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CERTIFICATION FOR POLYNOMIAL SYSTEMS
VIA SQUARE SUBSYSTEMS

TIMOTHY DUFF, NICKOLAS HEIN, AND FRANK SOTTILE

ABSTRACT. We consider numerical certification of approximate solutions to a system of
polynomial equations with more equations than unknowns by first certifying solutions
to a square subsystem. We give several approaches that certifiably select which are
solutions to the original overdetermined system. These approaches each use different
additional information for this certification, such as liaison, Newton-Okounkov bodies, or
intersection theory. They may be used to certify individual solutions, reject nonsolutions,
or certify that we have found all solutions.

1. INTRODUCTION

Given polynomials f = (f1,..., fy) with f; € Clzy, ..., 2], an approximate solution to

the system f,(z) = --- = fx(2) = 0 is an estimate ¢ of some point ¢ where the polynomials
all vanish ( is a solution to f), such that the approximation error ||¢ — || can be refined
efficiently as a function of the input size and desired precision. Numerical certification
seeks criteria and algorithms that guarantee that a computed estimate é of a solution ¢
to f is an approximate solution in this sense.

Many existing certification methods [21, 35| are for square systems, where N = n.
These exploit that the isolated, nonsingular solutions to the system are exactly the fixed
points of the Newton operator Ny: C" — C" given (where defined) by

(1) Ny(z) = z=Df(2)7' f(2),

where D f(z) is the Jacobian matrix of the system f evaluated at z. A Newton-based
certificate establishes that the sequence of Newton iterates (N} () | k € N) converges to
a solution ¢ to f. Examples include both Smale’s a-test [34, 35] (typically performed in
rational arithmetic) and Krawczyk’s method [21] (based on interval arithmetic).

~

Once such a certificate is in hand, we say that ¢ is an approximate solution to f with
associated solution (. Further refinements bound the distance to the associated solution
1€ — ¢ ||, decide if two approximate solutions are associated to the same solution, and, in
the case of real systems, decide if the associated solution is real [12].
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Certification in the overdetermined case, where N > n, poses challenges not encountered
in the square case. A detailed study of the “least-squares” Newton operator,

(2) Nyi(2) == 2= Df(2) f(z),

was undertaken by Dedieu and Shub [5]. Here, “4” indicates the Moore-Penrose pseudoin-
verse. Among the contributions in their work is a generalization of Smale’s a-theorem,
Theorem 3 in [5], giving sufficient conditions for the convergence of (N ]’fT((A )| k€N) to
a fixed point. Since there may be many fixed points of Ny which are not solutions to f,

this criterion is generally not sufficient to certify that ¢ is an approximate solution to f.
In fact, the fixed points of Ny are precisely the solutions to the square system defined by

(3) gi(2) =0, (fi+-+-+fr)=0 (1<i<n).

Clearly the solutions to ¢ include the solutions to f: we thus say that ¢ is a square
subsystem of f. Our point of view in this paper is that certification of approximate solutions
may be possible if we are given a square subsystem of f—typically not the system in
Equation 3—together with some global information about the excess solutions.

Alternate approaches to certification in the overdetermined case have been considered in
previous work. In [1] a hybrid symbolic-numeric approach is used when the polynomials
in f have rational coefficients. This requires computing an exact rational univariate
representation [32] and using that to certify approximate solutions. Alternatively, one
may attempt to lift the approximation é’ to an approximate solution to a square system
in more variables. This is the approach taken for Schubert problems in [11, 13].

Though reduction to the case of a square subsystem is a natural idea, a suitable square
subsystem ¢ and the requisite global information are not easily obtained in general. Rather
than prescribing a single approach, we follow the pattern of this reduction through a
series of algorithms and examples. We highlight how abstract tools such as liaison theory
and Newton-Okounkov bodies may be brought to bear on certification, and illustrate
certification for problems of interest in the Schubert calculus and computer vision.

Remark 1.1. It is well-understood that perturbing an overdetermined system, eg. by
adding generic constants, will generally produce an inconsistent system. Nevertheless,
there are many families of overdetermined polynomial systems such that a generic member
of the family has finitely many isolated solutions. In other words, a family of overdeter-
mined systems need not be over-constrained. In general, a family of polynomial systems
specified by some parameters p € C™ may be understood via the incidence variety

Vi={(z,p) €C"xC™| f(z,p) = 0}.

The family is well-constrained if the projection onto C™ is dominant and dim V; = m. The
examples in Sections 5.2 and 5.3 fit naturally into the category of well-constrained families
of overdetermined systems, where it is reasonable to seek certificates even for generic p.

The algorithms in our paper address the problems below.
Problem 1. How may we certify that a point ( € C" is an approximate solution to f7

Problem 2. Suppose it is known that f has e solutions. How may we certify that a set
Z C C™ of e points consists of approximate solutions to f?
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In Section 2, we recall various notions of “approximate solution” that have been con-
sidered in the literature; our Definitions 2.1 and 2.5 encompass these various notions and
apply just as well to the overdetermined case. We also explain a simple exclusion cri-
terion that indirectly certifies particular approximate solutions to a subsystem g of f as
non-solutions to f. In Section 3, we explain how global information about the excess
solutions to g may be used to certify approximate solution to f in the sense of Section 2,
thus solving Problems 1 and 2. We also give an alternative approach for Problem 2 that
incorporates global information about f, and explain how the global information about
g can be calculated in terms of Khovanskii bases and their associated Newton-Okounkov
bodies in Section 3.2. Section 4 discusses one further approach to Problem 1 that is based
on liaison theory. In Section 5, we give three examples illustrating our algorithms. One
involves a finite Khovanskii basis, another is from the Schubert calculus, and a third is
from computer vision.

2. APPROXIMATE SOLUTIONS

Throughout, we will fix positive integers n < N. All polynomials will lie in the ring
Clxy, ..., z,). We will write f for a system fi,..., fx of N polynomials. The system f is
square when N = n.

Definition 2.1. A p-approzimate solution to a (possibly overdetermined) polynomial
system f is a triple (¢, p, Ny), where ¢ € C", p € Ry, and Ny: U — C" is a map defined
on some U C C" such that

1) There exists ¢ € V(f) such that ||¢ — || < p, and
2) all iterates NF(¢) are defined and the sequence N7 (¢) converges to ¢ as k — oo.

Here ||-|| indicates the usual Hermitian norm on C". We will refer to ¢ as an approximate
solution when the procedure Ny and constant p are understood. We call the point ¢ € V(f)

in (1) the solution to f associated to CA . We sometimes refer to N as a refinement operator.
This is typically some incarnation of Newton’s method.

