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Article Summary 49 
House mice from 4 replicate lines selectively bred for 61 generations for voluntary 50 
wheel-running behavior were compared with 4 non-selected control lines using 51 
multiple genome-wide analytical techniques on both haplotype and single 52 
nucleotide polymorphism data.  Twelve genomic regions were consistently found 53 
differentiated across all analytical approaches.  These regions are associated with 54 
a diverse set of genes that appear related to exercise ability or motivational 55 
systems.  Genes related to various organ systems (e.g. heart, brain) known to be 56 
physiologically different between test groups were identified.  These results 57 
highlight candidate genes for detailed studies of exercise behavior and 58 
physiology.  59 
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ABSTRACT 61 

The biological basis of exercise behavior is increasingly relevant for maintaining healthy 62 

lifestyles.  Various quantitative genetic studies and selection experiments have conclusively 63 

demonstrated substantial heritability for exercise behavior in both humans and laboratory 64 

rodents.  In the “High Runner” selection experiment, 4 replicate lines of Mus domesticus were 65 

bred for high voluntary wheel running (HR), along with 4 non-selected control (C) lines.  After 66 

61 generations, the genomes of 79 mice (9-10 from each line) were fully sequenced and single 67 

nucleotide polymorphisms (SNPs) were identified.  We used nested ANOVA with MIVQUE 68 

estimation and other approaches to compare allele frequencies between the HR and C lines for 69 

both SNPs and haplotypes.  Approximately 61 genomic regions, across all somatic 70 

chromosomes, showed evidence of differentiation.  Twelve of these regions were differentiated 71 

by all methods of analysis.  Gene function was inferred largely using Panther gene ontology 72 

terms and KO phenotypes associated with genes of interest.  Some of the differentiated genes 73 

are known to be associated with behavior/motivational systems and/or athletic ability, 74 

including Sorl1, Dach1, and Cdh10.  Sorl1 is a sorting protein associated with cholinergic neuron 75 

morphology, vascular wound healing, and metabolism.  Dach1 is associated with limb bud 76 

development and neural differentiation.  Cdh10 is a calcium ion binding protein associated with 77 

phrenic neurons.  Overall, these results indicate that selective breeding for high voluntary 78 

exercise has resulted in changes in allele frequencies for multiple genes associated with both 79 

motivation and ability for endurance exercise, providing candidate genes that may explain 80 

phenotypic changes observed in previous studies. 81 

  82 
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INTRODUCTION 83 

Most traits of interest in biology are complex, modulated by numerous genetic and 84 

environmental factors, and comprised of multiple lower-level (subordinate) traits that often 85 

influence higher-level traits in nonintuitive ways (Garland et al. 2016; Sella and Barton 2019).  86 

Examples of complex traits include human height, which is influenced by more than 9,500 87 

quantitative trait loci (QTL) (Wood et al. 2014), as well as one’s susceptibility to various 88 

psychological diseases (Horwitz et al. 2019).  89 

 One complex trait of great interest to medicine is exercise behavior.  Exercise has been 90 

linked to numerous health benefits, including muscle and bone strength, weight control, 91 

reduced cardiac disease, and improved mental health (Manley 1996; Lightfoot et al. 2018).  92 

Nonetheless, the majority of Americans are not getting sufficient exercise and this problem is 93 

common world-wide (Guthold et al. 2018).  Not only does insufficient exercise contribute to 94 

such health issues as obesity and diabetes (Booth et al. 2002; Cornier et al. 2008; Myers et al. 95 

2017), but it also increases healthcare costs in the United States, e.g., by more than $100 billion 96 

annually between the years of 2006-2011 (Carlson et al. 2015).  Conversely, higher levels of 97 

physical activity promote physical fitness and cardiovascular health, while lowering risk for 98 

depression, anxiety-related disorders, obesity, Type 2 diabetes, and mortality (Blair and Morris 99 

2009; Matta Mello Portugal et al. 2013; Mok et al. 2019).   100 

 The health benefits of exercise occur by various mechanisms (Neufer et al. 2015), as do 101 

the adverse effects of a lack of exercise (Booth et al. 2012).  Acute exercise can have beneficial 102 

effects on immune function (Sellami et al. 2018) and cognition (Park and Etnier 2019).  Chronic 103 

exercise training can cause changes in muscle fiber type composition that benefit regulation of 104 
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energy metabolism and other metabolic pathways (Fan et al. 2013).  Furthermore, exercise has 105 

been linked to lower blood pressure by reducing systemic vascular resistance (Cornelissen and 106 

Fagard 2005).  Reduced blood pressure, in turn, reduces risk of cardiac disease (Benjamin et al. 107 

2019).  The release of endorphins and vascular endothelial growth factors have shown promise 108 

as explanations for the growth of new neurons in the brain, which may be the cause of reduces 109 

symptoms of neurological diseases such as depression (Ernst et al. 2006).  110 

 Identifying genetic determinants of exercise behavior could potentially lead to drug 111 

targets that would help promote motivation for exercise and/or benefits derived from exercise.  112 

Additionally, by identifying genetic causes of motivation for exercise we may also gain insight 113 

regarding higher-level structures or pathways that control this motivation.  A variety of human 114 

studies have been conducted to determine the genes or chromosomal regions that modulate 115 

various components of exercise behavior, including both motivation and/or capability to 116 

exercise (Lightfoot et al. 2018).  Many of these studies use observational methods to compare 117 

humans who engage in either frequent and/or strenuous exercise with those who are less 118 

active (Kostrzewa and Kas 2014; Lin et al. 2017).  Historically, the most common approach to 119 

measuring human exercise levels was by use of questionnaires, which can be of dubious 120 

reliability, but an increasing number of studies use accelerometers (Prince et al. 2008; Dyrstad 121 

et al. 2014).  Detecting QTL in these studies is generally done with genome-wide association 122 

studies (GWAS), which rely on phenotypic and genetic data from many individuals within a 123 

population and can identify particularly strong correlations between the phenotype and key 124 

genetic markers and loci.  125 

 Various QTL identified in humans are associated with motivation, e.g., dopaminergic 126 
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regulation.  Dopamine is a well-established modulator of exercise motivation or reward 127 

(Garland et al. 2011b).  Various genes associated with the dopamine pathway are associated 128 

with exercise behavior in humans (Simonen et al. 2003; Loos et al. 2005; De Moor et al. 2009).  129 

The large body of evidence that dopamine signaling is a major component of exercise 130 

motivation dwarfs other motivational systems that have been associated with exercise, 131 

including serotonin and endocannabinoids (Dietrich 2004; Cordeiro et al. 2017), though 132 

serotonin has been implicated in GWAS of hyperactivity disorders (Aebi et al. 2016). 133 

 Other human studies have detected QTL associated with physical traits related to 134 

exercise abilities, including maximal oxygen consumption (VO2max) (Williams et al. 2017), bone 135 

density (Herbert et al. 2019), and more (Lin et al. 2017).  The list of possible biological traits 136 

affiliated with exercise and their associated QTL is extensive (Sarzynski et al. 2016; Lightfoot et 137 

al. 2018). 138 

 Observational studies of human exercise behavior are limited by measurement error 139 

and environmental cofactors that cannot always be accounted for in statistical models  140 

(Garland et al. 2011b; Lightfoot et al. 2018).  One alternative is to use animal models derived 141 

from selective breeding experiments (Garland and Rose 2009).  Selective breeding will alter the 142 

proportions of alleles that affect a trait of interest, thus  allowing for easier detection of such 143 

alleles (Britton and Koch 2001; Konczal et al. 2016).  Finding the genetic factors that underlie a 144 

complex trait is also facilitated by reducing environmental variation ("noise"), as is possible with 145 

laboratory colonies of rodents (Parker and Palmer 2011). 146 

 To elucidate the biological basis of voluntary aerobic exercise behavior, a selection 147 

experiment was begun in 1993 using a base population of outbred Hsd:ICR mice.  Four replicate 148 
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lines have been bred for high voluntary wheel-running behavior and another four bred without 149 

regard to their wheel running as controls for founder effects and random genetic drift (Swallow 150 

et al. 1998).  Since the beginning of this experiment, over 150 papers have been published that 151 

document a variety of phenotypic differences between the High Runner (HR) and Control (C) 152 

lines.  These previous studies establish morphological and physiological differences in bone, 153 

kidney, heart, skeletal muscle, brain, and other organs and systems (Rhodes et al. 2005; 154 

Swallow et al. 2005; Kolb et al. 2013b; Wallace and Garland 2016) and, more generally,  155 

reaffirm the diversity of the systems involved in voluntary exercise behavior (Garland et al. 156 

2011b; Lightfoot et al. 2018).  The previous studies also give potential directions for informed 157 

analyses of the genome.  For example, we would expect divergence in allele frequencies related 158 

to the reward system in the brain and to muscle function.  The HR selection experiment is the 159 

world’s "largest" involving a behavioral trait in rodents in terms of the number of lines and 160 

generations.  Therefore, addressing the genomic differences between the HR and C mice is 161 

expected to provide novel insights into the underpinnings of exercise behavior.  162 

 Previously, Xu and Garland (2017) used a mixed model (nested ANOVA) with minimum 163 

variance quadratic unbiased estimation (MIVQUE) to analyze medium-density single nucleotide 164 

polymorphism (SNP) data for the HR and control lines sampled from generation 61 (Xu and 165 

Garland 2017).  This statistical method proved more powerful than the commonly used 166 

regularized F test and Generalized Linear Mixed Model (GLMM) methods when incorporating 167 

permutation-based multiple testing correction.  The data used included 7-10 females from each 168 

of eight lines (four HR and four C).  Genotypes were determined with the MegaMUGA SNP-chip 169 

(Morgan and Welsh 2015).  After removing markers with missing data, 25,318 markers were 170 
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analyzed with the mixed models, finding 152 markers to be significantly differentiated between 171 

the HR and C linetypes (i.e. test group).  Although Xu and Garland (2017) demonstrated 172 

numerous SNP loci with evidence of differentiation between the HR and control lines, biological 173 

interpretations were not presented.  Additionally, as demonstrated by the whole-genome 174 

sequence (WGS) data addressed in this paper, various differentiated loci were not detected in 175 

the previous SNP-chip analysis. 176 

 Here, we apply the mixed model with MIVQUE estimation method to WGS data 177 

obtained from the same individuals as in Xu and Garland (2017).  We analyze both SNP and 178 

haplotype data to take full advantage of the information provided by each data type (Shim et 179 

al. 2009; Taliun et al. 2016).  We also use simulations to explore some of the statistical 180 

properties of the MIVQUE estimation method for this application, and we implement 181 

procedures aimed at improving model fit and potentially statistical power.  We identify 182 

numerous SNP and haplotype loci as potential candidates for functionally relevant genetic 183 

differentiation between the HR and C lines.  Many of these can be tied to specific lower-level 184 

traits that should influence exercise behavior, through use of gene ontology terms and KO 185 

phenotype analyses of nearby genes.   186 

 Using information on known morphological and physiological differences between the 187 

