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Article Summary

House mice from 4 replicate lines selectively bred for 61 generations for voluntary
wheel-running behavior were compared with 4 non-selected control lines using
multiple genome-wide analytical techniques on both haplotype and single
nucleotide polymorphism data. Twelve genomic regions were consistently found
differentiated across all analytical approaches. These regions are associated with
a diverse set of genes that appear related to exercise ability or motivational
systems. Genes related to various organ systems (e.g. heart, brain) known to be
physiologically different between test groups were identified. These results
highlight candidate genes for detailed studies of exercise behavior and

physiology.
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ABSTRACT

The biological basis of exercise behavior is increasingly relevant for maintaining healthy
lifestyles. Various quantitative genetic studies and selection experiments have conclusively
demonstrated substantial heritability for exercise behavior in both humans and laboratory
rodents. In the “High Runner” selection experiment, 4 replicate lines of Mus domesticus were
bred for high voluntary wheel running (HR), along with 4 non-selected control (C) lines. After
61 generations, the genomes of 79 mice (9-10 from each line) were fully sequenced and single
nucleotide polymorphisms (SNPs) were identified. We used nested ANOVA with MIVQUE
estimation and other approaches to compare allele frequencies between the HR and C lines for
both SNPs and haplotypes. Approximately 61 genomic regions, across all somatic
chromosomes, showed evidence of differentiation. Twelve of these regions were differentiated
by all methods of analysis. Gene function was inferred largely using Panther gene ontology
terms and KO phenotypes associated with genes of interest. Some of the differentiated genes
are known to be associated with behavior/motivational systems and/or athletic ability,
including Sorl1, Dach1, and Cdh10. Sorll is a sorting protein associated with cholinergic neuron
morphology, vascular wound healing, and metabolism. Dach1 is associated with limb bud
development and neural differentiation. Cdh10 is a calcium ion binding protein associated with
phrenic neurons. Overall, these results indicate that selective breeding for high voluntary
exercise has resulted in changes in allele frequencies for multiple genes associated with both
motivation and ability for endurance exercise, providing candidate genes that may explain

phenotypic changes observed in previous studies.
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INTRODUCTION

Most traits of interest in biology are complex, modulated by numerous genetic and
environmental factors, and comprised of multiple lower-level (subordinate) traits that often
influence higher-level traits in nonintuitive ways (Garland et al. 2016; Sella and Barton 2019).
Examples of complex traits include human height, which is influenced by more than 9,500
guantitative trait loci (QTL) (Wood et al. 2014), as well as one’s susceptibility to various
psychological diseases (Horwitz et al. 2019).

One complex trait of great interest to medicine is exercise behavior. Exercise has been
linked to numerous health benefits, including muscle and bone strength, weight control,
reduced cardiac disease, and improved mental health (Manley 1996; Lightfoot et al. 2018).
Nonetheless, the majority of Americans are not getting sufficient exercise and this problem is
common world-wide (Guthold et al. 2018). Not only does insufficient exercise contribute to
such health issues as obesity and diabetes (Booth et al. 2002; Cornier et al. 2008; Myers et al.
2017), but it also increases healthcare costs in the United States, e.g., by more than $100 billion
annually between the years of 2006-2011 (Carlson et al. 2015). Conversely, higher levels of
physical activity promote physical fitness and cardiovascular health, while lowering risk for
depression, anxiety-related disorders, obesity, Type 2 diabetes, and mortality (Blair and Morris
2009; Matta Mello Portugal et al. 2013; Mok et al. 2019).

The health benefits of exercise occur by various mechanisms (Neufer et al. 2015), as do
the adverse effects of a lack of exercise (Booth et al. 2012). Acute exercise can have beneficial
effects on immune function (Sellami et al. 2018) and cognition (Park and Etnier 2019). Chronic

exercise training can cause changes in muscle fiber type composition that benefit regulation of
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energy metabolism and other metabolic pathways (Fan et al. 2013). Furthermore, exercise has
been linked to lower blood pressure by reducing systemic vascular resistance (Cornelissen and

Fagard 2005). Reduced blood pressure, in turn, reduces risk of cardiac disease (Benjamin et al.
2019). The release of endorphins and vascular endothelial growth factors have shown promise
as explanations for the growth of new neurons in the brain, which may be the cause of reduces
symptoms of neurological diseases such as depression (Ernst et al. 2006).

Identifying genetic determinants of exercise behavior could potentially lead to drug
targets that would help promote motivation for exercise and/or benefits derived from exercise.
Additionally, by identifying genetic causes of motivation for exercise we may also gain insight
regarding higher-level structures or pathways that control this motivation. A variety of human
studies have been conducted to determine the genes or chromosomal regions that modulate
various components of exercise behavior, including both motivation and/or capability to
exercise (Lightfoot et al. 2018). Many of these studies use observational methods to compare
humans who engage in either frequent and/or strenuous exercise with those who are less
active (Kostrzewa and Kas 2014; Lin et al. 2017). Historically, the most common approach to
measuring human exercise levels was by use of questionnaires, which can be of dubious
reliability, but an increasing number of studies use accelerometers (Prince et al. 2008; Dyrstad
et al. 2014). Detecting QTL in these studies is generally done with genome-wide association
studies (GWAS), which rely on phenotypic and genetic data from many individuals within a
population and can identify particularly strong correlations between the phenotype and key
genetic markers and loci.

Various QTL identified in humans are associated with motivation, e.g., dopaminergic
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regulation. Dopamine is a well-established modulator of exercise motivation or reward
(Garland et al. 2011b). Various genes associated with the dopamine pathway are associated
with exercise behavior in humans (Simonen et al. 2003; Loos et al. 2005; De Moor et al. 2009).
The large body of evidence that dopamine signaling is a major component of exercise
motivation dwarfs other motivational systems that have been associated with exercise,
including serotonin and endocannabinoids (Dietrich 2004; Cordeiro et al. 2017), though
serotonin has been implicated in GWAS of hyperactivity disorders (Aebi et al. 2016).

Other human studies have detected QTL associated with physical traits related to
exercise abilities, including maximal oxygen consumption (VO2max) (Williams et al. 2017), bone
density (Herbert et al. 2019), and more (Lin et al. 2017). The list of possible biological traits
affiliated with exercise and their associated QTL is extensive (Sarzynski et al. 2016; Lightfoot et
al. 2018).

Observational studies of human exercise behavior are limited by measurement error
and environmental cofactors that cannot always be accounted for in statistical models
(Garland et al. 2011b; Lightfoot et al. 2018). One alternative is to use animal models derived
from selective breeding experiments (Garland and Rose 2009). Selective breeding will alter the
proportions of alleles that affect a trait of interest, thus allowing for easier detection of such
alleles (Britton and Koch 2001; Konczal et al. 2016). Finding the genetic factors that underlie a
complex trait is also facilitated by reducing environmental variation ("noise"), as is possible with
laboratory colonies of rodents (Parker and Palmer 2011).

To elucidate the biological basis of voluntary aerobic exercise behavior, a selection

experiment was begun in 1993 using a base population of outbred Hsd:ICR mice. Four replicate
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lines have been bred for high voluntary wheel-running behavior and another four bred without
regard to their wheel running as controls for founder effects and random genetic drift (Swallow
et al. 1998). Since the beginning of this experiment, over 150 papers have been published that
document a variety of phenotypic differences between the High Runner (HR) and Control (C)
lines. These previous studies establish morphological and physiological differences in bone,
kidney, heart, skeletal muscle, brain, and other organs and systems (Rhodes et al. 2005;
Swallow et al. 2005; Kolb et al. 2013b; Wallace and Garland 2016) and, more generally,
reaffirm the diversity of the systems involved in voluntary exercise behavior (Garland et al.
2011b; Lightfoot et al. 2018). The previous studies also give potential directions for informed
analyses of the genome. For example, we would expect divergence in allele frequencies related
to the reward system in the brain and to muscle function. The HR selection experiment is the
world’s "largest" involving a behavioral trait in rodents in terms of the number of lines and
generations. Therefore, addressing the genomic differences between the HR and C mice is
expected to provide novel insights into the underpinnings of exercise behavior.

Previously, Xu and Garland (2017) used a mixed model (nested ANOVA) with minimum
variance quadratic unbiased estimation (MIVQUE) to analyze medium-density single nucleotide
polymorphism (SNP) data for the HR and control lines sampled from generation 61 (Xu and
Garland 2017). This statistical method proved more powerful than the commonly used
regularized F test and Generalized Linear Mixed Model (GLMM) methods when incorporating
permutation-based multiple testing correction. The data used included 7-10 females from each
of eight lines (four HR and four C). Genotypes were determined with the MegaMUGA SNP-chip

(Morgan and Welsh 2015). After removing markers with missing data, 25,318 markers were
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analyzed with the mixed models, finding 152 markers to be significantly differentiated between
the HR and C linetypes (i.e. test group). Although Xu and Garland (2017) demonstrated
numerous SNP loci with evidence of differentiation between the HR and control lines, biological
interpretations were not presented. Additionally, as demonstrated by the whole-genome
sequence (WGS) data addressed in this paper, various differentiated loci were not detected in
the previous SNP-chip analysis.

Here, we apply the mixed model with MIVQUE estimation method to WGS data
obtained from the same individuals as in Xu and Garland (2017). We analyze both SNP and
haplotype data to take full advantage of the information provided by each data type (Shim et
al. 2009; Taliun et al. 2016). We also use simulations to explore some of the statistical
properties of the MIVQUE estimation method for this application, and we implement
procedures aimed at improving model fit and potentially statistical power. We identify
numerous SNP and haplotype loci as potential candidates for functionally relevant genetic
differentiation between the HR and C lines. Many of these can be tied to specific lower-level
traits that should influence exercise behavior, through use of gene ontology terms and KO
phenotype analyses of nearby genes.

Using information on known morphological and physiological differences between the
HR and control lines, we were able to perform both broad and directed strategies to detecting
significantly differentiated loci. We show that the method of Xu and Garland (2017) can be
improved by allowing for different among- and within-line variance structures. We identified
several potentially differentiated genes associated with bone, heart, and brain morphology.

We also identified a few candidates with potential large-scale influences on the HR mice,
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including Sorl/1, Dach1, and Cdh10.

MATERIALS AND METHODS

High Runner Mouse Model

As described previously (Swallow et al. 1998; Careau et al. 2013), 112 males and 112 females of
the outbred Hsd:ICR strain were purchased from Harlan Sprague Dawley in 1993. These mice
were randomly bred in our laboratory for 2 generations. Ten males and 10 females were then
randomly chosen as founders for each of 8 closed lines (generation 0). Four of these lines were
randomly picked to be “High Runner” (HR) lines, in which mice would be selected for breeding
based on voluntary wheel running. The remaining 4 lines were used as Control (C) lines,
without any selection. At approximately 6-8 weeks of age, all mice were given access to wheels
for six days. The amount of running (total revolutions) on days 5 and 6 was used as the
selection criterion. For the non-selected C lines, one male and one female from each of 10
families were chosen as breeders to propagate the line. For the HR lines, the highest-running
male and female from within each of 10 families were chosen as breeders (within-family
selection). Sib-mating was disallowed in all lines (Swallow et al. 1998).

Whole-genome Sequencing

DNA was collected from 80 mice (10 from each line), from generation 61, via phenol-
chloroform extraction and sequenced on an lllumina HiSeq 2500 1T platform. Libraries were
constructed using Nextera kit and reads were trimmed and aligned to the GRCm38/mm10
mouse genome assembly as described in Didion et al. (2016). This generated an average read
depth of 12X per mouse. SNPs were filtered based on genotype quality ("GQ") >5, read depth

>3, MAF <0.0126 for all samples, and Mapping Quality ("MQ") >30. One of the 80 mice was

9
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excluded due to likely contamination (as in Xu and Garland 2017), leaving 79 for the following
analyses. SNPs not found to be present in at least two of the 80 mice were also removed from
analysis. Although Xu and Garland (2017) had identified these as females, they were in fact all
males with exception of one female from line 5.

Heterozygosity Calculations

Individual mouse heterozygosity (multi-locus heterozygosity) was calculated by dividing the
number of heterozygous loci for each mouse by the total number of segregating loci across all
80 mice (n=5,932,124). Heterozygosity per line is the average of the heterozygosity of all
sequenced mice within that line.

SNP Analysis

Individual Single Nucleotide Polymorphisms (SNPs) were initially analyzed using a mixed model
approach with the Minimum Variance Quadratic Unbiased Estimation of variance (MIVQUE)
method of estimating variance parameters as described in Xu and Garland (2017). However,
rather than removing loci or mice (which had been necessary in the Xu and Garland paper,
resulting in 7-10 mice per line analysed) with missing data, code was modified to remove only
the missing values themselves. The MIVQUE analysis provides a p-value for each locus for
rejecting the null hypothesis of no differentiation between the HR and C lines. Xu and Garland
had performed the analysis using two different encoding schemes to represent genotypes as 0,
0.5 and 1 vs. as twin vectors of 0-0, 0-1 and 1-1. We have since determined that the twin
vectors encoding was preferable, and we report only those results (File S7).

Multi-Model Analysis of SNP Data from Whole-genome Sequences

The analyses performed in Xu and Garland (2017) used a single statistical model in R for all loci

10
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(our comparable SAS model being "Simple" in Table 1). This model did not allow for several
possibilities that might be expected a priori and that were in fact observed, such as differing
variances among the 4 replicate HR and C lines (designated “SepVarLines” in Table 1), as is the
case for wheel-running behavior (Garland et al. 2011a). Beyond this, the amount of variation
among individual mice within the replicate lines might differ for the HR and C lines (“Full”
model). Interpretation of these different models is presented in the Discussion. In total, we
applied four alternate models to the data for each locus, and followed a model selection
procedure for the one with the lowest the Aikake Information Criterion, corrected for small
sample sizes (AlCc), and retained the p-value for its linetype effect (differentiation between the
HR and C lines). All Multi-Model analyses were performed in SAS using PROCEDURE MIXED
with the mivqueO method (File S10). We elected to prioritize SAS over R for its performance
gains over large number of loci. For a direct comparison, we reanalyzed the MegaMUGA data in
Xu and Garland (2017) the multi-model method (Figures S1 and S2).

Loci that contained no within-line variance (i.e. each line was fixed for one allele or the
other) could not be analyzed with the foregoing procedures. We analyzed these loci by
counting the net number of alternatively fixed lines among the HR and C linetypes. Those loci
with greater difference in allele frequency between the HR and C linetypes are regarded as

being more “significant.”

11



Table 1 Summary of covariance models

HR and C HR and C HR and C
HR and C .
Covar- . different same same
. different . en s
iance - within- among- within-
among-line . . .
Param- variance line line line
Model d.f. eters Description variance variance variance SAS Code
Random effects for replicate line
within selection treatment proc mixed data=locus method=mivque0;
(linetype) and for mouse within class pop sub mouse;
Full 6 4 line and linetype, allowing for X X model COL1 =pop/solution;
separate variance estimates for random sub(pop) /group=pop;
both lines within linetype and random mouse(sub pop) /group=pop;
mouse within line and linetype
&??h(izr?eiﬁit;f; L;ig;;atte line proc mixed data=locus method=mivque0;
(linetype) and for mouse within class pop sub mouse;
SepVarLines 6 3 ! ype) . X X model COL1=pop/solution;
line and linetype, allowing for random sub(pop) /group=pop;
separate variance estimates for pop) /& p.—p Pi
line within linetype random mouse(sub pop);
&??hdizr?;gce;(t;f; re;z:ll;atte line proc mixed data=locus method=mivque0;
(linetype) and for mouse within class pop sub mouse;
SepVarlnd 6 3 ! ype) . X X model COL1=pop/solution;
line and linetype, allowing for
. . random sub(pop);
separate variance estimates for _ .
mouse within line and linetype random mouse(sub pop) /group=pop;
Random effects for replicate line proc mixed data=locus method=mivque0;
within selection treatment class pop sub mouse;
Simple 6 2 (linetype) and for mouse within X X model COL1=pop/solution;

line and linetype (as used by Xu
and Garland 2017)

random sub(pop);
random mouse(sub pop);

Multiple models? used to analyze the allelic SNP data (two values per mouse) for whole-genome sequences from 79 mice. For each model, we used SAS Procedure Mixed with

MIVQUE estimation (Xu and Garland 2017) to obtain the test statistic (F), significance level (P), and AlCc (d.f. method was containment).

