muscle satellite cell
597 proliferation and differentiation (Pallafacchina *et al.* 2010). Although knockouts of *Dach1* in
598 mice do not appear to disrupt limb development (Davis *et al.* 2001), *Dach1* mutants sometimes
599 have stunted leg development in *Drosophila* (Mardon *et al.* 1994). Furthermore, *Dach1* has
600 been shown to localize around limb budding regions and interact with known limb patterning
601 genes in both mice and poultry (Horner *et al.* 2002; Kida 2004; Salsi *et al.* 2008). Studies of

602 skeletal muscle (Garland *et al.* 2002; Bilodeau *et al.* 2009) and of the peripheral skeleton show
603 several differences between HR and C lines of mice (Garland and Freeman 2005; Kelly *et al.*
604 2006; Castro and Garland 2018; Schwartz *et al.* 2018). This gene has also been implicated in the
605 development and function of the kidneys (Köttgen *et al.* 2010), which have been shown to be
606 larger in the HR lines than C lines in some studies (Swallow *et al.* 2005).

607 A region on chromosome 15 includes *Cdh10* among a few predicted genes. GO links
608 *Cdh10* to both “calcium ion binding” and “glutamatergic synapse,” terms that occasionally
609 produced suggestive p-values for enrichment searches in our differentiation analyses (Table 7,
610 Table 9). These terms could have various implications for the HR mice. *Cdh10* specifically is a
611 cadherin with extensive expression in the brain (Liu *et al.* 2006; Matsunaga *et al.* 2015). This
612 gene has been shown to have increased expression in phrenic neurons (Machado *et al.* 2014),
613 potentially modulating diaphragm movement, and increased functionality of the diaphragm
614 could partly underlie the elevated maximal rate of oxygen consumption during exercise
615 (VO₂max) observed in HR lines (Kolb *et al.* 2010; Hiramatsu *et al.* 2017; Singleton and Garland
616 2019). *Cdh10* is also known to have increased expression of genes associated with olfactory
617 system development (Akins *et al.* 2007), which could be corroborated by the other two
618 consistent regions associated with olfactory and vomeronasal (see Results, General Ontology).
619 The other region detected on chromosome 15 currently only contains *Fam135b* among its
620 annotations. Few studies have been conducted involving the function of *Fam135b*, but
621 evidence indicates it has an important role in spinal motor neurons based on a > 10,000-fold
622 decrease in expression in spinal and bulbar muscular atrophy models (Sheila *et al.* 2019).

623 The region we identified on chromosome 16 contains various genes that may influence

624 wheel running behavior. One example is *Fbxo45*, which has demonstrated itself essential for
625 neuronal development (Saiga *et al.* 2009) and synaptic transmission (Tada *et al.* 2010). One
626 gene that particularly caught our attention was *Pcyt1a*, which is an important modulator of the
627 CDP-choline pathway, catalyzing the formation of CDP-choline (Andrejeva *et al.* 2020), also
628 known as citicoline. Citicoline has been researched extensively for its clinical applications and
629 has demonstrated capacity to stimulate dopamine synthesis in nigrostriatal areas (Drago *et al.*
630 1989, cited in Secades and Lorenzo 2006), which are important for exercise and reward (Wise
631 2009). Additionally, CDP-choline has shown evidence of modulating dopamine receptors in the
632 striatum (Giménez *et al.* 1991).

633 [Ontology](#)

634 General Ontology

635 The GO analyses in this paper serve two functions. The first includes determining pathways
636 that have been influenced by the selective breeding protocol. Additionally, the vast
637 publications and data on various morphological and physiological differences between the HR
638 and C lines provide insight into differentiated biological processes.

639 The Haplotype and Fixed/Poly methods of identifying differentiated genes had
640 considerable overlap between genes and regions identified, which seems to result in similar GO
641 terms for these analyses. The term “sensory perception of chemical stimulus” is expected,
642 given the large number olfactory and vomeronasal genes present in some of these regions.
643 Selection for such genes is likely in response to how the mice are tested for wheel running. For
644 logistical reasons, approximately 2/3 of the mice tested in a given generation were measured
645 on wheels that had not been washed since the previous mouse was on that same wheel,

646 although the attached cages were fresh (Dewan *et al.* 2019). The scent of the previous mouse
647 would potentially elicit different running behavior, dependent on these vomeronasal and
648 olfactory genes (e.g., see Drickamer and Evans 1996). We checked the Allen Brain Atlas for
649 some of these genes (particularly those in the consistent region on chromosome 17) and found
650 that only a few of these olfactory and vomeronasal genes had data. One of these includes
651 *Vmn2r107*, with expression most consistent around the olfactory bulb. However, *Olfr1509* had
652 expression levels seemingly around the anterior cingulate cortex, a region associated with
653 cognitive control of motor behavior (Holroyd *et al.* 2004). GO terms related to postsynaptic
654 neurotransmitters were largely indicated by three genes. *Cplx1* has been linked to severe
655 ataxia and movement limitations in knockout rats (Xu *et al.* 2020), *Dlg1* (aka SAP97) is a
656 scaffolding protein that localizes glutamate receptors in postsynaptic membranes and has
657 shown altered expression in rats exposed to cocaine (Caffino *et al.* 2018), and *Shisa6* has been
658 associated with the localization of AMPA (α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic
659 acid) receptors (Klaassen *et al.* 2016), which have shown reduced expression after prolonged
660 cocaine exposure (Cooper *et al.* 2017). Such terms are perhaps not surprising, given
661 observations of the HR mice having larger midbrains and altered reward mechanisms (Belke
662 and Garland 2007; Mathes *et al.* 2010; Garland *et al.* 2011b; Keeney *et al.* 2012; Kolb *et al.*
663 2013b; Thompson *et al.* 2017).

664 The local maxima GO results are generally quite different from the haplotype and
665 Fixed/Poly analyses. This is partially attributable to less overlapping of identified genomic
666 regions. Additionally, LM is useful for gene culling to reduce influence of hitchhiking genes in
667 the GO analyses. Many of the top terms for LM genes are associated with heart development

668 and function. Heart ventricle mass is greater in the HR mice (Kolb *et al.* 2013a; Kelly *et al.* 2017;
669 Kay *et al.* 2019) and correlates with VO₂max in both HR and C mice (Rezende *et al.* 2006). The
670 genes most associated with cardiac development include *Pkp2*, *Myh11*, and *Tbx5* (also a
671 forelimb regulator). Forelimb development may be altered in the HR mice, while humerus sizes
672 do not seem to differ (Copes *et al.* 2018), differences have been found in metatarsal and
673 metacarpal lengths (Young *et al.* 2009).

674 [Targeted Ontology](#)

675 As the target ontologies were chosen based on structures and systems known to have been
676 altered by the selective breeding regimen, we would expect to find at least one gene of each
677 ontology that would contain a differentiated SNP. Of these ontologies, “serotonin” and
678 “dopamine” are associated with some of our less impressive p-values (Table 10), with many of
679 the top dopamine-related genes (*Fpr1*, *Fpr2*, *Fpr3*, and *Fpr-rs4*) being present potentially
680 because of linkage to highly differentiated vomeronasal genes (Table 10). However, expression
681 data from the Allen Brain Atlas implicates the *Fpr-rs3* gene as being highly expressed in nucleus
682 raphe obscurus. The nucleus raphe structure is well established for modulating serotonin
683 (Walker and Tadi 2020) and the obscurus region itself has been implicated in modulating
684 respiratory neurons (Lalley *et al.* 1997). As *Fpr-rs3* is the most differentiated gene of the FPR
685 family (median p=0.000393 over 6 SNPs), it may be contributing to the selection signature of
686 this genomic region rather than simply hitchhiking. The most significantly differentiated loci in
687 a dopamine-related gene are in *Gnb1*, part of the G β γ complex, which activates Girk2 in
688 dopamine neuron membranes (Wang *et al.* 2016). We are surprised not to have found more
689 impressive results for dopamine-related genes, given clear differences in dopamine function

690 between the HR and C mice (Rhodes *et al.* 2001, 2005; Rhodes and Garland 2003; Bronikowski
691 *et al.* 2004; Mathes *et al.* 2010). A possible explanation for this is that trans-regulating sites for
692 these genes have been more influenced by the HR selection regime (Kelly *et al.* 2012; Nica and
693 Dermitzakis 2013). Unfortunately, a limitation of the current study is it lacks the necessary
694 expression data to identify trans-regulating SNPs (Kelly *et al.* 2012, 2014).

695 The remaining ontologies (bone, cardiac, skeletal muscle, and brain) all have at least one
696 gene containing a SNP with $p < 0.0001$ (Table 10). Some of these are included with our LM
697 genes, such as *Myh11* (a myosin gene affiliated with the “cardiac” tag) and *Sorl1* (“Brain” tag).
698 However, some of these are not present among the LM list. *Kel*, described above as influencing
699 various phenotypes relevant for high running behavior, may appear to be a confusing “miss” for
700 the LM detection process, with a p -value = 1.49E-05. However, the region does have two local
701 maxima, neither of which land in genes, but one is about 15,000 bp upstream of *Kel*. This might
702 be taken as evidence that the LM approach to determining affected genes ought to be modified
703 to better catch nearby genes that could be affected.

704 The expression patterns of the top genes implicated by the “brain” targeted ontology
705 were determined using the Allen Brain Atlas. The top 4 genes (*Sorl1*, *Gak*, *Fbxo45*, and *Tbx3*)
706 showed interesting consistency in their expression patterns. *Sorl1*, *Gak*, and *Fbxo45* all have
707 increased expression around the hippocampus, which has been associate with spatial learning
708 (Schiller *et al.* 2015) and may play a role in addiction (Koob and Volkow 2010). *Sorl1*, *Gak*, and
709 *Tbx3* have higher expression in the retrosplenial area, which has also been suggested as a
710 potential modulator of spatial memory (Vann *et al.* 2009), potentially in coordination with the
711 hippocampus (Schiller *et al.* 2015). *Gak* and *Tbx3* both have notable expression levels in the

712 retrohippocampal region, particularly the entorhinal cortex, which is thought to modulate
713 movement speed (Geisler *et al.* 2007; Kropff *et al.* 2015; Ye *et al.* 2018). Additionally, *Gak*,
714 *Fbxo45*, and *Tbx3* have high expression in olfactory regions.