HR and control lines, we were able to perform both broad and directed strategies to detecting 188 

significantly differentiated loci.  We show that the method of Xu and Garland (2017) can be 189 

improved by allowing for different among- and within-line variance structures.  We identified 190 

several potentially differentiated genes associated with bone, heart, and brain morphology.  191 

We also identified a few candidates with potential large-scale influences on the HR mice, 192 



9 
 

including Sorl1, Dach1, and Cdh10.   193 

MATERIALS AND METHODS 194 

High Runner Mouse Model 195 

As described previously (Swallow et al. 1998; Careau et al. 2013), 112 males and 112 females of 196 

the outbred Hsd:ICR strain were purchased from Harlan Sprague Dawley in 1993.  These mice 197 

were randomly bred in our laboratory for 2 generations.  Ten males and 10 females were then 198 

randomly chosen as founders for each of 8 closed lines (generation 0).  Four of these lines were 199 

randomly picked to be “High Runner” (HR) lines, in which mice would be selected for breeding 200 

based on voluntary wheel running.  The remaining 4 lines were used as Control (C) lines, 201 

without any selection.  At approximately 6-8 weeks of age, all mice were given access to wheels 202 

for six days.  The amount of running (total revolutions) on days 5 and 6 was used as the 203 

selection criterion.  For the non-selected C lines, one male and one female from each of 10 204 

families were chosen as breeders to propagate the line.  For the HR lines, the highest-running 205 

male and female from within each of 10 families were chosen as breeders (within-family 206 

selection).  Sib-mating was disallowed in all lines (Swallow et al. 1998). 207 

Whole-genome Sequencing 208 

DNA was collected from 80 mice (10 from each line), from generation 61, via phenol-209 

chloroform extraction and sequenced on an Illumina HiSeq 2500 1T platform.  Libraries were 210 

constructed using Nextera kit and reads were trimmed and aligned to the GRCm38/mm10 211 

mouse genome assembly as described in Didion et al. (2016).  This generated an average read 212 

depth of 12X per mouse.  SNPs were filtered based on genotype quality ("GQ") >5, read depth 213 

>3, MAF <0.0126 for all samples, and Mapping Quality ("MQ") >30.  One of the 80 mice was 214 
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excluded due to likely contamination (as in Xu and Garland 2017), leaving 79 for the following 215 

analyses. SNPs not found to be present in at least two of the 80 mice were also removed from 216 

analysis.  Although Xu and Garland (2017) had identified these as females, they were in fact all 217 

males with exception of one female from line 5. 218 

Heterozygosity Calculations 219 

Individual mouse heterozygosity (multi-locus heterozygosity) was calculated by dividing the 220 

number of heterozygous loci for each mouse by the total number of segregating loci across all 221 

80 mice (n=5,932,124).  Heterozygosity per line is the average of the heterozygosity of all 222 

sequenced mice within that line.   223 

SNP Analysis  224 

Individual Single Nucleotide Polymorphisms (SNPs) were initially analyzed using a mixed model 225 

approach with the Minimum Variance Quadratic Unbiased Estimation of variance (MIVQUE) 226 

method of estimating variance parameters as described in Xu and Garland (2017).  However, 227 

rather than removing loci or mice (which had been necessary in the Xu and Garland paper, 228 

resulting in 7-10 mice per line analysed) with missing data, code was modified to remove only 229 

the missing values themselves.  The MIVQUE analysis provides a p-value for each locus for 230 

rejecting the null hypothesis of no differentiation between the HR and C lines.  Xu and Garland 231 

had performed the analysis using two different encoding schemes to represent genotypes as 0, 232 

0.5 and 1 vs. as twin vectors of 0-0, 0-1 and 1-1.  We have since determined that the twin 233 

vectors encoding was preferable, and we report only those results (File S7).  234 

Multi-Model Analysis of SNP Data from Whole-genome Sequences  235 

The analyses performed in Xu and Garland (2017) used a single statistical model in R for all loci 236 
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(our comparable SAS model being "Simple" in Table 1).  This model did not allow for several 237 

possibilities that might be expected a priori and that were in fact observed, such as differing 238 

variances among the 4 replicate HR and C lines (designated “SepVarLines” in Table 1), as is the 239 

case for wheel-running behavior (Garland et al. 2011a).  Beyond this, the amount of variation 240 

among individual mice within the replicate lines might differ for the HR and C lines (“Full” 241 

model).  Interpretation of these different models is presented in the Discussion.  In total, we 242 

applied four alternate models to the data for each locus, and followed a model selection 243 

procedure for the one with the lowest the Aikake Information Criterion, corrected for small 244 

sample sizes (AICc), and retained the p-value for its linetype effect (differentiation between the 245 

HR and C lines).  All Multi-Model analyses were performed in SAS using PROCEDURE MIXED 246 

with the mivque0 method (File S10).  We elected to prioritize SAS over R for its performance 247 

gains over large number of loci. For a direct comparison, we reanalyzed the MegaMUGA data in 248 

Xu and Garland (2017) the multi-model method (Figures S1 and S2). 249 

 Loci that contained no within-line variance (i.e. each line was fixed for one allele or the 250 

other) could not be analyzed with the foregoing procedures.  We analyzed these loci by 251 

counting the net number of alternatively fixed lines among the HR and C linetypes.  Those loci 252 

with greater difference in allele frequency between the HR and C linetypes are regarded as 253 

being more “significant.”   254 

 255 

 256 
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Table 1  Summary of covariance models 

Model d.f. 

Covar-
iance 
Param-
eters Description 

HR and C 
different 
among-line 
variance 

HR and C 
different 
within-
line 
variance 

HR and C 
same 
among-
line 
variance 

HR and C 
same 
within-
line 
variance SAS Code 

Full 6 4 

Random effects for replicate line 
within selection treatment 
(linetype) and for mouse within 
line and linetype, allowing for 
separate variance estimates for 
both lines within linetype and 
mouse within line and linetype 

x x     

proc mixed data=locus method=mivque0; 
class pop sub mouse; 
model COL1 =pop/solution; 
random sub(pop) /group=pop; 
random mouse(sub pop) /group=pop; 

SepVarLines 6 3 

Random effects for replicate line 
within selection treatment 
(linetype) and for mouse within 
line and linetype, allowing for 
separate variance estimates for 
line within linetype 

x     x 

proc mixed data=locus method=mivque0; 
class pop sub mouse; 
model COL1=pop/solution; 
random sub(pop) /group=pop; 
random mouse(sub pop); 

SepVarInd 6 3 

Random effects for replicate line 
within selection treatment 
(linetype) and for mouse within 
line and linetype, allowing for 
separate variance estimates for 
mouse within line and linetype 

  x x   

proc mixed data=locus method=mivque0; 
class pop sub mouse; 
model COL1=pop/solution; 
random sub(pop); 
random mouse(sub pop) /group=pop; 

Simple 6 2 

Random effects for replicate line 
within selection treatment 
(linetype) and for mouse within 
line and linetype (as used by Xu 
and Garland 2017) 

    x x 

proc mixed data=locus method=mivque0; 
class pop sub mouse; 
model COL1=pop/solution; 
random sub(pop); 
random mouse(sub pop); 

Multiple modelsa used to analyze the allelic SNP data (two values per mouse) for whole-genome sequences from 79 mice.  For each model, we used SAS Procedure Mixed with 
MIVQUE estimation (Xu and Garland 2017) to obtain the test statistic (F), significance level (P), and AICc (d.f. method was containment). 
 
a For some loci, the within-line variance was zero for all 8 lines.  In those cases, we used direct enumeration to calculate a significance level, i.e., the probability of observing the 
pattern versus the 23 possible combinations.  See text for further details. 
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Table 2  Basic descriptive statistics for the primary analyses 

Dataset Total "Loci" Significant Loci Critical Threshold Significant Genes 
MegaMUGA 25,332 162a p<0.00526 (5% FWER) 174b 

Whole-Genome SNPs 5,932,124 84 p<0.001  
(Local Maximum) 27 

Haplotypes 16,901 102c (28 regions) p<0.00526 (See text) 154b 

All HR Fixed,  
All C Polymorphic 5,932,124 2,562 (46 regions) See text 135b 

 
aIn Xu and Garland (2017), 152 SNPs were identified as statistically significant with a single model and the MIVQUE procedure,  
after use of a permutation procedure to control the family-wise Type I error rate (FWER) at 5% (p < 0.00343). 
 
bThese are not genes that SNPs fell into.  These are genes close to significant SNPs or haplotypes. 
 
cFrom 28 closely linked groups. 
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Multiple Testing Correction 260 

Permutations for MegaMUGA Data 261 

This approach is based on the permutation method used by Xu and Garland (2017), but 262 

modified to account for the multiple models.  All permutations were performed using SAS PROC 263 

MIXED as described above in the section on multi-model approach.  The mouse IDs, line, and 264 

linetype were randomly permuted as a block to break their original associations with the allelic 265 

data but not with each other.  The permuted data for each locus were then analyzed with each 266 

of the four models listed in Table 1 (i.e., for the MegaMUGA SNP data, 4 X 25,332 analyses were 267 

performed).  For each of the four models, the AICc was recorded, and the corresponding F-268 

statistics were retained.  From these 25,332 loci (for the MegaMUGA data), the F-statistic 269 

corresponding to the model with the lowest AICc was saved.  The foregoing process was 270 

repeated 5,000 times, the resulting F-statistics were sorted from largest to smallest, and the 271 

250th largest F-statistic was used to establish the critical value for the 5% FWER. 272 

Permutations for Haplotype Data 273 

Permutations done for haplotypes were performed separately for 2-allele haplotype blocks and 274 

3-allele blocks, using 1,000 permutations to keep computational times manageable.  As in the 275 

unpermuted haplotype analyses, blocks with three alleles (n=5,869) were analyzed with two 276 

dummy variables, each individual dummy variable was tested using the multi-model method, 277 

and the two p-values generated were combined using Fisher’s method (Fisher 1925).  However, 278 

some permutations of the 3-allele blocks produced erroneous low p-values (apparently due to 279 

numerical issues), which, if included in subsequent calculations would have caused an 280 

artifactual reduction of the critical value needed to obtain the true 5% FWER.  The 281 
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permutations of the 2-allele blocks (n=11,032) did not produce any artifactually low p-values.  282 

Given the problems with the 3-allele haplotype permutations, we elected to apply the 283 

MeguMUGA permutation threshold (P<0.00526) to the haplotype blocks because of their 284 

similar sample size (MegaMUGA=25,332; Haplotypes=16,901) and the fact that they should be 285 

highly correlated.   286 

Local Maxima Selection for WGS Data 287 

In the original paper, which analyzed 25,332 SNPs from a commercial chip, a permutation 288 

procedure was used to control the family-wise Type I error rate (FWER) at 5% (Xu and Garland 289 

