Math. Comp. 90 (2021), no. 327, 413-440., ArXiv.org/1908.00899 May 2020

A NUMERICAL TOOLKIT FOR MULTIPROJECTIVE VARIETIES

JONATHAN D. HAUENSTEIN, ANTON LEYKIN, JOSE ISRAEL RODRIGUEZ,
AND FRANK SOTTILE

ABSTRACT. A numerical description of an algebraic subvariety of projective space is
given by a general linear section, called a witness set. For a subvariety of a product
of projective spaces (a multiprojective variety), the corresponding numerical description
is given by a witness collection, whose structure is more involved. We build on recent
work to develop a toolkit for the numerical manipulation of multiprojective varieties
that operates on witness collections and use this toolkit in an algorithm for numerical
irreducible decomposition of multiprojective varieties. The toolkit and decomposition
algorithm are illustrated throughout in a series of examples.

INTRODUCTION

Numerical algebraic geometry [20] uses numerical analysis to manipulate and study
algebraic varieties on a computer. In numerical algebraic geometry, a subvariety X of
affine or projective space is represented by a witness set, which includes a finite set of
points in a general linear section of X [16]. Algorithms to manipulate a variety operate
on its witness sets. A fundamental algorithm is numerical irreducible decomposition [17],
which uses monodromy [18] and a trace test [19] to partition a witness set of a reducible
variety into witness sets for each irreducible component.

Oftentimes, a variety possesses additional structure, such as multihomogeneity, which is
when its defining polynomials are separately homogeneous in disjoint subsets of variables.
For example, the determinant det(z; ;) is separately linear in the variables of each column.
Such a variety is naturally a subvariety of a product of projective spaces (a multiprojective
variety). For the n x n determinant, this product is P*~! x .- x P"~! (n factors). We
seek algorithms for multiprojective varieties that are adapted to their structure.

Algorithms for numerically solving systems of multihomogeneous polynomials are clas-
sical [13]. A useful notion of witness set—a witness collection—for multiprojective vari-
eties, along with fundamental algorithms, was given in [6]. There, it was observed that
the trace test could not be applied naively to a witness collection. Consequently, for nu-
merical irreducible decomposition, a witness collection for a multiprojective variety must
be transformed into a witness set for a projective or affine variety. Since a multiprojective
variety is a projective variety under the Segre embedding, that could be used for numer-
ical irreducible decomposition. In general, the Segre embedding dramatically increases
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the ambient dimension and degree as we show in Section 1.7. Passing instead to an affine
patch in the product of projective spaces preserves the ambient dimension, but we do
not know an algorithm of acceptable complexity to compute a witness set from a witness
collection unless the variety is a curve. This is because for curves the Segre embedding
can be used without increasing the degree so much as seen in Section 4.

A version of numerical irreducible decomposition was proposed for subvarieties in the
product of two projective spaces [10]. This reduces numerical irreducible decomposition to
that of a curve, decreasing the size of the witness sets. We extend that analysis to arbitrary
multiprojective varieties. We present four geometric constructions and corresponding
algorithms that operate on witness collections, and together provide a toolkit for the
numerical manipulation of multiprojective varieties. A key ingredient is the support of a
multiprojective variety [2], which is a multiprojective version of dimension.

The computation of this (multi)dimension locally at a point reduces to linear algebra.
When the multidimension decomposes as a product, the corresponding variety is also a
product as is a witness collection for it. We next explain how witness collections transform
under birational maps that change the multiprojective structure, and finally how a witness
collection behaves under slicing with a hyperplane. We also give an algorithm based on
monodromy for computing a witness collection. The utility of this toolkit is illustrated in
an algorithm for numerical irreducible decomposition of multiprojective varieties. We use
these tools to reduce the numerical irreducible decomposition to that of a curve in affine
space, to which we may apply an efficient trace test. This generalizes the method of [10],
from two to arbitrarily many projective factors.

Algorithms in numerical algebraic geometry typically operate on affine varieties. A
subvariety X C P" of projective space is replaced by its intersection X, with a general
affine patch C" C P"™ where a general linear polynomial ¢ does not vanish. The same
approach could be followed for a multiprojective variety X C P™ x --- x P by taking
affine patches in each projective factor and combining them, giving X, C Cmt+n,
This neglects the given structure and increases the size and complexity of the witness set,
which is particularly significant when X is neither a curve nor a hypersurface. We will
work with multiaffine varieties X,g C C™ x ... x C™_ using algorithms that respect this
decomposition and are compatible with the multiprojective structure of X.

This paper is structured as follows. In Section 1, we define witness collections of multi-
projective and multiaffine varieties, and introduce some running examples. In Section 2,
we give an algorithm to compute (multi)dimension locally and an algorithm based on
monodromy to compute a witness collection. In Section 3, we show how to detect and
exploit that a variety is a product. In Section 4, we show how to transform witness collec-
tions under the birational maps that correspond to changing the multiprojective structure
of a variety. In Section 5, we show how to perform a dimension reduction based on in-
tersections with linear spaces that preserves (ir)reducibility. In Section 6, we sketch an
algorithm for numerical irreducible decomposition that uses this toolkit. In Section 7, we
consider two examples based on fiber products which naturally yield multihomogeneous
systems. Apart from showcasing our toolkit, these examples demonstrate that using mul-
tiprojective structure leads to significant reduction in the size of computations.
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1. BACKGROUND

For a finite set F' of polynomials, let V(F) be its variety, the subset of affine or pro-
jective space (or products thereof) where every polynomial in F' vanishes. A variety will
also be a union of irreducible components of such a set V(F'). We first recall numerical
homotopy continuation, then witness sets [20, Ch. 13], multiprojective varieties, witness
collections [6], and multiaffine varieties. We end by introducing our running examples.