715 The hippocampus has been linked to the regulation of speed during locomotor behavior
716 in both mice and rats by theta (Li *et al.* 2012; Fuhrmann *et al.* 2015; Sheremet *et al.* 2019),
717 gamma (Chen *et al.* 2011; Ahmed and Mehta 2012), and delta oscillations (Furtunato *et al.*
718 2020). Notably, the difference in daily running distance between HR and control lines is
719 attributable mainly to an increase in average (and maximum) running speed, rather than the
720 duration of running, especially in females (e.g., see Garland *et al.* 2011a; Claghorn *et al.* 2016,
721 2017; Copes *et al.* 2018; Hiramatsu and Garland 2018). Another consideration is the impact of
722 physical activity on neurogenesis in the hippocampus (Rhodes *et al.* 2003b; Clark *et al.* 2010;
723 Rendeiro and Rhodes 2018), which, perhaps, could create a sort of feedback loop relating to
724 running speed.

725 [Comparison with Previous Studies](#)

726 Exercise behavior and the genetic factors that affect it have been the subject of various other
727 GWA and gene expression studies in mice, as well as comparisons of inbred strains (Reviews in
728 Kostrzewska and Kas 2014; Lightfoot *et al.* 2018). In general, these previous studies do not show
729 strong agreement with each other. The primary exception is that several studies have
730 implicated dopamine pathway genes (Bronikowski *et al.* 2004; Lightfoot 2011; Dawes *et al.*
731 2014; Roberts *et al.* 2017). This is of little surprise, as dopamine has been long recognized as a
732 primary neurotransmitter involved with physical activity (Freed and Yamamoto 1985; Rhodes *et*
733 *al.* 2005). As another example of consistencies across previous studies, Dawes *et al.* (2014)

734 found differential gene expression in C57L/J (high running) and C3H/HeJ (low running) inbred
735 strains for *Mstn*, a gene previously implicated by Lightfoot et al. (2010) using 41 inbred strains
736 of mice to associate alleles with wheel running. *Mstn* is established as a regulator of skeletal
737 muscle proliferation (Grobet *et al.* 1997; Amthor *et al.* 2007; Mosher *et al.* 2007). The present
738 study contributes several new regions that have not been previously identified (see above).

739 However, we can also identify examples of overlapping results.

740 We first compiled a list of genes from our study that contain at least one variable SNP
741 (see Materials and Methods). For each gene, all of the SNPs within the transcribed or promotor
742 region were accumulated and the lowest p-value and median p-value (from supplemental File
743 S4) were recorded. These are presented in supplemental File S11. We then cross-reference
744 these p-values (with emphasis on median p-value) against the regions and genes identified by
745 previous studies. This method is limited by not addressing regulatory loci located outside the
746 promotor and transcribed region. For the previous studies, we focused on regions, SNPs, and
747 genes that were specifically associated with running distance, rather than speed or duration of
748 running (if reported), as the HR mice were specifically bred for running distance.

749 Shimomura et al. (2001) performed an F2 cross between BALB/cJ and C57BL/6J and
750 mapped daily running levels in constant darkness. Although the primary purpose of their study
751 was to identify circadian QTL, two regions were associated directly with wheel-running
752 distance. One of these regions is on chromosome 16 (97,608,543-97,608,688 bp, mm10), not
753 far from one of our local maxima (96,795,226 bp, p=4.97E-04).

754 A study involving a cross between high- and low-running inbred strains located several
755 markers on both chromosome 9 and chromosome 13 (Lightfoot *et al.* 2008). Although none of

756 these markers fall within our own significant region on chromosome 9 (about 41,000,000 to
757 42,000,000 bp), one of the markers identified by Lightfoot et al. (2008) on chromosome 9 is
758 only about 500,000 bp from the gene *Leo1*. For our sample of mice, only one SNP in this gene
759 was polymorphic, and it was in the non-coding region (File S11: p=0.00186)

760 Lightfoot et al. (2010) used haplotype association mapping to identify 12 QTL associated
761 with wheel running among 41 inbred strains of mice. One of the regions they identified on
762 chromosome 5 (114,584,508-117,669,848 bp after conversion to mm10) is intriguingly close to
763 one of our own haplotype regions (118,824,587-119,299,787 bp, Table 5). Additionally, we
764 detected a local maximum on chromosome 12 (88,919,735 bp, p=7.54E-05) near their identified
765 haplotype (88,113,842-88,220,086 bp, mm10). Lightfoot et al. (2010) also identified a region on
766 chromosome 13 (95,477,271-95,863,515 bp, mm10), which coincides with a few of our
767 FixedHR/PolyC loci (95,595,237-95,947,205 bp). Aside from these, the best example of
768 similarity with the present study is a gene on chromosome 8 (*Galnt16*) that was found as
769 suggestive in the current study (File S11, median p=0.039, SNPs=5,925). Lightfoot et al. (2010)
770 also identified a region on chromosome 12, about 0.5 mbp upstream of *Nrxn3*. Both our LM
771 and FixedHR/PolyC methods indicated this gene as a strong candidate, with a segment of intron
772 1 containing several low p-values (median p=2.04E-04, SNPs=195), but it was not listed as a
773 consistent region because the haplotype results did not produce a significant haplotype near
774 *Nrxn3*. *Nrxn3* is a single-pass transmembrane protein found in presynaptic terminals and
775 functions as a cell adhesion molecule (Stoltenberg et al. 2011; Kasem et al. 2018). *Nrxn3*
776 creates particular interest in that it is associated with various addictive behaviors (Zheng et al.
777 2018), which is consistent with evidence that the HR mice are to some extent addicted to

778 running (Rhodes *et al.* 2005; Kolb *et al.* 2013b). Previous work has associated *Nrxn3* with
779 addictive behaviors involving nicotine (Wolock *et al.* 2013) and opioids (Lachman *et al.* 2007),
780 predominantly through association and expression studies (Kasem *et al.* 2018). Exercise
781 addiction is not a new concept, but remains controversial (Nogueira *et al.* 2018).

782 QTL mapping of the G₄ intercross of C57BL/6J with one of the four HR lines implicated a
783 region on chromosome 7 (101 – 130 mbp) that contains numerous olfactory/vomeronasal
784 genes (Kelly *et al.* 2010). We identified FixedHR/PolyC SNPs within that region at 127,385,309 -
785 127,947,542 bp. We also identified vomeronasal genes on chromosome 17. (Kelly *et al.* [2010]
786 reported other QTL associated with running on the first two days of wheel exposure, but this
787 phenotype may reflect variation in neophobia more than exercise motivation or ability.)

788 Saul *et al.* (2017) performed expression analysis using the striatum of the HR and C lines
789 from generation 66. The mice were sampled after several hours of wheel deprivation, which is
790 believed to induce high expression of motivation-related genes (Rhodes *et al.* 2003a). Some of
791 their highlighted differentially expressed genes include: *Htr1b*, *Slc38a2*, *Tmed5*,
792 *5031434O11Rik*, *Gak*, *Mfsd7a*, and *Gpr3*. *Tmed5*, *Gak*, and *Mfsd7a* are all found within a highly
793 differentiated region in our SNP data (median p=4.85E-04 for all three genes, SNPs=671, File
794 S11). Although *5031434O11Rik* and the associated *Setd7* are not found within our consistent
795 regions (due to no FixedHR/PolyC SNPs), they both contain many of the most differentiated loci
796 of individual SNP analyses (median p=3.78E-05, SNPs=4). Knockouts of *Setd7* (aka *Set9*) have
797 been associated with altered lung development and morphology (Elkouris *et al.* 2016). Lung
798 differences in the HR and C lines have not been greatly explored. Three studies have reported
799 no statistical difference in lung mass (Meek *et al.* 2009; Kolb *et al.* 2010; Dlugosz *et al.* 2013),

800 but an unpublished study of males from generation 21 found that HR lines tended to have
801 higher pulmonary diffusion capacity and capillary surface area determined via morphometry (T.
802 Garland, and S. F. Perry, personal communication), and a study of females from generation 37
803 reported a trend for HR mice to have higher dry lung mass (Meek *et al.* 2009; Kelly *et al.* 2017).
804 We are uncertain of what *Setd7* may be doing in the brain. However, the Allen Brain Atlas does
805 indicate increased expression levels of *Setd7* in the sensory regions of the midbrain, motor
806 related regions of the medulla, and the cerebellar cortex, which has been associated with
807 motor function and reward (Doya 2000). Furthermore, *Setd7* has been shown to modulate pain
808 and inflammation following nerve injury, potentially enabling an individual to proceed to
809 exercise despite injury (Shen *et al.* 2019).

810 Overall, studies attempting to identify the genetic underpinnings of exercise behavior in
811 rodents have produced a wide variety of results. We can offer several reasons for such
812 inconsistencies. First, some of these studies address gene expression (Bronikowski *et al.* 2003,
813 2004; Dawes *et al.* 2014; Saul *et al.* 2017) and eQTL (Kelly *et al.* 2012, 2014), which will
814 commonly implicate different genetic factors for complex traits than studies looking at genetic
815 variants, likely as a result of complex interactions between genetic variants and gene
816 expression (Bouchard 2015; Parker *et al.* 2016). Second, some studies compare inbred strains
817 (Lightfoot *et al.* 2008, 2010; Dawes *et al.* 2014) with very different genetic histories and likely
818 different biologically significant alleles available to them than in the Hsd:ICR mice that formed
819 the basis for the present selection experiment. Furthermore, a trait as complex as voluntary
820 exercise (Lightfoot *et al.* 2018) would be expected to have numerous underlying subordinate
821 traits which, in turn, could have innumerable potential genetic factors modulating them

822 (Garland *et al.* 2016; Sella and Barton 2019). Finally, in the current study, we sought to detect
823 specifically those factors that are shared across all 4 HR lines, which likely does not reflect all of
824 the exercise-relevant loci that vary among the replicate HR lines. However, those alleles
825 implicated by all four HR lines arguably provide the strongest evidence for biologically
826 significant regions in this selection experiment and also for the Hsd:ICR base population.