Remark 2.2. In our examples, the system f and the approximate solution é’ are defined
over the rationals Q or the Gaussian rationals Q[v/—1]. Since numerical solvers typically
output floating point results, care must be taken to control rounding errors when com-
puting certificates. One option for certification is to perform all subsequent operations in
rational arithmetic. Interval and ball arithmetic give yet another approach (discussed in
Subsection 2.2). A “certificate” obtained without controlling rounding errors may still be
of practical value. Following [12], we call this a soft certificate.

Remark 2.3. In practice, the map Ny in Definition 2.1 should restrict to a computable
function Nyg: U N Q[V—-1]" — Q[v/—1]". Our algorithms assume an oracle for N,
and we generally take a naive approach to questions of computability and complexity.
However, we do not rely on special features of nonstandard models of computation such
as the Blum-Shub-Smale machine [3].

Let g be a square sytem and (é , p, Nj) be an approximate solution to g with associated
solution ¢. Our main concern is to certify that ( € V(f) when g is a square subsytem of
f—a seemingly difficult task a priori. It is however relatively simple to certify that ¢ is
not a solution to a single polynomial f, provided that p is sufficiently small. For k € N,
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let S*C™ be the kth symmetric power of C". This has a norm ||-|| dual to the standard
unitarily invariant norm on homogeneous polynomials, and which satisfies ||2*]| < ||z||¥,
for z € C". The k-th derivative of g at ¢ is a linear map (D* g); : S*(C") — C" with
operator norm,

(4) I(D* g)ll == max [[(D* g)¢ (w)]-

wesSkC™
[lw[=1

Proposition 2.4. Suppose that (é, p,Ny) is an approzimate solution to a square polyno-
mial system g with associated solution (. For any polynomial f, if

. deg f; Dk A
(5) HGIEDD ww’f > 0,

k=1

then f(C) # 0.

~

Proof. By Taylor expansion, it follows that f(z) # 0 for any z € B((, p). O

Let us write 6(f, g, ¢ ) for the difference in the inequality (5), which we will call a Taylor
residual. Note the implicit dependence on p in Definition 2.1. If f = (fi,..., fy) is a
polynomial system, then we define its Taylor residual o(f, g,é) to be maximum of the
Taylor residuals d(f;, g, f ), for © = 1,..., N. For this test of nonvanishing using Taylor
residuals to be practical, we need to estimate the operator norms of the higher derivatives.
One possible bounding strategy, as explained in [34, §I-3] and [12, §1.1], uses the first
derivative alone. Another option, less suitable for polynomials of high degree, is to bound
with the entry-wise £y or £; norms of these tensors.

A consequence of Definition 2.1 is that each iterate N ]’f(é ) is an approximate solution,

as N f(é ) — ¢. We wish to quantify this rate of convergence. The triangle inequality gives

a test for when approximate solutions (51, p1,Ny) and (fg, p2, N¢) have distinct associated
solutions, namely if

(6) ||§1—§2|| > p1+p2.

It is useful to have some additional criterion when two approximate solutions have the
same associated solutions, that is, we wish to certify uniqueness of the associated solution
in a sufficiently small region. This motivates our next definition.

Definition 2.5. An effective approximate solution (f,/\/'f, p, ki) to a system f consists of
a weakly decreasing rate function p: N — R.q with limy_,, p(k) = 0, and an integer k.
such that

1) ¢ is a p(0)-approximate solution to f with associated solution (,
2) [H(0) — €Il < p(K) for all j > k. and
3) For some iterate k,, ¢ is the unique solution in the ball B (/\/;k)(f), 2p(k:*)).

We say the rate of convergence for the effective approximate solution has order p(k).
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The rate of convergence is quadratic when p(k) = 272" ||¢ —||. This implies that each

application of NV(-) roughly doubles the number of significant digits in (. We generalize
the method for certifying distinct solutions in [12, §I-2].

Proposition 2.6. Given a set of effective approximate solutions S’ = {(@,./\/'f,p,-,ki)}
to a system f, we may compute a set S of refined approximate solutions with distinct
associated solutions comprising all solutions associated to the set S'.

Proof. We need only replace each ¢; with its refinement A ]]f (f,) After refinement, the
solutions associated to ¢; and fj are distinct if and only if inequality (6) holds. 0J
Proposition 2.4 may fail to certify that an extraneous solution ( is not a solution to f.

However, if ¢ is an effective approximate solution for N, then this test will succeed after
sufficiently many refinements.

Corollary 2.7. Let f = (f1,..., fn) be a system of polynomals, and suppose (é’,/\/g, 0, k)
is an effective approximate solution such that the associated solution ( &€ V(f). There is

a k > 0 such that the Taylor residuals 0 (f, g,Né(é)) are positive for all © > k.

Proof. Since Ng(f) — (, we may argue that ¢ (f,g,./\f;(é)) > 0 for some k by Taylor

expansion as in Proposition 2.4. Since p(-) is weakly decreasing, it follows from 2) in
Definition 2.5 that the Taylor residuals remain positive for all i > k. O

Certificates for square systems are generally based on Newton’s method. We now
observe that Definitions 2.1 and 2.5 encapsulate several existing certification paradigms
for square systems.

2.1. Smale’s a-theory. The central quantities of Smale’s a-theory are defined as follows.
With g as above and ( € C" a point where Dg(() is invertible,

o vé) = ﬁ(g,f)w(g,f), where

g
(7) B(g.¢) = ¢ =Nl = [Dg(¢)'9(Ql , and
. Dg(C)-1(DF g). ||
(0.8) = sup 9(¢) k'( 9);
k>2 .

Note that 5(g, f) is the length of a Newton step at ¢. The following proposition gives a
criterion for approximate solutions in the sense of Definition 2.1.

Proposition 2.8 ([3, p. 160]). Let g be a square polynomial system and ¢ € C™. If

alg.8) < BT

~ 0.15767078,
then C is 28(g, )-approzimate solution to g and the Newton iterates Nj(f) converge
quadratically.

Criteria for quadratically convergent effective approximate solutions in the sense of

~

Definition 2.5 can also be given in terms of «(g,(). The analysis amounts to showing



6 TIMOTHY DUFF, NICKOLAS HEIN, AND FRANK SOTTILE

that NN, is a contraction mapping in a suitable neighborhood of . This is given by the
“robust” a-theorem (Theorem 6 and Remark 9 of [3, Ch. 8]).