1.1. Numerical homotopy continuation. Many algorithms described herein are based
on numerical homotopy continuation. A homotopy is a system of polynomials H(x;t)
(x € C", t € C), that interpolates between two systems—the start system when t = 1
and the target system when t = 0—in a particular way. We require that V(H) C CI x C,
contains a curve C' that is a union of components of V(H ) which projects dominantly to C;,
and that ¢ = 1 is a regular value of this projection 7: C' — C;. We further require that C
is bounded above a neighborhood of 1 € C;, and that V(H) is smooth at W C 7~ (1).
The start system H(x,1) = 0 has W among its isolated solutions. The target system is
H(x,0) = 0 and its intended solutions are the points of C' above t = 0.

Given a homotopy H, we restrict C' to its points above the interval [0, 1] or above an
arc in C; with endpoints {0, 1}. This gives a set of |W| arcs in CI x C;, one for each point
of W. Each arc is either unbounded for ¢ near 0 or it ends in a point of 77*(0). Starting
with points of W and using numerical path-tracking to follow the corresponding arcs will
recover the isolated points of 771(0). In this way, we use the solutions W of the start
system to compute the solutions of the target system. For more, see [12, 20].

1.2. Witness sets and numerical irreducible decomposition. Let Y be an irre-
ducible subvariety of projective space P". By Bertini’s Theorem [9], the dimension dim(Y")
of Y is the maximum number of general linear polynomials that have a common zero on Y,
and its degree deg(Y") is the number of such common zeroes. For a collection L of dim(Y)
general linear polynomials, the set Y NV(L) of deg(Y) common zeroes is a linear section of
Y, called a witness point set of Y. If I’ is a finite set of polynomials with Y an irreducible
component of V(F'), then the triple (F, L, Y NV(L)) is a witness set for Y.

Suppose that X C P" is a union of irreducible components of V(F). A witness set for X
is composed of witness sets for each irreducible component of X. We assume for simplicity
that the linear sections are chosen coherently: Let /1,..., ¢, be general linear polynomials
on P, and for each e € {0,1,...,n}, set L® := (¢1,...,¢.). For each dimension e, the
eth witness set for X is the triple (F, L, P¢) where P€ is the set of isolated points in
X NV(Le). If X is equidimensional of dimension e (all components of X have dimension
e) then (F, L, XNV(L®)) is a witness set for X. For this assertion/definition the generality
of the ¢; is essential, by Bertini’s Theorem.

Remark 1.1. Given another collection L’ of e linear polynomials, the convex combination
tLe + (1 —t)L' may be used in a homotopy H(t) = (F,tL¢+ (1 — t)L’) to transform the
witness point set P¢ C X NV(L¢) into one lying in X NV(L'). This homotopy can be used,
for example, to test membership. In particular, if X is equidimensional of dimension e,
x € P, and L' is e general linear polynomials vanishing at x, then x € X if and only if x
is an endpoint of the homotopy H(¢) with start points X N V(L°). o
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A fundamental algorithm involving witness sets is numerical irreducible decomposition.
It first decomposes a witness set for X into witness sets for Xo, ..., X,,, where X, C X is
the union of the irreducible components of X of dimension e. When X = X, numerical
irreducible decomposition computes the partition of X N V(L) (L = L¢) into subsets, each
of which is a linear section Y N V(L) of an irreducible component Y of X.

Numerically following the points of X N V(L) as L varies in a loop gives a monodromy
permutation w of X NV(L). The points belonging to a cycle of w lie in the same irreducible
component of X, and thus the cycles of w give a finer partition than the numerical
irreducible decomposition. Computing additional monodromy permutations coarsens this
partition. This monodromy break up algorithm [18] gives a partition P, U --- L Py of
X NV(L), where each P, C Y NV(L) for some irreducible component Y of X.

The trace test [10, 19] is a heuristic stopping criterion for monodromy break up. In
it, the points of some part P; of the partition are numerically continued as L moves in
a general linear pencil. The average of the points in F; is collinear if and only if P; is a
witness point set of a component. Thus, when each part of the partition passes this trace
test, we have computed the numerical irreducible decomposition.

This is unchanged if we replace projective varieties by affine varieties. In practice, the
algorithm operates on affine varieties, working in a random affine patch of P".

1.3. Multiprojective varieties. For more background, see [11, Ch. 8]. Let k,ny, ..., ny
be positive integers and let P := P x ... x P" be the indicated product of projective
spaces. Writing x; for the indeterminates x;,. .., x;,,, we have that C[x;] is the homo-
geneous coordinate ring of P" and C[x] := C[xy,...,Xy] is the coordinate ring of P".
This ring is multigraded, its multihomogeneous elements f(x) are separately homogeneous
in each variable group xi,...,X;. Such an element has a multidegree which is a vector
(dy,...,dy) € NF where d; is the degree of f(x) in the variable group x;.