2 For some loci, the within-line variance was zero for all 8 lines. In those cases, we used direct enumeration to calculate a significance level, i.e., the probability of observing the

pattern versus the 23 possible combinations. See text for further details.

12



Table 2 Basic descriptive statistics for the primary analyses

Dataset Total "Loci” Significant Loci Critical Threshold Significant Genes
MegaMUGA 25,332 1624 p<0.00526 (5% FWER) 174>
Whole-Genome SNPs 5,932,124 84 p<0.001 . 27

(Local Maximum)
Haplotypes 16,901 102¢ (28 regions) p<0.00526 (See text) 154b
All HR Fixed,

i b
All C Polymorphic 5,932,124 2,562 (46 regions) See text 135

aln Xu and Garland (2017), 152 SNPs were identified as statistically significant with a single model and the MIVQUE procedure,
after use of a permutation procedure to control the family-wise Type I error rate (FWER) at 5% (p < 0.00343).

bThese are not genes that SNPs fell into. These are genes close to significant SNPs or haplotypes.

cFrom 28 closely linked groups.

13
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Multiple Testing Correction

Permutations for MegaMUGA Data

This approach is based on the permutation method used by Xu and Garland (2017), but
modified to account for the multiple models. All permutations were performed using SAS PROC
MIXED as described above in the section on multi-model approach. The mouse IDs, line, and
linetype were randomly permuted as a block to break their original associations with the allelic
data but not with each other. The permuted data for each locus were then analyzed with each
of the four models listed in Table 1 (i.e., for the MegaMUGA SNP data, 4 X 25,332 analyses were
performed). For each of the four models, the AlCc was recorded, and the corresponding F-
statistics were retained. From these 25,332 loci (for the MegaMUGA data), the F-statistic
corresponding to the model with the lowest AlCc was saved. The foregoing process was
repeated 5,000 times, the resulting F-statistics were sorted from largest to smallest, and the
250" |argest F-statistic was used to establish the critical value for the 5% FWER.

Permutations for Haplotype Data

Permutations done for haplotypes were performed separately for 2-allele haplotype blocks and
3-allele blocks, using 1,000 permutations to keep computational times manageable. As in the
unpermuted haplotype analyses, blocks with three alleles (n=5,869) were analyzed with two
dummy variables, each individual dummy variable was tested using the multi-model method,
and the two p-values generated were combined using Fisher’s method (Fisher 1925). However,
some permutations of the 3-allele blocks produced erroneous low p-values (apparently due to
numerical issues), which, if included in subsequent calculations would have caused an

artifactual reduction of the critical value needed to obtain the true 5% FWER. The

14
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permutations of the 2-allele blocks (n=11,032) did not produce any artifactually low p-values.
Given the problems with the 3-allele haplotype permutations, we elected to apply the
MeguMUGA permutation threshold (P<0.00526) to the haplotype blocks because of their
similar sample size (MegaMUGA=25,332; Haplotypes=16,901) and the fact that they should be
highly correlated.

Local Maxima Selection for WGS Data

In the original paper, which analyzed 25,332 SNPs from a commercial chip, a permutation
procedure was used to control the family-wise Type | error rate (FWER) at 5% (Xu and Garland
2017). Those procedures were not computationally practical for the 5,932,124 SNPs from the
whole-genome sequences, nor are linked SNPs within a haplotype block truly independent from
each other. Accordingly, significant loci were chosen via a combination of -logP cutoff and local
maximum (LM) determination, the latter acting as a filter to focus on actual selected loci over
their hitchhikers. Similar methods have been previously described (Nicod et al. 2016). Briefly,
suggestive loci with -logP >3.0 were clustered with a maximum gap of 1 Mbp. For each such
cluster, the global peak, and a set of local maxima were determined for every 500 kbp spanned
by the cluster. The set of local maxima were chosen as peaks separated by dips in the signal
below the median -logP in the cluster. These LM SNPs were annotated using R libraries
GenomicFeatures and VariantAnnotation, with the mm10 knownGene.sqlite database provided
by the Genome Browser team at the University of California, Santa Cruz.

Haplotype Determination

From the whole-genome sequences, haplotypes were determined using JIMP 11 and JMP

Scripting Language (SAS Institute Inc., Cary, NC). To construct haplotypes, we first defined the
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genomic block segments as consecutive 20 kbp windows that did not transition between
homozygous and heterozygous states. For each block region, we performed a hierarchical
clustering analysis using SNP genotype data (of homozygous regions only) as input. Preliminary
haplotype analysis showed that the HR population at generation 61 rarely had more than 3
alleles in a given haplotype. Therefore, the analysis was restricted to a maximum of three
clusters (haplotype alleles) per block (File S5).

Haplotype Analysis

As for the SNP data, haplotype data were analyzed using the multi-model method described
above. Haplotype blocks with only two alleles (n=11,032) were analyzed the same way as for
the SNP data (File S10). Blocks with three alleles (n=5,869) were analyzed with two dummy
variables, with the base allele chosen as the most common one, and then two dummy variables
coding for presence of the other two alleles. Each individual dummy variable was tested using
the multi-model method. The two p-values generated from the two dummy variables were
combined using Fisher’s method (Fisher 1925). Different models potentially were used for each
dummy variable based on AlCc, allowing for up to two models to contribute to the final p-value
of a locus (File S6).

SNPs Fixed in One Treatment but Polymorphic in the Other

As noted previously with the SNP chip data (Xu and Garland 2017), we observed no loci that
were fixed for one allele in all four HR lines while being fixed for the alternate allele in all four C
lines (see Results). We did, however, observe loci fixed for a given allele in all 4 HR lines, which
is symptomatic of a complete selective sweep (caused by directional selection) as described by

Burke (2012), while remaining polymorphicin all 4 Clines. All loci that were fixed in the HR
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mice and simultaneously polymorphic in all C lines (FixedHR/PolyC) were extracted from the
multi-model results and grouped such that those fixed loci that were within 100,000 bp of other
fixed loci would be part of the same group. This process was then repeated for loci fixed in the
Control lines but polymorphic in all HR lines (FixedC/PolyHR).

General Ontology Analysis

Transcribed regions (N = 56, as indicated in Table 2) found to contain LM based on the whole-
genome sequence analyses were analyzed using The Gene Ontology Resource (GO). GO
analyses were performed based on biological process, molecular function, and cellular
component. Ontologies reported as significant at raw p < 0.05 for any of these three categories
are reported here. Analysis of these genes was also performed using the Database for
Annotation, Visualization and Integrated Discovery (DAVID). The results of these analyses did
not vary greatly from the GO results.

Targeted Ontology Analysis

Previous papers show that the HR lines of mice have diverged from the C lines for many
different phenotypes (reviews in Rhodes et al. 2005; Garland et al. 2011b; Wallace and Garland
2016). Many of these phenotypes can be tied to specific neurobiological or physiological
functions. In such cases, a logical approach is to analyze separately some candidate genes
known to be affiliated with relevant functions and find differentiated SNPs for those genes. We
used this approach for several ontologies. Specifically, lists of genes affiliated with dopamine,
serotonin, brain, bone, cardiac muscle, and skeletal muscle were extracted from the Mouse
Genome Informatics website. SNPs found within these genes were separated from the full

WGS data and the most differentiated among these were recorded.
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Data Availability Statement

Any additional intermediary or results file are available upon request. Supplemental files are
available at FigShare. File S1 contains supplemental figures and brief descriptions of all other
supplemental files and tables. File S2 contains allelic SNP data. File S3 contains mouse data
with line and lintype. File S4 contains all results for analyses of individual SNPs. File S5 contains
all haplotype data. Files S6 contains all results for analyses of haplotype data. File S7 contains
justification for use of allelic coding of alleles. File S8 includes simulations of Type | error rates
for Mixed Model analyses using MIVQUE variance estimation. File S9 expands on the discussion
of genes in consistent regions (see Results). File S10 includes all R and SAS code used for the
SNP and haplotype analyses. Table S1 includes local maxima associated genes. Table S2
contains groups of loci fixed in all lines of one lintype but polymorphic in all lines of the other.
Table S3 includes heterozygosity for each individual mouse. Table S4 includes top ten genes for
each of the targeted ontologies analyses. Table S5 includes allele frequency by line of each loci
identified as a local maximum. Table S6 includes genomic regions identified as suggestive

(p<0.001) by the SNP analyses.
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RESULTS

Variation in Genetic Diversity

After 61 generations of the High Runner mouse selection experiment, and based on a sample of

79 mice, we found SNPs segregating at 5,932,124 loci (~2.2 SNPs per kbp or 0.22%) across the

entire set of lines (i.e., at least 2 mice containing an alternate allele were found across the 79

mice sequenced) with at least 1.5% minor allele frequency. Individual lines contained 2.04 —

2.82M SNPs (34-48% of the total diversity) (Table 3), with no appreciable loss in diversity for

the HR lines compared to the Control replicates (Mann-Whitney U-test, W=6; p-value=0.6857).

SNP heterozygosity ranged from 10.3% to 20.6% among individual mice (Table S3) and averaged

12.7% to 18.1% per line (Table 3).

Table 3 Summary of polymorphism and heterozygosity by line

Polymorphic Polymorphic
Line SNP loci SNP % Haplotypes Haplotype %  SNP Het  Haplotype Het
C1 2,333,951 39.3% 7,773 46.0% 14.7% 17.8%
Cc2 2,436,225 41.1% 7,652 45.3% 13.7% 16.6%
C3 2,602,007 43.9% 7,841 46.4% 15.8% 17.8%
C5 2,102,405 35.4% 7,160 42.4% 12.7% 16.5%
HR3 2,819,828 47.5% 8,717 51.6% 18.1% 19.6%
HR6 2,220,487 37.4% 7,060 41.8% 13.5% 16.2%
HR7 2,042,309 34.4% 6,304 37.3% 13.0% 14.7%
HR8 2,226,282 37.5% 7,315 43.3% 14.4% 16.6%

Initial haplotype analysis demonstrated that there were rarely more than three alleles

for any given haplotype block (region with little to no discernable recombination events within

the 79 mice analyzed). Therefore, for the final haplotype analysis, hierarchical clustering was

performed with a limit of 3 clusters. 16,901 of these blocks remained variable across the 8 lines
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in generation 61. As would be expected, the number of haplotypes that have not gone to
fixation in each line appears to be proportional to the number of SNPs that have not gone to
fixation (Table 3). Heterozygosity for the haplotypes ranged from 12.2% to 25.5% for individual
mice (Table S3), and 14.7% to 19.6% when averaged per line (Table 3). Heterozygosity for the
haplotype data were not significantly different between HR and C lines (Mann-Whitney U-test,
W=8; p-value=1.0 and W=6; p-value=0.6857, respectively).

Multi-Model vs Single-Model Comparisons

As expected, we found that many, indeed most, loci were better fit by models other than the
"Simple" model used by Xu and Garland (2017). Generally, the “Full” model was the most
preferred, followed by the “Simple” model (Table 4). In general, differences between the p-
values determined by the single and multi-model methods were negligible (Figure S2).

When analyzing data generated under the null hypothesis, the mixed models with
MIVQUE estimation for both single and multi-model produced a deflated Type | error rate for o
= 0.05 (File S8). The multi-model approach helped to correct this, but the Type | error rate did
not improve greatly with the multi-model approach alone. We attempted to utilize the
Kenward Rogers method of determining degrees of freedom to correct this low Type | error
rate, but this did not bring Type | error rate to 0.05 and effectively dropped the nested line
effect for many loci. We did not want to drop the nested line effect because this ignores the
fundamental experimental design of the selection experiment. However, the permutation and
local maxima methods of determining loci of interest are robust to this deflated Type | error
rate (File S8), so we proceeded with our analyses using conservative results produced by the

MIVQUE variance estimation method.
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Table 4 Model preference by data set, test, and allele counts

Model MegaMUGA~“ WGSe Hap 2-allele? Hap 3-allele?
Full 9,875 (39.0%) 2,441,601 (41.2%) 4,512 (40.9%) 5,510 (46.9%)
SepVarLine 3,105 (12.3%) 504,946 (8.5%) 1,052 (9.5%) 1,583 (13.5%)
SepVarInd 2,983 (11.8%) 716,265 (12.1%) 726 (6.6%) 748 (6.4%)
Simple 8,654 (34.2%) 2,186,803 (36.9%) 4,594 (41.6%) 3,615 (30.8%)
# with no

within-line

variance 715 (2.8%) 82,533 (1.4%) 148 (1.3%) 282 (2.4%)

aNumber of SNPS whose lowest AICc match the indicated model

bNumber of haplotype blocks whose lowest AICc match the indicated model (one for each dummy variable for
3-allele blocks)

Three Major Analyses

Whole-Genome Haplotype

No haplotypes were identified as being fixed in all HR lines for one allele and fixed in all C lines
for the opposite allele. The multi-model haplotype analysis produced 102 blocks of significant
differentiation at the p<0.005 (permutations) level. Significant blocks could be found on 13
chromosomes (Figure 1). We consider haplotype blocks within 1,000,000 bp of each other to
be linked and therefore part of the same haplotype group: 28 such groups were determined
(Table 5). These groups include a total of 154 transcribed sequences recognized by the Panther
database for gene ontology. The largest of these groups was found on chromosome

14:52,100,155-54,334,868 bp (Table 5).
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Figure 1 Manhattan plot for haplotype data. Red line indicates p-value <0.005 (see Methods

and Materials), which yielded 28 haplotype groups (see Table 5).