Proposition 2.9. Let g be a square polynomial system and QCAE C" an approzimate
solution to g with associated solution ¢ and suppose that a(g,() < 0.03. If (' € C"
satisfies

IR
207(g.¢)

then (' is an approzimate solution to g with associated solution C.

I<=¢Nl <

It follows that, for p(k) = 2_2]6715(5), we have that (f, Ny, p,0) is an effective approxi-
mate solution in the sense of Definition 2.5.

2.2. Other approaches. The classical analysis of Newton’s method is due to Kan-
torovich [14]. Several variations of Kantorovich’s theorem exist, typically assuming some
local Lipchitz condition on the Jacobian D, and boundedness conditions on Dg(é)_l.
Certificates based on Kantorovich’s theorem thus rely on a priori bounds in a region
containing é . Explicit bounds on the rate of convergence in terms of the Lipchitz and
bounding constants are given in various works [40, 9, 7]. We refer to [24] for a survey
of variants and an explanation of the relationship between Kantorovich’s theorem and
a-theory.

Approximate solutions may also be understood within the general program of interval
and ball arithmetics. Both paradigms rely on defining arithmetic operations on intervals or
balls and are definable in either exact or floating point arithmetic. In general, operations
on intervals represent enclosures. In exact interval arithmetic, we define the sum by
la,b] + [¢,d] = [a + ¢,b+ d]. For floating point arithmetic, we may either accept a soft
certificate or control rounding errors when defining arithmetic operations so as to obtain
a rigorous certificate. We refer to [22, 29, 41] for a more comprehensive treatment of these
notions. A variety of interval/ball-valued Newton iterations have been studied. A popular
variant is the Krawcyzk Method—see [29, Chapter 6] for an introduction, [28] for quadratic
convergence, and [4] for extensions to complex analytic functions. Once a Newton-like
iteration is in place, we get criteria for approximate solutions in the sense of definitions 2.1
and 2.5 by taking CA to be the midpoint/center of the enclosing interval /ball.

3. CERTIFICATION VIA NONSOLUTIONS

In this section we consider certification in the setting where we have an overdetermined

system given by fi,..., fxv € Clxy,...,z,], a full set of approximate solutions to some
square subsystem ¢, and prior knowledge of an integer d such that
(8) d = #WV(g)\ V() -

From this information, the Newton operator /N, can be used to give an approximate
solution to f in the sense of Definition 2.1. We make this precise in Section 3.1; Algo-
rithm 1 provides one possible solution to Problem 1 from the introduction. For Problem
2, we give an essentially different approach (Algorithm 2) that assumes knowledge of the
number of solutions to f.
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Knowledge of d may come from rigorous mathematical proof (eg. the examples in 5.2)
or by some form of certified computation. If all points in V(g) are isolated, then d is
simply the degree of the saturated ideal (g) : (f)>°. Thus, if we can compute Grébner
bases for the ideals generated by both polynomial systems, then we have d which is an
admissible input for Algorithms 1 and 2, which are given in this section.

Aside from addressing Problems 1 and 2, we explain another approach to computing
d in the special case where ¢ is obtained by “squaring up”, or randomization [42]. This
means we have a suitably generic n x N matrix A € C"*" such that

91(2) fi(2)
(9) g = : = A : = 0.

gn(2) fn(2)

For such g, the number d can sometimes be computed from Khovanskii bases (a
generalization of SAGBI bases) for the polynomial algebra in n+1 variables given by
Cltfi,...,tfn]. We give an overview of this theory in Section 3.2. An attractive feature
of Khovanskii bases is that we may, in principle, work with the algebra C[tf1,...,tfy]
itself rather than some presentation Clzy,...,xy] — Clt f1,...,t fn]. There is, however,
a significant trade-off, which is that finite Khovanskii bases need not exist. Nevertheless,
we feel that computation of Khovanskii bases deserves to be more thoroughly explored.
Certification is a particular application which may benefit from more efficient and robust
computational tools for Khovanskii bases.

3.1. Certification algorithms. We now formulate our first algorithm for solving Prob-
lem 1. This is the content of Theorem 3.2, based on Definition 2.1. Note that Algorithms 1
and 2 assume pairwise distinct approximate solutions and explicit separating balls, respec-
tively. By Proposition 2.6, it is enough to require that the f, are effective approximate
zeros and apply these algorithms after refinement.

Algorithm 1 (Certifying individual solutions).
Input: (f,g,d,S)

f — a polynomial system

g — a square subsystem of f

d € N satisfying (8)

S = {Cl, ce C;n} — pairwise distinct approximate solutions to g
Output: T C S, a set of approximate solutions to f

Initialize R < () R

for j=1,....,m if §(f,¢9,(;) >0 then R« RU{(}
if (#R==d) then T+ S~ R,else T+
return 7'

Remark 3.1. A priori, we only need to know that d > # (V(g) \ V(f))—if the inequality
is strict, we necessarily return an empty set.

Theorem 3.2. Suppose that f,qg,d,S are valid input for Algorithm 1. Then its output
consists of approrimate solutions to f.

Proof. It T' is empty there is nothing to prove. Otherwise, there are d distinct solutions
to g associated to points of R—by Proposition 2.4, these are not solutions to f. Since the
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solutions associated to points of T" are disjoint from those associated to points of R, by
assumption and (8) they associate to solutions to f. O

We now give a second algorithm using a-theory to certify solutions to an overdetermined
system f to solve Problem 2. Suppose that we have an overdetermined system f that
is known to have e solutions whose square subsystems are known to have d solutions.
While we could apply Algorithm 1 to certify approximate solutions to f, we propose an
alternative method to solve this problem.

Algorithm 2 (Certifying a set of solutions).
Input: (d,e, f,g9,9,5,5, B)
e < d — integers
f — a polynomial system with e solutions
g,q — two square subsystems of f
S = {51, cee fd} — a set of d distinct approximate solutions to g
B ={B(C,pm), ..., B(C4,pa)} — disjoint balls separating elements of S.
S’ — a set of d distinct approximate solutions to ¢’
Output: T C S, a set of approximate solutions to f
. Initialize T < ()

—_

zr e min (I6=Gl - (it )

3. for ('€ S do

4:  repeat ('« N, (') until 28(g, ) <r/3

s 26(0,)

6: for j=1,....d if B((,p;)NB((,p)#0 then T« TU{(}
7: end for

8: if (#T == e), then return 7', else return FAIL

Note that the intersection of balls in line 6 is non-empty if and only if
p+pp > lIG =,
so this condition may be decided in rational arithmetic if a hard certificate is desired.