A subvariety X C P (a multiprojective variety) is a union of irreducible components
of a set V(F), where F' C C[x] is a finite set of multihomogeneous polynomials. Each
irreducible component Y of X has an intrinsic dimension dim(Y") as an algebraic variety.
As a subvariety of P its (extrinsic) dimension and degree are more involved than for
projective varieties. This already occurs for hypersurfaces. A multihomogeneous linear
polynomial in C[x] has multidegree (0,...,1,...,0): it is linear in one variable group x;
and no other variables occur in it. In particular, there are k different types of ‘hyperplanes’.

There are similarly many different types of ‘linear’ sections of multiprojective varieties
in P Set [n.] := {(e1,...,ex) € N* | ¢; € {0,1,...,n;}} and let e € [n,]. For each
i=1,...,k, let L; be e; general linear polynomials in C[x;] and write L® = (L, ..., L).
Then V(L®) C P is a product of linear subspaces in the factors of P, where the linear
subspace in P™ has dimension n;—e;. When Y C P is an irreducible multiprojective
variety with intrinsic dimension dim(Y’), Bertini’s Theorem implies that Y N V(L®) is
nonempty and finite only if dim(Y) = e; + --- + e, =: |e|. Similarly, it is empty if
dim(Y") < |e| and, for dim(Y") > |e[, it is either empty or infinite.

The (multi)dimension Dim(Y) of an irreducible multiprojective variety Y C P is the
set of vectors e € [n,| such that Y N V(L®) is finite and nonempty. In [2] this is called
the support of Y. Unlike for projective varieties, Dim(Y) is a set. Note that e € Dim(Y")
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implies that |e| = dim(Y"). The (multi)degree of Y is the map Degy : Dim(Y) — N, where
Degy (e) is the number of points in the linear section ¥ N V(L®). For convenience, we
extend the domain Degy to [n,], where if e & Dim(Y'), then Degy (e) = 0.

If X C P has irreducible decomposition X =Y; U---UYj, then we define Degy by

Deg (e Z Degy, (e for e € [n.] .
Likewise, the dimension of X is the support of Degy,
Dim(X) = {e € [n.] | Degx(e) >0} = U Dim(Y,

When k£ = 1, this reduces to the dimension and degree of a projective variety X C P",
where the dimension of X is the set of dimensions of its irreducible components and the
degree sends e to the degree of the equidimensional part of X of dimension e.

Remark 1.2. The structure of the extrinsic dimension and degree of a multiprojective
variety is a consequence of the structure of the homology groups of P [4]. The homology
of P" has a Z-basis T° for e = 0,...,n, where T° is the class [A°] of a linear subspace A°
of dimension e. Then the class of a subvariety X C P" is

= Z Degx (e)T
e=0

The homology of P™* has a Z-basis T® := [A]" X --- x Aj*] for e € [n,], where A" C P™
is a linear space of dimension e;. Then the class of a multiprojective variety X C P"* is

Z Degy(e)T* . o

eE[TLo]

A witness collection for an irreducible multiprojective variety Y C P" that is a com-
ponent of V(F') is a map that assigns each e € Dim(Y") to (F,L®, Y NV(L®)). This triple
is an e-witness set of Y with Y N V(L®) an e-witness point set of Y. As with ordinary
witness sets, we assume that the linear polynomials are chosen coherently. That is, for
each i € {1,...,k}, let £;1,...,0;,, € C[x;] be general linear polynomials. For e € [n,],
set LY = (li1,...,lie,) and L® := (LT, ..., L}¥). If X is a union of components of V(F),
then a witness collection for X is the map that sends e € Dim(X) to (F, Le, P°), where P°
is the set of isolated points of X N V(L®).

Remark 1.3. Given another collection L’ of e linear polynomials with e; in C[x;], the
convex combination tL°+ (1 —¢)L’ may be used in a homotopy H (t) = (F,tLe+ (1 —¢t)L’)
to transform the witness point set P C X N V(L®) into one lying in X N V(L'). Similar
to Remark 1.1, this homotopy can be used, for example, to test membership. o

This membership test for multiprojective varieties relies on the result that if X is
irreducible and x € P, then x € X if and only if there exists e € Dim(X) such that x
is an endpoint of the homotopy H(t) = (F,tL® + (1 — t)L’) with start points X N V(L®),
where L/ is e general linear polynomials vanishing at x.
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Algorithm 1.4 (Membership test for multiprojective varieties [6, Alg. 3]).

Input: Witness collection for an irreducible multiprojective variety X C P™ and x € P™.
Output: A boolean By which answers if x € X.

Do: For each e € Dim(X), choose L' to be e general linear polynomials vanishing at x
and return “true” if x is an endpoint of the homotopy H(t) = (F,tL® + (1 — t)L') with
start points X N V(L®). Return “false” after testing all possible e € Dim(X).