2017).  Those procedures were not computationally practical for the 5,932,124 SNPs from the 290 

whole-genome sequences, nor are linked SNPs within a haplotype block truly independent from 291 

each other.  Accordingly, significant loci were chosen via a combination of -logP cutoff and local 292 

maximum (LM) determination, the latter acting as a filter to focus on actual selected loci over 293 

their hitchhikers.  Similar methods have been previously described (Nicod et al. 2016).  Briefly, 294 

suggestive loci with -logP >3.0 were clustered with a maximum gap of 1 Mbp.  For each such 295 

cluster, the global peak, and a set of local maxima were determined for every 500 kbp spanned 296 

by the cluster.  The set of local maxima were chosen as peaks separated by dips in the signal 297 

below the median -logP in the cluster.  These LM SNPs were annotated using R libraries 298 

GenomicFeatures and VariantAnnotation, with the mm10 knownGene.sqlite database provided 299 

by the Genome Browser team at the University of California, Santa Cruz. 300 

Haplotype Determination  301 

From the whole-genome sequences, haplotypes were determined using JMP 11 and JMP 302 

Scripting Language (SAS Institute Inc., Cary, NC).  To construct haplotypes, we first defined the 303 
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genomic block segments as consecutive 20 kbp windows that did not transition between 304 

homozygous and heterozygous states.  For each block region, we performed a hierarchical 305 

clustering analysis using SNP genotype data (of homozygous regions only) as input.  Preliminary 306 

haplotype analysis showed that the HR population at generation 61 rarely had more than 3 307 

alleles in a given haplotype.  Therefore, the analysis was restricted to a maximum of three 308 

clusters (haplotype alleles) per block (File S5). 309 

Haplotype Analysis 310 

As for the SNP data, haplotype data were analyzed using the multi-model method described 311 

above.  Haplotype blocks with only two alleles (n=11,032) were analyzed the same way as for 312 

the SNP data (File S10).  Blocks with three alleles (n=5,869) were analyzed with two dummy 313 

variables, with the base allele chosen as the most common one, and then two dummy variables 314 

coding for presence of the other two alleles.  Each individual dummy variable was tested using 315 

the multi-model method.  The two p-values generated from the two dummy variables were 316 

combined using Fisher’s method (Fisher 1925).  Different models potentially were used for each 317 

dummy variable based on AICc, allowing for up to two models to contribute to the final p-value 318 

of a locus (File S6).   319 

SNPs Fixed in One Treatment but Polymorphic in the Other 320 

As noted previously with the SNP chip data (Xu and Garland 2017), we observed no loci that 321 

were fixed for one allele in all four HR lines while being fixed for the alternate allele in all four C 322 

lines (see Results).  We did, however, observe loci fixed for a given allele in all 4 HR lines, which 323 

is symptomatic of a complete selective sweep (caused by directional selection) as described by 324 

Burke (2012), while remaining polymorphic in all 4 C lines.  All loci that were fixed in the HR 325 
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mice and simultaneously polymorphic in all C lines (FixedHR/PolyC) were extracted from the 326 

multi-model results and grouped such that those fixed loci that were within 100,000 bp of other 327 

fixed loci would be part of the same group.  This process was then repeated for loci fixed in the 328 

Control lines but polymorphic in all HR lines (FixedC/PolyHR). 329 

General Ontology Analysis 330 

Transcribed regions (N = 56, as indicated in Table 2) found to contain LM based on the whole-331 

genome sequence analyses were analyzed using The Gene Ontology Resource (GO).  GO 332 

analyses were performed based on biological process, molecular function, and cellular 333 

component.  Ontologies reported as significant at raw p < 0.05 for any of these three categories 334 

are reported here.  Analysis of these genes was also performed using the Database for 335 

Annotation, Visualization and Integrated Discovery (DAVID).  The results of these analyses did 336 

not vary greatly from the GO results.   337 

Targeted Ontology Analysis 338 

Previous papers show that the HR lines of mice have diverged from the C lines for many 339 

different phenotypes (reviews in Rhodes et al. 2005; Garland et al. 2011b; Wallace and Garland 340 

2016).  Many of these phenotypes can be tied to specific neurobiological or physiological 341 

functions.  In such cases, a logical approach is to analyze separately some candidate genes 342 

known to be affiliated with relevant functions and find differentiated SNPs for those genes.  We 343 

used this approach for several ontologies.  Specifically, lists of genes affiliated with dopamine, 344 

serotonin, brain, bone, cardiac muscle, and skeletal muscle were extracted from the Mouse 345 

Genome Informatics website.  SNPs found within these genes were separated from the full 346 

WGS data and the most differentiated among these were recorded. 347 
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Data Availability Statement 348 

Any additional intermediary or results file are available upon request.  Supplemental files are 349 

available at FigShare.  File S1 contains supplemental figures and brief descriptions of all other 350 

supplemental files and tables.  File S2 contains allelic SNP data.  File S3 contains mouse data 351 

with line and lintype.  File S4 contains all results for analyses of individual SNPs.  File S5 contains 352 

all haplotype data.  Files S6 contains all results for analyses of haplotype data.  File S7 contains 353 

justification for use of allelic coding of alleles.  File S8 includes simulations of Type I error rates 354 

for Mixed Model analyses using MIVQUE variance estimation.  File S9 expands on the discussion 355 

of genes in consistent regions (see Results).  File S10 includes all R and SAS code used for the 356 

SNP and haplotype analyses.  Table S1 includes local maxima associated genes.  Table S2 357 

contains groups of loci fixed in all lines of one lintype but polymorphic in all lines of the other.  358 

Table S3 includes heterozygosity for each individual mouse.  Table S4 includes top ten genes for 359 

each of the targeted ontologies analyses.  Table S5 includes allele frequency by line of each loci 360 

identified as a local maximum.  Table S6 includes genomic regions identified as suggestive 361 

(p<0.001) by the SNP analyses.   362 
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RESULTS 363 

Variation in Genetic Diversity 364 

After 61 generations of the High Runner mouse selection experiment, and based on a sample of 365 

79 mice, we found SNPs segregating at 5,932,124 loci (~2.2 SNPs per kbp or 0.22%) across the 366 

entire set of lines (i.e., at least 2 mice containing an alternate allele were found across the 79 367 

mice sequenced) with at least 1.5% minor allele frequency.  Individual lines contained 2.04 – 368 

2.82M SNPs (34–48% of the total diversity) (Table 3), with no appreciable loss in diversity for 369 

the HR lines compared to the Control replicates (Mann-Whitney U-test, W=6; p-value=0.6857).  370 

SNP heterozygosity ranged from 10.3% to 20.6% among individual mice (Table S3) and averaged 371 

12.7% to 18.1% per line (Table 3).   372 

 373 
Table 3  Summary of polymorphism and heterozygosity by line 374 

Line 
Polymorphic 
SNP loci SNP % 

Polymorphic 
Haplotypes Haplotype % SNP Het Haplotype Het 

C1 2,333,951 39.3% 7,773 46.0% 14.7% 17.8% 
C2 2,436,225 41.1% 7,652 45.3% 13.7% 16.6% 
C3 2,602,007 43.9% 7,841 46.4% 15.8% 17.8% 
C5 2,102,405 35.4% 7,160 42.4% 12.7% 16.5% 
HR3 2,819,828 47.5% 8,717 51.6% 18.1% 19.6% 
HR6 2,220,487 37.4% 7,060 41.8% 13.5% 16.2% 
HR7 2,042,309 34.4% 6,304 37.3% 13.0% 14.7% 
HR8 2,226,282 37.5% 7,315 43.3% 14.4% 16.6% 

 375 
 376 

 Initial haplotype analysis demonstrated that there were rarely more than three alleles 377 

for any given haplotype block (region with little to no discernable recombination events within 378 

the 79 mice analyzed).  Therefore, for the final haplotype analysis, hierarchical clustering was 379 

performed with a limit of 3 clusters.  16,901 of these blocks remained variable across the 8 lines 380 
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in generation 61.  As would be expected, the number of haplotypes that have not gone to 381 

fixation in each line appears to be proportional to the number of SNPs that have not gone to 382 

fixation (Table 3).  Heterozygosity for the haplotypes ranged from 12.2% to 25.5% for individual 383 

mice (Table S3), and 14.7% to 19.6% when averaged per line (Table 3).  Heterozygosity for the 384 

haplotype data were not significantly different between HR and C lines (Mann-Whitney U-test, 385 

W=8; p-value=1.0 and W=6; p-value=0.6857, respectively).   386 

Multi-Model vs Single-Model Comparisons 387 

As expected, we found that many, indeed most, loci were better fit by models other than the 388 

"Simple" model used by Xu and Garland (2017).  Generally, the “Full” model was the most 389 

preferred, followed by the “Simple” model (Table 4).  In general, differences between the p-390 

values determined by the single and multi-model methods were negligible (Figure S2). 391 

 When analyzing data generated under the null hypothesis, the mixed models with 392 

MIVQUE estimation for both single and multi-model produced a deflated Type I error rate for α 393 

= 0.05 (File S8).  The multi-model approach helped to correct this, but the Type I error rate did 394 

not improve greatly with the multi-model approach alone.  We attempted to utilize the 395 

Kenward Rogers method of determining degrees of freedom to correct this low Type I error 396 

rate, but this did not bring Type I error rate to 0.05 and effectively dropped the nested line 397 

effect for many loci.  We did not want to drop the nested line effect because this ignores the 398 

fundamental experimental design of the selection experiment.  However, the permutation and 399 

local maxima methods of determining loci of interest are robust to this deflated Type I error 400 

rate (File S8), so we proceeded with our analyses using conservative results produced by the 401 

MIVQUE variance estimation method. 402 
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 403 
Table 4  Model preference by data set, test, and allele counts  404 

Model MegaMUGAa WGSa Hap 2-alleleb Hap 3-alleleb 
Full 9,875 (39.0%) 2,441,601 (41.2%) 4,512 (40.9%) 5,510 (46.9%) 
SepVarLine 3,105 (12.3%) 504,946 (8.5%) 1,052 (9.5%) 1,583 (13.5%) 
SepVarInd 2,983 (11.8%) 716,265 (12.1%) 726 (6.6%) 748 (6.4%) 
Simple 8,654 (34.2%) 2,186,803 (36.9%) 4,594 (41.6%) 3,615 (30.8%) 
# with no 
within-line 
variance 715 (2.8%) 82,533 (1.4%) 148 (1.3%) 282 (2.4%) 

aNumber of SNPS whose lowest AICc match the indicated model 405 
bNumber of haplotype blocks whose lowest AICc match the indicated model (one for each dummy variable for 406 
3-allele blocks) 407 
 408 
Three Major Analyses 409 

Whole-Genome Haplotype 410 

No haplotypes were identified as being fixed in all HR lines for one allele and fixed in all C lines 411 

for the opposite allele.  The multi-model haplotype analysis produced 102 blocks of significant 412 

differentiation at the p<0.005 (permutations) level.  Significant blocks could be found on 13 413 

chromosomes (Figure 1).  We consider haplotype blocks within 1,000,000 bp of each other to 414 

be linked and therefore part of the same haplotype group: 28 such groups were determined 415 

(Table 5).  These groups include a total of 154 transcribed sequences recognized by the Panther 416 

database for gene ontology.  The largest of these groups was found on chromosome 417 

14:52,100,155-54,334,868 bp (Table 5).   418 

 419 
  420 
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Figure 1  Manhattan plot for haplotype data.  Red line indicates p-value <0.005 (see Methods 421 
and Materials), which yielded 28 haplotype groups (see Table 5).   422 