Theorem 3.3. Let f be a system of polynomials having e solutions whose general square
subsystems have d solutions. Then Algorithm 2 either returns FAIL or it returns a set T
of approximate solutions to f whose associated solutions are all the solutions to f.

As with Algorithm 1, while the hypotheses appear restrictive, they are natural from an
intersection-theoretic perspective, and are satisfied by a large class of systems of equations.
We explain one such family coming from Schubert calculus in Section 5.2.

Proof. Since the balls B (CAZ, p;) are pairwise disjoint, the quantity r is positive. Thus the
refinement of each approximate solution é’ on line 4 terminates. Having refined each
(' € S, note that B(é’,p’) can intersect at most one ball from B. Now, if (7,...,(. are
the solutions to f, then we must have that some (;j is associated to each (; for some
indices 1 < iy < iy < --- <1, < d. Thus, if T" has e elements, then the only solutions to g
associated to T are also solutions to f. O
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Remark 3.4. If ¢ is a general square subsystem of f, then it will have d solutions and
the only common solutions to g and to ¢ are solutions to f. In this case, if Algorithm 2
returns FAIL, then #7" > e, so that some pair of balls in Step 6 meet, but their intersection
does not contain a common solution to g and to ¢’. In this case, we may then further
refine the solutions in S, S’, and the corresponding balls until no such extraneous pair of
balls meet.

3.2. Newton-Okounkov bodies and Khovanskii bases. Perhaps the main difficulty
in applying Algorithm 1 is obtaining the correct number d beforehand. As noted in the
beginning of this section, Grobner bases give a general recipe for calculating this number.
Here, we sketch a less well-developed approach in the case of a square subsystem defined
as in (9). In this case, d is given by a birationally-invariant intersection index over C™.
We summarize the basic tenets of this theory as developed in [17, 18].

Definition 3.5. ([18, Def. 4.5]) Let X be an n-dimensional irreducible variety over C
with singular locus Xg;,e. For an n-tuple (Li, Lo, ..., L,) of finite-dimensional complex
subspaces of the function field C(X), let L = Ly X Ly X -+ X L,,, and define

Ui, = {ZEX\Xsing‘LiCOX,z forizl,...,n},

the set of smooth points where every function in each subspace L; is regular, and
Zy = JzeUp|f(z) =0 Vfe L},
i=1

the set of basepoints of L. For generic g = (g1,...,9,) € L, all solutions to the system
g1(2) = -+ = gn(2) = 0 on Uy \ Z, are nonsingular and their number is independent

of the choice of g. The common number is the birationally invariant intersection index
Ly, Lo, ..., Lyl

These claims are proven in [17, Sections 4 & 5]. For our purposes, X = C" and
L=Lx---xLwhere L CC|z,...,z,) is the linear space spanned by the polynomials
in our system f. Write dp for this self-intersection index, note that Up = C", while
Zr, =V(f). Thus (8) holds for general square subsystems of f, taking d = d.

Let v: C(X)* — (Z", <) be a surjective valuation where < is some fixed total order
on Z". For example, v could restrict to the exponent of the leading monomial in a term
order < on Clxzy,...,z,]. We attach to (L, r) the following data:

o A = @ t*LF—a graded subalgebra of C(X)[t].
k=0
o S(Ap,v) ={(v(f),k) | f € LF for some k € N}, a sub-monoid of Z"®N associated
to the pair (L,v), where L* is the C-span of k-fold products from L. This is
the initial algebra of Ay with respect to the extended valuation v,: C(X)(t)* —
(Z" ® Z, <) defined by vy (fit* + -+ fo) = (v(fi), k), where <, is the levelwise
order defined by

(041,]{71) ¢ (Oég,]fg) if ki > ko or ke = ki and o < ay.

e ind(Ap,v)—the index of Z S(AL,v) N (Z" x {0}) as a subgroup of Z™ x {0}.
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e Cone(Ay, v)—the Euclidean closure of all R>¢-linear combinations from S(Ay, v).
o A(AL,v) = Cone(Ar,v) N (R® x {1})—the Newton-Okounkov body.

The linear space L induces a rational Kodaira map
Urp: X ———= P(LY) 2z~ [f=f(2)],
with the section ring A; the projective coordinate ring of the image.
Proposition 3.6 ([18, Thm. 4.9]). Let L be a finite-dimensional subspace of C(X). Then

n! deg ¥y,

o = ind(Az,v)

- Vol A(AL, l/).

Here, Vol denotes the n-dimensional Euclidean volume in the slice R™ x {1}.

In our setting, where X = C" and L = spanc{fi,..., fn}, the Kodaira map ¥ is
2 [fi(2) 1 fa(2) -+ ¢ fn(2)]. Thus, if need be, deg ¥, may be computed symbolically.
The main difficulty in applying Proposition 3.6 is that it may be hard to determine the
Newton-Okounkov body, as the monoid S(Ap,v) need not be finitely generated. This
leads us to the notion of a finite Khovanskii basis [16].

Definition 3.7. A Khovanskii basis for (L,v) is a set {a; | i € I} of generators for
the algebra A, whose values {vi(a;) | i@ € I} generate the monoid S(AL,v). If <
is a global monomial order on k[z,...,z,], taking lead monomials defines a valuation
v:klz1,..., 2z, = (Z", <), where < is the reverse of <. A Khovanskii basis with respect
this valuation is commonly known as a SAGBI basis [15, 31].

When the monoid S(Ag,v) is finitely generated, there is a finite Khovanskii basis
for (L,v). When this occurs, we may compute the Khovanskii basis via a binomial-
lifting/subduction algorithm such as described in [31] or [39, Ch. 11].

Example 3.8. We consider an “illustrative example” of an overdetermined system from [1]:

fl(Zl,ZQ,Zg) Z% + Z% - 1,
fg(zl, 29, 23) . —16 Z% + 821 + 17,
fg(zl,z2,23) - —Z% + 21— 23 — 1,
f4(21,22,23) 642122 + 16 Z9

The square subsystem defiened by f; = fo = f3 = 0 has two singular solutions, and fy is
the Jacobian determinant of this subsystem. Let < be the graded reverse lexicographic
ordering with z; > 2o > 23 and L = spanc{fi, f2, f3, f1}. We observe that the initial
terms of tfy,...,tfs € Ap under the induced order <; are given by 22, —16t 22, —t 23,
and 64t z;z5. The lattice points corresponding to these monomials comprise the first level
S(Ap,v)N (x4 = 1) and lie in the linear subspace of R3 x {1} defined by z3 = 0. We see
that the inner approximation to the Newton-Okounkov body A(Ay, ) given by the first
level has 3-dimensional volume 0. However, there exists © € S(Ar, v) with z3 # 0:

51222723 + 6656 %21 23 — 6400725 + 14000 t°2; — 26368 t°23 — 27125 ¢
=17 (64 f1fo — 21 f3 — 512 fifs + T68 fofs — 6400 f5 + & f7) € AL,
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giving

€ S(Ap).