827 [Mini-Muscle Allele](#)

828 The mini-muscle phenotype was discovered in the HR selection experiment and is associated
829 with alterations in various organs, especially skeletal muscle, but also including heart, kidney,
830 and overall body mass of the mice (Swallow *et al.* 2005; Meek *et al.* 2009; Kolb *et al.* 2013a;
831 Talmadge *et al.* 2014; Kay *et al.* 2019) as well as behaviors (Kelly *et al.* 2006; Singleton and
832 Garland 2019). This phenotype is caused by a single recessive SNP mutation located in an *Myh4*
833 (myosin heavy polypeptide 4) gene (Kelly *et al.* 2013). Mice expressing the mini-muscle
834 phenotype have often been found to run faster and sometimes for longer distances than other
835 HR mice (Kolb *et al.* 2013a). This polymorphism was lost, presumably via random genetic drift,
836 from all lines except for HR lines 3 (where it went to fixation) and line 6 (where it remains
837 polymorphic with the wildtype allele). Population-genetic analyses indicate that the allele was
838 under positive selection in the HR lines (Garland *et al.* 2002). The current WGS data show
839 (generation 61) that the mutation is still only present in lines 3 (fixed) and 6, with allele
840 frequency of 0.65 in line 6. As the mini-muscle phenotype appears to enable faster overall
841 running on wheels at the cost of running duration, it has been regarded as an alternative
842 “solution” to the selection criterion (Garland *et al.* 2011a), not unlike the concept of “private”
843 alleles (Martin *et al.* 1996). Such a mutation is expected to change the genetic background of

844 line 3 (and to a lesser extent, line 6) giving rationale to analyzing these lines separately for
845 possible QTL, in future studies.

846 [Allele Frequency Implications](#)

847 The general pattern of allele frequencies across the replicate lines can be used to infer patterns
848 of selection. Table 12 includes some of the potential profiles that could possibly be observed
849 and (for the most part) were observed in the WGS data.

850 **Profile 1** No observed genetic variation. For our 79 mice, this accounts for about 99.8% of the
851 genome (Table 2).

852 **Profile 2** Fixation for alternate alleles in the two selection treatments would imply opposing
853 directional selection, as might occur in experiments with replicate lines selected for high versus
854 low values of a trait. The HR mouse selection experiment includes high-selected and control
855 treatments, but not a low-selected treatment. Thus, fixation for alternate alleles in the HR and
856 C lines would not necessarily be expected, and indeed was never observed for either the WGS
857 data or the MegaMUGA data reported previously (Xu and Garland 2017). Importantly, even
858 data from selection experiments that include high- and low-selected treatments are not
859 showing much evidence of fixation for alternate alleles (Burke *et al.* 2010; Lillie *et al.* 2019).

860 **Profile 3** Stabilizing selection or random drift for one group and directional selection for the
861 other. This was the focus of the scans for loci fixed in all lines of one linetype and polymorphic
862 in all lines of the other (Fixed/Poly) in our own haplotype and WGS data and produced several
863 prospective regions of interest. The fixed allele can either be entirely the reference (0) or
864 alternative (1).

865 **Profile 4** Selection for test group 2 but evidence of drift for group 1 (likely caused by little to no

866 selection). Some of the loci of the WGS SNP data meet this profile. For example, Chromosome
867 11: 96,332,082 bp (p=0.051).

868 **Profile 5** Random genetic drift for both test groups. Such loci will be among those analyzed,
869 but this pattern of differentiation is unlikely to result from the selective breeding regimen.

870
871

Table 12 Potential fixation profiles

Profile	Test Group 1				Test Group 2			
	Rep 1	Rep 2	Rep 3	Rep 4	Rep 1	Rep 2	Rep 3	Rep 4
1	0	0	0	0	0	0	0	0
2	0	0	0	0	1	1	1	1
3	Het	Het	Het	Het	0	0	0	0
4	0	0	1	1	0	0	0	0
5	0	0	1	1	0	0	1	1

872
873

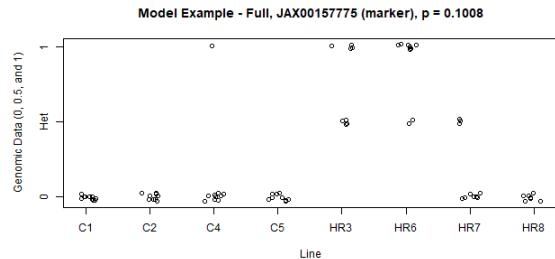
874 In general, as with any population that is relatively well adapted to the prevailing
875 environmental conditions, breeding colonies of laboratory house mice maintained under
876 standard vivarium housing conditions should experience continuing stabilizing selection at
877 many loci. Under standard housing conditions, an allele with a strong positive influence on
878 wheel running, or activity in cages without wheels, might be disfavored if it were negatively
879 associated with such aspects of the life history as litter size or maternal care. In contrast, under
880 the conditions of the HR mouse selection experiment, an allele with a strong positive influence
881 on wheel running might be expected to go to fixation rapidly in all HR lines in a manner
882 consistent with a "complete sweep" (Burke 2012). Thus, to fix an allele, directional selection in
883 the HR lines must be strong enough to overcome a presumed prevailing background of
884 stabilizing selection and possibly negative selection. Regions that are FixedHR/PolyC (profile 3)
885 should, therefore, be indicative of relatively strong directional selection in the HR lines.

886 Alternatively, some loci may have come under stabilizing selection in the HR lines, e.g.,
887 due to heterozygote advantage or epistatic interactions with other loci, preventing them from
888 going to fixation. Hence, we also examined loci polymorphic in all HR lines but fixed in all C
889 lines (FixedC/PolyHR). The GO analyses of the included genes in these regions were
890 consistently less significant (raw $p \geq 0.0026$ for all implicated terms). However, such terms as
891 “synapse assembly” and those related to glycerolipids emerged may merit further exploration.

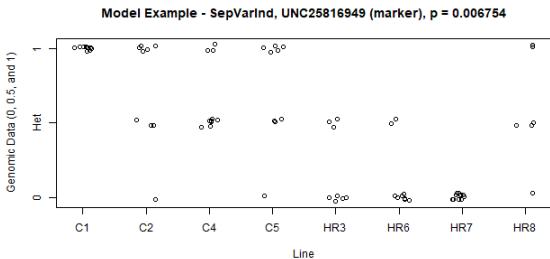
892 [Interpretation of the Four Models](#)

893 The four models in the multi-model analysis were included to allow for different variance
894 structures within and between the HR and C linetypes. The within-line variance is the variability
895 of allele frequency among the ~10 mice within each line. This variance is zero when a line is
896 fixed for one allele or another, but maximized when 5 mice within each line are homozygous for
897 one allele while 5 mice are homozygous for the other. The among-line variance indicates how
898 different the replicate lines within a linetype are from each other. This variance component is
899 minimized when all four lines within a linetype are fixed for the same allele, but maximized
900 when two lines are fixed for one allele while two lines are fixed for the other.

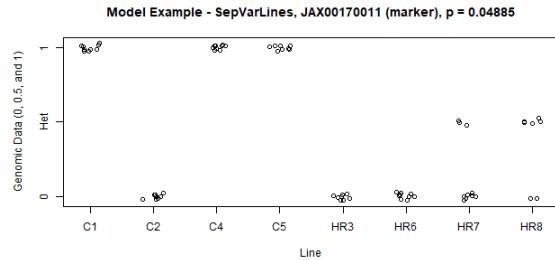
901 In principle, both the within-line and among-line variances can differ between the two
902 selection treatments (linetypes); hence, the Full model includes separate estimates of both
903 within- and among-line variances. For wheel running in later generations of the selection
904 experiment, a full model has been shown to fit well (Garland *et al.* 2011a). The SepVarInd
905 model includes only the within-line variance. The SepVarLine model includes only the among-
906 line variance. Lastly, the Simple model does not include either of these two variances, and
907 corresponds to the single model used by Xu and Garland (2017).

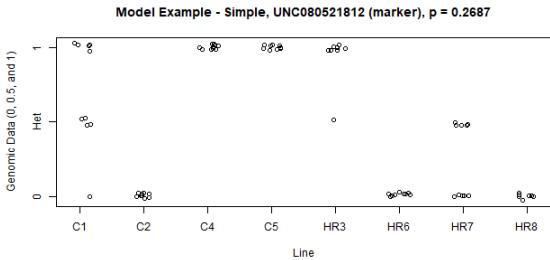

908 As expected, we found many loci that were better fit by models other than the Simple
909 model used by Xu and Garland (2017) (Table 4). Figure 3 gives examples. In A, the Full model is
910 implemented because C lines exhibit very little within- and among-line variance while HR lines
911 exhibit both. In B, the SepVarInd model is used because C lines have high within-line variance
912 (while HR lines are comparatively low), but both have similar among-line variance. In C,
913 SepVarLines model is used because nearly all lines contain very little within-line variance (6 are
914 fixed for a single allele), but C lines, being fixed for opposing alleles, creates different among-
915 line variance. D identifies a Simple model locus because these variances are roughly the same
916 for the different linetypes. E represents a locus with no within-line variance and thus could not
917 be analyzed with the mixed model ANOVA like other loci. However, use of multiple models did
918 not increase the number of loci identified as statistically significant based on repeat analyses of
919 the MEGAMuga data with both methods (Figure 1).

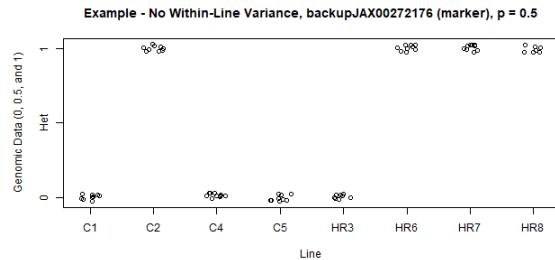
920
921


922 **Figure 3** These are images of different variance structures depicted by actual examples from
 923 the MegaMUGA data (Xu and Garland 2017). This includes example data that were best fit by
 924 the “Full” model (A), “SepVarInd” model (B), “SepVarLines” model (C), and the “Simple” model
 925 (D). E shows a locus that had no within-line variance. P-values are significance levels for
 926 comparing the HR and C lines.