Haplotype Results

4

-log10P

1

Table 5 Significant haplotype groups

Chromosome

ik biabdagblll

Group Chr Start (BP) End (BP) Size (BP) P-value

1 2 43,100,041 43,214,647 114,606 4.42E-03
2 3 51,580,020 51,659,891 79,871 2.25E-06
3 4 89,300,145 89,357,884 57,739 4.92E-03
4 4 155,480,343 155,654,426 174,083 3.94E-04
5 5 108,000,623 108,679,807 679,184 4.85E-04
6 5 118,824,587 119,299,787 475,200 2.15E-03
7 5 132,540,807 133,720,551 1,179,744 1.12E-03
8 6 37,440,411 37,659,588 219,177 3.47E-03
9 6 41,584,862 43,431,434 1,846,572 1.47E-05
10 7 29,640,243 29,697,093 56,850 5.67E-04
11 9 41,240,184 42,275,833 1,035,649 4.90E-07
12 10 75,061,742 75,456,261 394,519 3.99E-03
13 10 103,363,232 104,139,953 776,721 3.94E-03
14 10 105,220,041 105,699,704 479,663 3.72E-03
15 11 79,724,263 81,409,849 1,685,586 1.89E-04
16 11 114,466,946 114,489,018 22,072 2.69E-03
17 14 52,100,155 54,334,868 2,234,713 5.62E-04
18 14 98,380,090 98,679,965 299,875 2.22E-03
19 15 18,960,135 19,759,996 799,861 1.09E-03
20 15 69,120,025 70,219,737 1,099,712 4.53E-03
21 15 71,480,090 71,559,595 79,505 9.91E-04
22 15 86,541,805 86,599,823 58,018 3.55E-03
23 16 31,540,757 33,178,952 1,638,195 2.79E-04
24 16 40,742,298 41,357,426 615,128 1.01E-03
25 17 18,020,933 18,039,390 18,457 3.54E-04
26 17 20,700,046 20,939,819 239,773 3.54E-04
27 17 23,000,233 23,599,776 599,543 3.54E-04
28 17 65,458,617 65,738,255 279,638 1.46E-03
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Whole-Genome SNP

Similarly to haplotypes, no individual SNPs were identified as being fixed in alternative alleles
across all HR on one hand and all C lines on the other. At the p<8.4E-09 critical level
(Bonferroni-corrected), only two SNPs in chromosome 5 were identified to be significantly
differentiated across the entire genome (Figure 2), both in an intron of an uncharacterized gene
(GM34319). The syntenic/orthologous region of both the human and cat genomes correspond
to a coding region (exon 3) of the MYL5 gene (Myosin light chain 5). Due to the small number
of significant SNPs under Bonferroni and the computational difficulties of using permutations

with the multi-model method, we focus on local maxima SNPs.

Figure 2 Manhattan plot for WGS SNP data. Red dots represent local maxima (N = 84).
Whole-Genome SNP Results

wiihailhl

In the local maxima (LM) analyses, the suggestive cutoff (-logP>3.0) produced 38,065

3 9 10 11 12 13 14 15 16 17 18 19
Chromosome

SNPs for analysis. 44 clusters were found, ranging in size from 1 SNP to 3,787 SNPs (Chr9:
41,303,824-42,478,817 bp). The largest single group in terms of genome spanned is on chrl7:
17,846,983-23,586,163 bp (Table 6). From these groups, a total of 84 LM were determined. 31

of these SNPs were associated with 27 unique transcribed regions. 26 of the 27 genes could be
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utilized for GO analysis. Although chromosome 3 had no LM fall into specific genes (despite
clear significance based on the Manhattan plot), the cluster on chr3 (chr3:51,190,735-
52,498,029 bp) includes about 10 validated coding genes and various predicted genes, but none
of the LMs fall in these. However, all three LMs in this group are upstream of Setd7, a
methyltransferase.

The most significant SNPs with no within-line variance fell into three regions. One of
these regions is on chromosome 5 (105-109 mbp), which is close to the LM identified in this
chromosome. Another is on chromosome 16 (44 mbp), about 2.5 million base pair from the LM
on chromosome 16 containing Lsamp, a gene which codes for a neuron-associated membrane
protein. However, the last region falls in chromosome 7 (115 mbp), a chromosome which
contained no LM. This location is downstream of Sox6, a developmental regulator broadly
associated with muscle fiber type composition (van Rooij et al. 2009), hematopoiesis, bone

growth and heart function (Smits et al. 2001).

Table 6 Top 5 largest suggestive regions

Chr Start (BP) End (BP) Size Lowest P
17 17,846,983 23,586,163 5,739,180 7.54E-05
10 103,429,623 105,529,701 2,100,078 3.73E-05
16 31,440,034 33,128,268 1,688,234 7.05E-06
15 18,958,730 20,635,226 1,676,496 8.49E-05
16 16,235,542 17,805,005 1,569,463 7.04E-04

SNPs Fixed in One Treatment and Polymorphic in the Other
SNPs that were fixed in all HR lines and polymorphic in all C lines (FixedHR/PolyC) were grouped
into 95 regions, based on their being separated by at least 100 kbp (Table S2). Here, we were

more strict on the definition of a group than for the haplotype groups (1 mbp) to limit the
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potential for single SNPs to greatly expand the size of a group by their spacing, whereas
haplotypes, being made up of several SNPs, are naturally resilient to such inflation. Some of
these regions are probably not independently segregating (e.g. chrl7: 17,895,909-22,546,405
bp) and might therefore be combined further. Regions varied in size from 1 to 1,626,783 bp.
These regions include or are proximal to (in the case of 1 bp regions) 135 transcribed regions,
including genes, miRNA, and predicted genes. SNPs that were fixed in all C lines and
polymorphic in all HR lines (FixedC/PolyHR) were combined into 64 regions. The size of each
region varies from 1 to 753,066 bp. We expect the 1 bp loci may be spurious but chose to
include them in results for completeness, especially given that the mini-muscle locus involves
only a single base pair (Kelly et al. 2013). These regions include or are proximal to 63
transcribed regions, again including genes, miRNA, and predicted genes. FixedHR/PolyC regions
were also identified in haplotypes. These haplotype blocks overlapped with the SNP regions
identified by FixedHR/PolyC; however, some of the single unlinked loci that met these criteria
were not identified using haplotypes.

Ontology Analyses

General Ontology

GO analysis of biological process for the haplotype data reveal “sensory perception of chemical
stimulus” to be a major term of interest (Table 7). This appears to be caused by various clusters
of olfactory and vomeronasal genes. Many of the most prominent terms appear to be
correlated to these olfactory and vomeronasal gene clusters. Although a single, large group of
closely linked olfactory genes may overrepresent olfactory’s role in selection, we were able to

identify two distinct genomic regions of vomeronasal genes and three such regions of olfactory
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genes.

The biological process GO terms for LM include many results that are consistent with
our previous findings involving the HR mice, including cardiac and myoblast related terms
(Table 8). Regulation of locomotion is among the most statistically significant GO terms.

The FixedHR/PolyC GO analyses indicate terms: complement receptor mediated
signaling pathway and response to pheromone. These terms were significant with a false
discovery rate correction (FDR<0.05), p=7.11E-04 and p=2.40E-07, respectively) (Table 9). For
FixedC/PolyHR, no GO terms were significantly enriched with FDR correction, some novel GO
terms were deemed most significant. Included in these results is also CDP-choline pathway,
which had also been implicated in the haplotype data. The full list of regions for both

FixedHR/PolyC and FixedC/PolyHR can be found in (Table S2).
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500 Table 7 Top Biological process terms from GO analysis for Haplotype

Input Fold Raw
GO Term Total Genes  Genes Expected Enrichment P-Value
detection of chemical stimulus involved in sensory perception of smell 3 1 0.02 47.88 2.74E-02
sensory perception of smell 1,128 27 7.85 3.44 2.46E-08
sensory perception of chemical stimulus 1,228 34 8.55 3.98 5.71E-12
sensory perception 1,641 36 11.42 3.15 7.12E-10
detection of chemical stimulus involved in sensory perception 59 7 0.41 17.04 3.65E-07
detection of stimulus involved in sensory perception 136 8 0.95 8.45 7.40E-06
detection of stimulus 236 9 1.64 5.48 5.40E-05
detection of chemical stimulus 85 7 0.59 11.83 3.53E-06
G protein-coupled receptor signaling pathway 1,853 37 12.9 2.87 4.86E-09
regulation of systemic arterial blood pressure by aortic arch baroreceptor feedback 1 1 0.01 > 100 1.38E-02
system process 2,594 42 18.06 2.33 2.12E-07
multicellular organismal process 7,307 74 50.87 1.45 1.43E-04
nervous system process 2,085 39 14.51 2.69 9.97E-09
sensory perception of sour taste 5 1 0.03 28.73 4.08E-02
sensory perception of taste 71 7 0.49 14.16 1.15E-06
detection of chemical stimulus involved in sensory perception of bitter taste 47 6 0.33 18.34 1.74E-06
sensory perception of bitter taste 51 6 0.36 16.9 2.69E-06
detection of chemical stimulus involved in sensory perception of taste 51 0.36 16.9 2.69E-06

501
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502 Table 8 Top biological process terms from GO analysis for LM

Total Input Fold

GO Term Genes Genes Expected Enrichment Raw P-Value
locomotory exploration behavior 16 1 0.02 53.6 1.96E-02
locomotory behavior 240 4 0.28 14.29 1.72E-04
behavior 685 6 0.8 7.51 1.17E-04
positive regulation by host of viral release from host cell 5 1 0.01 > 100 6.97E-03
positive regulation of viral release from host cell 15 1 0.02 57.17 1.85E-02
regulation of viral release from host cell 31 1 0.04 27.66 3.66E-02
regulation of locomotion 1040 7 1.21 5.77 1.47E-04
negative regulation of cardiac muscle cell proliferation 17 2 0.02 > 100 2.20E-04
negative regulation of cell population proliferation 684 3 0.8 3.76 4.46E-02
negative regulation of cardiac muscle tissue growth 29 2 0.03 59.14 5.94E-04
regulation of cardiac muscle tissue growth 74 2 0.09 23.18 3.53E-03
regulation of cardiac muscle tissue development 98 2 0.11 17.5 6.02E-03
regulation of striated muscle tissue development 160 2 0.19 10.72 1.52E-02
regulation of muscle tissue development 163 2 0.19 10.52 1.57E-02
regulation of muscle organ development 164 2 0.19 10.46 1.59E-02
regulation of heart growth 80 2 0.09 21.44 4.09E-03
regulation of organ growth 114 2 0.13 15.04 8.02E-03
negative regulation of cardiac muscle tissue development 40 2 0.05 42.88 1.09E-03
negative regulation of striated muscle tissue development 64 2 0.07 26.8 2.67E-03
negative regulation of muscle organ development 66 2 0.08 25.99 2.83E-03
negative regulation of muscle tissue development 67 2 0.08 25.6 2.92E-03
negative regulation of heart growth 29 2 0.03 59.14 5.94E-04
bundle of His cell-Purkinje myocyte adhesion involved in cell communication 6 1 0.01 >100 8.13E-03
bundle of His cell to Purkinje myocyte communication 13 1 0.02 65.96 1.62E-02
cell communication involved in cardiac conduction 32 0.04 26.8 3.78E-02
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multicellular organismal signaling
cardiac muscle cell-cardiac muscle cell adhesion
cell-cell adhesion
cell adhesion
biological adhesion

negative regulation of cellular extravasation
negative regulation of leukocyte migration
regulation of leukocyte migration
regulation of cell migration
regulation of cell motility
negative regulation of cell migration
negative regulation of cell motility

negative regulation of cellular component movement

definitive hemopoiesis
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389
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799
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276
289
323

21

A O W LN

B D U1 U NN R

0.13
0.01
0.45
0.92
0.93

0.01
0.05
0.24
1.06
1.12
0.32
0.34
0.38

0.02

15.73

>100
6.61
6.52
6.44

>100
41.83
8.21
4.7
4.45
12.43
11.87
10.62

81.67

7.37E-03
9.28E-03
1.04E-02
2.50E-04
2.68E-04

1.04E-02
1.14E-03
2.49E-02
3.71E-03
4.67E-03
2.91E-04
3.46E-04
5.24E-04

3.25E-04
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506 Table 9 Top GO results for FixedHR/PolyC implicated genes

Total Input Fold Raw
GO Term Genes Genes Expected Enrichment P-value
response to pheromone 104 8 0.63 12.7 3.93E-07
complement receptor mediated signaling pathway 13 4 0.08 50.82 2.81E-06
phospholipase C-activating G protein-coupled receptor signaling pathway 91 5 0.55 9.07 2.89E-04
exocytic insertion of neurotransmitter receptor to postsynaptic membrane 8 3 0.05 61.93 3.40E-05
regulation of postsynaptic membrane neurotransmitter receptor levels 62 3 0.38 7.99 7.09E-03
neurotransmitter receptor transport to postsynaptic membrane 20 3 0.12 24.77 3.46E-04
neurotransmitter receptor transport to plasma membrane 21 3 0.13 23.59 3.93E-04
vesicle-mediated transport to the plasma membrane 90 3 0.54 5.51 1.87E-02
neurotransmitter receptor transport 40 3 0.24 12.39 2.21E-03
establishment of protein localization to postsynaptic membrane 21 3 0.13 23.59 3.93E-04
protein localization to postsynaptic membrane 44 3 0.27 11.26 2.85E-03
protein localization to synapse 76 3 0.46 6.52 1.21E-02
receptor localization to synapse 51 3 0.31 9.72 4.23E-03
calcium ion import across plasma membrane 9 2 0.05 36.7 1.91E-03
calcium ion import into cytosol 10 2 0.06 33.03 2.28E-03
calcium ion transport into cytosol 69 3 0.42 7.18 9.40E-03
positive regulation of cytosolic calcium ion concentration 292 7 1.77 3.96 2.26E-03
regulation of cytosolic calcium ion concentration 340 8 2.06 3.89 1.25E-03
cellular calcium ion homeostasis 446 10 2.7 3.7 4.48E-04
calcium ion homeostasis 463 10 2.8 3.57 5.95E-04

507
508
509

30



510

511

512

513

514

515

516

517
518

519
520

521

522

523

524

525

526

527

528

529

530

Targeted Ontology

The gene search for specific ontologies produced 45-820 genes and 7,315-143,507 SNPs
associated with each search (Table 10). The top ten genes were chosen based on the most
significant SNP within the gene (Table S4). The most significantly differentiated SNPs were
generally found in genes associated with the brain, followed by bone and muscle related genes.
Surprisingly, the reward-related ontologies (dopamine and serotonin) did not contain as strong

evidence for differentiation as the others.

Table 10 Summary of ontology search.

Search Term Total Genes Total SNPs Top Genes Top P-value
Dopamin* 254 43,890 Gnb1, Fpre, AdoraZa 1.33E-04
Serotonin 45 7,315 Htr7, Chrm2, Btbd9 9.33E-03
Osteo* 491 56,091 Noct, Nf1, Mmp14 3.76E-05
Cardiac 820 143,507 Myh11, Thx5, Dig1 7.25E-06
"Skeletal Muscle" 295 39,383 Kel, Foxp1, Nf1 5.23E-06
Brain 667 123,416 Sorll, Gak, Fbxo45 1.92E-07

Genes are listed from most significant to least significant by SNP with lowest p-value
a Includes: Fprl, Fpr2, Fpr3, Fpr-rs4 (all closely linked)

Consistent Regions Identified Across Multiple Analyses

The major analyses (LM, haplotype, and FixedHR/PolyC) individually implicate about 80, 24, and
46 differentiated genomic regions, respectively. Combined, 61 unique regions across the
genome are indicated, including at least one region on every chromosome. Of these 61
regions, 12 are found in all three analyses (Table 11). These 12 consistent regions span just
over 27.4 mbp and include 300 validated and predicted genes. Of the 300 genes, 77 are either
olfactory or vomeronasal genes, which are predominantly located in two large regions on
chromosomes 14 and 17. Surprisingly, many of these regions do not contain many of the most

differentiated SNPs according to the multi-model MIVQUE analyses, but do have at least one
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531  SNP with p<0.001 by the LM criteria.

532
533 Table 11 Genomic regions implicated by LM, haplotype, and FixedHR/PolyC analyses
Chr First BP Last BP Included Genes
5 108,000,623 108,679,807 Tmed5, Ccdc18, Pigg, Mfsd7a, Gak, Tmem175, Slc26al
6 41,584,862 41,918,440 Trpv5, Trpvé, Ephbé, Kel, Licfc1, Olfr459
7 29,603,841 29,697,093 Catsperg2
9 41,240,184 42,275,833 Sorll, Mir100hg, Mir100, Mir125b-1, Mirlet7a-2, Thcel“
11 79,724,263 80,090,780 Atad5, Suz12, Utpé6, Crif3
11 112,227,183 114,489,018  BC006965, Sox9
14 52,072,148 53,779,979 Olfr®, Trav®
14 97,645,171 98,679,965 Dach1
15 18,960,135 20,609,074 Cdh10, Gm35496
15 71,023,429 71,559,595 Fam135b
16 31,540,757 33,178,952 Gmb536, Rnf168, Ubxn7, Fbxo45, Tnk2, Tnk2o0s
17 17,895,909 22,396,753 Vmn2r?