1.4. Multiaffine varieties. Let X C P" be a multiprojective variety. Choosing an
affine patch C™ C P™ in each factor, X,z := XN (C™ x---x C") is an affine variety that
retains much information about X. To keep track of its multiprojective origins, we retain
the decomposition C™ x - - - x C™ from the factors of P™. Write C"* for C™" x---xC™ and
call a subvariety of C"* a multiaffine variety. Algorithms for a multiprojective variety X
operate locally on a corresponding multiaffine variety X,g.

Let i € {1,...,k}. The affine patch C™ has coordinate ring the polynomial ring Cly;]
with variables y; := (yi1,...,Yin,). This ring is not graded. The coordinate ring of C™*
is Cly] := Cly1,...,y%]- This is an ordinary polynomial ring whose only structure is
the indicated grouping of its variables. A multihomogeneous polynomial f(x) € C[x]
(multi)dehomogenizes to a polynomial f(y) € Cly].

The dimension of a multiaffine variety X C C"* is a set Dim(X) C [ne]. Its degree
is a map Degy: [ne] — N. These are defined in the same way as for multiprojective
varieties, except that a homogeneous linear polynomial ¢(x;) € C[x;] is replaced by its
dehomogenization £(y;) € Cly;|, which is a degree one polynomial, or affine form. When
the multiaffine patch C" C IP" is general, Dim(X) = Dim(X.¢) and Degy = Degy .

There is a second and more important reason (besides that our algorithms operate on
them) to introduce multiaffine varieties. A key step in our numerical irreducible decom-
position for multiprojective varieties in P, called coarsening and described in Section 4,
requires passing to a multiaffine variety (multi-dehomogenizing) and then rehomogenizing
it into a different multiprojective variety in a different multiprojective space.

1.5. Monodromy and partial witness collections. In [6], algorithms based on regen-
eration [8] were given to compute a witness collection of a multiprojective variety. We
describe an alternative method based on monodromy. Let Y C P" be an irreducible
component of V(F'), where F' C C[x] is a finite set of multihomogeneous polynomials.
Suppose that ¢;; € C[x;| are general linear polynomials as in Subsection 1.3. A partial
witness collection for Y is a map Dim(Y) 3 e — (F,Le, W,), where W, C Y NV(L®) and
at least one set W, is nonempty.

The monodromy solving algorithm [3] gives a method to complete a partial witness set
to a witness set. If in Subsection 1.2, we have a variety X C P" of pure dimension e
and a partial witness set W C X N V(L) (L consists of e linear polynomials, with the
intersection transverse), following points of W as L varies along loops both finds more
points of X NV(L) and computes a putative numerical irreducible decomposition, with the
caveat that the points found and subsequent decomposition will only lie on the irreducible
components of X that contained points in the original set W. The transversality of
X NV(L) at points of W is necessary for there to be a homotopy starting at points of W.
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This also may begin with a nonempty partial e-witness set W, € X N V(L®) of a
multiprojective or multiaffine variety X with e € Dim(X). That is, monodromy may be
used to complete W, to a full e-witness set X NV(L®), at least for the components of X
that contain points of We. In Section 2, we explain a more general procedure.

1.6. Examples. We give the dimension and multidegree of some multiaffine varieties.
Subsequent sections use these examples to demonstrate the numerical toolkit.

Example 1.5. Let Y C (P!)* be irreducible of intrinsic dimension e. Then Dim(Y)
consists of 0l-vectors with e 1s and k—e 0s; the positions of the 1s give a subset of
{1,...,k} of cardinality e. For each such subset e, let 7e: (P')* — (P1)¢ be the surjection
onto the factors corresponding to e. Our definitions imply that for |e| = e, e € Dim(Y') if
and only if me: Y — (P1)¢ is surjective. Thus Dim(Y") is the algebraic matroid [14, p. 211]
of Yur C CF. Its bases are subsets y;,, ...,y of cardinality e of the variables yi, ..., yx
that are algebraically independent in the coordinate ring of Yig. o

Example 1.6. We consider two multiaffine varieties in C x C x C x C. Suppose that its
coordinates are x,y, z, w and consider the three polynomials

f = 1+2x43y* +42° + 50*,
g = 1+22x4+3y+5z+Tw, and
h = 14+2x+3y+52+ 7w+ 1lay + 1322 + 172w + 19y2z + 23yw + 292w
+31lzyz + 37xyw + 4lxzw + 43yzw + 47xyzw .
Let X := V(f,g) and Y := V(f, h), which are surfaces. Both have the same dimension,

{1100, 1010, 1001,0110,0101,0011} (we omit commas). These form the second hypersim-
plex, which is an octahedron in their affine span. We display this in Figure 1.

4 7
3 4
4 6
2 ‘V 3 ‘V
) De De
1001 = Pim(Y) 3 X 5 e

FIGURE 1. Dimension and degree of multiaffine varieties.