 423 
Table 5  Significant haplotype groups 424 

Group Chr Start (BP) End (BP) Size (BP) P-value 
1 2 43,100,041 43,214,647 114,606 4.42E-03 
2 3 51,580,020 51,659,891 79,871 2.25E-06 
3 4 89,300,145 89,357,884 57,739 4.92E-03 
4 4 155,480,343 155,654,426 174,083 3.94E-04 
5 5 108,000,623 108,679,807 679,184 4.85E-04 
6 5 118,824,587 119,299,787 475,200 2.15E-03 
7 5 132,540,807 133,720,551 1,179,744 1.12E-03 
8 6 37,440,411 37,659,588 219,177 3.47E-03 
9 6 41,584,862 43,431,434 1,846,572 1.47E-05 
10 7 29,640,243 29,697,093 56,850 5.67E-04 
11 9 41,240,184 42,275,833 1,035,649 4.90E-07 
12 10 75,061,742 75,456,261 394,519 3.99E-03 
13 10 103,363,232 104,139,953 776,721 3.94E-03 
14 10 105,220,041 105,699,704 479,663 3.72E-03 
15 11 79,724,263 81,409,849 1,685,586 1.89E-04 
16 11 114,466,946 114,489,018 22,072 2.69E-03 
17 14 52,100,155 54,334,868 2,234,713 5.62E-04 
18 14 98,380,090 98,679,965 299,875 2.22E-03 
19 15 18,960,135 19,759,996 799,861 1.09E-03 
20 15 69,120,025 70,219,737 1,099,712 4.53E-03 
21 15 71,480,090 71,559,595 79,505 9.91E-04 
22 15 86,541,805 86,599,823 58,018 3.55E-03 
23 16 31,540,757 33,178,952 1,638,195 2.79E-04 
24 16 40,742,298 41,357,426 615,128 1.01E-03 
25 17 18,020,933 18,039,390 18,457 3.54E-04 
26 17 20,700,046 20,939,819 239,773 3.54E-04 
27 17 23,000,233 23,599,776 599,543 3.54E-04 
28 17 65,458,617 65,738,255 279,638 1.46E-03 
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 425 
 426 
Whole-Genome SNP 427 

Similarly to haplotypes, no individual SNPs were identified as being fixed in alternative alleles 428 

across all HR on one hand and all C lines on the other.  At the p<8.4E-09 critical level 429 

(Bonferroni-corrected), only two SNPs in chromosome 5 were identified to be significantly 430 

differentiated across the entire genome (Figure 2), both in an intron of an uncharacterized gene 431 

(GM34319).  The syntenic/orthologous region of both the human and cat genomes correspond 432 

to a coding region (exon 3) of the MYL5 gene (Myosin light chain 5).  Due to the small number 433 

of significant SNPs under Bonferroni and the computational difficulties of using permutations 434 

with the multi-model method, we focus on local maxima SNPs.   435 

 436 
Figure 2  Manhattan plot for WGS SNP data.  Red dots represent local maxima (N = 84).  437 

 438 
 439 
 In the local maxima (LM) analyses, the suggestive cutoff (-logP>3.0) produced 38,065 440 

SNPs for analysis.  44 clusters were found, ranging in size from 1 SNP to 3,787 SNPs (Chr9: 441 

41,303,824-42,478,817 bp).  The largest single group in terms of genome spanned is on chr17: 442 

17,846,983-23,586,163 bp (Table 6).  From these groups, a total of 84 LM were determined.  31 443 

of these SNPs were associated with 27 unique transcribed regions.  26 of the 27 genes could be 444 
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utilized for GO analysis.  Although chromosome 3 had no LM fall into specific genes (despite 445 

clear significance based on the Manhattan plot), the cluster on chr3 (chr3:51,190,735-446 

52,498,029 bp) includes about 10 validated coding genes and various predicted genes, but none 447 

of the LMs fall in these.  However, all three LMs in this group are upstream of Setd7, a 448 

methyltransferase.   449 

 The most significant SNPs with no within-line variance fell into three regions.  One of 450 

these regions is on chromosome 5 (105-109 mbp), which is close to the LM identified in this 451 

chromosome.  Another is on chromosome 16 (44 mbp), about 2.5 million base pair from the LM 452 

on chromosome 16 containing Lsamp, a gene which codes for a neuron-associated membrane 453 

protein.  However, the last region falls in chromosome 7 (115 mbp), a chromosome which 454 

contained no LM.  This location is downstream of Sox6, a developmental regulator broadly 455 

associated with muscle fiber type composition (van Rooij et al. 2009), hematopoiesis, bone 456 

growth and heart function (Smits et al. 2001). 457 

 458 
Table 6  Top 5 largest suggestive regions 459 

Chr Start (BP) End (BP) Size Lowest P 

17 17,846,983 23,586,163 5,739,180 7.54E-05 
10 103,429,623 105,529,701 2,100,078 3.73E-05 
16 31,440,034 33,128,268 1,688,234 7.05E-06 
15 18,958,730 20,635,226 1,676,496 8.49E-05 
16 16,235,542 17,805,005 1,569,463 7.04E-04 

 460 
 461 
SNPs Fixed in One Treatment and Polymorphic in the Other 462 

SNPs that were fixed in all HR lines and polymorphic in all C lines (FixedHR/PolyC) were grouped 463 

into 95 regions, based on their being separated by at least 100 kbp (Table S2).  Here, we were 464 

more strict on the definition of a group than for the haplotype groups (1 mbp) to limit the 465 



25 
 

potential for single SNPs to greatly expand the size of a group by their spacing, whereas 466 

haplotypes, being made up of several SNPs, are naturally resilient to such inflation.  Some of 467 

these regions are probably not independently segregating (e.g. chr17: 17,895,909-22,546,405 468 

bp) and might therefore be combined further.  Regions varied in size from 1 to 1,626,783 bp.  469 

These regions include or are proximal to (in the case of 1 bp regions) 135 transcribed regions, 470 

including genes, miRNA, and predicted genes.  SNPs that were fixed in all C lines and 471 

polymorphic in all HR lines (FixedC/PolyHR) were combined into 64 regions.  The size of each 472 

region varies from 1 to 753,066 bp.  We expect the 1 bp loci may be spurious but chose to 473 

include them in results for completeness, especially given that the mini-muscle locus involves 474 

only a single base pair (Kelly et al. 2013).  These regions include or are proximal to 63 475 

transcribed regions, again including genes, miRNA, and predicted genes.  FixedHR/PolyC regions 476 

were also identified in haplotypes.  These haplotype blocks overlapped with the SNP regions 477 

identified by FixedHR/PolyC; however, some of the single unlinked loci that met these criteria 478 

were not identified using haplotypes.  479 

Ontology Analyses 480 

General Ontology  481 

GO analysis of biological process for the haplotype data reveal “sensory perception of chemical 482 

stimulus” to be a major term of interest (Table 7).  This appears to be caused by various clusters 483 

of olfactory and vomeronasal genes.  Many of the most prominent terms appear to be 484 

correlated to these olfactory and vomeronasal gene clusters.  Although a single, large group of 485 

closely linked olfactory genes may overrepresent olfactory’s role in selection, we were able to 486 

identify two distinct genomic regions of vomeronasal genes and three such regions of olfactory 487 



26 
 

genes. 488 

 The biological process GO terms for LM include many results that are consistent with 489 

our previous findings involving the HR mice, including cardiac and myoblast related terms 490 

(Table 8).  Regulation of locomotion is among the most statistically significant GO terms. 491 

 The FixedHR/PolyC GO analyses indicate terms: complement receptor mediated 492 

signaling pathway and response to pheromone.  These terms were significant with a false 493 

discovery rate correction (FDR<0.05), p=7.11E-04 and p=2.40E-07, respectively) (Table 9).  For 494 

FixedC/PolyHR, no GO terms were significantly enriched with FDR correction, some novel GO 495 

terms were deemed most significant.  Included in these results is also CDP-choline pathway, 496 

which had also been implicated in the haplotype data.  The full list of regions for both 497 

FixedHR/PolyC and FixedC/PolyHR can be found in (Table S2). 498 

  499 
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Table 7  Top Biological process terms from GO analysis for Haplotype 500 

GO Term Total Genes 
Input 
Genes Expected 

Fold 
Enrichment 

Raw 
 P-Value 

detection of chemical stimulus involved in sensory perception of smell 3 1 0.02 47.88 2.74E-02 
          sensory perception of smell 1,128 27 7.85 3.44 2.46E-08 
                    sensory perception of chemical stimulus 1,228 34 8.55 3.98 5.71E-12 
                              sensory perception 1,641 36 11.42 3.15 7.12E-10 
          detection of chemical stimulus involved in sensory perception 59 7 0.41 17.04 3.65E-07 
          detection of stimulus involved in sensory perception 136 8 0.95 8.45 7.40E-06 
                    detection of stimulus 236 9 1.64 5.48 5.40E-05 
          detection of chemical stimulus 85 7 0.59 11.83 3.53E-06 
            
G protein-coupled receptor signaling pathway 1,853 37 12.9 2.87 4.86E-09 
            
regulation of systemic arterial blood pressure by aortic arch baroreceptor feedback 1 1 0.01 > 100 1.38E-02 
                    system process 2,594 42 18.06 2.33 2.12E-07 
                              multicellular organismal process 7,307 74 50.87 1.45 1.43E-04 
          nervous system process 2,085 39 14.51 2.69 9.97E-09 
            
sensory perception of sour taste 5 1 0.03 28.73 4.08E-02 
          sensory perception of taste 71 7 0.49 14.16 1.15E-06 
            
detection of chemical stimulus involved in sensory perception of bitter taste 47 6 0.33 18.34 1.74E-06 
          sensory perception of bitter taste 51 6 0.36 16.9 2.69E-06 
          detection of chemical stimulus involved in sensory perception of taste 51 6 0.36 16.9 2.69E-06 

  501 
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Table 8  Top biological process terms from GO analysis for LM 502 