534 2 Tbcel is most differentiated gene in genome based on median p-value
535 b Several genes in this gene family were represented in this region
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DISCUSSION

Variation in Genetic Diversity

For the present sample of 79 mice from generation 61, based on the polymorphic SNPs within
each line (Table 2), each of the lines continues to retain approximately 34-48% of the total
diversity across all 8 lines. Such a drop in genetic diversity would be expected after 61
generation with ~10 breeding pairs per generation per each line. We found no evidence that
HR and C lines had differing levels of genetic diversity, averaged across the whole genome.
Consistent Regions from Multiple Analyses

Many of the identified regions span too many genes to allow ready identification of a
candidate. However, a few of the regions contain a limited number of genes for which the
reported functions make sense in the context of directional selection for high voluntary wheel-
running behavior (from first principles of physiology and neurobiology) and/or given previously
identified differences between the HR and C lines (see Introduction). Given the rich
phenotyping literature on the HR mouse selection experiment (more than 150 publications), we
discuss a relatively large number of genes. Additional regions are covered in supplemental
material (File S9).

The region identified on chromosome 5 includes 16 genes (excluding predicted and non-
coding), three of which were previously identified as differentially expressed in the striatum of
the HR and C mice (Saul et al. 2017). These genes include Tmed5, Gak, and Mfsd7a. Tmed5 is a
trafficking protein associated with cell proliferation and WNT7B expression in Hela cells (Yang
et al. 2019). Mice knockouts in Gak are generally lethal to adult and developing mice causing

various abnormal symptomes, including altered brain development (Lee et al. 2008). Mfsd7a
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(aka S/c49a3) has been associated with ovarian cancer, but much remains unknown about this
gene (Khan and Quigley 2013).

The region on chromosome 6 includes Trpv5 and Kel, both of which are associated with
KO phenotypes that may be tied to known differences between the HR and C lines. Trpv5 KO is
associated with phenotypes related to structural changes in the femur and kidney physiology
(Hoenderop et al. 2003; Loh et al. 2013), both of which differ between HR and C lines (Swallow
et al. 2005; Castro and Garland 2018). Trpv5 is also associated with calcium homeostasis
(Hoenderop et al. 2003; Loh et al. 2013). Kel is a blood group antigen with KO phenotypes
affiliated with weakness, gait and motor coordination, neurological development, and heart
function (Zhu et al. 2009, 2014). Previous experiments have shown the HR and C mice to have
differences in heart physiology (Kolb et al. 2013a), gait and motor coordination (Claghorn et al.
2017), and brain development (Kolb et al. 2013b).

The region on chromosome 9 contains various predicted genes and miRNA, but also one
large gene of interest, Sorl1 (aka SorlA). This gene is also implicated in our targeted search for
genes related to the brain (Table 10). Sor/1 codes for a sorting receptor that has been
associated with various neural and metabolic diseases (Schmidt et al. 2017). Although some of
the associated phenotypes, such as obesity, may have some correlation to phenotypic
differences between HR and C mice, such as difference in body fat (Swallow et al. 2001;
Vaanholt et al. 2008; Hiramatsu and Garland 2018), this does not directly answer the question
of how Sorl1 influences running behavior. Mouse knockouts in this gene have not shown
changes in running gait (Rohe 2008), whereas differences in gait do exist between HR and C

mice (Claghorn et al. 2017). However, these treadmill tests do not address exercise motivation,
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which might be influenced by such a neurobiologically relevant gene. Additionally, a more
significantly differentiated haplotype can be found over 150,000 bp downstream of Sor/1,
containing various predicted genes and miRNA. Therefore, further studies will be required to
determine precisely the elements of this region that modulate wheel running. Although Tbcel is
near this consistent region rather than included in it, it is the most differentiated gene in the
genome (based on median p-value of included SNPs, p= 4.01E-07). This gene is known to
regulate tubulin activity in sperm and the nervous system (Nuwal et al. 2012; Frédéric et al.
2013).

One region on chromosome 11 contains numerous genes of potential interest. One LM
within this region is proximal to a handful of genes that may be influencing the HR phenotype,
including: Tefm, Adap2, Crlf3, and Suz12. These genes are associated with KO phenotypes
including enlarged heart and decreased body weight (Jiang et al. 2019), blood cell
concentration (White et al. 2013), and brain morphology (Miro et al. 2009). All of these
phenotypes have been found to differ between HR and C mice (Kolb et al. 2013b; Thompson
2017; Singleton and Garland 2019).

One region on chromosome 14 includes almost exclusively Dach1, which is an important
regulator for various early developmental genes. Dachl is a regulator of muscle satellite cell
proliferation and differentiation (Pallafacchina et al. 2010). Although knockouts of Dachl in
mice do not appear to disrupt limb development (Davis et al. 2001), Dachl mutants sometimes
have stunted leg development in Drosophila (Mardon et al. 1994). Furthermore, Dach1 has
been shown to localize around limb budding regions and interact with known limb patterning

genes in both mice and poultry (Horner et al. 2002; Kida 2004; Salsi et al. 2008). Studies of
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602  skeletal muscle (Garland et al. 2002; Bilodeau et al. 2009) and of the peripheral skeleton show
603  several differences between HR and C lines of mice (Garland and Freeman 2005; Kelly et al.
604  2006; Castro and Garland 2018; Schwartz et al. 2018). This gene has also been implicated in the
605 development and function of the kidneys (Koéttgen et al. 2010), which have been shown to be
606 larger in the HR lines than C lines in some studies (Swallow et al. 2005).

607 A region on chromosome 15 includes Cdh10 among a few predicted genes. GO links
608  Cdh10 to both “calcium ion binding” and “glutamatergic synapse,” terms that occasionally

609  produced suggestive p-values for enrichment searches in our differentiation analyses (Table 7,
610 Table 9). These terms could have various implications for the HR mice. Cdh10 specifically is a
611  cadherin with extensive expression in the brain (Liu et al. 2006; Matsunaga et al. 2015). This
612  gene has been shown to have increased expression in phrenic neurons (Machado et al. 2014),
613  potentially modulating diaphragm movement, and increased functionality of the diaphragm
614  could partly underlie the elevated maximal rate of oxygen consumption during exercise

615 (VOzmax) observed in HR lines (Kolb et al. 2010; Hiramatsu et al. 2017; Singleton and Garland
616  2019). Cdh10is also known to have increased expression of genes associated with olfactory
617  system development (Akins et al. 2007), which could be corroborated by the other two

618  consistent regions associated with olfactory and vomeronasal (see Results, General Ontology).
619  The other region detected on chromosome 15 currently only contains Fam135b among its

620 annotations. Few studies have been conducted involving the function of Fam135b, but

621  evidence indicates it has an important role in spinal motor neurons based on a > 10,000-fold
622  decrease in expression in spinal and bulbar muscular atrophy models (Sheila et al. 2019).

623 The region we identified on chromosome 16 contains various genes that may influence
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wheel running behavior. One example is Fbxo45, which has demonstrated itself essential for
neuronal development (Saiga et al. 2009) and synaptic transmission (Tada et al. 2010). One
gene that particularly caught our attention was Pcytla, which is an important modulator of the
CDP-choline pathway, catalyzing the formation of CDP-choline (Andrejeva et al. 2020), also
known as citicoline. Citicoline has been researched extensively for its clinical applications and
has demonstrated capacity to stimulate dopamine synthesis in nigrostriatal areas (Drago et al.
1989, cited in Secades and Lorenzo 2006), which are important for exercise and reward (Wise
2009). Additionally, CDP-choline has shown evidence of modulating dopamine receptors in the
striatum (Giménez et al. 1991).

Ontology

General Ontology

The GO analyses in this paper serve two functions. The first includes determining pathways
that have been influenced by the selective breeding protocol. Additionally, the vast
publications and data on various morphological and physiological differences between the HR
and C lines provide insight into differentiated biological processes.

The Haplotype and Fixed/Poly methods of identifying differentiated genes had
considerable overlap between genes and regions identified, which seems to result in similar GO
terms for these analyses. The term “sensory perception of chemical stimulus” is expected,
given the large number olfactory and vomeronasal genes present in some of these regions.
Selection for such genes is likely in response to how the mice are tested for wheel running. For
logistical reasons, approximately 2/3 of the mice tested in a given generation were measured

on wheels that had not been washed since the previous mouse was on that same wheel,
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although the attached cages were fresh (Dewan et al. 2019). The scent of the previous mouse
would potentially elicit different running behavior, dependent on these vomeronasal and
olfactory genes (e.g., see Drickamer and Evans 1996). We checked the Allen Brain Atlas for
some of these genes (particularly those in the consistent region on chromosome 17) and found
that only a few of these olfactory and vomeronasal genes had data. One of these includes
Vmn2r107, with expression most consistent around the olfactory bulb. However, Olfr1509 had
expression levels seemingly around the anterior cingulate cortex, a region associated with
cognitive control of motor behavior (Holroyd et al. 2004). GO terms related to postsynaptic
neurotransmitters were largely indicated by three genes. Cp/x1 has been linked to severe
ataxia and movement limitations in knockout rats (Xu et al. 2020), DIg1 (aka SAP97) is a
scaffolding protein that localizes glutamate receptors in postsynaptic membranes and has
shown altered expression in rats exposed to cocaine (Caffino et al. 2018), and Shisa6 has been
associated with the localization of AMPA (a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid) receptors (Klaassen et al. 2016), which have shown reduced expression after prolonged
cocaine exposure (Cooper et al. 2017). Such terms are perhaps not surprising, given
observations of the HR mice having larger midbrains and altered reward mechanisms (Belke
and Garland 2007; Mathes et al. 2010; Garland et al. 2011b; Keeney et al. 2012; Kolb et al.
2013b; Thompson et al. 2017).

The local maxima GO results are generally quite different from the haplotype and
Fixed/Poly analyses. This is partially attributable to less overlapping of identified genomic
regions. Additionally, LM is useful for gene culling to reduce influence of hitchhiking genes in

the GO analyses. Many of the top terms for LM genes are associated with heart development

38



668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

and function. Heart ventricle mass is greater in the HR mice (Kolb et al. 2013a; Kelly et al. 2017;
Kay et al. 2019) and correlates with VO,max in both HR and C mice (Rezende et al. 2006). The
genes most associated with cardiac development include Pkp2, Myh11, and Thx5 (also a
forelimb regulator). Forelimb development may be altered in the HR mice, while humerus sizes
do not seem to differ (Copes et al. 2018), differences have been found in metatarsal and
metacarpal lengths (Young et al. 2009).

Targeted Ontology

As the target ontologies were chosen based on structures and systems known to have been
altered by the selective breeding regimen, we would expect to find at least one gene of each
ontology that would contain a differentiated SNP. Of these ontologies, “serotonin” and
“dopamine” are associated with some of our less impressive p-values (Table 10), with many of
the top dopamine-related genes (Fprl, Fpr2, Fpr3, and Fpr-rs4) being present potentially
because of linkage to highly differentiated vomeronasal genes (Table 10). However, expression
data from the Allen Brain Atlas implicates the Fpr-rs3 gene as being highly expressed in nucleus
raphe obscurus. The nucleus raphe structure is well established for modulating serotonin
(Walker and Tadi 2020) and the obscurus region itself has been implicated in modulating
respiratory neurons (Lalley et al. 1997). As Fpr-rs3 is the most differentiated gene of the FPR
family (median p=0.000393 over 6 SNPs), it may be contributing to the selection signature of
this genomic region rather than simply hitchhiking. The most significantly differentiated loci in
a dopamine-related gene are in Gnb1, part of the GBy complex, which activates Girk2 in
dopamine neuron membranes (Wang et al. 2016). We are surprised not to have found more

impressive results for dopamine-related genes, given clear differences in dopamine function
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between the HR and C mice (Rhodes et al. 2001, 2005; Rhodes and Garland 2003; Bronikowski
et al. 2004; Mathes et al. 2010). A possible explanation for this is that trans-regulating sites for
these genes have been more influenced by the HR selection regime (Kelly et al. 2012; Nica and
Dermitzakis 2013). Unfortunately, a limitation of the current study is it lacks the necessary
expression data to identify trans-regulating SNPs (Kelly et al. 2012, 2014).

The remaining ontologies (bone, cardiac, skeletal muscle, and brain) all have at least one
gene containing a SNP with p <0.0001 (Table 10). Some of these are included with our LM
genes, such as Myh11 (a myosin gene affiliated with the “cardiac” tag) and Sor/1 (“Brain” tag).
However, some of these are not present among the LM list. Kel, described above as influencing
various phenotypes relevant for high running behavior, may appear to be a confusing “miss” for
the LM detection process, with a p-value = 1.49E-05. However, the region does have two local
maxima, neither of which land in genes, but one is about 15,000 bp upstream of Kel. This might
be taken as evidence that the LM approach to determining affected genes ought to be modified
to better catch nearby genes that could be affected.

The expression patterns of the top genes implicated by the “brain” targeted ontology
were determined using the Allen Brain Atlas. The top 4 genes (Sorl1, Gak, Fbxo45, and Tbx3)
showed interesting consistency in their expression patterns. Sorl1, Gak, and Fbxo45 all have
increased expression around the hippocampus, which has been associate with spatial learning
(Schiller et al. 2015) and may play a role in addiction (Koob and Volkow 2010). Sorl1, Gak, and
Tbx3 have higher expression in the retrospenial area, which has also been suggested as a
potential modulator of spatial memory (Vann et al. 2009), potentially in coordination with the

hippocampus (Schiller et al. 2015). Gak and Thx3 both have notable expression levels in the
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712 retrohippocampal region, particularly the entorhinal cortex, which is thought to modulate

713  movement speed (Geisler et al. 2007; Kropff et al. 2015; Ye et al. 2018). Additionally, Gak,

714  Fbxo45, and Thx3 have high expression in olfactory regions.

715 The hippocampus has been linked to the regulation of speed during locomotor behavior
716  in both mice and rats by theta (Li et al. 2012; Fuhrmann et al. 2015; Sheremet et al. 2019),

717 gamma (Chen et al. 2011; Ahmed and Mehta 2012), and delta oscillations (Furtunato et al.

718  2020). Notably, the difference in daily running distance between HR and control lines is

719  attributable mainly to an increase in average (and maximum) running speed, rather than the
720  duration of running, especially in females (e.g., see Garland et al. 2011a; Claghorn et al. 2016,
721  2017; Copes et al. 2018; Hiramatsu and Garland 2018). Another consideration is the impact of
722 physical activity on neurogenesis in the hippocampus (Rhodes et al. 2003b; Clark et al. 2010;
723  Rendeiro and Rhodes 2018), which, perhaps, could create a sort of feedback loop relating to
724  running speed.

725  Comparison with Previous Studies

726  Exercise behavior and the genetic factors that affect it have been the subject of various other
727  GWA and gene expression studies in mice, as well as comparisons of inbred strains (Reviews in
728  Kostrzewa and Kas 2014; Lightfoot et al. 2018). In general, these previous studies do not show
729  strong agreement with each other. The primary exception is that several studies have

730  implicated dopamine pathway genes (Bronikowski et al. 2004; Lightfoot 2011; Dawes et al.