Both ¢ and h are the dehomogenization of multilinear polynomials on (P!)*. The differ-
ence between Degy and Deg, is that V(f,g) is a reducible variety in (P')* which has
components not meeting the given multiaffine patch so that X is a component of V(f, g)
in (PY)%. In contrast, h is sufficiently general so that Y is dense in V(f,h) in (P1)%. o

Example 1.7. Suppose that n, = (3,3,3). Let M = (y;;)7,, be a 3 x 3 matrix with
rows the variable groups yi,ys,ys of C*. Set C := (I3 | M)T, a 6 x 3 matrix, and
let Ny, Ny be general complex 6 x 2 matrices. The conditions rank(C' | N;) < 4 for
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i = 1,2 define an irreducible subvariety Y of C? of dimension five. (Taking the column
span of C' parameterizes a dense open subset of the Grassmannian G(3,6), each condition
rank(C' | N;) < 4 gives a codimension two Schubert variety, and these are in general
position by the choice of the N;. Thus Y is an open subset of a Richardson variety.)

Each condition rank(C' | N;) < 4 is given by cubic determinants (minors) of the six
5 x b matrices obtained by removing a row of (C'| V;). Let f;; be the minor when row j
is removed. It has degree one in each variable group yi,ys,ys, and so Y is a multiaffine
subvariety of C". Its dimension is the set {e € [ne| | |€| = 5}, which consists of the
twelve integer points in the hexagon on the left below. On the right is its multidegree,
where Degy (e) is displayed adjacent to e.

032 131 230 1 2 1

(1.1)

203 302

Replacing the twelve minors f; ; defining the rank conditions by the subset f1 3, fi5, fo4, f2,6
gives a complete intersection with four components, one of which is Y. Two have the same
dimension as Y and one has a different dimension. We display their multidegrees below.

1 1 1 1 1 1 1

1.7. Numerical irreducible decomposition for multiprojective varieties. An al-
gorithm for computing witness set collections was given in [6]. There, Example 20 showed
that the trace test cannot be applied to a witness set collection for X C P". We must
embed X into an affine or projective space and transform the witness set collection into
a witness set for the embedded X, and then apply the trace test.

This poses several problems. Under the Segre embedding, X C P"* becomes a subvari-
ety o(X) of PV, where N +1 = (n; +1)---(ng + 1). Following [5, Exer. 19.2], if X has
dimension d, then o(X) has degree

(1.2) |eZ:d (Z) Degx(e) ,

where (Z) is the multinomial coefficient el,d—'ek, Thus, both the ambient dimension and
size of a witness set increases dramatically.
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Replacing X by its intersection with an affine patch X, € C"'* "+ does not increase
its ambient dimension. Unlike the Segre embedding, it is not clear how to efficiently
transform a witness collection for X into a witness set for X,s. The Richardson variety Y
of Example 1.7 has degree 450 under the Segre map and degree eight as an affine variety.

2. COMPUTING DIMENSION AND COMPLETING A PARTIAL WITNESS SET

Suppose that X C C" is an irreducible affine variety that is a component of V(F'), for
a collection F' = (fy,..., fi) of polynomials. We assume that V(F) is reduced along X
in that there is a point # € X such that the differential d,F' := (d, f1,...,d.fmn) (a linear
map C" — C™) has rank n — dim(X). Then X is smooth at x with tangent space 7, X
the kernel of d,F'. The smooth points of X form a nonempty Zariski open subset.

The differential d,.F" at a general smooth point x € X is given by the Jacobian matrix
of F,

DF = (9f;)0x;) ="

i=1,....,m

evaluated at . Thus dim(X) = n — rank(DF(x)).

2.1. Dimension of an irreducible multiprojective variety. Let X be an irreducible
subvariety of P"* of intrinsic dimension e. Its dimension Dim(X) is a subset of

(2.1) {e €[nd||e|=c¢e}.

Castillo et al. [2] characterized Dim(X) as follows. For I = {iy,...,is} C {1,...,k}, define
P = P"1 x --- x P%s, and let 7;: P™ — P"™ be the projection onto the factors indexed
by I. Let dim;(X) be the intrinsic dimension of 7;(X) C P". Dimension counting implies
that if e € Dim(X), then

(2.2) e, +--+e, < dim;(X).

This follows because if £(x;) is a linear polynomial in the variable group x;, then V({(x;))
is W%%(V@(Xi)», with the second variety V({(x;)) a hyperplane in P".

Proposition 2.1 (Thm. A in [2]). Suppose that X C P is an irreducible multiprojective
variety. Then e € [n,] lies in Dim(X) if and only if |e| = dim(X) and for all proper
subsets I of {1,...,k}, the inequality (2.2) holds.

These inequalities in R¥ define a lattice polytope of dimension at most k—1, which is a
polymatroid polytope (called a generalized permutahedron in [15]).

Example 2.2. We continue Example 1.7. Suppose that in addition to the four minors
defining the reducible complete intersection X C P? x P? x P3, defining polynomials F
include the quadrics

Y1,1Y22 — Y1,2Y21 and Y1,1Y2,3 — Y1,3Y2,1 -

Then V(F') has intrinsic dimension three with twelve irreducible components—the four
components of X giving rise to 2, 3, 3, and 4 irreducible components, respectively. The ith
row of Figure 2 displays the dimension and multidegree of the irreducible decomposition
of YN V(y171y272 — Y12Y21,Y1,1Y2,3 — y1,3y271), where Y is the ith component of X from
Example 1.7. The first row also shows the set {e € [(3,3,3)] | |e| = 3} from (2.1).