N = O N

This element of Ay was obtained by the previously mentioned binomial-lifting /subduction
algorithm—carrying this out further, we can verify that this new element together with
the original generators give a finite Khovanskii basis for Ay. It follows that

0 1

0
’1/2>
1

and Vol(Ar) = 1. We also have that deg ¥ = 2 and ind(Az) = 1. Thus, we have dj = 2,
giving a total root count of 4 after squaring up f.

A(Ap, <;) = conv <

— O O N

—_ O O =
— O =

2
? O )
1

Remark 3.9. We note that the total root count for a system g = (g1, go, g3) obtained by
randomizing f in the previous example is equal to the normalized volume of the common
Newton polytope of g1, g2, g3, which is four. This is equal to the “expected” polyhedral
root count [23, 2]. However, this information does not give us d;, = 2 as needed for
Algorithms 1 and 2.

4. CERTIFICATION VIA LIAISON PRUNING

Suppose that we have an overdetermined system f with a square subsystem ¢, so that
V(f) C V(g). Suppose further that we have a square system h with V(h) = V(g) ~ V(f).
Given this, we may certify all approximate solutions to g and then certify the subset of
those that are approximate solutions to h, so that the solutions in V(g) ~ V(h) which
remain are certifiably approximate solutions to f. This solves Problem 1. When this
occurs, we say that V(f) is in liaison with the complete intersection V(h). The basic
scheme for certification via liaison is Algorithm 3. We also give a generalized version,
Algorithm 4, which we later apply to the Schubert calculus in Section 5.2.

Let us begin with some definitions. A system gy, ..., g, of r polynomials is a complete
intersection if the variety V(g1,. .., ¢,) C C" they define has dimension n —r, equivalently
if it has codimension r. A square system is a zero-dimensional complete intersection.

More generally, varieties X,Y C C" of codimension r are in lzaison if there are polyno-
mials ¢1,...,¢9. € Clzy,...,x,] such that V(¢i,...,g9,) = X UY. This relation has been
deeply studied (see [20] and the references therein). Of particular interest is when one
of the varieties, say Y, is itself a (different) complete intersection, so that X is in liaison
with a complete intersection. (This is a special case of the licci equivalence relation.)

Example 4.1. (The twisted cubic.) The closure of the set {[1,¢,¢%,¢3] | t € C} is the
rational normal curve C' C P3. It is defined by three quadrics, wy—a?, wz—zy, xz—1y?%, and
is thus not a complete intersection. In the affine patch C? defined by w = 1, if we use the
difference of the first two generators and the last generator, then V(z—y+2%—xy, 12—y?) =
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CU/l, where { = V(x —y,x — z) is the line {(¢,¢,t) | t € C}.

Let X C C" be a variety of codimension r that is in liaison with a complete intersection
Y. There are polynomials f = (f1,...,fs), 9 = (¢1,.-.,9-), and h = (hy,..., h,) such
that

X = V(f), XUY = V(g), and Y = V(h).

We generalize the notion of a square system of polynomials. A square system on X consists
of polynomials ¢,41,..., g, that are sufficiently general in that X N V(g,41,...,9n) is a
finite set and the intersection is transverse. Then

(10) V(gl, e 7gn) = (X N V(gT+1, Ce 7gn>) U (Y N V(gr+1, ce 7gn>) .

Thus the square system X N V(g,41,...,9,) on X is the set-theoretic difference of two
square systems of polynomials, V(¢1, ..., ¢g,) and

(11) V(hl, e ,hr, Jrat,y--- 7gn) =YnN V(gr+1, e 7gn> .

For example, let C' be the rational normal curve of Example 4.1 in C3, which has codi-
mension 2, so that C N V(x +y + z + 1) is a square system on C. Manipulating the
polynomials in V(z —y + 22 — 2y, vz — y?, . +y + z + 1) leads to the solutions

(—3,—3,—3%) on{ and (—1,1,—1) and (£v—1,-1,FvV—1) on C.
If f1,..., fs generate the ideal of X, then XNV(g,41, ..., gn) is the overdetermined system

f = (fla"'>.f8>gr+la"'>gn)

Thus an algorithm to certify points on X N V(g,41,-..,9,) solves Problem 1 for f. As
we may certifty solutions and nonsolutions to systems (10) and (11), this discussion leads
to the following certification algorithm, when a variety X is in liaison with a complete
intersection Y. This uses the test of Proposition 2.4, the Taylor residual (5), and Smale’s
a-theory for the system (11).

Algorithm 3 (Certifying approximate solutions to a square system on a variety X).
Input: (r,g,h,95)

reN

g = (91,...,9,) — a square polynomial system such that V(g;,...,9,) = X UY,
with both X and Y of codimension r

h = (hy,...,h,) — polynomials such that V(h) =Y
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S = {fl, cee C;n} — pairwise distinct approximate solutions to g with refinement
operator N/

Output: 7T.U C S with § = T U U, where T consists of approximate solutions to
X N V(grs1,---,9,) and U consists of approximate solutions to Y N V(gri1,---,9n)-

1: Set f:=(hy,...,hy Gra1s- -+, 0n), & square system on Y.
2: Initialize T« 0, U < ()
3: for (€S do

4: C/ —

5. if a(f,¢) < BT then U+ UU{(}
6 else if (f,9,¢') >0 then T « T U{(}
7: else (' < N,({') and return to 5.

8 end if

9: end for

Remark 4.2. As in all subsequent algorithms, we assume distinct approximate solutions
to g with refinement operator N, as part of the input. We could have just as easily
assumed effective approximate solutions. The test in line 5 could be replaced by testing
that ¢’ is an approximate solution to the square system f by some criterion other than
a-theory—for simplicity, we do not assume this criterion is part of the input.

Proof of correctness. As (A € 5, it is an approximate solution to the square system g with
an associated nonsingular solution ¢ € V(g) C X UY. Since ( is nonsingular, ( ¢ X NY,

as X UY is singular along X NY. Thus ¢ € X if and only if ¢ € Y. Let {¢; | i € N} be
the sequence of iterates using N, starting at ¢. This converges to C.