731  2014; Roberts et al. 2017). This is of little surprise, as dopamine has been long recognized as a
732  primary neurotransmitter involved with physical activity (Freed and Yamamoto 1985; Rhodes et

733  al. 2005). As another example of consistencies across previous studies, Dawes et al. (2014)
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found differential gene expression in C57L/J (high running) and C3H/HelJ (low running) inbred
strains for Mstn, a gene previously implicated by Lightfoot et al. (2010) using 41 inbred strains
of mice to associate alleles with wheel running. Mstn is established as a regulator of skeletal
muscle proliferation (Grobet et al. 1997; Amthor et al. 2007; Mosher et al. 2007). The present
study contributes several new regions that have not been previously identified (see above).
However, we can also identify examples of overlapping results.

We first compiled a list of genes from our study that contain at least one variable SNP
(see Materials and Methods). For each gene, all of the SNPs within the transcribed or promotor
region were accumulated and the lowest p-value and median p-value (from supplemental File
S4) were recorded. These are presented in supplemental File S11. We then cross-reference
these p-values (with emphasis on median p-value) against the regions and genes identified by
previous studies. This method is limited by not addressing regulatory loci located outside the
promotor and transcribed region. For the previous studies, we focused on regions, SNPs, and
genes that were specifically associated with running distance, rather than speed or duration of
running (if reported), as the HR mice were specifically bred for running distance.

Shimomura et al. (2001) performed an F2 cross between BALB/cJ and C57BL/6J and
mapped daily running levels in constant darkness. Although the primary purpose of their study
was to identify circadian QTL, two regions were associated directly with wheel-running
distance. One of these regions is on chromosome 16 (97,608,543-97,608,688 bp, mm10), not
far from one of our local maxima (96,795,226 bp, p=4.97E-04).

A study involving a cross between high- and low-running inbred strains located several

markers on both chromosome 9 and chromosome 13 (Lightfoot et al. 2008). Although none of
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these markers fall within our own significant region on chromosome 9 (about 41,000,000 to
42,000,000 bp), one of the markers identified by Lightfoot et al. (2008) on chromosome 9 is
only about 500,000 bp from the gene Leol. For our sample of mice, only one SNP in this gene
was polymorphic, and it was in the non-coding region (File S11: p=0.00186)

Lightfoot et al. (2010) used haplotype association mapping to identify 12 QTL associated
with wheel running among 41 inbred strains of mice. One of the regions they identified on
chromosome 5 (114,584,508-117,669,848 bp after conversion to mm10) is intriguingly close to
one of our own haplotype regions (118,824,587-119,299,787 bp, Table 5). Additionally, we
detected a local maximum on chromosome 12 (88,919,735 bp, p=7.54E-05) near their identified
haplotype (88,113,842-88,220,086 bp, mm10). Lightfoot et al. (2010) also identified a region on
chromosome 13 (95,477,271-95,863,515 bp, mm10), which coincides with a few of our
FixedHR/PolyC loci (95,595,237-95,947,205 bp). Aside from these, the best example of
similarity with the present study is a gene on chromosome 8 (Galnt/6) that was found as
suggestive in the current study (File S11, median p=0.039, SNPs=5,925). Lightfoot et al. (2010)
also identified a region on chromosome 12, about 0.5 mbp upstream of Nrxn3. Both our LM
and FixedHR/PolyC methods indicated this gene as a strong candidate, with a segment of intron
1 containing several low p-values (median p=2.04E-04, SNPs=195), but it was not listed as a
consistent region because the haplotype results did not produce a significant haplotype near
Nrxn3. Nrxn3 is a single-pass transmembrane protein found in presynaptic terminals and
functions as a cell adhesion molecule (Stoltenberg et al. 2011; Kasem et al. 2018). Nrxn3
creates particular interest in that it is associated with various addictive behaviors (Zheng et al.

2018), which is consistent with evidence that the HR mice are to some extent addicted to
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running (Rhodes et al. 2005; Kolb et al. 2013b). Previous work has associated Nrxn3 with
addictive behaviors involving nicotine (Wolock et al. 2013) and opioids (Lachman et al. 2007),
predominantly through association and expression studies (Kasem et al. 2018). Exercise
addiction is not a new concept, but remains controversial (Nogueira et al. 2018).

QTL mapping of the G4 intercross of C57BL/6J with one of the four HR lines implicated a
region on chromosome 7 (101 — 130 mbp) that contains numerous olfactory/vomeronasal
genes (Kelly et al. 2010). We identified FixedHR/PolyC SNPs within that region at 127,385,309 -
127,947,542 bp. We also identified vomeronasal genes on chromosome 17. (Kelly et al. [2010]
reported other QTL associated with running on the first two days of wheel exposure, but this
phenotype may reflect variation in neophobia more than exercise motivation or ability.)

Saul et al. (2017) performed expression analysis using the striatum of the HR and C lines
from generation 66. The mice were sampled after several hours of wheel deprivation, which is
believed to induce high expression of motivation-related genes (Rhodes et al. 2003a). Some of
their highlighted differentially expressed genes include: Htrlb, Slc38a2, Tmed5,
5031434011Rik, Gak, Mfsd7a, and Gpr3. Tmed5, Gak, and Mfsd7a are all found within a highly
differentiated region in our SNP data (median p=4.85E-04 for all three genes, SNPs=671, File
S11). Although 5031434011Rik and the associated Setd7 are not found within our consistent
regions (due to no FixedHR/PolyC SNPs), they both contain many of the most differentiated loci
of individual SNP analyses (median p=3.78E-05, SNPs=4). Knockouts of Setd7 (aka Set9) have
been associated with altered lung development and morphology (Elkouris et al. 2016). Lung
differences in the HR and C lines have not been greatly explored. Three studies have reported

no statistical difference in lung mass (Meek et al. 2009; Kolb et al. 2010; Dlugosz et al. 2013),
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800  but an unpublished study of males from generation 21 found that HR lines tended to have

801  higher pulmonary diffusion capacity and capillary surface area determined via morphometry (T.
802  Garland, and S. F. Perry, personal communication), and a study of females from generation 37
803 reported a trend for HR mice to have higher dry lung mass (Meek et al. 2009; Kelly et al. 2017).
804  We are uncertain of what Setd7 may be doing in the brain. However, the Allen Brain Atlas does
805 indicate increased expression levels of Setd7 in the sensory regions of the midbrain, motor

806 related regions of the medulla, and the cerebellar cortex, which has been associated with

807  motor function and reward (Doya 2000). Furthermore, Setd7 has been shown to modulate pain
808 and inflammation following nerve injury, potentially enabling an individual to proceed to

809  exercise despite injury (Shen et al. 2019).

810 Overall, studies attempting to identify the genetic underpinnings of exercise behavior in
811 rodents have produced a wide variety of results. We can offer several reasons for such

812  inconsistencies. First, some of these studies address gene expression (Bronikowski et al. 2003,
813  2004; Dawes et al. 2014; Saul et al. 2017) and eQTL (Kelly et al. 2012, 2014), which will

814  commonly implicate different genetic factors for complex traits than studies looking at genetic
815  variants, likely as a result of complex interactions between genetic variants and gene

816  expression (Bouchard 2015; Parker et al. 2016). Second, some studies compare inbred strains
817  (Lightfoot et al. 2008, 2010; Dawes et al. 2014) with very different genetic histories and likely
818  different biologically significant alleles available to them than in the Hsd:ICR mice that formed
819  the basis for the present selection experiment. Furthermore, a trait as complex as voluntary
820 exercise (Lightfoot et al. 2018) would be expected to have numerous underlying subordinate

821  traits which, in turn, could have innumerable potential genetic factors modulating them
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(Garland et al. 2016; Sella and Barton 2019). Finally, in the current study, we sought to detect
specifically those factors that are shared across all 4 HR lines, which likely does not reflect all of
the exercise-relevant loci that vary among the replicate HR lines. However, those alleles
implicated by all four HR lines arguably provide the strongest evidence for biologically
significant regions in this selection experiment and also for the Hsd:ICR base population.
Mini-Muscle Allele

The mini-muscle phenotype was discovered in the HR selection experiment and is associated
with alterations in various organs, especially skeletal muscle, but also including heart, kidney,
and overall body mass of the mice (Swallow et al. 2005; Meek et al. 2009; Kolb et al. 20133;
Talmadge et al. 2014; Kay et al. 2019) as well as behaviors (Kelly et al. 2006; Singleton and
Garland 2019). This phenotype is caused by a single recessive SNP mutation located in an Myh4
(myosin heavy polypeptide 4) gene (Kelly et al. 2013). Mice expressing the mini-muscle
phenotype have often been found to run faster and sometimes for longer distances than other
HR mice (Kolb et al. 2013a). This polymorphism was lost, presumably via random genetic drift,
from all lines except for HR lines 3 (where it went to fixation) and line 6 (where it remains
polymorphic with the wildtype allele). Population-genetic analyses indicate that the allele was
under positive selection in the HR lines (Garland et al. 2002). The current WGS data show
(generation 61) that the mutation is still only present in lines 3 (fixed) and 6, with allele
frequency of 0.65 in line 6. As the mini-muscle phenotype appears to enable faster overall
running on wheels at the cost of running duration, it has been regarded as an alternative
“solution” to the selection criterion (Garland et al. 2011a), not unlike the concept of “private”

alleles (Martin et al. 1996). Such a mutation is expected to change the genetic background of
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line 3 (and to a lesser extent, line 6) giving rationale to analyzing these lines separately for
possible QTL, in future studies.

Allele Frequency Implications

The general pattern of allele frequencies across the replicate lines can be used to infer patterns
of selection. Table 12 includes some of the potential profiles that could possibly be observed
and (for the most part) were observed in the WGS data.

Profile 1 No observed genetic variation. For our 79 mice, this accounts for about 99.8% of the
genome (Table 2).

Profile 2 Fixation for alternate alleles in the two selection treatments would imply opposing
directional selection, as might occur in experiments with replicate lines selected for high versus
low values of a trait. The HR mouse selection experiment includes high-selected and control
treatments, but not a low-selected treatment. Thus, fixation for alternate alleles in the HR and
C lines would not necessarily be expected, and indeed was never observed for either the WGS
data or the MegaMUGA data reported previously (Xu and Garland 2017). Importantly, even
data from selection experiments that include high- and low-selected treatments are not
showing much evidence of fixation for alternate alleles (Burke et al. 2010; Lillie et al. 2019).
Profile 3 Stabilizing selection or random drift for one group and directional selection for the
other. This was the focus of the scans for loci fixed in all lines of one linetype and polymorphic
in all lines of the other (Fixed/Poly) in our own haplotype and WGS data and produced several
prospective regions of interest. The fixed allele can either be entirely the reference (0) or
alternative (1).

Profile 4 Selection for test group 2 but evidence of drift for group 1 (likely caused by little to no
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selection). Some of the loci of the WGS SNP data meet this profile. For example, Chromosome
11: 96,332,082 bp (p=0.051).
Profile 5 Random genetic drift for both test groups. Such loci will be among those analyzed,

but this pattern of differentiation is unlikely to result from the selective breeding regimen.

Table 12 Potential fixation profiles

Test Group 1 Test Group 2
Profile Rep 1 Rep 2 Rep 3 Rep 4 Rep 1 Rep 2 Rep 3 Rep 4
1 0 0 0 0 0 0 0 0
2 0 0 0 0 1 1 1 1
3 Het Het Het Het 0 0 0 0
4 0 0 1 1 0 0 0 0
5 0 0 1 1 0 0 1 1

In general, as with any population that is relatively well adapted to the prevailing
environmental conditions, breeding colonies of laboratory house mice maintained under
standard vivarium housing conditions should experience continuing stabilizing selection at
many loci. Under standard housing conditions, an allele with a strong positive influence on
wheel running, or activity in cages without wheels, might be disfavored if it were negatively
associated with such aspects of the life history as litter size or maternal care. In contrast, under
the conditions of the HR mouse selection experiment, an allele with a strong positive influence
on wheel running might be expected to go to fixation rapidly in all HR lines in a manner
consistent with a "complete sweep" (Burke 2012). Thus, to fix an allele, directional selection in
the HR lines must be strong enough to overcome a presumed prevailing background of
stabilizing selection and possibly negative selection. Regions that are FixedHR/PolyC (profile 3)

should, therefore, be indicative of relatively strong directional selection in the HR lines.
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886 Alternatively, some loci may have come under stabilizing selection in the HR lines, e.g.,
887  due to heterozygote advantage or epistatic interactions with other loci, preventing them from
888  going to fixation. Hence, we also examined loci polymorphic in all HR lines but fixed in all C
889 lines (FixedC/PolyHR). The GO analyses of the included genes in these regions were

890  consistently less significant (raw p=>0.0026 for all implicated terms). However, such terms as
891  “synapse assembly” and those related to glycerolipids emerged may merit further exploration.
892 Interpretation of the Four Models

893  The four models in the multi-model analysis were included to allow for different variance

894  structures within and between the HR and C linetypes. The within-line variance is the variability
895  of allele frequency among the ~10 mice within each line. This variance is zero when a line is
896 fixed for one allele or another, but maximized when 5 mice within each line are homozygous for
897  one allele while 5 mice are homozygous for the other. The among-line variance indicates how
898 different the replicate lines within a linetype are from each other. This variance component is
899  minimized when all four lines within a linetype are fixed for the same allele, but maximized
900 when two lines are fixed for one allele while two lines are fixed for the other.

901 In principle, both the within-line and among-line variances can differ between the two
902 selection treatments (linetypes); hence, the Full model includes separate estimates of both
903  within- and among-line variances. For wheel running in later generations of the selection

904 experiment, a full model has been shown to fit well (Garland et al. 2011a). The SepVarind

905 model includes only the within-line variance. The SepVarLine model includes only the among-
906 line variance. Lastly, the Simple model does not include either of these two variances, and

907 corresponds to the single model used by Xu and Garland (2017).
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As expected, we found many loci that were better fit by models other than the Simple
model used by Xu and Garland (2017) (Table 4). Figure 3 gives examples. In A, the Full model is
implemented because C lines exhibit very little within- and among-line variance while HR lines
exhibit both. In B, the SepVarlnd model is used because C lines have high within-line variance
(while HR lines are comparatively low), but both have similar among-line variance. In C,
SepVarLines model is used because nearly all lines contain very little within-line variance (6 are
fixed for a single allele), but C lines, being fixed for opposing alleles, creates different among-
line variance. D identifies a Simple model locus because these variances are roughly the same
for the different linetypes. E represents a locus with no within-line variance and thus could not
be analyzed with the mixed model ANOVA like other loci. However, use of multiple models did
not increase the number of loci identified as statistically significant based on repeat analyses of

the MEGAMuga data with both methods (Figure 1).
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the MegaMUGA data (Xu and Garland 2017). This includes example data that were best fit by
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SUMMARY, LIMITATIONS, AND FUTURE DIRECTIONS

Exercise, or the lack of exercise, has far-reaching medical and financial implications (Manley
1996; Booth et al. 2012; Carlson et al. 2015). Numerous studies have provided strong evidence
for the existence of genetic underpinnings of exercise behavior and physical activity (Kostrzewa
and Kas 2014; Lightfoot et al. 2018), including in the High Runner mouse selection experiment
(Bronikowski et al. 2003, 2004; Careau et al. 2013; Saul et al. 2017; Xu and Garland 2017). Here
we have used three different analytical methods with whole-genome sequence data to address
the genetic basis of the 3-fold increase in daily running distances observed in the four replicate
selectively bred HR lines of mice. These methods include haplotype and SNP statistical analysis,
as well as non-statistical analysis of fixation patterns in HR and C lines.