GO Term 
Total 
Genes 

Input 
Genes Expected 

Fold 
Enrichment Raw P-Value 

locomotory exploration behavior 16 1 0.02 53.6 1.96E-02 
          locomotory behavior 240 4 0.28 14.29 1.72E-04 
                    behavior 685 6 0.8 7.51 1.17E-04 
            
positive regulation by host of viral release from host cell 5 1 0.01 > 100 6.97E-03 
          positive regulation of viral release from host cell 15 1 0.02 57.17 1.85E-02 
                    regulation of viral release from host cell 31 1 0.04 27.66 3.66E-02 
                              regulation of locomotion 1040 7 1.21 5.77 1.47E-04 
            
negative regulation of cardiac muscle cell proliferation 17 2 0.02 > 100 2.20E-04 
          negative regulation of cell population proliferation 684 3 0.8 3.76 4.46E-02 
          negative regulation of cardiac muscle tissue growth 29 2 0.03 59.14 5.94E-04 
                    regulation of cardiac muscle tissue growth 74 2 0.09 23.18 3.53E-03 
                              regulation of cardiac muscle tissue development 98 2 0.11 17.5 6.02E-03 
                                        regulation of striated muscle tissue development 160 2 0.19 10.72 1.52E-02 
                                                  regulation of muscle tissue development 163 2 0.19 10.52 1.57E-02 
                                                  regulation of muscle organ development 164 2 0.19 10.46 1.59E-02 
                              regulation of heart growth 80 2 0.09 21.44 4.09E-03 
                                        regulation of organ growth 114 2 0.13 15.04 8.02E-03 
                    negative regulation of cardiac muscle tissue development 40 2 0.05 42.88 1.09E-03 
                              negative regulation of striated muscle tissue development 64 2 0.07 26.8 2.67E-03 
                                        negative regulation of muscle organ development 66 2 0.08 25.99 2.83E-03 
                                        negative regulation of muscle tissue development 67 2 0.08 25.6 2.92E-03 
                    negative regulation of heart growth 29 2 0.03 59.14 5.94E-04 
            
bundle of His cell-Purkinje myocyte adhesion involved in cell communication 6 1 0.01 > 100 8.13E-03 
          bundle of His cell to Purkinje myocyte communication 13 1 0.02 65.96 1.62E-02 
                    cell communication involved in cardiac conduction 32 1 0.04 26.8 3.78E-02 
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                                        multicellular organismal signaling 109 2 0.13 15.73 7.37E-03 
          cardiac muscle cell-cardiac muscle cell adhesion 7 1 0.01 > 100 9.28E-03 
                              cell-cell adhesion 389 3 0.45 6.61 1.04E-02 
                                        cell adhesion 789 6 0.92 6.52 2.50E-04 
                                                  biological adhesion 799 6 0.93 6.44 2.68E-04 
            
negative regulation of cellular extravasation 8 1 0.01 > 100 1.04E-02 
          negative regulation of leukocyte migration 41 2 0.05 41.83 1.14E-03 
                    regulation of leukocyte migration 209 2 0.24 8.21 2.49E-02 
                              regulation of cell migration 912 5 1.06 4.7 3.71E-03 
                                        regulation of cell motility 963 5 1.12 4.45 4.67E-03 
                    negative regulation of cell migration 276 4 0.32 12.43 2.91E-04 
                              negative regulation of cell motility 289 4 0.34 11.87 3.46E-04 
                                        negative regulation of cellular component movement 323 4 0.38 10.62 5.24E-04 
            
definitive hemopoiesis 21 2 0.02 81.67 3.25E-04 

 503 
 504 
  505 
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Table 9  Top GO results for FixedHR/PolyC implicated genes 506 

GO Term 
Total 
Genes 

Input 
Genes Expected 

Fold 
Enrichment 

Raw  
P-value 

response to pheromone 104 8 0.63 12.7 3.93E-07 
            
complement receptor mediated signaling pathway 13 4 0.08 50.82 2.81E-06 
            
phospholipase C-activating G protein-coupled receptor signaling pathway 91 5 0.55 9.07 2.89E-04 
            
exocytic insertion of neurotransmitter receptor to postsynaptic membrane 8 3 0.05 61.93 3.40E-05 
          regulation of postsynaptic membrane neurotransmitter receptor levels 62 3 0.38 7.99 7.09E-03 
          neurotransmitter receptor transport to postsynaptic membrane 20 3 0.12 24.77 3.46E-04 
                    neurotransmitter receptor transport to plasma membrane 21 3 0.13 23.59 3.93E-04 
                    vesicle-mediated transport to the plasma membrane 90 3 0.54 5.51 1.87E-02 
                              neurotransmitter receptor transport 40 3 0.24 12.39 2.21E-03 
                    establishment of protein localization to postsynaptic membrane 21 3 0.13 23.59 3.93E-04 
                              protein localization to postsynaptic membrane 44 3 0.27 11.26 2.85E-03 
                                        protein localization to synapse 76 3 0.46 6.52 1.21E-02 
                    receptor localization to synapse 51 3 0.31 9.72 4.23E-03 
            
calcium ion import across plasma membrane 9 2 0.05 36.7 1.91E-03 
          calcium ion import into cytosol 10 2 0.06 33.03 2.28E-03 
                    calcium ion transport into cytosol 69 3 0.42 7.18 9.40E-03 
                              positive regulation of cytosolic calcium ion concentration 292 7 1.77 3.96 2.26E-03 
                                        regulation of cytosolic calcium ion concentration 340 8 2.06 3.89 1.25E-03 
                                                  cellular calcium ion homeostasis 446 10 2.7 3.7 4.48E-04 
                                                            calcium ion homeostasis 463 10 2.8 3.57 5.95E-04 

 507 
 508 
 509 



31 
 

Targeted Ontology 510 

The gene search for specific ontologies produced 45-820 genes and 7,315-143,507 SNPs 511 

associated with each search (Table 10).  The top ten genes were chosen based on the most 512 

significant SNP within the gene (Table S4).  The most significantly differentiated SNPs were 513 

generally found in genes associated with the brain, followed by bone and muscle related genes.  514 

Surprisingly, the reward-related ontologies (dopamine and serotonin) did not contain as strong 515 

evidence for differentiation as the others. 516 

 517 
Table 10  Summary of ontology search. 518 

Search Term Total Genes Total SNPs Top Genes Top P-value 
Dopamin* 254 43,890 Gnb1, Fpra, Adora2a 1.33E-04 
Serotonin 45 7,315 Htr7, Chrm2, Btbd9 9.33E-03 
Osteo* 491 56,091 Noct, Nf1, Mmp14 3.76E-05 
Cardiac 820 143,507 Myh11, Tbx5, Dlg1 7.25E-06 
"Skeletal Muscle" 295 39,383 Kel, Foxp1, Nf1 5.23E-06 
Brain 667 123,416 Sorl1, Gak, Fbxo45 1.92E-07 

Genes are listed from most significant to least significant by SNP with lowest p-value 519 
a Includes: Fpr1, Fpr2, Fpr3, Fpr-rs4 (all closely linked) 520 
 521 
Consistent Regions Identified Across Multiple Analyses 522 

The major analyses (LM, haplotype, and FixedHR/PolyC) individually implicate about 80, 24, and 523 

46 differentiated genomic regions, respectively.  Combined, 61 unique regions across the 524 

genome are indicated, including at least one region on every chromosome.  Of these 61 525 

regions, 12 are found in all three analyses (Table 11).  These 12 consistent regions span just 526 

over 27.4 mbp and include 300 validated and predicted genes.  Of the 300 genes, 77 are either 527 

olfactory or vomeronasal genes, which are predominantly located in two large regions on 528 

chromosomes 14 and 17.  Surprisingly, many of these regions do not contain many of the most 529 

differentiated SNPs according to the multi-model MIVQUE analyses, but do have at least one 530 
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SNP with p≤0.001 by the LM criteria.  531 

 532 
Table 11  Genomic regions implicated by LM, haplotype, and FixedHR/PolyC analyses 533 

Chr First BP Last BP Included Genes 
5 108,000,623 108,679,807 Tmed5, Ccdc18, Pigg, Mfsd7a, Gak, Tmem175, Slc26a1 
6 41,584,862 41,918,440 Trpv5, Trpv6, Ephb6, Kel, Llcfc1, Olfr459 
7 29,603,841 29,697,093 Catsperg2 
9 41,240,184 42,275,833 Sorl1, Mir100hg, Mir100, Mir125b-1, Mirlet7a-2, Tbcela 
11 79,724,263 80,090,780 Atad5, Suz12, Utp6, Crlf3 
11 112,227,183 114,489,018 BC006965, Sox9 
14 52,072,148 53,779,979 Olfrb, Travb 
14 97,645,171 98,679,965 Dach1 
15 18,960,135 20,609,074 Cdh10, Gm35496 
15 71,023,429 71,559,595 Fam135b 
16 31,540,757 33,178,952 Gm536, Rnf168, Ubxn7, Fbxo45, Tnk2, Tnk2os 
17 17,895,909 22,396,753 Vmn2r b  

a Tbcel is most differentiated gene in genome based on median p-value 534 
b Several genes in this gene family were represented in this region  535 
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DISCUSSION  536 

Variation in Genetic Diversity 537 

For the present sample of 79 mice from generation 61, based on the polymorphic SNPs within 538 

each line (Table 2), each of the lines continues to retain approximately 34-48% of the total 539 

diversity across all 8 lines.  Such a drop in genetic diversity would be expected after 61 540 

generation with ~10 breeding pairs per generation per each line.  We found no evidence that 541 

HR and C lines had differing levels of genetic diversity, averaged across the whole genome. 542 

Consistent Regions from Multiple Analyses 543 

Many of the identified regions span too many genes to allow ready identification of a 544 

candidate.  However, a few of the regions contain a limited number of genes for which the 545 

reported functions make sense in the context of directional selection for high voluntary wheel-546 

running behavior (from first principles of physiology and neurobiology) and/or given previously 547 

identified differences between the HR and C lines (see Introduction).  Given the rich 548 

phenotyping literature on the HR mouse selection experiment (more than 150 publications), we 549 

discuss a relatively large number of genes.  Additional regions are covered in supplemental 550 

material (File S9). 551 

 The region identified on chromosome 5 includes 16 genes (excluding predicted and non-552 

coding), three of which were previously identified as differentially expressed in the striatum of 553 

the HR and C mice (Saul et al. 2017).  These genes include Tmed5, Gak, and Mfsd7a.  Tmed5 is a 554 

trafficking protein associated with cell proliferation and WNT7B expression in HeLa cells (Yang 555 

et al. 2019).  Mice knockouts in Gak are generally lethal to adult and developing mice causing 556 

various abnormal symptoms, including altered brain development (Lee et al. 2008).  Mfsd7a 557 
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(aka Slc49a3) has been associated with ovarian cancer, but much remains unknown about this 558 

gene (Khan and Quigley 2013). 559 

 The region on chromosome 6 includes Trpv5 and Kel, both of which are associated with 560 

KO phenotypes that may be tied to known differences between the HR and C lines.  Trpv5 KO is 561 

associated with phenotypes related to structural changes in the femur and kidney physiology 562 

(Hoenderop et al. 2003; Loh et al. 2013), both of which differ between HR and C lines (Swallow 563 

et al. 2005; Castro and Garland 2018).  Trpv5 is also associated with calcium homeostasis 564 

(Hoenderop et al. 2003; Loh et al. 2013).  Kel is a blood group antigen with KO phenotypes 565 

affiliated with weakness, gait and motor coordination, neurological development, and heart 566 

function (Zhu et al. 2009, 2014).  Previous experiments have shown the HR and C mice to have 567 

differences in heart physiology (Kolb et al. 2013a), gait and motor coordination (Claghorn et al. 568 

2017), and brain development (Kolb et al. 2013b). 569 

 The region on chromosome 9 contains various predicted genes and miRNA, but also one 570 

large gene of interest, Sorl1 (aka SorlA).  This gene is also implicated in our targeted search for 571 

genes related to the brain (Table 10).  Sorl1 codes for a sorting receptor that has been 572 

associated with various neural and metabolic diseases (Schmidt et al. 2017).  Although some of 573 

the associated phenotypes, such as obesity, may have some correlation to phenotypic 574 

differences between HR and C mice, such as difference in body fat (Swallow et al. 2001; 575 