If ¢ €Y, then ¢ € V(f), and the sequence {(;} will eventually lic in the basin of
quadratic convergence for Newton iterations Ny and S(f, (;) converges to 0. As y(f, )
is bounded, «a(f, f,) =(f, QA}) - B(f, f,) converges to 0. Thus the condition in line 5 will
eventually hold and é will be placed in U.

If ( €Y, then ¢ & V(f). By Corollary 2.7, the Taylor residuals d(f, g, (;) are positive

for j large enough. Thus the condition in line 6 eventually holds, and ¢ will be placed
into 7. U

We describe a more involved application of this idea. Write codim X for the codimen-
sion, n—dim X, of a variety X C C". Suppose that X;,...,X,, C C" are in general
position and ) codim X; = n, then Bertini’s Theorem [19] implies that

(12) X (X)) X

is a transverse intersection consisting of finitely many points. When n = m, so that each
X; = V(f:) is a hypersurface, then (12) is equivalent to the square polynomial system

fi = fo=-=/f.=0.

As a variety need not be a complete intersection, a square system of varieties (12) with
m < n does not necessarily have a formulation as a square system of polynomials. How-
ever, the points of (12) are the solutions to an overdetermined system of polynomials
given by the generators of the ideals of each of Xy,..., X,,.
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Suppose now that Xi,..., X,, C C" form a square system of varieties (12), each X is
in liaison with a complete intersection Y;, and these are all in sufficiently general position.
Then there are square systems g1, ..., g, and hq, ..., h, of polynomials such that if a,: 0 =
ap < a; < -++ < ay, = n is defined by a; — a;_1; = codim X;(= codimY;) for each i, then

(13) V(grtai i -5 9a) = Xi UYe and V(g 5o he) = Y

are complete intersections for each ¢ = 1,...,m. Thus

=~
s
I
EDE

(14) (X;UY)) .

We give a more general version of Algorithm 3 that will certify solutions to the square
system (12) of varieties, given solutions (14) to the square system g.

Algorithm 4 (Certifying solutions to a square system of varieties).
Input: (a.,g,h,S)
Ae:0=ap<a1 < ---<a,=n
9g=1(91,-..,9,) and h = (hq, ..., h,) — square polynomial systems such that
for each i = 1,...,m, (13) are complete intersections.
S = {51, cee C;} — pairwise distinct approximate solutions to g

Output: T C S consisting of approximate solutions to X;NXsN- - -NX,,.

1: for :=1,...,m do
20 Set fi=1(g1,- -y 9a1 > Pitasqs---sPays Givars - Gn)-
3:  Initialize T < 0)
4:  for (€S do
5: C/ — CA
6: if a(f,¢) < B2V then discard ¢
7: else if 6(f,g,¢’) >0 then T « T U{(}
8: else (' < N,({’) and return to 6.
9: end if
10:  end for
11: S« T
12: end for
Proof of correctness. By algorithm 3, in each iteration ¢ = 1, ..., m of the outer loop, the

algorithm constructs the set T" of elements of the input S that do not lie in Y, U- - -UY;. As
SNXiN---NX,, =9\ (Y1U---UY,,), we see that the algorithm performs as claimed. [

5. EXAMPLES

We give three further examples that illustrate our certification via square subsystems.
All computations were carried out using the computer algebra system Macaulay2 [10].
For each example, we found complex floating-point solutions to square subsystems via ho-
motopy continuation, as implemented in the package NumericalAlgebraicGeometry [26].
Tests from a-theory were supplied by the package NumericalCertification [25].
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5.1. Plane quartics through four points. Consider the overdetermined system f =
(f1,.-., f11), where the the f; are given as follows:

2122—z§+zl—zg, Z%—Z§+421—422, 23—625+522—|—12
zlz2 6,22 — 21+ 620+ 12, zlz2 6,22 4z1 + 929 + 12, zl 6,22 — 1321 + 1829 + 12,
2y — 3125 + 4220 + T2, 2125 — 3125 + 21 + 4120 + 72, 2723 — 3125 + 421 + 3820 + 72,
2122 — 31,22 + 1321 + 2929 + 72, zl — 312’2 + 4021 + 229 + 72.

These give a basis for the space of quartics passing through the four points:
(4,4), (—=3,-1), (=1,-1), (3,3) € C~

As an illustration of Algorithm 1 and the techniques based on Khovanskii bases described
in Section 3.2, we show how to certify that numerical approximations of these points
represent true solutions to f.

Letting L = spanc{fi,..., fi1}, we consider the algebra A;. Letting < be the graded-
reverse lex order with z; > 25, the algebra A;, has a finite Khovanskii basis with respect to
the Z?-valuation associated to <. It is given by S = {t fi,t fo,...,t fi1,t* g, t> h}, where

g=2172 — 25+ 1027 29 — 2621 25 + 1625 + 1027 — 152120 + 525 + 1221 — 122
h=10202 — 4927 25 + 8927 25 — Tlzy 29 +21 25 + 10 2] — 1827 25 — 18 27 23
+ 502125 — 2425 + 3120 — 8327 20 + 7321 25 — 21 25 + 24 27 — 48 21 20 + 24 23
The Newton-Okounkov body, depicted below, has normalized volume 12. The integer

points correspond to fi,..., fii. The fractional vertices corresponding to t?¢g and t3h
demonstrate that these elements are essential in forming the Khovanskii basis.

Using the procedure of [33], we may express g and h as homogeneous polynomials in
the algebra generators fi, ..., fi1:

5452243 1088119 179087 1184975 2728589 2 5046
9 = 73803436 fafo + 7606872 fsfo — 7606872 fofo — 7606872 fsfo+ 7606872 f9 - ﬁfl 10
5951 5452243 2196073 1184975
+ 11739 fafro+ 3803436 fsho +1 1901718 Jafro+ 3803436 f5f10 1901718 fﬁflo + 3 7606872 frfo
5983 2728589 65165 5951 9872411 1632419
20484 fsf10— 7606372 fof10— 1267812 flO T 11739 f1f11 " 7606872 fsfu— 7606872 fafu