10 J. D. HAUENSTEIN, A. LEYKIN, J. I. RODRIGUEZ, AND F. SOTTILE
030

021 120
012 210

003 102 201 300

R A A0 AR

FIGURE 2. Decomposition of X N V(y171y2,2 — Y12Y2,1, Y1,1Y2,3 — yl,gyg,l).

As k = 3, the dimension of a polymatroid polytope Dim(Z) is at most 2. For seven
components this is a polygon, for four, it is a line segment, and for one, it is a point. ¢

Let x be a point on an irreducible multiprojective variety X C P"* and suppose that
I c{1,...,k}. We assume that z is general in that the map 7 is regular at z. (That is, =
is a smooth point of X and the projection map d,7;: T, X — Ty, (P"" has maximal rank
among all smooth points of X.) Then, dim;(X) is equal to the dimension of d,m;(T,X).

This leads to a method to compute these dimensions in local coordinates. Suppose
that F' = (f1,..., fm) are polynomials in C[yy,...,yx] which are the dehomogenization
of multihomogeneous polynomials defining X C P"* in some multiaffine patch C"s C P
containing x. Suppose that Y is the component of V(F) containing z and Y is smooth
at x. Then the intrinsic dimension dim(Y") of Y (the local dimension of V(F) at z) is the
dimension of the tangent space 7,Y", which is the kernel of the Jacobian DF'(z) of F" at x.
Thus, dim(Y) = dim,(Y) = dimker DF(z).

The variable groups yy, ...,y partition the columns of the Jacobian matrix
pr— (|22,
dy1 | Oy Oy,
where for each | € {1,...,k}, 0F /0y, = (0f; /ayl])f;l:j is the Jacobian matrix with

respect to the variables y;. Denote by DFje the submatrix of DF obtained by omitting
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the blocks OF /0y, for i € I. In other words,

oF OF
2. DF(: = s h [C: ) .rr‘ .
( 3) 1 ( ayjl ‘ ayjr ) ) where {jlu ) }

Since the intrinsic dimension of the image of Y under 7; equals the intrinsic dimension of
Y minus the intrinsic dimension of the fiber over a general point, it follows that dim;(Y') =
dimker DF(x) — dim ker DF}e(z).

By Proposition 2.1, if Y is the irreducible component of a multiprojective variety
V(F') C P™ containing the point x, then Dim(Y") is determined by the numbers dim(Y")
and dim;(Y") for all proper subsets I of {1,...,k}. Let Dim,(F) be these numbers, which
may be computed in local coordinates by determining the ranks of the Jacobian matrices
DF(x) and DFje(x). This leads to two algorithms to classify the dimension of components
of V(F) given points of V(F').

Algorithm 2.3 (Dimension at a smooth point).

Input: A general smooth point x € V(F) C P".

Output: Dim,(F).

Do: Dehomogenize F' and compute dimker DF'(z). For each proper subset I of {1,... k}
compute dimker DFje(x) to determine the difference dimker DF(x) — dim ker D Fye(x).

If y is smooth but not general, then it can be perturbed via a homotopy to a gen-
eral point. (Recall that witness points are smooth.) Given F' C Clyy,...,yx] defining a
multiaffine variety V(F') C C"* this algorithm simply skips the dehomogenization.

A multiprojective variety X is equidimensional if all irreducible components have the
same multidimension. A multiprojective variety has a unique decomposition into equidi-
mensional pieces. Given a collection W of general smooth points of V(F'), by computing
the local dimension via Algorithm 2.3 one can sort the points by the equidimensional com-
ponent of V(F') on which they lie. Let Dim(W) be the set of dimensions of components of
V(F') containing points of W. For A € Dim(W), define Wx := {w € W | Dim,,(F) = A}.

These sets partition W and form the equidimensional decomposition of W,
W = | {Wa|A e Dim(W)}.

Algorithm 2.4 (Equidimensional decomposition).

Input: A finite set W C V(F') of general smooth points.

Output: Dim(W) and the equidimensional partition of W.

Do: For eachw € W, compute the local dimension Dim,,(F') of V(F) at w to get Dim(W)
and for each A € Dim(W) let Wa = {w € W | Dim,,(F) = A}.

It is important that the points of W be general so that the maps 7y are regular on W.

2.2. Completing a partial witness collection. A partial witness collection (F, L®, W)
for a multiprojective variety Y may be completed to a witness collection using monodromy.
While this was sketched in Subsection 1.5, it needs the definitions given in this section.

Algorithm 2.5 (Completing a witness collection from a single point).
Input: A general smooth point y on an irreducible multiprojective variety Y that is a
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component of V(F).

Output: A witness collection for Y.

Do: Use Algorithm 2.8 to compute Dim(Y). Choose linear polynomials (;; € C[x;| for
ie{l,...,k} and j =1,...,n; that are general given that they vanish aty. Using the {;;
gives a partial witness collection {(F,L°,{y}) | e € Dim(Y)} forY. Use monodromy as in
Subsection 1.5 to complete each partial e-witness point set {y} to the complete e-witness
point set Y NV(L®).