Vaanholt et al. 2008; Hiramatsu and Garland 2018), this does not directly answer the question 576 

of how Sorl1 influences running behavior.  Mouse knockouts in this gene have not shown 577 

changes in running gait (Rohe 2008), whereas differences in gait do exist between HR and C 578 

mice (Claghorn et al. 2017).  However, these treadmill tests do not address exercise motivation, 579 
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which might be influenced by such a neurobiologically relevant gene.  Additionally, a more 580 

significantly differentiated haplotype can be found over 150,000 bp downstream of Sorl1, 581 

containing various predicted genes and miRNA.  Therefore, further studies will be required to 582 

determine precisely the elements of this region that modulate wheel running.  Although Tbcel is 583 

near this consistent region rather than included in it, it is the most differentiated gene in the 584 

genome (based on median p-value of included SNPs, p= 4.01E-07).  This gene is known to 585 

regulate tubulin activity in sperm and the nervous system (Nuwal et al. 2012; Frédéric et al. 586 

2013).  587 

 One region on chromosome 11 contains numerous genes of potential interest.  One LM 588 

within this region is proximal to a handful of genes that may be influencing the HR phenotype, 589 

including: Tefm, Adap2, Crlf3, and Suz12.  These genes are associated with KO phenotypes 590 

including enlarged heart and decreased body weight (Jiang et al. 2019), blood cell 591 

concentration (White et al. 2013), and brain morphology (Miro et al. 2009).  All of these 592 

phenotypes have been found to differ between HR and C mice (Kolb et al. 2013b; Thompson 593 

2017; Singleton and Garland 2019). 594 

 One region on chromosome 14 includes almost exclusively Dach1, which is an important 595 

regulator for various early developmental genes.  Dach1 is a regulator of muscle satellite cell 596 

proliferation and differentiation (Pallafacchina et al. 2010).  Although knockouts of Dach1 in 597 

mice do not appear to disrupt limb development (Davis et al. 2001), Dach1 mutants sometimes 598 

have stunted leg development in Drosophila (Mardon et al. 1994).  Furthermore, Dach1 has 599 

been shown to localize around limb budding regions and interact with known limb patterning 600 

genes in both mice and poultry (Horner et al. 2002; Kida 2004; Salsi et al. 2008).  Studies of 601 
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skeletal muscle (Garland et al. 2002; Bilodeau et al. 2009) and of the peripheral skeleton show 602 

several differences between HR and C lines of mice (Garland and Freeman 2005; Kelly et al. 603 

2006; Castro and Garland 2018; Schwartz et al. 2018).  This gene has also been implicated in the 604 

development and function of the kidneys (Köttgen et al. 2010), which have been shown to be 605 

larger in the HR lines than C lines in some studies (Swallow et al. 2005).  606 

 A region on chromosome 15 includes Cdh10 among a few predicted genes.  GO links 607 

Cdh10 to both “calcium ion binding” and “glutamatergic synapse,” terms that occasionally 608 

produced suggestive p-values for enrichment searches in our differentiation analyses (Table 7, 609 

Table 9).  These terms could have various implications for the HR mice.  Cdh10 specifically is a 610 

cadherin with extensive expression in the brain (Liu et al. 2006; Matsunaga et al. 2015).  This 611 

gene has been shown to have increased expression in phrenic neurons (Machado et al. 2014), 612 

potentially modulating diaphragm movement, and increased functionality of the diaphragm 613 

could partly underlie the elevated maximal rate of oxygen consumption during exercise 614 

(VO2max) observed in HR lines (Kolb et al. 2010; Hiramatsu et al. 2017; Singleton and Garland 615 

2019).  Cdh10 is also known to have increased expression of genes associated with olfactory 616 

system development (Akins et al. 2007), which could be corroborated by the other two 617 

consistent regions associated with olfactory and vomeronasal (see Results, General Ontology).  618 

The other region detected on chromosome 15 currently only contains Fam135b among its 619 

annotations.  Few studies have been conducted involving the function of Fam135b, but 620 

evidence indicates it has an important role in spinal motor neurons based on a > 10,000-fold 621 

decrease in expression in spinal and bulbar muscular atrophy models (Sheila et al. 2019). 622 

 The region we identified on chromosome 16 contains various genes that may influence 623 



37 
 

wheel running behavior.  One example is Fbxo45, which has demonstrated itself essential for 624 

neuronal development (Saiga et al. 2009) and synaptic transmission (Tada et al. 2010).  One 625 

gene that particularly caught our attention was Pcyt1a, which is an important modulator of the 626 

CDP-choline pathway, catalyzing the formation of CDP-choline (Andrejeva et al. 2020), also 627 

known as citicoline.  Citicoline has been researched extensively for its clinical applications and 628 

has demonstrated capacity to stimulate dopamine synthesis in nigrostriatal areas (Drago et al. 629 

1989, cited in Secades and Lorenzo 2006), which are important for exercise and reward (Wise 630 

2009).  Additionally, CDP-choline has shown evidence of modulating dopamine receptors in the 631 

striatum (Giménez et al. 1991). 632 

Ontology 633 

General Ontology 634 

The GO analyses in this paper serve two functions.  The first includes determining pathways 635 

that have been influenced by the selective breeding protocol.  Additionally, the vast 636 

publications and data on various morphological and physiological differences between the HR 637 

and C lines provide insight into differentiated biological processes.  638 

 The Haplotype and Fixed/Poly methods of identifying differentiated genes had 639 

considerable overlap between genes and regions identified, which seems to result in similar GO 640 

terms for these analyses.  The term “sensory perception of chemical stimulus” is expected, 641 

given the large number olfactory and vomeronasal genes present in some of these regions.  642 

Selection for such genes is likely in response to how the mice are tested for wheel running.  For 643 

logistical reasons, approximately 2/3 of the mice tested in a given generation were measured 644 

on wheels that had not been washed since the previous mouse was on that same wheel, 645 
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although the attached cages were fresh (Dewan et al. 2019).  The scent of the previous mouse 646 

would potentially elicit different running behavior, dependent on these vomeronasal and 647 

olfactory genes (e.g., see Drickamer and Evans 1996).  We checked the Allen Brain Atlas for 648 

some of these genes (particularly those in the consistent region on chromosome 17) and found 649 

that only a few of these olfactory and vomeronasal genes had data.  One of these includes 650 

Vmn2r107, with expression most consistent around the olfactory bulb.  However, Olfr1509 had 651 

expression levels seemingly around the anterior cingulate cortex, a region associated with 652 

cognitive control of motor behavior (Holroyd et al. 2004).  GO terms related to postsynaptic 653 

neurotransmitters were largely indicated by three genes.  Cplx1 has been linked to severe 654 

ataxia and movement limitations in knockout rats (Xu et al. 2020), Dlg1 (aka SAP97) is a 655 

scaffolding protein that localizes glutamate receptors in postsynaptic membranes and has 656 

shown altered expression in rats exposed to cocaine (Caffino et al. 2018), and Shisa6 has been 657 

associated with the localization of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 658 

acid) receptors (Klaassen et al. 2016), which have shown reduced expression after prolonged 659 

cocaine exposure (Cooper et al. 2017).  Such terms are perhaps not surprising, given 660 

observations of the HR mice having larger midbrains and altered reward mechanisms (Belke 661 

and Garland 2007; Mathes et al. 2010; Garland et al. 2011b; Keeney et al. 2012; Kolb et al. 662 

2013b; Thompson et al. 2017).   663 

 The local maxima GO results are generally quite different from the haplotype and 664 

Fixed/Poly analyses.  This is partially attributable to less overlapping of identified genomic 665 

regions.  Additionally, LM is useful for gene culling to reduce influence of hitchhiking genes in 666 

the GO analyses.  Many of the top terms for LM genes are associated with heart development 667 
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and function.  Heart ventricle mass is greater in the HR mice (Kolb et al. 2013a; Kelly et al. 2017; 668 

Kay et al. 2019) and correlates with VO2max in both HR and C mice (Rezende et al. 2006).  The 669 

genes most associated with cardiac development include Pkp2, Myh11, and Tbx5 (also a 670 

forelimb regulator).  Forelimb development may be altered in the HR mice, while humerus sizes 671 

do not seem to differ (Copes et al. 2018), differences have been found in metatarsal and 672 

metacarpal lengths (Young et al. 2009). 673 

Targeted Ontology 674 

As the target ontologies were chosen based on structures and systems known to have been 675 

altered by the selective breeding regimen, we would expect to find at least one gene of each 676 

ontology that would contain a differentiated SNP.  Of these ontologies, “serotonin” and 677 

“dopamine” are associated with some of our less impressive p-values (Table 10), with many of 678 

the top dopamine-related genes (Fpr1, Fpr2, Fpr3, and Fpr-rs4) being present potentially 679 

because of linkage to highly differentiated vomeronasal genes (Table 10).  However, expression 680 

data from the Allen Brain Atlas implicates the Fpr-rs3 gene as being highly expressed in nucleus 681 

raphe obscurus.  The nucleus raphe structure is well established for modulating serotonin 682 

(Walker and Tadi 2020) and the obscurus region itself has been implicated in modulating 683 

respiratory neurons (Lalley et al. 1997).  As Fpr-rs3 is the most differentiated gene of the FPR 684 

family (median p=0.000393 over 6 SNPs), it may be contributing to the selection signature of 685 

this genomic region rather than simply hitchhiking.  The most significantly differentiated loci in 686 

a dopamine-related gene are in Gnb1, part of the Gβγ complex, which activates Girk2 in 687 

dopamine neuron membranes (Wang et al. 2016).  We are surprised not to have found more 688 

impressive results for dopamine-related genes, given clear differences in dopamine function 689 
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between the HR and C mice (Rhodes et al. 2001, 2005; Rhodes and Garland 2003; Bronikowski 690 

et al. 2004; Mathes et al. 2010).  A possible explanation for this is that trans-regulating sites for 691 

these genes have been more influenced by the HR selection regime (Kelly et al. 2012; Nica and 692 

Dermitzakis 2013).  Unfortunately, a limitation of the current study is it lacks the necessary 693 

expression data to identify trans-regulating SNPs (Kelly et al. 2012, 2014). 694 

 The remaining ontologies (bone, cardiac, skeletal muscle, and brain) all have at least one 695 

gene containing a SNP with p <0.0001 (Table 10).  Some of these are included with our LM 696 

genes, such as Myh11 (a myosin gene affiliated with the “cardiac” tag) and Sorl1 (“Brain” tag).  697 

However, some of these are not present among the LM list.  Kel, described above as influencing 698 

various phenotypes relevant for high running behavior, may appear to be a confusing “miss” for 699 

the LM detection process, with a p-value = 1.49E-05.  However, the region does have two local 700 

maxima, neither of which land in genes, but one is about 15,000 bp upstream of Kel.  This might 701 

be taken as evidence that the LM approach to determining affected genes ought to be modified 702 

to better catch nearby genes that could be affected. 703 

 The expression patterns of the top genes implicated by the “brain” targeted ontology 704 

were determined using the Allen Brain Atlas.  The top 4 genes (Sorl1, Gak, Fbxo45, and Tbx3) 705 

showed interesting consistency in their expression patterns.  Sorl1, Gak, and Fbxo45 all have 706 

increased expression around the hippocampus, which has been associate with spatial learning 707 