The intersection of multiple analyses indicated 61 genomic regions of differentiation,
with 12 identified as of particular interest. These regions include genes known to influence
systems that have already been demonstrated to differ between HR and Control mice, such as
response to conspecific odors, brain development, body weight, and relative heart size.
However, they also contain genes whose role in voluntary running behavior is as yet unclear.

This study does have the limitation of focusing on males, whereas exercise behavoir and
much of the physiology and morphology related to exercise abilities differ between sexes in
both rodents and humans (Eikelboom and Mills 1988; Thomas and Thomas 1988; Rowland
2016; Sheel 2016; Rosenfeld 2017; Thompson et al. 2017). A natural next step would then be
to conduct similar analyses in females. This approach, however, can establish correlation but
not causation. Therefore, studies of wheel-running behavoir of mice with knockouts or Cre

modifications of genes in some of the genomic regions identified here may help to establish or

52



957

958

959

960

961

962

963

964

965

966

967

968

969

970
971

972
973

974

975

976

dismiss causal relationships between the genes and phenotype. Furthermore, as the HR mouse
experiment has complete pedigree information for all mice and lines (Careau et al. 2013, 2015),
it will also be possible to use this information to better account for relatedness between mice in
statistical analyses and so provide more informed estimates of loci acted upon by selection.
Importantly, none of the analytical approaches we used address the possibility of
"private alleles" (Martin et al. 1996) in one or more of the HR lines that may influence exercise
behavior, thus representing "multiple solutions" to the selective breeding regime (Garland et al.
2011a), but this will be an important possibility to consider in future studies. We already know
of one private allele of major effect (mini-muscle) that has far-reaching effects on mouse
muscle and organ development (Swallow et al. 2005; McGillivray et al. 2009; Kelly et al. 2013),
as well as many other aspects of the phenotype, and has been favored by the selection protocol
(Garland et al. 2002). Determination of such alleles will be an important area for future

research.

Acknowledgments
Supported by NSF grant DEB-1655362 to T.G.

Author contributions:
Conceptualization, D.A.H., L.Y., F.P.M.dEV., D.P., S.X,, F.C,, T.G.; investigation, D.A.H., L.Y.,

G.M.W,, F.P.M.dEV., D.P., AS.F., F.C.,, T.G.; software, D.A.H., LY., S.X.; formal analysis, D.A.H.,
L.Y., AS.F., S.X,, F.C., T.G.; writing — original draft, D.A.H., L.Y., AS.F., F.C, T.G.; writing — review

and editing, D.A.H., L.Y., G.M.W., F.P.M.dEV., D.P., AS.F,, S.X,, F.C,, T.G.

53



977
978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

Literature Cited
Aebi, M., M. M. J. van Donkelaar, G. Poelmans, J. K. Buitelaar, E. J. S. Sonuga-Barke et al., 2016 Gene-set

and multivariate genome-wide association analysis of oppositional defiant behavior subtypes in
attention-deficit/hyperactivity disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 171: 573—
588.

Ahmed, O. )., and M. R. Mehta, 2012 Running speed alters the frequency of hippocampal gamma
oscillations. J. Neurosci. 32: 7373-7383.

Akins, M. R., D. L. Benson, and C. A. Greer, 2007 Cadherin expression in the developing mouse olfactory
system. J. Comp. Neurol. 501: 483-497.

Amthor, H., R. Macharia, R. Navarrete, M. Schuelke, S. C. Brown et al., 2007 Lack of myostatin results in
excessive muscle growth but impaired force generation. Proc. Natl. Acad. Sci. 104: 1835-1840.

Andrejeva, G., S. Gowan, G. Lin, A.-C. L. Wong Te Fong, E. Shamsaei et al., 2020 De novo
phosphatidylcholine synthesis is required for autophagosome membrane formation and
maintenance during autophagy. Autophagy 16: 1044-1060.

Belke, T. W., and T. Garland, Jr., 2007 A brief opportunity to run does not function as a reinforcer for
mice selected for high daily wheel-running rates. J. Exp. Anal. Behav. 88: 199-213.

Benjamin, E. J., P. Muntner, A. Alonso, M. S. Bittencourt, C. W. Callaway et al., 2019 Heart Disease and
Stroke Statistics—2019 Update: A Report From the American Heart Association. Circulation 139:.

Bilodeau, G. M., H. Guderley, D. R. Joanisse, and T. Garland, Jr., 2009 Reduction of type Ilb myosin and
[IB fibers in tibialis anterior muscle of mini-muscle mice from high-activity lines. J. Exp. Zool. Part
Ecol. Genet. Physiol. 311A: 189-198.

Blair, S. N., and J. N. Morris, 2009 Healthy Hearts—and the universal benefits of being physically active:

physical activity and health. Ann. Epidemiol. 19: 253-256.

54



1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

Booth, F. W., M. V. Chakravarthy, S. E. Gordon, and E. E. Spangenburg, 2002 Waging war on physical
inactivity: using modern molecular ammunition against an ancient enemy. J. Appl. Physiol. 93:
3-30.

Booth, F. W., C. K. Roberts, and M. J. Laye, 2012 Lack of exercise is a major cause of chronic diseases, in
Comprehensive Physiology, edited by R. Terjung. John Wiley & Sons, Inc., Hoboken, NJ, USA.

Bouchard, C., 2015 Exercise genomics—a paradigm shift is needed: a commentary: Table 1. Br. J. Sports
Med. 49: 1492-1496.

Britton, S. L., and L. G. Koch, 2001 Animal genetic models for complex traits of physical capacity: Exerc.
Sport Sci. Rev. 29: 7-14.

Bronikowski, A. M., P. A. Carter, T. J. Morgan, T. Garland, Jr., N. Ung et al., 2003 Lifelong voluntary
exercise in the mouse prevents age-related alterations in gene expression in the heart. Physiol.
Genomics 12: 129-138.

Bronikowski, A. M., J. S. Rhodes, T. Garland, Jr., T. A. Prolla, T. A. Awad et al., 2004 The evolution of gene
expression in mouse hippocampus in response to selective breeding for increased locomotor
activity. Evolution 58: 2079-2086.

Burke, M. K., 2012 How does adaptation sweep through the genome? Insights from long-term selection
experiments. Proc. R. Soc. B Biol. Sci. 279: 5029-5038.

Burke, M. K., J. P. Dunham, P. Shahrestani, K. R. Thornton, M. R. Rose et al., 2010 Genome-wide analysis
of a long-term evolution experiment with Drosophila. Nature 467: 587-590.

Caffino, L., G. Messa, and F. Fumagalli, 2018 A single cocaine administration alters dendritic spine
morphology and impairs glutamate receptor synaptic retention in the medial prefrontal cortex

of adolescent rats. Neuropharmacology 140: 209-216.

55



1022 Careau, V., M. E. Wolak, P. A. Carter, and T. Garland, Jr., 2015 Evolution of the additive genetic variance—
1023 covariance matrix under continuous directional selection on a complex behavioural phenotype.
1024 Proc. R. Soc. B Biol. Sci. 282: 20151119.

1025 Careau, V., M. E. Wolak, P. A. Carter, and T. Garland, Jr., 2013 Limits to behavioral evolution: the

1026 guantative genetics of a complex trait under directional selection. Evolution 67: 3102-3119.
1027 Carlson, S. A, J. E. Fulton, M. Pratt, Z. Yang, and E. K. Adams, 2015 Inadequate physical activity and
1028 health care expenditures in the United States. Prog. Cardiovasc. Dis. 57: 315-323.

1029 Castro, A. A., and T. Garland, Jr., 2018 Evolution of hindlimb bone dimensions and muscle masses in
1030 house mice selectively bred for high voluntary wheel-running behavior. J. Morphol. 279: 766—
1031 779.

1032 Chen, Z., E. Resnik, J. M. McFarland, B. Sakmann, and M. R. Mehta, 2011 Speed controls the amplitude
1033 and timing of the hippocampal gamma rhythm (A. Borst, Ed.). PLoS ONE 6: e21408.

1034 Claghorn, G. C,, I. A. T. Fonseca, Z. Thompson, C. Barber, and T. Garland, Jr., 2016 Serotonin-mediated
1035 central fatigue underlies increased endurance capacity in mice from lines selectively bred for
1036 high voluntary wheel running. Physiol. Behav. 161: 145-154.

1037 Claghorn, G. C., Z. Thompson, J. C. Kay, G. Ordonez, T. G. Hampton et al., 2017 Selective breeding and
1038 short-term access to a running wheel alter stride characteristics in house mice. Physiol.

1039 Biochem. Zool. 90: 533-545.

1040 Clark, P.J., R. A. Kohman, D. S. Miller, T. K. Bhattacharya, E. H. Haferkamp et al., 2010 Adult hippocampal
1041 neurogenesis and c-Fos induction during escalation of voluntary wheel running in C57BL/6)J
1042 mice. Behav. Brain Res. 213: 246-252.

1043 Cooper, S., A. J. Robison, and M. S. Mazei-Robison, 2017 Reward circuitry in addiction.

1044 Neurotherapeutics 14: 687-697.

56



1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

Copes, L. E., H. Schutz, E. M. Dlugsoz, S. Judex, and T. Garland, Jr., 2018 Locomotor activity, growth
hormones, and systemic robusticity: An investigation of cranial vault thickness in mouse lines
bred for high endurance running. Am. J. Phys. Anthropol. 166: 442-458.

Cordeiro, L. M. S., P. C. R. Rabelo, M. M. Moraes, F. Teixeira-Coelho, C. C. Coimbra et al., 2017 Physical
exercise-induced fatigue: The role of serotonergic and dopaminergic systems. Braz. J. Med. Biol.
Res. 50:.

Cornelissen, V. A., and R. H. Fagard, 2005 Effects of endurance training on blood pressure, blood
pressure—regulating mechanisms, and cardiovascular risk factors. Hypertension 46: 667-675.

Cornier, M.-A,, D. Dabelea, T. L. Hernandez, R. C. Lindstrom, A. J. Steig et al., 2008 The metabolic
syndrome. Endocr. Rev. 29: 777-822.

Davis, R. J., W. Shen, Y. |. Sandler, M. Amoui, P. Purcell et al., 2001 Dach1 mutant mice bear no gross
abnormalities in eye, limb, and brain development and exhibit postnatal lethality. Mol. Cell. Biol.
21:1484-1490.

Dawes, M., T. Moore-Harrison, A. T. Hamilton, T. Ceaser, K. J. Kochan et al., 2014 Differential gene
expression in high- and low-active inbred mice. BioMed Res. Int. 2014: 1-9.

De Moor, M. H. M., Y.-J. Liu, D. l. Boomsma, J. Li, J. J. Hamilton et al., 2009 Genome-wide association
study of exercise behavior in dutch and american adults: Med. Sci. Sports Exerc. 41: 1887-1895.

Dewan, I, T. Garland, Jr., L. Hiramatsu, and V. Careau, 2019 | smell a mouse: indirect genetic effects on
voluntary wheel-running distance, duration and speed. Behav. Genet. 49: 49-59.

Didion, J. P., A. P. Morgan, L. Yadgary, T. A. Bell, R. C. McMullan et al., 2016 R2d2 drives selfish sweeps in
the house mouse. Mol. Biol. Evol. 33: 1381-1395.

Dietrich, A., 2004 Endocannabinoids and exercise. Br. J. Sports Med. 38: 536-541.

57



1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

Dlugosz, E. M., H. Schutz, T. H. Meek, W. Acosta, C. J. Downs et al., 2013 Immune response to a
Trichinella spiralis infection in house mice from lines selectively bred for high voluntary wheel
running. J. Exp. Biol. 216: 4212-4221.

Doya, K., 2000 Complementary roles of basal ganglia and cerebellum in learning and motor control. Curr.
Opin. Neurobiol. 10: 732-739.

Drickamer, L. C., and T. R. Evans, 1996 Chemosignals and activity of wild stock house mice, with a note
on the use of running wheels to assess activity in rodents. Behav. Processes 36: 51-66.

Dyrstad, S. M., B. H. Hansen, I. M. Holme, and S. A. Anderssen, 2014 Comparison of self-reported versus
accelerometer-measured physical activity. Med. Sci. Sports Exerc. 46: 99-106.

Eikelboom, R., and R. Mills, 1988 A microanalysis of wheel running in male and female rats. Physiol.
Behav. 43: 625-630.

Elkouris, M., H. Kontaki, A. Stavropoulos, A. Antonoglou, K. C. Nikolaou et al., 2016 SET9-mediated
regulation of TGF-B signaling links protein methylation to pulmonary fibrosis. Cell Rep. 15: 2733—
2744,

Ernst, C., A. K. Olson, J. P. J. Pinel, R. W. Lam, and B. R. Christie, 2006 Antidepressant effects of exercise:
Evidence for an adult-neurogenesis hypothesis? J Psychiatry Neurosci 31: 84-92.

Fan, W., A. R. Atkins, R. T. Yu, M. Downes, and R. M. Evans, 2013 Road to exercise mimetics: targeting
nuclear receptors in skeletal muscle. J. Mol. Endocrinol. 51: T87-T100.

Fisher, R. A., 1925 Statistical methods for research workers, pp. 25-235 in Biological monographs and
manuals, edited by F. A. E. Crew and D. W. Cutler. Oliver and Boyd (Edinburgh).

Frédéric, M. Y., V. F. Lundin, M. D. Whiteside, J. G. Cueva, D. K. Tu et al., 2013 Identification of 526
conserved metazoan genetic innovations exposes a new role for cofactor E-like in neuronal

microtubule homeostasis (A. D. Chisholm, Ed.). PLoS Genet. 9: e1003804.

58



1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

Freed, C., and B. Yamamoto, 1985 Regional brain dopamine metabolism: a marker for the speed,
direction, and posture of moving animals. Science 229: 62-65.

Fuhrmann, F., D. Justus, L. Sosulina, H. Kaneko, T. Beutel et al., 2015 Locomotion, theta oscillations, and
the speed-correlated firing of hippocampal neurons are controlled by a medial septal
glutamatergic circuit. Neuron 86: 1253-1264.

Furtunato, A. M. B., B. Lob3o-Soares, A. B. L. Tort, and H. Belchior, 2020 Specific increase of hippocampal
delta oscillations across consecutive treadmill runs. Front. Behav. Neurosci. 14:.

Garland, Jr,, T., and P. W. Freeman, 2005 Selective breeding for high endurance running increases
hindlimb symmetry. Evolution 59: 1851-1854.

Garland, Jr,, T., S. A. Kelly, J. L. Malisch, E. M. Kolb, R. M. Hannon et al., 2011a How to run far: multiple
solutions and sex-specific responses to selective breeding for high voluntary activity levels. Proc.
R. Soc. B Biol. Sci. 278: 574-581.

Garland, Jr., T., M. T. Morgan, J. G. Swallow, J. S. Rhodes, |. Girard et al., 2002 Evolution of a small-
muscle polymorphism in lines of house mice selected for high activity levels. Evolution 56: 1267—
1275.

Garland, Jr.,, T., and M. R. Rose, 2009 Experimental evolution: concepts, methods, and applications of
selection experiments. University of California Press.

Garland, Jr,, T., H. Schutz, M. A. Chappell, B. K. Keeney, T. H. Meek et al., 2011b The biological control of
voluntary exercise, spontaneous physical activity and daily energy expenditure in relation to
obesity: human and rodent perspectives. J. Exp. Biol. 214: 206—-229.

Garland, Jr., T., M. Zhao, and W. Saltzman, 2016 Hormones and the evolution of complex traits: insights
from artificial selection on behavior. Integr. Comp. Biol. 56: 207-224.