129295 1184975 2728589
+ T501718 Js i — 7606872 Jrfu + 7606872 Jefu + 1267812 f9f11
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J — 423458528003 f f2— 348204358499 f fz 4 -33023933703287 f f2— 82250093861471 f fz
= 35055045627228 /59 T 77902598858994 / 6J9 T T012733785166922 / 7/9 T 6076402711001532 /89
4432317106115 f3 _33023933703287 Frfsfro + 1065288183977 fafof
233707796576982 /9 — 1012733785166922 7 7/ 8J10 T 37508658709886 / 3/ 9./ 10
_ 96715490949542 Fafofio — 49052367589004489 s fof 25940308080550879 fofof
317951304645429 /4910 — 1695316356369427428 / 5/ 9J101605316356369427428 / 6J9J 10
8914885258327 1 fofro + 848951864573779 fafof 47174423433062585 f2 ¥
167415593153964 7 7/ 910 T T3671906090753447 / 8910 T605316356369427428 /9 / 10
_13418439080090 ¥ fz 1014252370876 f fz 4 A90676889497623 f f2
56262988064820 / 1/ 10 T 12083766476499 7 2/ 10 T 2103370169102838 + 3/ 10
4 135026148156913879 f f2 4 A125534856927607 f f2 7907079377499775 f f2
123829089092356857 < 4/10 T 27343812199506894 < 5 10 123829089092356857 6/ 10
| _164898009266531 f fz _5432718489778696 f f2 _16931183230705166 f fz
54687624399013788 / 7/ 10 ~ T41276363030785610 /8/10 ~— 123829089092356857 / 9/ 10
_2073065531395802 f3 1065288183977 fafsf 33023933703287 Frfof
141276363030785619 / 10 — 37508658709886 7 3/ 8. 11 1012733785166922 / 7/ 8/ 11
13306110674011 2828825493124010 4516368725120116
+ 225051952259316 f3fof1 + 13671906099753447 fafofun — 423829089092356857 fsfofu
_3780890220862891 fofofi1 — 280393696081193 frfofi1 — 313094593927918 fofof
1695316356369427428 # 6911 — 6076402711001532 / 7/ 9/ 11 — 13671906099753447 J 8/ 9.J11
5042023611256019 2 14158876247624 8754568627342
+ S17658178184713714 fofu+ 168788964194487 fifrofin — 168788964194487 f2frofu1
_ 26911193688915259 fsfrofi1 — 4282639294736275 fafiofir — 31468039434977 fs frof
54687624399013788 / 3/ 1011 ™ 18929208133004596 # 4/ 10/ 11 ™ 7484963905739226 - 5./ 10/ 11
4914325106636902 1833610583591729 16078096764903062
+ 123829089092356857 JeJ10f11 + 54687624399013788 Jrfiofu + 423829089092356857 fsJiof11
8296532868679901 7171418221493375 2 8754568627342 2
+ 342188050009918204 foSi0f11 + 565105452123142476 fiofir + 168788964194487 Jifia
| 5171410646788483 f f2 4 A7304126637283207 f f2 _4914325106636902 f f2
27343812199506894 / 3/ 11 T T695316356369427428 4/ 11 ~ 7123829089092356857 0 11
_107608086440381 f f2 _33198943704009683 f f2 _7171418221493375 f fz
27343812199506894 7/ 7/ 11 — 1695316356369427428 / 8J 11 — B65105452123142476 9/ 11"

The Khovanskii basis was computed using the Macaulay2 package SubalgebraBases,
based on the work in [38]. We checked this computation against our own top-level imple-
mentation of the binomial-lifting / subduction algorithm.

For certification, we squared up f with a random matrix, g = Af, and found 16 complex
approximate solutions to ¢ using homotopy continuation. Each solution was softly certified
distinct via a-theory. Computing values d(f, g, -) as in Algorithm 1, we softly certified 12
of these as nonsolutions to f, hence associating the four remaining solutions to f. Observe
that d;, = 12 deg W, by Proposition 3.6. Also, we have dp < 16 by Bézout’s theorem.
This implies that deg W, = 1 and hence dj, = 12.

5.2. Example from Schubert calculus. We describe a family of examples from Schu-
bert calculus to which Algorithms 1, 2, and 4 all apply. For more on the Grassmannian
and Schubert calculus, see [8]. Let m > 2 be an integer and set n := m+2. Consider the
geometric problem of the 2-planes H in C" that meet m general codimension 3 planes
nontrivially. The number of such 2-planes is the Kostka number K,,29m, the first few
values of which are shown below.

[m  [1]2[3[4][5[6]7[8] 9 [10] 11 | 12 [ 13 | 14 |
[Kyeom O] L[ 1]3]6]15]36]91]232]603] 1585 | 4213 | 11298 | 30537 |

This may be computed recursively. Let k,,; be the coefficient of the Schur function
S(m+i,m—iy in the product (S(2,0))™. Then K2 om = K. For the recursion, set ry; := 1
and K19 = Ky 1= 0, when j > m. Then, for m > 1, we set Ky, := Kp—1,1 and for j > 0,
Kmj ‘= Km-1j-1 T Km—1j T Km—1,j+1-
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We express this geometric probem in local coordinates. Write I for the 2 x 2 identity
matrix and let Z be a 2 x m matrix of indeterminates, and set H := (Z|I;)", which
has n rows and 2 columns. For any choice of Z € Matay,,(C), the column span of H,
also written H, is a 2-plane in C* = C™ @ C? that does not meet the coordinate plane
C™ @ {0}, and Matyy,,(C) parametrizes the set of such 2-planes. For k = 1,... ,m, let
K}, be a general n x (m—1)-matrix whose column span (also written Kj) is a general
(m—1)-plane. Then dim HN K}, > 1 if and only if the matrix (H|K}) has rank at most m.
This condition is given by the n maximal minors fg1,..., fi, of (H|K}), each of which
is the determinant of the square (n—1) x (n—1)-matrix obtained by deleting a row from
(H|K}y). This gives a system f = (fx; | k=1,...,mand j =1,...,n) of mn quadratic
equations in 2m variables which define the solutions to our geometric problem.

Any polynomial g that is a linear combination of the f; ; has the form g = det(H|Ky|(),
where the entries of ¢ are the coefficients of (—1)7fi; in that linear combination. This
justifies the following scheme to obtain a square subsystem of f. For each k =1,...,m
and ¢ = 1,2, let Ly; D K} be an m-plane that is general given that it contains Kj. We
obtain the matrix of L;; by appending a general column vector to the matrix of Kj. Let
gr,; be the determinant of the matrix (H|Ly;)—this vanishes when dim H N L;; > 1. We
claim that the susbsystem g = (911,912, - -, gm.1,gmz2) of f is square.

For this, let us investigate the corresponding geometric loci in the Grassmannian G(2, n).
Write Q@K for the set of all 2-planes which meet K} nontrivially, and QgLy; for those
that meet Lj; nontrivially. Let Ay be the hyperplane containing both Lj; and Ly o, and
let QEAk be the set of all 2-planes that are contained in Aj. Since Lj; N L2 = K}, and
Lyy + Lo = Ay it was shown in [37] that

(15) QoLii[)Qalie = QmK, UQgA,

is a (generically) transverse intersection.