(Schiller et al. 2015) and may play a role in addiction (Koob and Volkow 2010).  Sorl1, Gak, and 708 

Tbx3 have higher expression in the retrospenial area, which has also been suggested as a 709 

potential modulator of spatial memory (Vann et al. 2009), potentially in coordination with the 710 

hippocampus (Schiller et al. 2015).  Gak and Tbx3 both have notable expression levels in the 711 
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retrohippocampal region, particularly the entorhinal cortex, which is thought to modulate 712 

movement speed (Geisler et al. 2007; Kropff et al. 2015; Ye et al. 2018).  Additionally, Gak, 713 

Fbxo45, and Tbx3 have high expression in olfactory regions.   714 

 The hippocampus has been linked to the regulation of speed during locomotor behavior 715 

in both mice and rats by theta (Li et al. 2012; Fuhrmann et al. 2015; Sheremet et al. 2019), 716 

gamma (Chen et al. 2011; Ahmed and Mehta 2012), and delta oscillations (Furtunato et al. 717 

2020).  Notably, the difference in daily running distance between HR and control lines is 718 

attributable mainly to an increase in average (and maximum) running speed, rather than the 719 

duration of running, especially in females (e.g., see Garland et al. 2011a; Claghorn et al. 2016, 720 

2017; Copes et al. 2018; Hiramatsu and Garland 2018).  Another consideration is the impact of 721 

physical activity on neurogenesis in the hippocampus (Rhodes et al. 2003b; Clark et al. 2010; 722 

Rendeiro and Rhodes 2018), which, perhaps, could create a sort of feedback loop relating to 723 

running speed.   724 

Comparison with Previous Studies 725 

Exercise behavior and the genetic factors that affect it have been the subject of various other 726 

GWA and gene expression studies in mice, as well as comparisons of inbred strains (Reviews in 727 

Kostrzewa and Kas 2014; Lightfoot et al. 2018).  In general, these previous studies do not show 728 

strong agreement with each other.  The primary exception is that several studies have 729 

implicated dopamine pathway genes (Bronikowski et al. 2004; Lightfoot 2011; Dawes et al. 730 

2014; Roberts et al. 2017).  This is of little surprise, as dopamine has been long recognized as a 731 

primary neurotransmitter involved with physical activity (Freed and Yamamoto 1985; Rhodes et 732 

al. 2005).  As another example of consistencies across previous studies, Dawes et al. (2014) 733 
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found differential gene expression in C57L/J (high running) and C3H/HeJ (low running) inbred 734 

strains for Mstn, a gene previously implicated by Lightfoot et al. (2010) using 41 inbred strains 735 

of mice to associate alleles with wheel running.  Mstn is established as a regulator of skeletal 736 

muscle proliferation (Grobet et al. 1997; Amthor et al. 2007; Mosher et al. 2007).  The present 737 

study contributes several new regions that have not been previously identified (see above).  738 

However, we can also identify examples of overlapping results. 739 

 We first compiled a list of genes from our study that contain at least one variable SNP 740 

(see Materials and Methods).  For each gene, all of the SNPs within the transcribed or promotor 741 

region were accumulated and the lowest p-value and median p-value (from supplemental File 742 

S4) were recorded.  These are presented in supplemental File S11.  We then cross-reference 743 

these p-values (with emphasis on median p-value) against the regions and genes identified by 744 

previous studies.  This method is limited by not addressing regulatory loci located outside the 745 

promotor and transcribed region.  For the previous studies, we focused on regions, SNPs, and 746 

genes that were specifically associated with running distance, rather than speed or duration of 747 

running (if reported), as the HR mice were specifically bred for running distance. 748 

 Shimomura et al. (2001) performed an F2 cross between BALB/cJ and C57BL/6J and 749 

mapped daily running levels in constant darkness.  Although the primary purpose of their study 750 

was to identify circadian QTL, two regions were associated directly with wheel-running 751 

distance.  One of these regions is on chromosome 16 (97,608,543-97,608,688 bp, mm10), not 752 

far from one of our local maxima (96,795,226 bp, p=4.97E-04). 753 

 A study involving a cross between high- and low-running inbred strains located several 754 

markers on both chromosome 9 and chromosome 13 (Lightfoot et al. 2008).  Although none of 755 
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these markers fall within our own significant region on chromosome 9 (about 41,000,000 to 756 

42,000,000 bp), one of the markers identified by Lightfoot et al. (2008) on chromosome 9 is 757 

only about 500,000 bp from the gene Leo1.  For our sample of mice, only one SNP in this gene 758 

was polymorphic, and it was in the non-coding region (File S11: p=0.00186)  759 

 Lightfoot et al. (2010) used haplotype association mapping to identify 12 QTL associated 760 

with wheel running among 41 inbred strains of mice.  One of the regions they identified on 761 

chromosome 5 (114,584,508-117,669,848 bp after conversion to mm10) is intriguingly close to 762 

one of our own haplotype regions (118,824,587-119,299,787 bp, Table 5).  Additionally, we 763 

detected a local maximum on chromosome 12 (88,919,735 bp, p=7.54E-05) near their identified 764 

haplotype (88,113,842-88,220,086 bp, mm10).  Lightfoot et al. (2010) also identified a region on 765 

chromosome 13 (95,477,271-95,863,515 bp, mm10), which coincides with a few of our 766 

FixedHR/PolyC loci (95,595,237-95,947,205 bp).  Aside from these, the best example of 767 

similarity with the present study is a gene on chromosome 8 (Galntl6) that was found as 768 

suggestive in the current study (File S11, median p=0.039, SNPs=5,925).  Lightfoot et al. (2010) 769 

also identified a region on chromosome 12, about 0.5 mbp upstream of Nrxn3.  Both our LM 770 

and FixedHR/PolyC methods indicated this gene as a strong candidate, with a segment of intron 771 

1 containing several low p-values (median p=2.04E-04, SNPs=195), but it was not listed as a 772 

consistent region because the haplotype results did not produce a significant haplotype near 773 

Nrxn3.  Nrxn3 is a single-pass transmembrane protein found in presynaptic terminals and 774 

functions as a cell adhesion molecule (Stoltenberg et al. 2011; Kasem et al. 2018).  Nrxn3 775 

creates particular interest in that it is associated with various addictive behaviors (Zheng et al. 776 

2018), which is consistent with evidence that the HR mice are to some extent addicted to 777 
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running (Rhodes et al. 2005; Kolb et al. 2013b).  Previous work has associated Nrxn3 with 778 

addictive behaviors involving nicotine (Wolock et al. 2013) and opioids (Lachman et al. 2007), 779 

predominantly through association and expression studies (Kasem et al. 2018).  Exercise 780 

addiction is not a new concept, but remains controversial (Nogueira et al. 2018). 781 

 QTL mapping of the G4 intercross of C57BL/6J with one of the four HR lines implicated a 782 

region on chromosome 7 (101 – 130 mbp) that contains numerous olfactory/vomeronasal 783 

genes (Kelly et al. 2010).  We identified FixedHR/PolyC SNPs within that region at 127,385,309 - 784 

127,947,542 bp.  We also identified vomeronasal genes on chromosome 17.  (Kelly et al. [2010] 785 

reported other QTL associated with running on the first two days of wheel exposure, but this 786 

phenotype may reflect variation in neophobia more than exercise motivation or ability.) 787 

 Saul et al. (2017) performed expression analysis using the striatum of the HR and C lines 788 

from generation 66.  The mice were sampled after several hours of wheel deprivation, which is 789 

believed to induce high expression of motivation-related genes (Rhodes et al. 2003a).  Some of 790 

their highlighted differentially expressed genes include: Htr1b, Slc38a2, Tmed5, 791 

5031434O11Rik, Gak, Mfsd7a, and Gpr3.  Tmed5, Gak, and Mfsd7a are all found within a highly 792 

differentiated region in our SNP data (median p=4.85E-04 for all three genes, SNPs=671, File 793 

S11).  Although 5031434O11Rik and the associated Setd7 are not found within our consistent 794 

regions (due to no FixedHR/PolyC SNPs), they both contain many of the most differentiated loci 795 

of individual SNP analyses (median p=3.78E-05, SNPs=4).  Knockouts of Setd7 (aka Set9) have 796 

been associated with altered lung development and morphology (Elkouris et al. 2016).  Lung 797 

differences in the HR and C lines have not been greatly explored.  Three studies have reported 798 

no statistical difference in lung mass (Meek et al. 2009; Kolb et al. 2010; Dlugosz et al. 2013), 799 
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but an unpublished study of males from generation 21 found that HR lines tended to have 800 

higher pulmonary diffusion capacity and capillary surface area determined via morphometry (T. 801 

Garland, and S. F. Perry, personal communication), and a study of females from generation 37 802 

reported a trend for HR mice to have higher dry lung mass (Meek et al. 2009; Kelly et al. 2017).  803 

We are uncertain of what Setd7 may be doing in the brain.  However, the Allen Brain Atlas does 804 

indicate increased expression levels of Setd7 in the sensory regions of the midbrain, motor 805 

related regions of the medulla, and the cerebellar cortex, which has been associated with 806 

motor function and reward (Doya 2000).  Furthermore, Setd7 has been shown to modulate pain 807 

and inflammation following nerve injury, potentially enabling an individual to proceed to 808 

exercise despite injury (Shen et al. 2019). 809 

 Overall, studies attempting to identify the genetic underpinnings of exercise behavior in 810 

rodents have produced a wide variety of results.  We can offer several reasons for such 811 

inconsistencies.  First, some of these studies address gene expression (Bronikowski et al. 2003, 812 

2004; Dawes et al. 2014; Saul et al. 2017) and eQTL (Kelly et al. 2012, 2014), which will 813 

commonly implicate different genetic factors for complex traits than studies looking at genetic 814 

variants, likely as a result of complex interactions between genetic variants and gene 815 

expression (Bouchard 2015; Parker et al. 2016).  Second, some studies compare inbred strains 816 

(Lightfoot et al. 2008, 2010; Dawes et al. 2014) with very different genetic histories and likely 817 

different biologically significant alleles available to them than in the Hsd:ICR mice that formed 818 

the basis for the present selection experiment.  Furthermore, a trait as complex as voluntary 819 

exercise (Lightfoot et al. 2018) would be expected to have numerous underlying subordinate 820 

traits which, in turn, could have innumerable potential genetic factors modulating them 821 
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(Garland et al. 2016; Sella and Barton 2019).  Finally, in the current study, we sought to detect 822 

specifically those factors that are shared across all 4 HR lines, which likely does not reflect all of 823 

the exercise-relevant loci that vary among the replicate HR lines.  However, those alleles 824 

implicated by all four HR lines arguably provide the strongest evidence for biologically 825 

significant regions in this selection experiment and also for the Hsd:ICR base population.   826 