927


928 **A “Full” Model**


B “SepVarInd” Model


C “SepVarLines” Model

D “Simple” Model

E No Within-line Variance

935 **SUMMARY, LIMITATIONS, AND FUTURE DIRECTIONS**

936 Exercise, or the lack of exercise, has far-reaching medical and financial implications (Manley
937 1996; Booth *et al.* 2012; Carlson *et al.* 2015). Numerous studies have provided strong evidence
938 for the existence of genetic underpinnings of exercise behavior and physical activity (Kostrzewska
939 and Kas 2014; Lightfoot *et al.* 2018), including in the High Runner mouse selection experiment
940 (Bronikowski *et al.* 2003, 2004; Careau *et al.* 2013; Saul *et al.* 2017; Xu and Garland 2017). Here
941 we have used three different analytical methods with whole-genome sequence data to address
942 the genetic basis of the 3-fold increase in daily running distances observed in the four replicate
943 selectively bred HR lines of mice. These methods include haplotype and SNP statistical analysis,
944 as well as non-statistical analysis of fixation patterns in HR and C lines.

945 The intersection of multiple analyses indicated 61 genomic regions of differentiation,
946 with 12 identified as of particular interest. These regions include genes known to influence
947 systems that have already been demonstrated to differ between HR and Control mice, such as
948 response to conspecific odors, brain development, body weight, and relative heart size.
949 However, they also contain genes whose role in voluntary running behavior is as yet unclear.

950 This study does have the limitation of focusing on males, whereas exercise behavior and
951 much of the physiology and morphology related to exercise abilities differ between sexes in
952 both rodents and humans (Eikelboom and Mills 1988; Thomas and Thomas 1988; Rowland
953 2016; Sheel 2016; Rosenfeld 2017; Thompson *et al.* 2017). A natural next step would then be
954 to conduct similar analyses in females. This approach, however, can establish correlation but
955 not causation. Therefore, studies of wheel-running behavior of mice with knockouts or Cre
956 modifications of genes in some of the genomic regions identified here may help to establish or

957 dismiss causal relationships between the genes and phenotype. Furthermore, as the HR mouse
958 experiment has complete pedigree information for all mice and lines (Careau *et al.* 2013, 2015),
959 it will also be possible to use this information to better account for relatedness between mice in
960 statistical analyses and so provide more informed estimates of loci acted upon by selection.

961 Importantly, none of the analytical approaches we used address the possibility of
962 "private alleles" (Martin *et al.* 1996) in one or more of the HR lines that may influence exercise
963 behavior, thus representing "multiple solutions" to the selective breeding regime (Garland *et al.*
964 2011a), but this will be an important possibility to consider in future studies. We already know
965 of one private allele of major effect (mini-muscle) that has far-reaching effects on mouse
966 muscle and organ development (Swallow *et al.* 2005; McGillivray *et al.* 2009; Kelly *et al.* 2013),
967 as well as many other aspects of the phenotype, and has been favored by the selection protocol
968 (Garland *et al.* 2002). Determination of such alleles will be an important area for future
969 research.

970 [Acknowledgments](#)

971 Supported by NSF grant DEB-1655362 to T.G.

972 [Author contributions:](#)

973 Conceptualization, D.A.H., L.Y., F.P.M.dEV., D.P., S.X., F.C., T.G.; investigation, D.A.H., L.Y.,
974 G.M.W., F.P.M.dEV., D.P., A.S.F., F.C., T.G.; software, D.A.H., L.Y., S.X.; formal analysis, D.A.H.,
975 L.Y., A.S.F., S.X., F.C., T.G.; writing – original draft, D.A.H., L.Y., A.S.F., F.C., T.G.; writing – review
976 and editing, D.A.H., L.Y., G.M.W., F.P.M.dEV., D.P., A.S.F., S.X., F.C., T.G.

Literature Cited

977

978 Aebi, M., M. M. J. van Donkelaar, G. Poelmans, J. K. Buitelaar, E. J. S. Sonuga-Barke *et al.*, 2016 Gene-set
979 and multivariate genome-wide association analysis of oppositional defiant behavior subtypes in
980 attention-deficit/hyperactivity disorder. *Am. J. Med. Genet. B Neuropsychiatr. Genet.* 171: 573–
981 588.

982 Ahmed, O. J., and M. R. Mehta, 2012 Running speed alters the frequency of hippocampal gamma
983 oscillations. *J. Neurosci.* 32: 7373–7383.

984 Akins, M. R., D. L. Benson, and C. A. Greer, 2007 Cadherin expression in the developing mouse olfactory
985 system. *J. Comp. Neurol.* 501: 483–497.

986 Amthor, H., R. Macharia, R. Navarrete, M. Schuelke, S. C. Brown *et al.*, 2007 Lack of myostatin results in
987 excessive muscle growth but impaired force generation. *Proc. Natl. Acad. Sci.* 104: 1835–1840.

988 Andrejeva, G., S. Gowan, G. Lin, A.-C. L. Wong Te Fong, E. Shamsaei *et al.*, 2020 *De novo*
989 phosphatidylcholine synthesis is required for autophagosome membrane formation and
990 maintenance during autophagy. *Autophagy* 16: 1044–1060.

991 Belke, T. W., and T. Garland, Jr., 2007 A brief opportunity to run does not function as a reinforcer for
992 mice selected for high daily wheel-running rates. *J. Exp. Anal. Behav.* 88: 199–213.

993 Benjamin, E. J., P. Muntner, A. Alonso, M. S. Bittencourt, C. W. Callaway *et al.*, 2019 Heart Disease and
994 Stroke Statistics—2019 Update: A Report From the American Heart Association. *Circulation* 139:.

995 Bilodeau, G. M., H. Guderley, D. R. Joannis, and T. Garland, Jr., 2009 Reduction of type IIb myosin and
996 IIB fibers in tibialis anterior muscle of mini-mouse mice from high-activity lines. *J. Exp. Zool. Part*
997 *Ecol. Genet. Physiol.* 311A: 189–198.

998 Blair, S. N., and J. N. Morris, 2009 Healthy Hearts—and the universal benefits of being physically active:
999 physical activity and health. *Ann. Epidemiol.* 19: 253–256.

1000 Booth, F. W., M. V. Chakravarthy, S. E. Gordon, and E. E. Spangenburg, 2002 Waging war on physical
1001 inactivity: using modern molecular ammunition against an ancient enemy. *J. Appl. Physiol.* 93:
1002 3–30.

1003 Booth, F. W., C. K. Roberts, and M. J. Laye, 2012 Lack of exercise is a major cause of chronic diseases, in
1004 *Comprehensive Physiology*, edited by R. Terjung. John Wiley & Sons, Inc., Hoboken, NJ, USA.

1005 Bouchard, C., 2015 Exercise genomics—a paradigm shift is needed: a commentary: Table 1. *Br. J. Sports
1006 Med.* 49: 1492–1496.

1007 Britton, S. L., and L. G. Koch, 2001 Animal genetic models for complex traits of physical capacity: *Exerc.
1008 Sport Sci. Rev.* 29: 7–14.

1009 Bronikowski, A. M., P. A. Carter, T. J. Morgan, T. Garland, Jr., N. Ung *et al.*, 2003 Lifelong voluntary
1010 exercise in the mouse prevents age-related alterations in gene expression in the heart. *Physiol.
1011 Genomics* 12: 129–138.

1012 Bronikowski, A. M., J. S. Rhodes, T. Garland, Jr., T. A. Prolla, T. A. Awad *et al.*, 2004 The evolution of gene
1013 expression in mouse hippocampus in response to selective breeding for increased locomotor
1014 activity. *Evolution* 58: 2079–2086.

1015 Burke, M. K., 2012 How does adaptation sweep through the genome? Insights from long-term selection
1016 experiments. *Proc. R. Soc. B Biol. Sci.* 279: 5029–5038.

1017 Burke, M. K., J. P. Dunham, P. Shahrestani, K. R. Thornton, M. R. Rose *et al.*, 2010 Genome-wide analysis
1018 of a long-term evolution experiment with *Drosophila*. *Nature* 467: 587–590.

1019 Caffino, L., G. Messa, and F. Fumagalli, 2018 A single cocaine administration alters dendritic spine
1020 morphology and impairs glutamate receptor synaptic retention in the medial prefrontal cortex
1021 of adolescent rats. *Neuropharmacology* 140: 209–216.

1022 Careau, V., M. E. Wolak, P. A. Carter, and T. Garland, Jr., 2015 Evolution of the additive genetic variance–
1023 covariance matrix under continuous directional selection on a complex behavioural phenotype.
1024 Proc. R. Soc. B Biol. Sci. 282: 20151119.

1025 Careau, V., M. E. Wolak, P. A. Carter, and T. Garland, Jr., 2013 Limits to behavioral evolution: the
1026 quantitative genetics of a complex trait under directional selection. Evolution 67: 3102–3119.

1027 Carlson, S. A., J. E. Fulton, M. Pratt, Z. Yang, and E. K. Adams, 2015 Inadequate physical activity and
1028 health care expenditures in the United States. Prog. Cardiovasc. Dis. 57: 315–323.

1029 Castro, A. A., and T. Garland, Jr., 2018 Evolution of hindlimb bone dimensions and muscle masses in
1030 house mice selectively bred for high voluntary wheel-running behavior. J. Morphol. 279: 766–
1031 779.

1032 Chen, Z., E. Resnik, J. M. McFarland, B. Sakmann, and M. R. Mehta, 2011 Speed controls the amplitude
1033 and timing of the hippocampal gamma rhythm (A. Borst, Ed.). PLoS ONE 6: e21408.

1034 Claghorn, G. C., I. A. T. Fonseca, Z. Thompson, C. Barber, and T. Garland, Jr., 2016 Serotonin-mediated
1035 central fatigue underlies increased endurance capacity in mice from lines selectively bred for
1036 high voluntary wheel running. Physiol. Behav. 161: 145–154.

1037 Claghorn, G. C., Z. Thompson, J. C. Kay, G. Ordonez, T. G. Hampton *et al.*, 2017 Selective breeding and
1038 short-term access to a running wheel alter stride characteristics in house mice. Physiol.
1039 Biochem. Zool. 90: 533–545.