Proof of correctness. We note that this does not have a stopping criterion, and is therefore
technically not an algorithm. Nevertheless, by the choice of ¢;;, each intersection Y NV(L®)
is transverse and contains {y}. Thus, letting the L® vary in a loop gives a homotopy. The
rest follows from the discussion in Subsection 1.5. O

3. CARTESIAN PRODUCTS

Of the twelve irreducible components Y of the variety V(F') of Example 2.2, Dim(Y') was
a line segment for four and a point for one. In these five cases, Dim(Y') was decomposable
as a product of polymatroid polytopes. We will show that if Y C P" is an irreducible
multiprojective variety for which Dim(Y") is such a product, then ¥ = Y’ x Y” is a
Cartesian product of irreducible varieties in disjoint factors of P, and the witness sets
for Y are also products of witness sets for Y’ and Y.

Fix 1 <1< k. Let n) := (ny,...,n;) and n := (ng41,...,n;) so that P = P x Prs,
If Y/ C P"% and Y” C P" are irreducible varieties, then so is Y/ x Y C P". Its intrinsic
dimension is the sum of the intrinsic dimensions of its factors, dim(Y’ x V") = dim(Y") +
dim(Y"). Its multidimension has a similar decomposition,

Dim(Y' x Y") = Dim(Y') x Dim(Y")
= {e€[n.|e=(¢,€e") for € € Dim(Y’) and €’ € Dim(Y")},
!/

as [ne] = [n,] x [n2]. This is a consequence of the definition given in Subsection 1.3 for
the multidimension of a multiprojective variety, applied to such a product.

For (¢/,€") € Dim(Y’ xY"), suppose that L C C[xy,...,x;] and L*" C C[x;y1,...,X]
are general linear polynomials with corresponding witness point sets Wy = Y’ N V(L)
for Y’ and Wer = Y N V(L") for Y. Then

We X Wer = (Y xY")YN VL, L")

is an (€', €”)-witness point set for the product Y’ x Y.

More generally, let I C {1,...,k} be a proper subset with complement J so that
Pre = P™ x P". Given irreducible multiprojective varieties Y C P and Z C P™/ their
product is a multiprojective variety ¥ x Z C P". We similarly have Dim(Y x Z) =
Dim(Y') x Dim(Z), and witness point sets for Y x Z are products of witness point sets for
Y and for Z. This reduces to the previous discussion after reordering the factors of P"e.

Theorem 3.1. An irreducible multiprojective variety X C P" is a Cartesian product
X =Y x Z of multiprojective varieties Y C P" and Z C P" in disjoint factors of P"*
if and only if Dim(X) is the product of polymatroid polytopes P C [n;] and Q C [n;] with
Dim(Y) = P and Dim(Z) = Q.
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When this occurs, the multidegree Degy (€',€") for € € Dim(Y) and €’ € Dim(Z) is
the product Degy (€') - Deg,(€”) of multidegrees and any (€', €")-witness point set for X
is the product of corresponding witness point sets for Y and for Z.

Proof. The forward direction of the first part is a consequence of the preceding discussion,
as is the second part of the theorem (which follows from the cartesian product X =
Y x Z). For the reverse direction of the first part, suppose that Dim(X) = P x @, where
P C [n7] and @Q C [ny| are polymatroid polytopes in disjoint factors of [ne], so that
I'uJ=A{1,...,k}. Since P and @ are polymatroid polytopes, there are integers p and ¢
such that if € € P and €” € @, then |&/| = p, |€’| = ¢, and p + ¢ = dim(X).

Let us study the map 7;: X — P™ whose image 7;(X) has dimension dim;(X). Let
e € Dim(m;(X)) C [n7] and let L¢ € C[x; | i € I] be |&/| = dim;(X) general linear
polynomials so that 7;(X) N V(L) consists of d = Deg,.,(x)(€’) points. Since in P, we
have V(L¢) = 77 (V(L¢)), the intersection X N V(L) is nonempty and it consists of d
fibers of the map m;: X — 7;(X). By the generality of L, each fiber has dimension
dim(X) — dim;(X). Then there is some €’ € [n,] such that if L¢" C C[x; | j € J] are
le”| = dim(X)—dim;(X) general linear polynomials, then X NV(Le)NV(Le") is nonempty.

This implies that (e/,€”) € Dim(X) and in particular that € € P and €’ € @ and
that dim;(X) = dim(7;(X)) = p. Similarly, dim;(X) = dim(7;(X)) = ¢. Since
X C 7(X) x m;(X) and both are irreducible of dimension p + ¢, they are equal. O

Example 3.2. Let us look at the last two components in the bottom row of Figure 2.
The third component Y has Dim(Y") = {0} x {12,21}. Its ideal is generated by

Y11, Y12, V1.3, 19y2,2 + 46y2,3 ) 19y3,2 + 46y373 + 34,
243y2.3y31 — 243y2,1Y3,3 — 306y21 + 1020y, 3 — 342y3 1 + 1194y3 3 + 68

The first three define the point {(0,0,0)} in the first C? factor and the next two define a

plane in each of the last two factors. Thus Y = {(0,0,0)} x Z, where Z C C? x C? is the

hypersurface defined by the last bilinear polynomial. This explains Dim(Y") and Deg, .
The last component Y has Dim(Y") = {1} x {1} x {1}. Its ideal is generated by

97y11 — 19913, 19y12 +46y13, 5Ty21 — 199923,
19y90 + 46y23, 171ys 1 — 597ys 3 — 34, 19y32 + 46y 3 + 34.