Geisler, C., D. Robbe, M. Zugaro, A. Sirota, and G. Buzsaki, 2007 Hippocampal place cell assemblies are

speed-controlled oscillators. Proc. Natl. Acad. Sci. 104: 8149-8154.

59



1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

Giménez, R., J. Raich, and J. Aguilar, 1991 Changes in brain striatum dopamine and acetylcholine
receptors induced by chronic CDP-choline treatment of aging mice. Br. J. Pharmacol. 104: 575—
578.

Grobet, L., L. J. Royo Martin, D. Poncelet, D. Pirottin, B. Brouwers et al., 1997 A deletion in the bovine
myostatin gene causes the double—-muscled phenotype in cattle. Nat. Genet. 17: 71-74.

Guthold, R., G. A. Stevens, L. M. Riley, and F. C. Bull, 2018 Worldwide trends in insufficient physical
activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1:9 million
participants. Lancet Glob. Health 6: e1077—1086.

Herbert, A. J., A. G. Williams, P. J. Hennis, R. M. Erskine, C. Sale et al., 2019 The interactions of physical
activity, exercise and genetics and their associations with bone mineral density: implications for
injury risk in elite athletes. Eur. J. Appl. Physiol. 119: 29-47.

Hiramatsu, L., and T. Garland, Jr., 2018 Mice selectively bred for high voluntary wheel-running behavior
conserve more fat despite increased exercise. Physiol. Behav. 194: 1-8.

Hiramatsu, L., J. C. Kay, Z. Thompson, J. M. Singleton, G. C. Claghorn et al., 2017 Maternal exposure to
Western diet affects adult body composition and voluntary wheel running in a genotype-specific
manner in mice. Physiol. Behav. 179: 235-245.

Hoenderop, J. G.J., J. P. T. M. van Leeuwen, B. C. J. van der Eerden, F. F. J. Kersten, A. W. C. M. van
derKemp et al., 2003 Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice
lacking TRPVS. J. Clin. Invest. 112: 1906-1914.

Holroyd, C., S. Nieuwenhuis, R. Mars, and M. Coles, 2004 Anterior cingulate cortex, selection for action,
and error processing, pp. 219-31 in Cognitive neuroscience of attention, Guilford Press, New
York.

Horner, A., L. Shum, J. A. Ayres, K. Nonaka, and G. H. Nuckolls, 2002 Fibroblast growth factor signaling

regulates Dachl expression during skeletal development. Dev. Dyn. 225: 35—45.

60



1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

Horwitz, T., K. Lam, Y. Chen, Y. Xia, and C. Liu, 2019 A decade in psychiatric GWAS research. Mol.
Psychiatry 24: 378—-389.

Jiang, S., C. Koolmeister, J. Misic, S. Siira, |. Kihl et al., 2019 TEFM regulates both transcription
elongation and RNA processing in mitochondria. EMBO Rep. 20:.

Kasem, E., T. Kurihara, and K. Tabuchi, 2018 Neurexins and neuropsychiatric disorders. Neurosci. Res.
127: 53-60.

Kay, J. C., G. C. Claghorn, Z. Thompson, T. G. Hampton, and T. Garland, Jr., 2019 Electrocardiograms of
mice selectively bred for high levels of voluntary exercise: Effects of short-term exercise training
and the mini-muscle phenotype. Physiol. Behav. 199: 322-332.

Keeney, B. K., T. H. Meek, K. M. Middleton, L. F. Holness, and T. Garland, Jr., 2012 Sex differences in
cannabinoid receptor-1 (CB1) pharmacology in mice selectively bred for high voluntary wheel-
running behavior. Pharmacol. Biochem. Behav. 101: 528-537.

Kelly, S. A., T. A. Bell, S. R. Selitsky, R. J. Buus, K. Hua et al., 2013 A novel intronic single nucleotide
polymorphism in the myosin heavy polypeptide 4 gene is responsible for the mini-muscle
phenotype characterized by major reduction in hind-limb muscle mass in mice. Genetics 195:
1385-1395.

Kelly, S. A., P. P. Czech, J. T. Wight, K. M. Blank, and T. Garland, Jr., 2006 Experimental evolution and
phenotypic plasticity of hindlimb bones in high-activity house mice. J. Morphol. 267: 360-374.

Kelly, S. A., F. R. Gomes, E. M. Kolb, J. L. Malisch, and T. Garland, Jr., 2017 Effects of activity, genetic
selection and their interaction on muscle metabolic capacities and organ masses in mice. J. Exp.
Biol. 220: 1038-1047.

Kelly, S. A., D. L. Nehrenberg, K. Hua, T. Garland, Jr., and D. Pomp, 2012 Functional genomic architecture
of predisposition to voluntary exercise in mice: expression QTL in the brain. Genetics 191: 643—

654.

61



1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

Kelly, S. A., D. L. Nehrenberg, K. Hua, T. Garland, Jr., and D. Pomp, 2014 Quantitative genomics of
voluntary exercise in mice: transcriptional analysis and mapping of expression QTL in muscle.
Physiol. Genomics 46: 593—601.

Kelly, S. A., D. L. Nehrenberg, J. L. Peirce, K. Hua, B. M. Steffy et al., 2010 Genetic architecture of
voluntary exercise in an advanced intercross line of mice. Physiol. Genomics 42: 190-200.

Khan, A. A, and J. G. Quigley, 2013 Heme and FLVCR-related transporter families SLC48 and SLC49. Mol.
Aspects Med. 34: 669-682.

Kida, Y., 2004 Chick Dach1 interacts with the Smad complex and Sin3a to control AER formation and limb
development along the proximodistal axis. Development 131: 4179-4187.

Klaassen, R. V., J. Stroeder, F. Coussen, A.-S. Hafner, J. D. Petersen et al., 2016 Shisa6 traps AMPA
receptors at postsynaptic sites and prevents their desensitization during synaptic activity. Nat.
Commun. 7:.

Kolb, E. M., S. A. Kelly, and T. Garland, Jr., 2013a Mice from lines selectively bred for high voluntary
wheel running exhibit lower blood pressure during withdrawal from wheel access. Physiol.
Behav. 112-113: 49-55.

Kolb, E. M., S. A. Kelly, K. M. Middleton, L. S. Sermsakdi, M. A. Chappell et al., 2010 Erythropoietin
elevates but not voluntary wheel running in mice. J. Exp. Biol. 213: 510-519.

Kolb, E. M., E. L. Rezende, L. Holness, A. Radtke, S. K. Lee et al., 2013b Mice selectively bred for high
voluntary wheel running have larger midbrains: support for the mosaic model of brain evolution.
J. Exp. Biol. 216: 515-523.

Konczal, M., P. Koteja, P. Orlowska-Feuer, J. Radwan, E. T. Sadowska et al., 2016 Genomic response to
selection for predatory behavior in a mammalian model of adaptive radiation. Mol. Biol. Evol.

33: 2429-2440.

62



1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

Koob, G. F., and N. D. Volkow, 2010 Neurocircuitry of Addiction. Neuropsychopharmacology 35: 217-
238.

Kostrzewa, E., and M. J. Kas, 2014 The use of mouse models to unravel genetic architecture of physical
activity: a review: Unravel genetic architecture of physical activity. Genes Brain Behav. 13: 87—
103.

Kottgen, A., C. Pattaro, C. A. Boger, C. Fuchsberger, M. Olden et al., 2010 New loci associated with
kidney function and chronic kidney disease. Nat. Genet. 42: 376—-384.

Kropff, E., J. E. Carmichael, M.-B. Moser, and E. I. Moser, 2015 Speed cells in the medial entorhinal
cortex. Nature 523: 419-424.

Lachman, H. M., C. S. J. Fann, M. Bartzis, O. V. Evgrafov, R. N. Rosenthal et al., 2007 Genomewide
suggestive linkage of opioid dependence to chromosome 14q. Hum. Mol. Genet. 16: 1327-1334.

Lalley, P. M., R. Benacka, A. M. Bischoff, and D. W. Richter, 1997 Nucleus raphe obscurus evokes 5-HT-1A
receptor-mediated modulation of respiratory neurons. Brain Res. 747: 156—159.

Lee, D., X. Zhao, Y.-I. Yim, E. Eisenberg, and L. E. Greene, 2008 Essential role of cyclin-G—associated
kinase (auxilin-2) in developing and mature mice (R. Parton, Ed.). Mol. Biol. Cell 19: 2766—2776.

Li, J.-Y., T. B. J. Kuo, I.-T. Hsieh, and C. C. H. Yang, 2012 Changes in hippocampal theta rhythm and their
correlations with speed during different phases of voluntary wheel running in rats. Neuroscience
213: 54-61.

Lightfoot, J. T., 2011 Current understanding of the genetic basis for physical activity. J. Nutr. 141: 526—
530.

Lightfoot, J. T., E. J. C. De Geus, F. W. Booth, M. S. Bray, M. Den Hoed et al., 2018 Biological/genetic
regulation of physical activity level: Consensus from GenBioPAC. Med. Sci. Sports Exerc. 50: 863—

873.

63



1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

Lightfoot, J. T., L. Leamy, D. Pomp, M. J. Turner, A. A. Fodor et al., 2010 Strain screen and haplotype
association mapping of wheel running in inbred mouse strains. J. Appl. Physiol. 109: 623-634.

Lightfoot, J. T., M. J. Turner, D. Pomp, S. R. Kleeberger, and L. J. Leamy, 2008 Quantitative trait loci for
physical activity traits in mice. Physiol. Genomics 32: 401-408.

Lillie, M., C. F. Honaker, P. B. Siegel, and O. Carlborg, 2019 Bidirectional selection for body weight on
standing genetic variation in a chicken model. Genes|Genomes|Genetics g3.400038.2019.

Lin, X., C. B. Eaton, J. E. Manson, and S. Liu, 2017 The genetics of physical activity. Curr. Cardiol. Rep. 19:.

Liu, Q., R. J. Duff, B. Liu, A. L. Wilson, S. G. Babb-Clendenon et al., 2006 Expression of cadherin10, a type
Il classic cadherin gene, in the nervous system of the embryonic zebrafish. Gene Expr. Patterns
6: 703-710.

Loh, N. Y., L. Bentley, H. Dimke, S. Verkaart, P. Tammaro et al., 2013 Autosomal dominant hypercalciuria
in a mouse model due to a mutation of the epithelial calcium channel, TRPVS (Y. Ishimaru, Ed.).
PLoS ONE 8: e55412.

Loos, R. J. F., T. Rankinen, A. Tremblay, L. Pérusse, Y. Chagnon et al., 2005 Melanocortin-4 receptor gene
and physical activity in the Québec Family Study. Int. J. Obes. 29: 420-428.

Machado, C. B., K. C. Kanning, P. Kreis, D. Stevenson, M. Crossley et al., 2014 Reconstruction of phrenic
neuron identity in embryonic stem cell- derived motor neurons. Development 141: 784-794.

Manley, A. F., 1996 Physical activity and health: a report of the Surgeon General. DIANE Publishing.

Mardon, G., N. M. Solomon, and G. M. Rubin, 1994 dachshund encodes a nuclear protein required for
normal eye and leg development in Drosophila. Development 120: 3473-3486.

Martin, G. M., S. N. Austad, and T. E. Johnson, 1996 Genetic analysis of ageing: role of oxidative damage

and environmental stresses. Nat. Genet. 13: 25-34.

64



1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

Mathes, W. F., D. L. Nehrenberg, R. Gordon, K. Hua, T. Garland, Jr. et al., 2010 Dopaminergic
dysregulation in mice selectively bred for excessive exercise or obesity. Behav. Brain Res. 210:
155-163.

Matsunaga, E., S. Nambu, M. Oka, and A. Iriki, 2015 Complex and dynamic expression of cadherins in the
embryonic marmoset cerebral cortex. Dev. Growth Differ. 57: 474—483.

Matta Mello Portugal, E., T. Cevada, R. Sobral Monteiro-Junior, T. Teixeira Guimaraes, E. da Cruz Rubini
et al., 2013 Neuroscience of exercise: from neurobiology mechanisms to mental health.
Neuropsychobiology 68: 1-14.

McGillivray, D. G., T. Garland, Jr., E. M. Dlugosz, M. A. Chappell, and D. A. Syme, 2009 Changes in
efficiency and myosin expression in the small-muscle phenotype of mice selectively bred for
high voluntary running activity. J. Exp. Biol. 212: 977-985.

Meek, T. H., B. P. Lonquich, R. M. Hannon, and T. Garland, Jr., 2009 Endurance capacity of mice
selectively bred for high voluntary wheel running. J. Exp. Biol. 212: 2908-2917.

Miro, X., X. Zhou, S. Boretius, T. Michaelis, C. Kubisch et al., 2009 Haploinsufficiency of the murine
polycomb gene Suz12 results in diverse malformations of the brain and neural tube. Dis. Model.
Mech. 2: 412-418.

Mok, A., K.-T. Khaw, R. Luben, N. Wareham, and S. Brage, 2019 Physical activity trajectories and
mortality: population based cohort study. BMJ 12323.

Morgan, A. P., and C. E. Welsh, 2015 Informatics resources for the Collaborative Cross and related
mouse populations. Mamm. Genome 26: 521-539.

Mosher, D. S., P. Quignon, C. D. Bustamante, N. B. Sutter, C. S. Mellersh et al., 2007 A mutation in the
myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs

(J. S. Takahashi, Ed.). PLoS Genet. 3: e79.

65



1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

Myers, A., C. Gibbons, G. Finlayson, and J. Blundell, 2017 Associations among sedentary and active
behaviours, body fat and appetite dysregulation: investigating the myth of physical inactivity
and obesity. Br. J. Sports Med. 51: 1540-1544.

Neufer, P. D., M. M. Bamman, D. M. Muoio, C. Bouchard, D. M. Cooper et al., 2015 Understanding the
cellular and molecular mechanisms of physical activity-induced health benefits. Cell Metab. 22:
4-11.

Nica, A. C., and E. T. Dermitzakis, 2013 Expression quantitative trait loci: present and future. Philos.
Trans. R. Soc. B Biol. Sci. 368: 20120362.

Nicod, J., R. W. Davies, N. Cai, C. Hassett, L. Goodstadt et al., 2016 Genome-wide association of multiple
complex traits in outbred mice by ultra-low-coverage sequencing. Nat. Genet. 48: 912-918.

Nogueira, A., O. Molinero, A. Salguero, and S. Marquez, 2018 Exercise addiction in practitioners of
endurance sports: A literature review. Front. Psychol. 9:.

Nuwal, T., M. Kropp, S. Wegener, S. Racic, |. Montalban et al., 2012 The Drosophila homologue of
tubulin-specific chaperone E-like protein is required for synchronous sperm individualization
and normal male fertility. J. Neurogenet. 26: 374-381.

Pallafacchina, G., S. Frangois, B. Regnault, B. Czarny, V. Dive et al., 2010 An adult tissue-specific stem cell
in its niche: A gene profiling analysis of in vivo quiescent and activated muscle satellite cells.
Stem Cell Res. 4: 77-91.

Park, S., and J. L. Etnier, 2019 Beneficial effects of acute exercise on executive function in adolescents. J.
Phys. Act. Health 16: 423-429.

Parker, C. C., S. Gopalakrishnan, P. Carbonetto, N. M. Gonzales, E. Leung et al., 2016 Genome-wide
association study of behavioral, physiological and gene expression traits in outbred CFW mice.

Nat. Genet. 48: 919-926.

66



1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

Parker, C. C., and A. A. Palmer, 2011 Dark Matter: Are mice the solution to missing heritability? Front.
Genet. 2:.