1040 Clark, P. J., R. A. Kohman, D. S. Miller, T. K. Bhattacharya, E. H. Haferkamp *et al.*, 2010 Adult hippocampal
1041 neurogenesis and c-Fos induction during escalation of voluntary wheel running in C57BL/6J
1042 mice. Behav. Brain Res. 213: 246–252.

1043 Cooper, S., A. J. Robison, and M. S. Mazei-Robison, 2017 Reward circuitry in addiction.
1044 Neurotherapeutics 14: 687–697.

1045 Copes, L. E., H. Schutz, E. M. Dlugsoz, S. Judex, and T. Garland, Jr., 2018 Locomotor activity, growth
1046 hormones, and systemic robusticity: An investigation of cranial vault thickness in mouse lines
1047 bred for high endurance running. *Am. J. Phys. Anthropol.* 166: 442–458.

1048 Cordeiro, L. M. S., P. C. R. Rabelo, M. M. Moraes, F. Teixeira-Coelho, C. C. Coimbra *et al.*, 2017 Physical
1049 exercise-induced fatigue: The role of serotonergic and dopaminergic systems. *Braz. J. Med. Biol.*
1050 Res. 50::

1051 Cornelissen, V. A., and R. H. Fagard, 2005 Effects of endurance training on blood pressure, blood
1052 pressure-regulating mechanisms, and cardiovascular risk factors. *Hypertension* 46: 667–675.

1053 Cornier, M.-A., D. Dabelea, T. L. Hernandez, R. C. Lindstrom, A. J. Steig *et al.*, 2008 The metabolic
1054 syndrome. *Endocr. Rev.* 29: 777–822.

1055 Davis, R. J., W. Shen, Y. I. Sandler, M. Amoui, P. Purcell *et al.*, 2001 Dach1 mutant mice bear no gross
1056 abnormalities in eye, limb, and brain development and exhibit postnatal lethality. *Mol. Cell. Biol.*
1057 21: 1484–1490.

1058 Dawes, M., T. Moore-Harrison, A. T. Hamilton, T. Ceaser, K. J. Kochan *et al.*, 2014 Differential gene
1059 expression in high- and low-active inbred mice. *BioMed Res. Int.* 2014: 1–9.

1060 De Moor, M. H. M., Y.-J. Liu, D. I. Boomsma, J. Li, J. J. Hamilton *et al.*, 2009 Genome-wide association
1061 study of exercise behavior in dutch and american adults: *Med. Sci. Sports Exerc.* 41: 1887–1895.

1062 Dewan, I., T. Garland, Jr., L. Hiramatsu, and V. Careau, 2019 I smell a mouse: indirect genetic effects on
1063 voluntary wheel-running distance, duration and speed. *Behav. Genet.* 49: 49–59.

1064 Didion, J. P., A. P. Morgan, L. Yadgary, T. A. Bell, R. C. McMullan *et al.*, 2016 *R2d2* drives selfish sweeps in
1065 the house mouse. *Mol. Biol. Evol.* 33: 1381–1395.

1066 Dietrich, A., 2004 Endocannabinoids and exercise. *Br. J. Sports Med.* 38: 536–541.

1067 Dlugosz, E. M., H. Schutz, T. H. Meek, W. Acosta, C. J. Downs *et al.*, 2013 Immune response to a
1068 Trichinella spiralis infection in house mice from lines selectively bred for high voluntary wheel
1069 running. *J. Exp. Biol.* 216: 4212–4221.

1070 Doya, K., 2000 Complementary roles of basal ganglia and cerebellum in learning and motor control. *Curr.*
1071 *Opin. Neurobiol.* 10: 732–739.

1072 Drickamer, L. C., and T. R. Evans, 1996 Chemosignals and activity of wild stock house mice, with a note
1073 on the use of running wheels to assess activity in rodents. *Behav. Processes* 36: 51–66.

1074 Dyrstad, S. M., B. H. Hansen, I. M. Holme, and S. A. Anderssen, 2014 Comparison of self-reported versus
1075 accelerometer-measured physical activity. *Med. Sci. Sports Exerc.* 46: 99–106.

1076 Eikelboom, R., and R. Mills, 1988 A microanalysis of wheel running in male and female rats. *Physiol.*
1077 *Behav.* 43: 625–630.

1078 Elkouris, M., H. Kontaki, A. Stavropoulos, A. Antonoglou, K. C. Nikolaou *et al.*, 2016 SET9-mediated
1079 regulation of TGF- β signaling links protein methylation to pulmonary fibrosis. *Cell Rep.* 15: 2733–
1080 2744.

1081 Ernst, C., A. K. Olson, J. P. J. Pinel, R. W. Lam, and B. R. Christie, 2006 Antidepressant effects of exercise:
1082 Evidence for an adult-neurogenesis hypothesis? *J Psychiatry Neurosci* 31: 84–92.

1083 Fan, W., A. R. Atkins, R. T. Yu, M. Downes, and R. M. Evans, 2013 Road to exercise mimetics: targeting
1084 nuclear receptors in skeletal muscle. *J. Mol. Endocrinol.* 51: T87–T100.

1085 Fisher, R. A., 1925 Statistical methods for research workers, pp. 25–235 in *Biological monographs and*
1086 *manuals*, edited by F. A. E. Crew and D. W. Cutler. Oliver and Boyd (Edinburgh).

1087 Frédéric, M. Y., V. F. Lundin, M. D. Whiteside, J. G. Cueva, D. K. Tu *et al.*, 2013 Identification of 526
1088 conserved metazoan genetic innovations exposes a new role for cofactor E-like in neuronal
1089 microtubule homeostasis (A. D. Chisholm, Ed.). *PLoS Genet.* 9: e1003804.

1090 Freed, C., and B. Yamamoto, 1985 Regional brain dopamine metabolism: a marker for the speed,
1091 direction, and posture of moving animals. *Science* 229: 62–65.

1092 Fuhrmann, F., D. Justus, L. Sosulina, H. Kaneko, T. Beutel *et al.*, 2015 Locomotion, theta oscillations, and
1093 the speed-correlated firing of hippocampal neurons are controlled by a medial septal
1094 glutamatergic circuit. *Neuron* 86: 1253–1264.

1095 Furtunato, A. M. B., B. Lobão-Soares, A. B. L. Tort, and H. Belchior, 2020 Specific increase of hippocampal
1096 delta oscillations across consecutive treadmill runs. *Front. Behav. Neurosci.* 14:.

1097 Garland, Jr., T., and P. W. Freeman, 2005 Selective breeding for high endurance running increases
1098 hindlimb symmetry. *Evolution* 59: 1851–1854.

1099 Garland, Jr., T., S. A. Kelly, J. L. Malisch, E. M. Kolb, R. M. Hannon *et al.*, 2011a How to run far: multiple
1100 solutions and sex-specific responses to selective breeding for high voluntary activity levels. *Proc.
1101 R. Soc. B Biol. Sci.* 278: 574–581.

1102 Garland, Jr., T., M. T. Morgan, J. G. Swallow, J. S. Rhodes, I. Girard *et al.*, 2002 Evolution of a small-
1103 muscle polymorphism in lines of house mice selected for high activity levels. *Evolution* 56: 1267–
1104 1275.

1105 Garland, Jr., T., and M. R. Rose, 2009 *Experimental evolution: concepts, methods, and applications of
1106 selection experiments*. University of California Press.

1107 Garland, Jr., T., H. Schutz, M. A. Chappell, B. K. Keeney, T. H. Meek *et al.*, 2011b The biological control of
1108 voluntary exercise, spontaneous physical activity and daily energy expenditure in relation to
1109 obesity: human and rodent perspectives. *J. Exp. Biol.* 214: 206–229.

1110 Garland, Jr., T., M. Zhao, and W. Saltzman, 2016 Hormones and the evolution of complex traits: insights
1111 from artificial selection on behavior. *Integr. Comp. Biol.* 56: 207–224.

1112 Geisler, C., D. Robbe, M. Zugardo, A. Sirota, and G. Buzsaki, 2007 Hippocampal place cell assemblies are
1113 speed-controlled oscillators. *Proc. Natl. Acad. Sci.* 104: 8149–8154.

1114 Giménez, R., J. Raïch, and J. Aguilar, 1991 Changes in brain striatum dopamine and acetylcholine
1115 receptors induced by chronic CDP-choline treatment of aging mice. *Br. J. Pharmacol.* 104: 575–
1116 578.

1117 Grobet, L., L. J. Royo Martin, D. Poncelet, D. Pirottin, B. Brouwers *et al.*, 1997 A deletion in the bovine
1118 myostatin gene causes the double–muscled phenotype in cattle. *Nat. Genet.* 17: 71–74.

1119 Guthold, R., G. A. Stevens, L. M. Riley, and F. C. Bull, 2018 Worldwide trends in insufficient physical
1120 activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1·9 million
1121 participants. *Lancet Glob. Health* 6: e1077–e1086.

1122 Herbert, A. J., A. G. Williams, P. J. Hennis, R. M. Erskine, C. Sale *et al.*, 2019 The interactions of physical
1123 activity, exercise and genetics and their associations with bone mineral density: implications for
1124 injury risk in elite athletes. *Eur. J. Appl. Physiol.* 119: 29–47.

1125 Hiramatsu, L., and T. Garland, Jr., 2018 Mice selectively bred for high voluntary wheel-running behavior
1126 conserve more fat despite increased exercise. *Physiol. Behav.* 194: 1–8.

1127 Hiramatsu, L., J. C. Kay, Z. Thompson, J. M. Singleton, G. C. Claghorn *et al.*, 2017 Maternal exposure to
1128 Western diet affects adult body composition and voluntary wheel running in a genotype-specific
1129 manner in mice. *Physiol. Behav.* 179: 235–245.

1130 Hoenderop, J. G. J., J. P. T. M. van Leeuwen, B. C. J. van der Eerden, F. F. J. Kersten, A. W. C. M. van
1131 derKemp *et al.*, 2003 Renal Ca²⁺ wasting, hyperabsorption, and reduced bone thickness in mice
1132 lacking TRPV5. *J. Clin. Invest.* 112: 1906–1914.