Mini-Muscle Allele 827 

The mini-muscle phenotype was discovered in the HR selection experiment and is associated 828 

with alterations in various organs, especially skeletal muscle, but also including heart, kidney, 829 

and overall body mass of the mice (Swallow et al. 2005; Meek et al. 2009; Kolb et al. 2013a; 830 

Talmadge et al. 2014; Kay et al. 2019) as well as behaviors (Kelly et al. 2006; Singleton and 831 

Garland 2019).  This phenotype is caused by a single recessive SNP mutation located in an Myh4 832 

(myosin heavy polypeptide 4) gene (Kelly et al. 2013).  Mice expressing the mini-muscle 833 

phenotype have often been found to run faster and sometimes for longer distances than other 834 

HR mice (Kolb et al. 2013a).  This polymorphism was lost, presumably via random genetic drift, 835 

from all lines except for HR lines 3 (where it went to fixation) and line 6 (where it remains 836 

polymorphic with the wildtype allele).  Population-genetic analyses indicate that the allele was 837 

under positive selection in the HR lines (Garland et al. 2002).  The current WGS data show 838 

(generation 61) that the mutation is still only present in lines 3 (fixed) and 6, with allele 839 

frequency of 0.65 in line 6.  As the mini-muscle phenotype appears to enable faster overall 840 

running on wheels at the cost of running duration, it has been regarded as an alternative 841 

“solution” to the selection criterion (Garland et al. 2011a), not unlike the concept of “private” 842 

alleles (Martin et al. 1996).  Such a mutation is expected to change the genetic background of 843 
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line 3 (and to a lesser extent, line 6) giving rationale to analyzing these lines separately for 844 

possible QTL, in future studies. 845 

Allele Frequency Implications 846 

The general pattern of allele frequencies across the replicate lines can be used to infer patterns 847 

of selection.  Table 12 includes some of the potential profiles that could possibly be observed 848 

and (for the most part) were observed in the WGS data.   849 

Profile 1  No observed genetic variation.  For our 79 mice, this accounts for about 99.8% of the 850 

genome (Table 2).   851 

Profile 2  Fixation for alternate alleles in the two selection treatments would imply opposing 852 

directional selection, as might occur in experiments with replicate lines selected for high versus 853 

low values of a trait.  The HR mouse selection experiment includes high-selected and control 854 

treatments, but not a low-selected treatment.  Thus, fixation for alternate alleles in the HR and 855 

C lines would not necessarily be expected, and indeed was never observed for either the WGS 856 

data or the MegaMUGA data reported previously (Xu and Garland 2017).  Importantly, even 857 

data from selection experiments that include high- and low-selected treatments are not 858 

showing much evidence of fixation for alternate alleles (Burke et al. 2010; Lillie et al. 2019). 859 

Profile 3  Stabilizing selection or random drift for one group and directional selection for the 860 

other.  This was the focus of the scans for loci fixed in all lines of one linetype and polymorphic 861 

in all lines of the other (Fixed/Poly) in our own haplotype and WGS data and produced several 862 

prospective regions of interest.  The fixed allele can either be entirely the reference (0) or 863 

alternative (1). 864 

Profile 4  Selection for test group 2 but evidence of drift for group 1 (likely caused by little to no 865 
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selection).  Some of the loci of the WGS SNP data meet this profile.  For example, Chromosome 866 

11: 96,332,082 bp (p=0.051). 867 

Profile 5  Random genetic drift for both test groups.  Such loci will be among those analyzed, 868 

but this pattern of differentiation is unlikely to result from the selective breeding regimen. 869 

 870 
Table 12  Potential fixation profiles   871 

  Test Group 1   Test Group 2 
Profile Rep 1 Rep 2 Rep 3 Rep 4   Rep 1 Rep 2 Rep 3 Rep 4 
1 0 0 0 0   0 0 0 0 
2 0 0 0 0   1 1 1 1 
3 Het Het Het Het   0 0 0 0 
4 0 0 1 1   0 0 0 0 
5 0 0 1 1  0 0 1 1 

 872 
 873 

 In general, as with any population that is relatively well adapted to the prevailing 874 

environmental conditions, breeding colonies of laboratory house mice maintained under 875 

standard vivarium housing conditions should experience continuing stabilizing selection at 876 

many loci.  Under standard housing conditions, an allele with a strong positive influence on 877 

wheel running, or activity in cages without wheels, might be disfavored if it were negatively 878 

associated with such aspects of the life history as litter size or maternal care.  In contrast, under 879 

the conditions of the HR mouse selection experiment, an allele with a strong positive influence 880 

on wheel running might be expected to go to fixation rapidly in all HR lines in a manner 881 

consistent with a "complete sweep" (Burke 2012).  Thus, to fix an allele, directional selection in 882 

the HR lines must be strong enough to overcome a presumed prevailing background of 883 

stabilizing selection and possibly negative selection.  Regions that are FixedHR/PolyC (profile 3) 884 

should, therefore, be indicative of relatively strong directional selection in the HR lines. 885 
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 Alternatively, some loci may have come under stabilizing selection in the HR lines, e.g., 886 

due to heterozygote advantage or epistatic interactions with other loci, preventing them from 887 

going to fixation.  Hence, we also examined loci polymorphic in all HR lines but fixed in all C 888 

lines (FixedC/PolyHR).  The GO analyses of the included genes in these regions were 889 

consistently less significant (raw p≥0.0026 for all implicated terms).  However, such terms as 890 

“synapse assembly” and those related to glycerolipids emerged may merit further exploration. 891 

Interpretation of the Four Models 892 

The four models in the multi-model analysis were included to allow for different variance 893 

structures within and between the HR and C linetypes.  The within-line variance is the variability 894 

of allele frequency among the ~10 mice within each line.  This variance is zero when a line is 895 

fixed for one allele or another, but maximized when 5 mice within each line are homozygous for 896 

one allele while 5 mice are homozygous for the other.  The among-line variance indicates how 897 

different the replicate lines within a linetype are from each other.  This variance component is 898 

minimized when all four lines within a linetype are fixed for the same allele, but maximized 899 

when two lines are fixed for one allele while two lines are fixed for the other.   900 

 In principle, both the within-line and among-line variances can differ between the two 901 

selection treatments (linetypes); hence, the Full model includes separate estimates of both 902 

within- and among-line variances.  For wheel running in later generations of the selection 903 

experiment, a full model has been shown to fit well (Garland et al. 2011a).  The SepVarInd 904 

model includes only the within-line variance.  The SepVarLine model includes only the among-905 

line variance.  Lastly, the Simple model does not include either of these two variances, and 906 

corresponds to the single model used by Xu and Garland (2017).   907 
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 As expected, we found many loci that were better fit by models other than the Simple 908 

model used by Xu and Garland (2017) (Table 4).  Figure 3 gives examples.  In A, the Full model is 909 

implemented because C lines exhibit very little within- and among-line variance while HR lines 910 

exhibit both.  In B, the SepVarInd model is used because C lines have high within-line variance 911 

(while HR lines are comparatively low), but both have similar among-line variance.  In C, 912 

SepVarLines model is used because nearly all lines contain very little within-line variance (6 are 913 

fixed for a single allele), but C lines, being fixed for opposing alleles, creates different among-914 

line variance.  D identifies a Simple model locus because these variances are roughly the same 915 

for the different linetypes.  E represents a locus with no within-line variance and thus could not 916 

be analyzed with the mixed model ANOVA like other loci. However, use of multiple models did 917 

not increase the number of loci identified as statistically significant based on repeat analyses of 918 

the MEGAMuga data with both methods (Figure 1).   919 

 920 
  921 
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Figure 3  These are images of different variance structures depicted by actual examples from 922 
the MegaMUGA data (Xu and Garland 2017).  This includes example data that were best fit by 923 
the “Full” model (A), “SepVarInd” model (B), “SepVarLines” model (C), and the “Simple” model 924 
(D).  E shows a locus that had no within-line variance.  P-values are significance levels for 925 
comparing the HR and C lines.   926 
 927 
A  “Full” Model      B  “SepVarInd” Model 928 

 929 
 930 
C  “SepVarLines” Model    D  “Simple” Model 931 

 932 
E  No Within-line Variance  933 

  934 
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SUMMARY, LIMITATIONS, AND FUTURE DIRECTIONS 935 

Exercise, or the lack of exercise, has far-reaching medical and financial implications (Manley 936 

1996; Booth et al. 2012; Carlson et al. 2015).  Numerous studies have provided strong evidence 937 

for the existence of genetic underpinnings of exercise behavior and physical activity (Kostrzewa 938 

and Kas 2014; Lightfoot et al. 2018), including in the High Runner mouse selection experiment 939 

(Bronikowski et al. 2003, 2004; Careau et al. 2013; Saul et al. 2017; Xu and Garland 2017).  Here 940 

we have used three different analytical methods with whole-genome sequence data to address 941 

the genetic basis of the 3-fold increase in daily running distances observed in the four replicate 942 

selectively bred HR lines of mice.  These methods include haplotype and SNP statistical analysis, 943 

as well as non-statistical analysis of fixation patterns in HR and C lines.   944 

 The intersection of multiple analyses indicated 61 genomic regions of differentiation, 945 

with 12 identified as of particular interest.  These regions include genes known to influence 946 

systems that have already been demonstrated to differ between HR and Control mice, such as 947 

response to conspecific odors, brain development, body weight, and relative heart size.  948 

However, they also contain genes whose role in voluntary running behavior is as yet unclear.   949 

 This study does have the limitation of focusing on males, whereas exercise behavoir and 950 

much of the physiology and morphology related to exercise abilities differ between sexes in 951 

both rodents and humans (Eikelboom and Mills 1988; Thomas and Thomas 1988; Rowland 952 

2016; Sheel 2016; Rosenfeld 2017; Thompson et al. 2017).  A natural next step would then be 953 

to conduct similar analyses in females.  This approach, however, can establish correlation but 954 

not causation.  Therefore, studies of wheel-running behavoir of mice with knockouts or Cre 955 

modifications of genes in some of the genomic regions identified here may help to establish or 956 
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dismiss causal relationships between the genes and phenotype.  Furthermore, as the HR mouse 957 

experiment has complete pedigree information for all mice and lines (Careau et al. 2013, 2015), 958 

it will also be possible to use this information to better account for relatedness between mice in 959 

statistical analyses and so provide more informed estimates of loci acted upon by selection.    960 

 Importantly, none of the analytical approaches we used address the possibility of 961 

"private alleles" (Martin et al. 1996) in one or more of the HR lines that may influence exercise 962 

behavior, thus representing "multiple solutions" to the selective breeding regime (Garland et al. 963 

2011a), but this will be an important possibility to consider in future studies.  We already know 964 

of one private allele of major effect (mini-muscle) that has far-reaching effects on mouse 965 

muscle and organ development (Swallow et al. 2005; McGillivray et al. 2009; Kelly et al. 2013), 966 

as well as many other aspects of the phenotype, and has been favored by the selection protocol 967 

(Garland et al. 2002).  Determination of such alleles will be an important area for future 968 

research. 969 
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