Prince, S. A., K. B. Adamo, M. Hamel, J. Hardt, S. Connor Gorber et al., 2008 A comparison of direct
versus self-report measures for assessing physical activity in adults: a systematic review. Int. J.
Behav. Nutr. Phys. Act. 5: 56.

Rendeiro, C., and J. S. Rhodes, 2018 A new perspective of the hippocampus in the origin of exercise—
brain interactions. Brain Struct. Funct. 223: 2527-2545.

Rezende, E. L., F. R. Gomes, J. L. Malisch, M. A. Chappell, and T. Garland, Jr., 2006 Maximal oxygen
consumption in relation to subordinate traits in lines of house mice selectively bred for high
voluntary wheel running. J. Appl. Physiol. 101: 477-485.

Rhodes, J. S., S. C. Gammie, and T. Garland Jr, 2005 Neurobiology of mice selected for high voluntary
wheel-running activity. Integr. Comp. Biol. 45: 438-455.

Rhodes, J. S., and T. Garland, Jr., 2003 Differential sensitivity to acute administration of Ritalin,
apormorphine, SCH 23390, but not raclopride in mice selectively bred for hyperactive wheel-
running behavior. Psychopharmacology (Berl.) 167: 242-250.

Rhodes, J. S., T. Garland, Jr., and S. C. Gammie, 2003a Patterns of brain activity associated with variation
in voluntary wheel-running behavior. Behav. Neurosci. 117: 1243-1256.

Rhodes, J. S., G. R. Hosack, I. Girard, A. E. Kelley, G. S. Mitchell et al., 2001 Differential sensitivity to acute
administration of cocaine, GBR 12909, and fluoxetine in mice selectively bred for hyperactive
wheel-running behavior. Psychopharmacology (Berl.) 158: 120-131.

Rhodes, J. S., H. van Praag, S. Jeffrey, I. Girard, G. S. Mitchell et al., 2003b Exercise increases
hippocampal neurogenesis to high levels but does not improve spatial learning in mice bred for

increased voluntary wheel running. Behav. Neurosci. 117: 1006-1016.

67



1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

Roberts, M. D., G. N. Ruegsegger, J. D. Brown, and F. W. Booth, 2017 Mechanisms associated with
physical activity behavior: insights from rodent experiments. Exerc. Sport Sci. Rev. 45: 217-222.

Rohe, M., 2008 Role of SORLA in the brain and its relevance for Alzheimer disease [Ph.D. Dissertation]:
Freien Universitat Berlin, 110 p.

van Rooij, E., D. Quiat, B. A. Johnson, L. B. Sutherland, X. Qi et al., 2009 A family of microRNAs encoded
by myosin genes governs myosin expression and muscle performance. Dev. Cell 17: 662-673.

Rosenfeld, C. S., 2017 Sex-dependent differences in voluntary physical activity: Physical Activity and Sex
Differences. J. Neurosci. Res. 95: 279-290.

Rowland, T., 2016 Biologic regulation of physical activity. Human Kinetics Publishers.

Saiga, T., T. Fukuda, M. Matsumoto, H. Tada, H. J. Okano et al., 2009 Fbxo45 forms a novel ubiquitin
ligase complex and is required for neuronal development. Mol. Cell. Biol. 29: 3529-3543.

Salsi, V., M. A. Vigano, F. Cocchiarella, R. Mantovani, and V. Zappavigna, 2008 Hoxd13 binds in vivo and
regulates the expression of genes acting in key pathways for early limb and skeletal patterning.
Dev. Biol. 317: 497-507.

Sarzynski, M. A., R. J. F. Loos, A. Lucia, L. Pérusse, S. M. Roth et al., 2016 Advances in exercise, fitness,
and performance genomics in 2015: Med. Sci. Sports Exerc. 48: 1906—-1916.

Saul, M. C., P. Majdak, S. Perez, M. Reilly, T. Garland, Jr. et al., 2017 High motivation for exercise is
associated with altered chromatin regulators of monoamine receptor gene expression in the
striatum of selectively bred mice: Striatal transcriptome of mice born to run. Genes Brain Behav.
16:328-341.

Schiller, D., H. Eichenbaum, E. A. Buffalo, L. Davachi, D. J. Foster et al., 2015 Memory and space: towards
an understanding of the cognitive map. J. Neurosci. 35: 13904-13911.

Schmidt, V., A. Subkhangulova, and T. E. Willnow, 2017 Sorting receptor SORLA: cellular mechanisms

and implications for disease. Cell. Mol. Life Sci. 74: 1475-1483.

68



1323 Schwartz, N. L., B. A. Patel, T. Garland, Jr., and A. M. Horner, 2018 Effects of selective breeding for high
1324 voluntary wheel-running behavior on femoral nutrient canal size and abundance in house mice.
1325 J. Anat. 233: 193-203.

1326 Secades, J., and J. Lorenzo, 2006 Citicoline: pharmacological and clinical review, 2006 update. Methods
1327 Find Exp Clin Pharmacol 28 Suppl B: 1-56.

1328 Sella, G., and N. H. Barton, 2019 Thinking about the evolution of complex traits in the era of genome-
1329 wide association studies. Annu. Rev. Genomics Hum. Genet. 20: 461-493.

1330 Sellami, M., M. Gasmi, J. Denham, L. D. Hayes, D. Stratton et al., 2018 Effects of acute and chronic

1331 exercise on immunological parameters in the elderly aged: can physical activity counteract the
1332 effects of aging? Front. Immunol. 9:.

1333 Sheel, A. W., 2016 Sex differences in the physiology of exercise: an integrative perspective: Introduction.
1334 Exp. Physiol. 101: 211-212.

1335 Sheila, M., G. Narayanan, S. Ma, W. L. Tam, J. Chai et al., 2019 Phenotypic and molecular features

1336 underlying neurodegeneration of motor neurons derived from spinal and bulbar muscular

1337 atrophy patients. Neurobiol. Dis. 124: 1-13.

1338 Shen, Y., Z. Ding, S. Ma, Z. Ding, Y. Zhang et al., 2019 SETD7 mediates spinal microgliosis and neuropathic
1339 pain in a rat model of peripheral nerve injury. Brain. Behav. Immun. 82: 382—395.

1340 Sheremet, A, J. P. Kennedy, Y. Qin, Y. Zhou, S. D. Lovett et al., 2019 Theta-gamma cascades and running
1341 speed. J. Neurophysiol. 121: 444-458.

1342 Shim, H., H. Chun, C. D. Engelman, and B. A. Payseur, 2009 Genome-wide association studies using
1343 single-nucleotide polymorphisms versus haplotypes: an empirical comparison with data from
1344 the North American Rheumatoid Arthritis Consortium. BMC Proc. 3: S35.

1345 Shimomura, K., 2001 Genome-wide epistatic interaction analysis reveals complex genetic determinants

1346 of circadian behavior in mice. Genome Res. 11: 959-980.

69



1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

Simonen, R. L., T. Rankinen, L. Pérusse, A. S. Leon, J. S. Skinner et al., 2003 A dopamine D2 receptor gene
polymorphism and physical activity in two family studies. Physiol. Behav. 78: 751-757.

Singleton, J. M., and T. Garland, Jr., 2019 Influence of corticosterone on growth, home-cage activity,
wheel running, and aerobic capacity in house mice selectively bred for high voluntary wheel-
running behavior. Physiol. Behav. 198: 27—41.

Smits, P., P. Li, J. Mandel, Z. Zhang, J. M. Deng et al., 2001 The transcription factors L-Sox5 and Sox6 are
essential for cartilage formation. Dev. Cell 1: 277-290.

Stoltenberg, S. F., M. K. Lehmann, C. C. Christ, S. L. Hersrud, and G. E. Davies, 2011 Associations among
types of impulsivity, substance use problems and Neurexin-3 polymorphisms. Drug Alcohol
Depend. 119: e31-e38.

Swallow, J. G., T. Garland, Jr., P. A. Carter, W.-Z. Zhan, and G. C. Sieck, 1998 Effects of voluntary activity
and genetic selection on aerobic capacity in house mice (Mus domesticus). J. Appl. Physiol. 84:
69-76.

Swallow, J. G., P. Koteja, P. A. Carter, and T. Garland Jr., 2001 Food consumption and body composition
in mice selected for high wheel-running activity. J. Comp. Physiol. [B] 171: 651-659.

Swallow, J. G., J. S. Rhodes, and T. Garland Jr, 2005 Phenotypic and evolutionary plasticity of organ
masses in response to voluntary exercise in house mice. Integr. Comp. Biol. 45: 426—437.

Tada, H., H. J. Okano, H. Takagi, S. Shibata, I. Yao et al., 2010 Fbxo45, a novel ubiquitin ligase, regulates
synaptic activity. J. Biol. Chem. 285: 3840-3849.

Taliun, D., J. Gamper, U. Leser, and C. Pattaro, 2016 Fast sampling-based whole-genome haplotype block
recognition. IEEE/ACM Trans. Comput. Biol. Bioinform. 13: 315-325.

Talmadge, R. J., W. Acosta, and T. Garland, Jr., 2014 Myosin heavy chain isoform expression in adult and

juvenile mini-muscle mice bred for high-voluntary wheel running. Mech. Dev. 134: 16-30.

70



1370 Thomas, J. R,, and K. T. Thomas, 1988 Development of gender differences in physical activity. Quest 40:
1371 219-229.

1372  Thompson, Z., 2017 The neurobiological basis of voluntary exercise in selectively-bred high runner mice:
1373 University of California, Riverside, 150 p.

1374  Thompson, Z., D. Argueta, T. Garland, Jr., and N. DiPatrizio, 2017 Circulating levels of endocannabinoids
1375 respond acutely to voluntary exercise, are altered in mice selectively bred for high voluntary
1376 wheel running, and differ between the sexes. Physiol. Behav. 170: 141-150.

1377 Vaanholt, L. M., 1. Jonas, M. Doornbos, K. A. Schubert, C. Nyakas et al., 2008 Metabolic and behavioral
1378 responses to high-fat feeding in mice selectively bred for high wheel-running activity. Int. J.
1379 Obes. 32: 1566-1575.

1380 Vann, S. D., J. P. Aggleton, and E. A. Maguire, 2009 What does the retrosplenial cortex do? Nat. Rev.
1381 Neurosci. 10: 792-802.

1382 Walker, E. P., and P. Tadi, 2020 Neuroanatomy, Nucleus Raphe, in Neuroanatomy, Nucleus Raphe,

1383 StatPearls Publishing.

1384  Wallace, I. )., and T. Garland, Jr., 2016 Mobility as an emergent property of biological organization:
1385 Insights from experimental evolution: Mobility and biological organization. Evol. Anthropol.
1386 Issues News Rev. 25: 98-104.

1387 Wang, W., K. K. Touhara, K. Weir, B. P. Bean, and R. MacKinnon, 2016 Cooperative regulation by G
1388 proteins and Na+ of neuronal GIRK2 K+ channels. eLife 5:.

1389 White, J. K., A.-K. Gerdin, N. A. Karp, E. Ryder, M. Buljan et al., 2013 Genome-wide generation and
1390 systematic phenotyping of knockout mice reveals new roles for many genes. Cell 154: 452-464.
1391 Williams, C. J., M. G. Williams, N. Eynon, K. J. Ashton, J. P. Little et al., 2017 Genes to predict VO2max

1392 trainability: a systematic review. BMC Genomics 18:.

71



1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

Wise, R. A., 2009 Roles for nigrostriatal—not just mesocorticolimbic—dopamine in reward and
addiction. Trends Neurosci. 32: 517-524.

Wolock, S. L., A. Yates, S. A. Petrill, J. W. Bohland, C. Blair et al., 2013 Gene x smoking interactions on
human brain gene expression: finding common mechanisms in adolescents and adults. J. Child
Psychol. Psychiatry 54: 1109-1119.

Wood, A. R., The Electronic Medical Records and Genomics (eMERGE) Consortium, The MIGen
Consortium, The PAGE Consortium, The LifeLines Cohort Study et al., 2014 Defining the role of
common variation in the genomic and biological architecture of adult human height. Nat. Genet.
46:1173-1186.

Xu, S., and T. Garland, 2017 A mixed model approach to genome-wide association studies for selection
signatures, with application to mice bred for voluntary exercise behavior. Genetics 207: 785—
799.

Xu, Y., X.-M. Zhao, J. Liu, Y.-Y. Wang, L.-L. Xiong et al., 2020 Complexin | knockout rats exhibit a complex
neurobehavioral phenotype including profound ataxia and marked deficits in lifespan. Pfllg.
Arch. - Eur. J. Physiol. 472: 117-133.

Yang, Z., Q. Sun, J. Guo, S. Wang, G. Song et al., 2019 GRSF1 -mediated MIR-G-1 promotes malignant
behavior and nuclear autophagy by directly upregulating TMEDS5 and LMNB1 in cervical cancer
cells. Autophagy 15: 668—685.

Ye, J., M. P. Witter, M.-B. Moser, and E. I. Moser, 2018 Entorhinal fast-spiking speed cells project to the
hippocampus. Proc. Natl. Acad. Sci. 115: E1627-E1636.

Young, N. M., B. Hallgrimsson, and T. Garland, Jr., 2009 Epigenetic effects on integration of limb lengths

in a mouse model: selective breeding for high voluntary locomotor activity. Evol. Biol. 36: 88—99.

72



1415

1416

1417

1418

1419

1420

1421

1422

1423

Zheng, J.-)., W.-X. Li, J.-Q. Liu, Y.-C. Guo, Q. Wang et al., 2018 Low expression of aging-related NRXN3 is
associated with Alzheimer disease: A systematic review and meta-analysis. Medicine (Baltimore)
97:e11343.

Zhu, X,, E.-S. Cho, Q. Sha, J. Peng, Y. Oksov et al., 2014 Giant axon formation in mice lacking Kell, XK, or
Kell and XK. Am. J. Pathol. 184: 800—-807.

Zhu, X., A. Rivera, M. S. Golub, J. Peng, Q. Sha et al., 2009 Changes in red cell ion transport, reduced
intratumoral neovascularization, and some mild motor function abnormalities accompany

targeted disruption of the Mouse Kell gene ( Kel ). Am. J. Hematol. 84: 492-498.

73



	ABSTRACT
	INTRODUCTION
	MATERIALS AND METHODS
	High Runner Mouse Model
	Whole-genome Sequencing
	Heterozygosity Calculations
	SNP Analysis
	Multi-Model Analysis of SNP Data from Whole-genome Sequences
	Multiple Testing Correction
	Permutations for MegaMUGA Data
	Permutations for Haplotype Data
	Local Maxima Selection for WGS Data

	Haplotype Determination
	Haplotype Analysis
	SNPs Fixed in One Treatment but Polymorphic in the Other
	General Ontology Analysis
	Targeted Ontology Analysis
	Data Availability Statement

	RESULTS
	Variation in Genetic Diversity
	Multi-Model vs Single-Model Comparisons
	Three Major Analyses
	Whole-Genome Haplotype
	Whole-Genome SNP
	SNPs Fixed in One Treatment and Polymorphic in the Other

	Ontology Analyses
	General Ontology
	Targeted Ontology

	Consistent Regions Identified Across Multiple Analyses

	DISCUSSION
	Variation in Genetic Diversity
	Consistent Regions from Multiple Analyses
	Ontology
	General Ontology
	Targeted Ontology

	Comparison with Previous Studies
	Mini-Muscle Allele
	Allele Frequency Implications
	Interpretation of the Four Models

	SUMMARY, LIMITATIONS, AND FUTURE DIRECTIONS
	Acknowledgments
	Author contributions:
	Literature Cited