1133 Holroyd, C., S. Nieuwenhuis, R. Mars, and M. Coles, 2004 Anterior cingulate cortex, selection for action,
1134 and error processing, pp. 219–31 in *Cognitive neuroscience of attention*, Guilford Press, New
1135 York.

1136 Horner, A., L. Shum, J. A. Ayres, K. Nonaka, and G. H. Nuckolls, 2002 Fibroblast growth factor signaling
1137 regulates Dach1 expression during skeletal development. *Dev. Dyn.* 225: 35–45.

1138 Horwitz, T., K. Lam, Y. Chen, Y. Xia, and C. Liu, 2019 A decade in psychiatric GWAS research. *Mol.*
1139 *Psychiatry* 24: 378–389.

1140 Jiang, S., C. Koolmeister, J. Misic, S. Siira, I. Kühl *et al.*, 2019 TEFM regulates both transcription
1141 elongation and RNA processing in mitochondria. *EMBO Rep.* 20:.

1142 Kasem, E., T. Kurihara, and K. Tabuchi, 2018 Neurexins and neuropsychiatric disorders. *Neurosci. Res.*
1143 127: 53–60.

1144 Kay, J. C., G. C. Claghorn, Z. Thompson, T. G. Hampton, and T. Garland, Jr., 2019 Electrocardiograms of
1145 mice selectively bred for high levels of voluntary exercise: Effects of short-term exercise training
1146 and the mini-muscle phenotype. *Physiol. Behav.* 199: 322–332.

1147 Keeney, B. K., T. H. Meek, K. M. Middleton, L. F. Holness, and T. Garland, Jr., 2012 Sex differences in
1148 cannabinoid receptor-1 (CB1) pharmacology in mice selectively bred for high voluntary wheel-
1149 running behavior. *Pharmacol. Biochem. Behav.* 101: 528–537.

1150 Kelly, S. A., T. A. Bell, S. R. Selitsky, R. J. Buus, K. Hua *et al.*, 2013 A novel intronic single nucleotide
1151 polymorphism in the myosin heavy polypeptide 4 gene is responsible for the mini-muscle
1152 phenotype characterized by major reduction in hind-limb muscle mass in mice. *Genetics* 195:
1153 1385–1395.

1154 Kelly, S. A., P. P. Czech, J. T. Wight, K. M. Blank, and T. Garland, Jr., 2006 Experimental evolution and
1155 phenotypic plasticity of hindlimb bones in high-activity house mice. *J. Morphol.* 267: 360–374.

1156 Kelly, S. A., F. R. Gomes, E. M. Kolb, J. L. Malisch, and T. Garland, Jr., 2017 Effects of activity, genetic
1157 selection and their interaction on muscle metabolic capacities and organ masses in mice. *J. Exp.*
1158 *Biol.* 220: 1038–1047.

1159 Kelly, S. A., D. L. Nehrenberg, K. Hua, T. Garland, Jr., and D. Pomp, 2012 Functional genomic architecture
1160 of predisposition to voluntary exercise in mice: expression QTL in the brain. *Genetics* 191: 643–
1161 654.

1162 Kelly, S. A., D. L. Nehrenberg, K. Hua, T. Garland, Jr., and D. Pomp, 2014 Quantitative genomics of
1163 voluntary exercise in mice: transcriptional analysis and mapping of expression QTL in muscle.
1164 *Physiol. Genomics* 46: 593–601.

1165 Kelly, S. A., D. L. Nehrenberg, J. L. Peirce, K. Hua, B. M. Steffy *et al.*, 2010 Genetic architecture of
1166 voluntary exercise in an advanced intercross line of mice. *Physiol. Genomics* 42: 190–200.

1167 Khan, A. A., and J. G. Quigley, 2013 Heme and FLVCR-related transporter families SLC48 and SLC49. *Mol.*
1168 *Aspects Med.* 34: 669–682.

1169 Kida, Y., 2004 Chick Dach1 interacts with the Smad complex and Sin3a to control AER formation and limb
1170 development along the proximodistal axis. *Development* 131: 4179–4187.

1171 Klaassen, R. V., J. Stroeder, F. Coussen, A.-S. Hafner, J. D. Petersen *et al.*, 2016 Shisa6 traps AMPA
1172 receptors at postsynaptic sites and prevents their desensitization during synaptic activity. *Nat.*
1173 *Commun.* 7:.

1174 Kolb, E. M., S. A. Kelly, and T. Garland, Jr., 2013a Mice from lines selectively bred for high voluntary
1175 wheel running exhibit lower blood pressure during withdrawal from wheel access. *Physiol.*
1176 *Behav.* 112–113: 49–55.

1177 Kolb, E. M., S. A. Kelly, K. M. Middleton, L. S. Sermsakdi, M. A. Chappell *et al.*, 2010 Erythropoietin
1178 elevates but not voluntary wheel running in mice. *J. Exp. Biol.* 213: 510–519.

1179 Kolb, E. M., E. L. Rezende, L. Holness, A. Radtke, S. K. Lee *et al.*, 2013b Mice selectively bred for high
1180 voluntary wheel running have larger midbrains: support for the mosaic model of brain evolution.
1181 *J. Exp. Biol.* 216: 515–523.

1182 Konczal, M., P. Koteja, P. Orlowska-Feuer, J. Radwan, E. T. Sadowska *et al.*, 2016 Genomic response to
1183 selection for predatory behavior in a mammalian model of adaptive radiation. *Mol. Biol. Evol.*
1184 33: 2429–2440.

1185 Koob, G. F., and N. D. Volkow, 2010 Neurocircuitry of Addiction. *Neuropsychopharmacology* 35: 217–
1186 238.

1187 Kostrzewa, E., and M. J. Kas, 2014 The use of mouse models to unravel genetic architecture of physical
1188 activity: a review: Unravel genetic architecture of physical activity. *Genes Brain Behav.* 13: 87–
1189 103.

1190 Köttgen, A., C. Pattaro, C. A. Böger, C. Fuchsberger, M. Olden *et al.*, 2010 New loci associated with
1191 kidney function and chronic kidney disease. *Nat. Genet.* 42: 376–384.

1192 Kropff, E., J. E. Carmichael, M.-B. Moser, and E. I. Moser, 2015 Speed cells in the medial entorhinal
1193 cortex. *Nature* 523: 419–424.

1194 Lachman, H. M., C. S. J. Fann, M. Bartzis, O. V. Evgrafov, R. N. Rosenthal *et al.*, 2007 Genomewide
1195 suggestive linkage of opioid dependence to chromosome 14q. *Hum. Mol. Genet.* 16: 1327–1334.

1196 Lalley, P. M., R. Benacka, A. M. Bischoff, and D. W. Richter, 1997 Nucleus raphe obscurus evokes 5-HT-1A
1197 receptor-mediated modulation of respiratory neurons. *Brain Res.* 747: 156–159.

1198 Lee, D., X. Zhao, Y.-I. Yim, E. Eisenberg, and L. E. Greene, 2008 Essential role of cyclin-G-associated
1199 kinase (auxilin-2) in developing and mature mice (R. Parton, Ed.). *Mol. Biol. Cell* 19: 2766–2776.

1200 Li, J.-Y., T. B. J. Kuo, I.-T. Hsieh, and C. C. H. Yang, 2012 Changes in hippocampal theta rhythm and their
1201 correlations with speed during different phases of voluntary wheel running in rats. *Neuroscience*
1202 213: 54–61.

1203 Lightfoot, J. T., 2011 Current understanding of the genetic basis for physical activity. *J. Nutr.* 141: 526–
1204 530.

1205 Lightfoot, J. T., E. J. C. De Geus, F. W. Booth, M. S. Bray, M. Den Hoed *et al.*, 2018 Biological/genetic
1206 regulation of physical activity level: Consensus from GenBioPAC. *Med. Sci. Sports Exerc.* 50: 863–
1207 873.

1208 Lightfoot, J. T., L. Leamy, D. Pomp, M. J. Turner, A. A. Fodor *et al.*, 2010 Strain screen and haplotype
1209 association mapping of wheel running in inbred mouse strains. *J. Appl. Physiol.* 109: 623–634.

1210 Lightfoot, J. T., M. J. Turner, D. Pomp, S. R. Kleeberger, and L. J. Leamy, 2008 Quantitative trait loci for
1211 physical activity traits in mice. *Physiol. Genomics* 32: 401–408.

1212 Lillie, M., C. F. Honaker, P. B. Siegel, and Ö. Carlborg, 2019 Bidirectional selection for body weight on
1213 standing genetic variation in a chicken model. *Genes|Genomes|Genetics* g3.400038.2019.

1214 Lin, X., C. B. Eaton, J. E. Manson, and S. Liu, 2017 The genetics of physical activity. *Curr. Cardiol. Rep.* 19:.

1215 Liu, Q., R. J. Duff, B. Liu, A. L. Wilson, S. G. Babb-Clendenon *et al.*, 2006 Expression of cadherin10, a type
1216 II classic cadherin gene, in the nervous system of the embryonic zebrafish. *Gene Expr. Patterns*
1217 6: 703–710.

1218 Loh, N. Y., L. Bentley, H. Dimke, S. Verkaart, P. Tammaro *et al.*, 2013 Autosomal dominant hypercalciuria
1219 in a mouse model due to a mutation of the epithelial calcium channel, TRPV5 (Y. Ishimaru, Ed.).
1220 *PLoS ONE* 8: e55412.

1221 Loos, R. J. F., T. Rankinen, A. Tremblay, L. Pérusse, Y. Chagnon *et al.*, 2005 Melanocortin-4 receptor gene
1222 and physical activity in the Québec Family Study. *Int. J. Obes.* 29: 420–428.

1223 Machado, C. B., K. C. Kanning, P. Kreis, D. Stevenson, M. Crossley *et al.*, 2014 Reconstruction of phrenic
1224 neuron identity in embryonic stem cell- derived motor neurons. *Development* 141: 784–794.

1225 Manley, A. F., 1996 *Physical activity and health: a report of the Surgeon General*. DIANE Publishing.

1226 Mardon, G., N. M. Solomon, and G. M. Rubin, 1994 *dachshund* encodes a nuclear protein required for
1227 normal eye and leg development in *Drosophila*. *Development* 120: 3473–3486.