It is natural to analyze this geometric problem in the context of liaison theory discussed
in Section 4: specifically, we can use Algorithm 4. On the other hand, the algorithms from
section 3 work just as well. For each approach, we explain the details needed in order
to certify. We note that the main bottleneck, solving g, is well within the capabilities of
modern homotopy continuation software, say, for m in the single digits [27].

Algorithm 4. In the local coordinates H = (Z|I;)", we have that QaLi; = V(gr.), 0
that (15) is a complete intersection and QmKy = V(fr1, .- -, frn) is in liaison with QgAy,
which we show is a complete intersection. Let Ay be the linear form (a row vector) whose
kernel is Ay. Then H € QgAy if and only if H C Ay, so that \yH = (7). If hy, and
hi2 are the two rows of A\ H, then QgA; = V(hia, hi2), showing that it is a complete
intersection.

Our geometric problem of the 2-planes H that meet each of K, ..., K,, is equivalent
to the intersection

QK1 () Qe () -+ () Q@Ko

which is a square system of varieties (12). As each is in liaison with a complete intersection,
Algorithm 4 applies and may be used to certify the solutions to our geometric problem.
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Its input is the set V(g), which consists of the points in the intersection

(16) QaLiy()Qaliz () () Qalei () -+ () Qlmi[)Qaln: -

While each pair QgLy 1 [) QoL 2 is not in general position, this intersection is generically
transverse, and the different pairs are in general position, so the intersection (16) is trans-
verse. Consequently, the number of points in the intersection (16) is the expected number,

which is the Catalan number C,, := m%rl (272"”)
Algorithm 1. For this algorithm, the number d of excess solutions is m%rl (2::) — K2 om.
It starts with the set S = V(g) of m+r1(2n?) points in the intersection (16). We run

Algorithm 1, and if it finds that # R = d, so that we have rejected all nonsolutions, then
those that remain are certified solutions to our geometric problem V(f). Otherwise, we
may refine the approximate solutions f in S so that the Newton steps (g, E) become
small enough to reject d nonsolutions.

This algorithm is particularly easy in this case as the Taylor residual (5) of a linear
function ¢ is |¢(C)| — [|¢/||8, where the derivative ¢/ of ¢ is a vector.

Algorithm 2. Here, we simply observe that d = —— (2m

o m) is the number of solutions to
the square system g and e = K2 om is the number of solutions to f. These data together

with a full set of approximate solutions to ¢, are all that is needed for certification.

5.3. Essential matrix estimation. A fundamental object of study in geometric com-
puter vision is the essential variety

(17) Vs :={E € P(C*?) | EETE — Jtr(EET)E = 0,det E = 0}.

This is an irreducible variety of dimension 5 and degree 10. Elements of V., are called
essential matrices. The ten polynomials defining V., are known as the Demazure cu-
bics [6]. They minimally generate the homogeneous ideal of V.. It is possible to recover
an essential matrix given five generic point correspondence constraints of the form

(18) yl Ex; =0fori=1,...,5,

where zy,..., 25,91, ...,ys € P(C?). Although the overdetermined family given by equa-
tions (17) and (18) is fairly simple, it is notable for its apperance in applications. State
of the art algorithms for solving these equations run on the order of microseconds [30]
and have been successfully employed in large-scale 3D reconstruction pipelines [36]. This
motivates the problem of developing certification techniques for this problem with com-
parable efficiency. For concreteness, we consider an instance of this problem in which the
data are given by

0 0 750733 383872 970556
vr= (0], aa=(1], 23=1(.393279|, 24=[.210436|, 25=[.699694 |,
1 1 1 1 1

0 0 355041 .090869 003463
=0, w=11], ys=1{.153766 |, ys=|.143374|, ys=| .17189
1 1 1 1 1
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Truncating to 6 decimal places, we may regard each of the x; and y; as rational vectors
and seek a certificate. A candidate approximate solution is given to 6 places by

R 1 —2.36148 —.017451
E = 1252018 979523 —.066457
117939 —.913067  —107F

To certify E, we consider the square system g given by equations (18), the chart e; ; = 1,
and the first three Demazure cubics: namely

2 2 2 2 2 2
(19) (‘32,1 +t eyt ey3 €5, t €35+ ‘33,3)‘31,i + (e11€21 + €12€22 + €1 3623)€2;

+ (e11€3.1 + €12632 + €13€33)€3;

The number of solutions to g is bounded a priori by 27, and we can easily certify that this
bound is attained. It follows that we may apply the methods described in Section 3. How-
ever, there is an even simpler procedure based on the exclusion criteria of Proposition 2.4
and 2.7, as well as the following result obtained by symbolic computation.

Proposition 5.1. Let Vy, be the subvariety of P(C3*?) defined by equations (18) and (19).
Consider the polynomials

fi= €1,1

fai=ei1e31 + e12e32 + €1 3633

fs = 6%,1 + 6%,2 + 6%,3
and define projective varieties as the Zariski closures of the indicated quasiprojective va-
rieties,

Vii= Vi \V(f1)
Va = Vi\ V(f2)
Vi = Vo \ V(fs)

We have that V3 = V.

Proof. This follows by symbolically computing ideal quotients: letting I, by the ideal
generated by (18) and (19) and [, = Iy : fi for kK = 1,2,3, we may establish that
I3 equals the ideal defining V.,; for instance, by showing they have the same reduced
Grobner basis for a given term order. This is easily accomplished by Macaulay?2. 0

For generic data (x;,y;), we expect the exclusion criteria of Proposition 2.4 and 2.7 for
f1, fo and f3 to be satisfied for candidate solutions to the overdetermined problem: we
may easily verify this in rational arithmetic for our given E. Moreover, we estimate that
a(g,E) ~ .00059, thus giving that E is an approximate solution using the refinement
operator V.

We remark that a-theory does not furnish a certificate if we use the Newton fixed point
system given by equation 3 in the introduction. For this system, whose defining equations
are of higher degree, we estimate that (g, E) ~ 9.23. We also found, using Grébner bases
over a finite field, that the number of excess solutions to this fixed point system is 24, for
a total of 34 critical points overall for the least-squares Newton operator. By constrast,
Proposition 5.1 furnishes a certificate that requires no excess solutions whatsoever. Thus,
even for this toy example, we see how the flexibility of square subsystems may enhance
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the prospects of obtaining rigorous mathematical proofs from the output of numerical
computations. Although certification for overdetermined systems remains a challenge in
general, similar techniques may be worth considering for problems of a larger scale.
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