1228 Martin, G. M., S. N. Austad, and T. E. Johnson, 1996 Genetic analysis of ageing: role of oxidative damage
1229 and environmental stresses. *Nat. Genet.* 13: 25–34.

1230 Mathes, W. F., D. L. Nehrenberg, R. Gordon, K. Hua, T. Garland, Jr. *et al.*, 2010 Dopaminergic
1231 dysregulation in mice selectively bred for excessive exercise or obesity. *Behav. Brain Res.* 210:
1232 155–163.

1233 Matsunaga, E., S. Nambu, M. Oka, and A. Iriki, 2015 Complex and dynamic expression of cadherins in the
1234 embryonic marmoset cerebral cortex. *Dev. Growth Differ.* 57: 474–483.

1235 Matta Mello Portugal, E., T. Cevada, R. Sobral Monteiro-Junior, T. Teixeira Guimarães, E. da Cruz Rubini
1236 *et al.*, 2013 Neuroscience of exercise: from neurobiology mechanisms to mental health.
1237 *Neuropsychobiology* 68: 1–14.

1238 McGillivray, D. G., T. Garland, Jr., E. M. Dlugosz, M. A. Chappell, and D. A. Syme, 2009 Changes in
1239 efficiency and myosin expression in the small-muscle phenotype of mice selectively bred for
1240 high voluntary running activity. *J. Exp. Biol.* 212: 977–985.

1241 Meek, T. H., B. P. Lonquich, R. M. Hannon, and T. Garland, Jr., 2009 Endurance capacity of mice
1242 selectively bred for high voluntary wheel running. *J. Exp. Biol.* 212: 2908–2917.

1243 Miro, X., X. Zhou, S. Boretius, T. Michaelis, C. Kubisch *et al.*, 2009 Haploinsufficiency of the murine
1244 polycomb gene *Suz12* results in diverse malformations of the brain and neural tube. *Dis. Model.
1245 Mech.* 2: 412–418.

1246 Mok, A., K.-T. Khaw, R. Luben, N. Wareham, and S. Brage, 2019 Physical activity trajectories and
1247 mortality: population based cohort study. *BMJ* 12323.

1248 Morgan, A. P., and C. E. Welsh, 2015 Informatics resources for the Collaborative Cross and related
1249 mouse populations. *Mamm. Genome* 26: 521–539.

1250 Mosher, D. S., P. Quignon, C. D. Bustamante, N. B. Sutter, C. S. Mellersh *et al.*, 2007 A mutation in the
1251 myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs
1252 (J. S. Takahashi, Ed.). *PLoS Genet.* 3: e79.

1253 Myers, A., C. Gibbons, G. Finlayson, and J. Blundell, 2017 Associations among sedentary and active
1254 behaviours, body fat and appetite dysregulation: investigating the myth of physical inactivity
1255 and obesity. *Br. J. Sports Med.* 51: 1540–1544.

1256 Neufer, P. D., M. M. Bamman, D. M. Muoio, C. Bouchard, D. M. Cooper *et al.*, 2015 Understanding the
1257 cellular and molecular mechanisms of physical activity-induced health benefits. *Cell Metab.* 22:
1258 4–11.

1259 Nica, A. C., and E. T. Dermitzakis, 2013 Expression quantitative trait loci: present and future. *Philos.*
1260 *Trans. R. Soc. B Biol. Sci.* 368: 20120362.

1261 Nicod, J., R. W. Davies, N. Cai, C. Hassett, L. Goodstadt *et al.*, 2016 Genome-wide association of multiple
1262 complex traits in outbred mice by ultra-low-coverage sequencing. *Nat. Genet.* 48: 912–918.

1263 Nogueira, A., O. Molinero, A. Salguero, and S. Márquez, 2018 Exercise addiction in practitioners of
1264 endurance sports: A literature review. *Front. Psychol.* 9:.

1265 Nuwal, T., M. Kropp, S. Wegener, S. Racic, I. Montalban *et al.*, 2012 The *Drosophila* homologue of
1266 tubulin-specific chaperone E-like protein is required for synchronous sperm individualization
1267 and normal male fertility. *J. Neurogenet.* 26: 374–381.

1268 Pallafacchina, G., S. François, B. Regnault, B. Czarny, V. Dive *et al.*, 2010 An adult tissue-specific stem cell
1269 in its niche: A gene profiling analysis of in vivo quiescent and activated muscle satellite cells.
1270 *Stem Cell Res.* 4: 77–91.

1271 Park, S., and J. L. Etnier, 2019 Beneficial effects of acute exercise on executive function in adolescents. *J.*
1272 *Phys. Act. Health* 16: 423–429.

1273 Parker, C. C., S. Gopalakrishnan, P. Carbonetto, N. M. Gonzales, E. Leung *et al.*, 2016 Genome-wide
1274 association study of behavioral, physiological and gene expression traits in outbred CFW mice.
1275 *Nat. Genet.* 48: 919–926.

1276 Parker, C. C., and A. A. Palmer, 2011 Dark Matter: Are mice the solution to missing heritability? *Front. Genet.* 2:.

1278 Prince, S. A., K. B. Adamo, M. Hamel, J. Hardt, S. Connor Gorber *et al.*, 2008 A comparison of direct

1279 versus self-report measures for assessing physical activity in adults: a systematic review. *Int. J. Behav. Nutr. Phys. Act.* 5: 56.

1281 Rendeiro, C., and J. S. Rhodes, 2018 A new perspective of the hippocampus in the origin of exercise–

1282 brain interactions. *Brain Struct. Funct.* 223: 2527–2545.

1283 Rezende, E. L., F. R. Gomes, J. L. Malisch, M. A. Chappell, and T. Garland, Jr., 2006 Maximal oxygen

1284 consumption in relation to subordinate traits in lines of house mice selectively bred for high

1285 voluntary wheel running. *J. Appl. Physiol.* 101: 477–485.

1286 Rhodes, J. S., S. C. Gammie, and T. Garland Jr, 2005 Neurobiology of mice selected for high voluntary

1287 wheel-running activity. *Integr. Comp. Biol.* 45: 438–455.

1288 Rhodes, J. S., and T. Garland, Jr., 2003 Differential sensitivity to acute administration of Ritalin,

1289 apomorphine, SCH 23390, but not raclopride in mice selectively bred for hyperactive wheel-

1290 running behavior. *Psychopharmacology (Berl.)* 167: 242–250.

1291 Rhodes, J. S., T. Garland, Jr., and S. C. Gammie, 2003a Patterns of brain activity associated with variation

1292 in voluntary wheel-running behavior. *Behav. Neurosci.* 117: 1243–1256.

1293 Rhodes, J. S., G. R. Hosack, I. Girard, A. E. Kelley, G. S. Mitchell *et al.*, 2001 Differential sensitivity to acute

1294 administration of cocaine, GBR 12909, and fluoxetine in mice selectively bred for hyperactive

1295 wheel-running behavior. *Psychopharmacology (Berl.)* 158: 120–131.

1296 Rhodes, J. S., H. van Praag, S. Jeffrey, I. Girard, G. S. Mitchell *et al.*, 2003b Exercise increases

1297 hippocampal neurogenesis to high levels but does not improve spatial learning in mice bred for

1298 increased voluntary wheel running. *Behav. Neurosci.* 117: 1006–1016.

1299 Roberts, M. D., G. N. Ruegsegger, J. D. Brown, and F. W. Booth, 2017 Mechanisms associated with
1300 physical activity behavior: insights from rodent experiments. *Exerc. Sport Sci. Rev.* 45: 217–222.

1301 Rohe, M., 2008 Role of SORLA in the brain and its relevance for Alzheimer disease [Ph.D. Dissertation]:
1302 Freien Universität Berlin, 110 p.

1303 van Rooij, E., D. Quiat, B. A. Johnson, L. B. Sutherland, X. Qi *et al.*, 2009 A family of microRNAs encoded
1304 by myosin genes governs myosin expression and muscle performance. *Dev. Cell* 17: 662–673.

1305 Rosenfeld, C. S., 2017 Sex-dependent differences in voluntary physical activity: Physical Activity and Sex
1306 Differences. *J. Neurosci. Res.* 95: 279–290.

1307 Rowland, T., 2016 *Biologic regulation of physical activity*. Human Kinetics Publishers.

1308 Saiga, T., T. Fukuda, M. Matsumoto, H. Tada, H. J. Okano *et al.*, 2009 Fbxo45 forms a novel ubiquitin
1309 ligase complex and is required for neuronal development. *Mol. Cell. Biol.* 29: 3529–3543.

1310 Salsi, V., M. A. Vigano, F. Cocchiarella, R. Mantovani, and V. Zappavigna, 2008 Hoxd13 binds in vivo and
1311 regulates the expression of genes acting in key pathways for early limb and skeletal patterning.
1312 *Dev. Biol.* 317: 497–507.

1313 Sarzynski, M. A., R. J. F. Loos, A. Lucia, L. Pérusse, S. M. Roth *et al.*, 2016 Advances in exercise, fitness,
1314 and performance genomics in 2015: *Med. Sci. Sports Exerc.* 48: 1906–1916.

1315 Saul, M. C., P. Majdak, S. Perez, M. Reilly, T. Garland, Jr. *et al.*, 2017 High motivation for exercise is
1316 associated with altered chromatin regulators of monoamine receptor gene expression in the
1317 striatum of selectively bred mice: Striatal transcriptome of mice born to run. *Genes Brain Behav.*
1318 16: 328–341.

1319 Schiller, D., H. Eichenbaum, E. A. Buffalo, L. Davachi, D. J. Foster *et al.*, 2015 Memory and space: towards
1320 an understanding of the cognitive map. *J. Neurosci.* 35: 13904–13911.

1321 Schmidt, V., A. Subkhangulova, and T. E. Willnow, 2017 Sorting receptor SORLA: cellular mechanisms
1322 and implications for disease. *Cell. Mol. Life Sci.* 74: 1475–1483.

1323 Schwartz, N. L., B. A. Patel, T. Garland, Jr., and A. M. Horner, 2018 Effects of selective breeding for high
1324 voluntary wheel-running behavior on femoral nutrient canal size and abundance in house mice.
1325 J. Anat. 233: 193–203.

1326 Secades, J., and J. Lorenzo, 2006 Citicoline: pharmacological and clinical review, 2006 update. Methods
1327 Find Exp Clin Pharmacol 28 Suppl B: 1–56.

1328 Sella, G., and N. H. Barton, 2019 Thinking about the evolution of complex traits in the era of genome-
1329 wide association studies. Annu. Rev. Genomics Hum. Genet. 20: 461–493.

1330 Sellami, M., M. Gasmi, J. Denham, L. D. Hayes, D. Stratton *et al.*, 2018 Effects of acute and chronic
1331 exercise on immunological parameters in the elderly aged: can physical activity counteract the
1332 effects of aging? Front. Immunol. 9:.

1333 Sheel, A. W., 2016 Sex differences in the physiology of exercise: an integrative perspective: Introduction.
1334 Exp. Physiol. 101: 211–212.

1335 Sheila, M., G. Narayanan, S. Ma, W. L. Tam, J. Chai *et al.*, 2019 Phenotypic and molecular features
1336 underlying neurodegeneration of motor neurons derived from spinal and bulbar muscular
1337 atrophy patients. Neurobiol. Dis. 124: 1–13.

1338 Shen, Y., Z. Ding, S. Ma, Z. Ding, Y. Zhang *et al.*, 2019 SETD7 mediates spinal microgliosis and neuropathic
1339 pain in a rat model of peripheral nerve injury. Brain. Behav. Immun. 82: 382–395.

1340 Sheremet, A., J. P. Kennedy, Y. Qin, Y. Zhou, S. D. Lovett *et al.*, 2019 Theta-gamma cascades and running
1341 speed. J. Neurophysiol. 121: 444–458.

1342 Shim, H., H. Chun, C. D. Engelman, and B. A. Payseur, 2009 Genome-wide association studies using
1343 single-nucleotide polymorphisms versus haplotypes: an empirical comparison with data from
1344 the North American Rheumatoid Arthritis Consortium. BMC Proc. 3: S35.

1345 Shimomura, K., 2001 Genome-wide epistatic interaction analysis reveals complex genetic determinants
1346 of circadian behavior in mice. Genome Res. 11: 959–980.

1347 Simonen, R. L., T. Rankinen, L. Pérusse, A. S. Leon, J. S. Skinner *et al.*, 2003 A dopamine D2 receptor gene
1348 polymorphism and physical activity in two family studies. *Physiol. Behav.* 78: 751–757.

1349 Singleton, J. M., and T. Garland, Jr., 2019 Influence of corticosterone on growth, home-cage activity,
1350 wheel running, and aerobic capacity in house mice selectively bred for high voluntary wheel-
1351 running behavior. *Physiol. Behav.* 198: 27–41.

1352 Smits, P., P. Li, J. Mandel, Z. Zhang, J. M. Deng *et al.*, 2001 The transcription factors L-Sox5 and Sox6 are
1353 essential for cartilage formation. *Dev. Cell* 1: 277–290.

1354 Stoltenberg, S. F., M. K. Lehmann, C. C. Christ, S. L. Hersrud, and G. E. Davies, 2011 Associations among
1355 types of impulsivity, substance use problems and Neurexin-3 polymorphisms. *Drug Alcohol
1356 Depend.* 119: e31–e38.

1357 Swallow, J. G., T. Garland, Jr., P. A. Carter, W.-Z. Zhan, and G. C. Sieck, 1998 Effects of voluntary activity
1358 and genetic selection on aerobic capacity in house mice (*Mus domesticus*). *J. Appl. Physiol.* 84:
1359 69–76.

1360 Swallow, J. G., P. Koteja, P. A. Carter, and T. Garland Jr., 2001 Food consumption and body composition
1361 in mice selected for high wheel-running activity. *J. Comp. Physiol. [B]* 171: 651–659.

1362 Swallow, J. G., J. S. Rhodes, and T. Garland Jr., 2005 Phenotypic and evolutionary plasticity of organ
1363 masses in response to voluntary exercise in house mice. *Integr. Comp. Biol.* 45: 426–437.

1364 Tada, H., H. J. Okano, H. Takagi, S. Shibata, I. Yao *et al.*, 2010 Fbxo45, a novel ubiquitin ligase, regulates
1365 synaptic activity. *J. Biol. Chem.* 285: 3840–3849.

1366 Taliun, D., J. Gamper, U. Leser, and C. Pattaro, 2016 Fast sampling-based whole-genome haplotype block
1367 recognition. *IEEE/ACM Trans. Comput. Biol. Bioinform.* 13: 315–325.

1368 Talmadge, R. J., W. Acosta, and T. Garland, Jr., 2014 Myosin heavy chain isoform expression in adult and
1369 juvenile mini-muscle mice bred for high-voluntary wheel running. *Mech. Dev.* 134: 16–30.

1370 Thomas, J. R., and K. T. Thomas, 1988 Development of gender differences in physical activity. *Quest* 40:
1371 219–229.

1372 Thompson, Z., 2017 The neurobiological basis of voluntary exercise in selectively-bred high runner mice:
1373 University of California, Riverside, 150 p.

1374 Thompson, Z., D. Argueta, T. Garland, Jr., and N. DiPatrizio, 2017 Circulating levels of endocannabinoids
1375 respond acutely to voluntary exercise, are altered in mice selectively bred for high voluntary
1376 wheel running, and differ between the sexes. *Physiol. Behav.* 170: 141–150.

1377 Vaanholt, L. M., I. Jonas, M. Doornbos, K. A. Schubert, C. Nyakas *et al.*, 2008 Metabolic and behavioral
1378 responses to high-fat feeding in mice selectively bred for high wheel-running activity. *Int. J.*
1379 *Obes.* 32: 1566–1575.

1380 Vann, S. D., J. P. Aggleton, and E. A. Maguire, 2009 What does the retrosplenial cortex do? *Nat. Rev.*
1381 *Neurosci.* 10: 792–802.

1382 Walker, E. P., and P. Tadi, 2020 Neuroanatomy, Nucleus Raphe, in *Neuroanatomy, Nucleus Raphe*,
1383 StatPearls Publishing.

1384 Wallace, I. J., and T. Garland, Jr., 2016 Mobility as an emergent property of biological organization:
1385 Insights from experimental evolution: Mobility and biological organization. *Evol. Anthropol.*
1386 *Issues News Rev.* 25: 98–104.

1387 Wang, W., K. K. Touhara, K. Weir, B. P. Bean, and R. MacKinnon, 2016 Cooperative regulation by G
1388 proteins and Na⁺ of neuronal GIRK2 K⁺ channels. *eLife* 5:.

1389 White, J. K., A.-K. Gerdin, N. A. Karp, E. Ryder, M. Buljan *et al.*, 2013 Genome-wide generation and
1390 systematic phenotyping of knockout mice reveals new roles for many genes. *Cell* 154: 452–464.

1391 Williams, C. J., M. G. Williams, N. Eynon, K. J. Ashton, J. P. Little *et al.*, 2017 Genes to predict VO₂max
1392 trainability: a systematic review. *BMC Genomics* 18:.

1393 Wise, R. A., 2009 Roles for nigrostriatal—not just mesocorticolimbic—dopamine in reward and
1394 addiction. *Trends Neurosci.* 32: 517–524.

1395 Wolock, S. L., A. Yates, S. A. Petrill, J. W. Bohland, C. Blair *et al.*, 2013 Gene × smoking interactions on
1396 human brain gene expression: finding common mechanisms in adolescents and adults. *J. Child
1397 Psychol. Psychiatry* 54: 1109–1119.

1398 Wood, A. R., The Electronic Medical Records and Genomics (eMERGE) Consortium, The MIGen
1399 Consortium, The PAGE Consortium, The LifeLines Cohort Study *et al.*, 2014 Defining the role of
1400 common variation in the genomic and biological architecture of adult human height. *Nat. Genet.*
1401 46: 1173–1186.

1402 Xu, S., and T. Garland, 2017 A mixed model approach to genome-wide association studies for selection
1403 signatures, with application to mice bred for voluntary exercise behavior. *Genetics* 207: 785–
1404 799.

1405 Xu, Y., X.-M. Zhao, J. Liu, Y.-Y. Wang, L.-L. Xiong *et al.*, 2020 Complexin I knockout rats exhibit a complex
1406 neurobehavioral phenotype including profound ataxia and marked deficits in lifespan. *Pflüg.
1407 Arch. - Eur. J. Physiol.* 472: 117–133.

1408 Yang, Z., Q. Sun, J. Guo, S. Wang, G. Song *et al.*, 2019 *GRSF1* -mediated *MIR-G-1* promotes malignant
1409 behavior and nuclear autophagy by directly upregulating *TMED5* and *LMNB1* in cervical cancer
1410 cells. *Autophagy* 15: 668–685.

1411 Ye, J., M. P. Witter, M.-B. Moser, and E. I. Moser, 2018 Entorhinal fast-spiking speed cells project to the
1412 hippocampus. *Proc. Natl. Acad. Sci.* 115: E1627–E1636.

1413 Young, N. M., B. Hallgrímsson, and T. Garland, Jr., 2009 Epigenetic effects on integration of limb lengths
1414 in a mouse model: selective breeding for high voluntary locomotor activity. *Evol. Biol.* 36: 88–99.

1415 Zheng, J.-J., W.-X. Li, J.-Q. Liu, Y.-C. Guo, Q. Wang *et al.*, 2018 Low expression of aging-related NRXN3 is
1416 associated with Alzheimer disease: A systematic review and meta-analysis. Medicine (Baltimore)
1417 97: e11343.

1418 Zhu, X., E.-S. Cho, Q. Sha, J. Peng, Y. Oksov *et al.*, 2014 Giant axon formation in mice lacking Kell, XK, or
1419 Kell and XK. Am. J. Pathol. 184: 800–807.

1420 Zhu, X., A. Rivera, M. S. Golub, J. Peng, Q. Sha *et al.*, 2009 Changes in red cell ion transport, reduced
1421 intratumoral neovascularization, and some mild motor function abnormalities accompany
1422 targeted disruption of the Mouse Kell gene (*Kel*). Am. J. Hematol. 84: 492–498.

1423