As there are two affine forms in each variable group, Y is isomorphic to C x C x C, which
again explains its multidegree. o

Membership testing in Cartesian products can be simplified since one can consider
membership in each factor independently.

Algorithm 3.3 (Membership test in Cartesian product).

Input: A witness collection for an irreducible multiprojective variety X C P™ which is
a Cartesian product X =Y X Z of multiprojective varieties Y C P™ and Z C P™ in
disjoint factors of P™ and a point x = (y,z) € P".

Output: A triple (Bx, By, B,) of booleans such that B,, answers if w € ).

Do: Select e € Dim(X) and fiz a point (y*,z*) from the e-witness point set for X.
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Construct witness collections for Y and Z from the given witness collection for X fol-
lowing Theorem 3.1 with polynomial systems F(y,z*) and F(y*,z), respectively. Apply
Algorithm 1.4 to'Y and Z yielding By and B,, respectively. Set Bxy = By x B,

Proof of correctness. Since X =Y x Z, we know x € X if and only if y € Y and z € Z.
Let e = (€/,€”) € Dim(X) be the selection that yielded (y*,z*) in the e-witness point set
for X with corresponding L® = (L¢,L®"). Then, Y x {z*} and {y*} x Z are irreducible
components of V(F), Le") and V(F, Le/), respectively. Hence, by selecting a representative
of y* and z*, it follows that Y and Z are irreducible components of F'(y,z*) and F(y*,z),
respectively. Hence, Algorithm 3.3 decides membership of y in Y and z in Z which
immediately decides membership of = in X. O

A natural recursion applies when X is a Cartesian product of more than two varieties.

4. REFINING AND COARSENING WITNESS COLLECTIONS

Algorithms for computing witness sets and witness collections operate on affine patches
of projective and multiprojective varieties. Changing the multiaffine structure is straight-
forward in such patches and corresponds to a birational map on the underlying (multi)pro-
jective variety. We describe this and investigate how it affects witness collections.

A multiaffine variety X,g C C"* is simply a variety in the affine space C™ " whose
coordinates have been partitioned into subsets of sizes nq, ..., n,. Changing the partition
does not change the variety X,g, but it does change its multiaffine structure, that is, its
multidimension and multidegrees. In particular, repartitioning changes how X.g is repre-
sented using a witness collection. Any repartitioning is a composition of two operations,
refining, in which one variable group is split into two, and coarsening, in which two vari-
able groups are merged into one. We describe the geometry of refining and coarsening,
and give algorithms for transforming witness collections for both.

Example 4.1. The polynomial y? — 2xy — 2® +  defines a plane cubic curve. As a multi-
affine variety in CL x C}J its multidimension is {10,01} with corresponding multidegrees 2
for 10 and 3 for 01. In C2, it is represented by a witness set which uses a linear section
such as shown at center below. In CL x C;, it is represented by a witness collection, which

are its intersections with a vertical and with a horizontal line as at right below. o
LlO
L
P
4 .
(// <
V(y*—2xy—x3+x) Linear Section Witness Collection

4.1. Refining. Suppose that k = 2, so that n, = (n1,n2) and set n := ny;+ny. Let Y C P
be an irreducible variety of dimension e and degree d. Let A be a linear polynomial that
does not vanish identically on Y and set Y, := Y ~ V(A), which is an affine variety in
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the affine patch C* = P"* \ V(A). For the splitting C" = C™ x C"2, let Y,,, be the closure
of Y,¢ in the compactification P x P2 of C™ x C"2,

Proposition 4.2. The multiprojective variety Y,, and multiaffine variety Y,g are irre-
ducible and have dimension e. For any (e1,e2) € [ne] with e = ey + ey, the (ey,eq)-
multidegree of Y,, (and also of Y.g) is at most the degree of Y.

This agrees with Example 4.1, where the size of each set in the witness collection was
bounded above by the degree of the plane curve.

Proof. As Y,g is a nonempty open subset of the irreducible variety Y, it is irreducible and
of the same dimension. The same arguments imply that Y,,, is irreducible of dimension e.
A general multilinear section V(L(“’e?)) NY,, will be a subset of Y,¢. In the affine space
C" = C™ x C™, the variety V(L{¢12)) is a (non-general) linear subspace of codimension e,
and thus V(L{12)) N Y,q consists of at most deg(Y") points. O

This gives a homotopy algorithm for computing witness collections under a refinement
of a coordinate partition. Let Y C C" be an equidimensional affine variety of dimension e
and degree d, given as a union of components of a variety V(F') and let C* = C™ x C"2
be a splitting of C" with y = (y1,y2) the corresponding partition of variables for C".

Suppose that Y C C" is represented by a witness set (F, L¢, Y NV(L¢)) where L¢ C Cly]|
consists of e general affine forms. Let Le1e2) he e affine forms with e; from Cly1] and e
from C[y,], but otherwise general. Then, Y N V(L{1¢2)) is a (e;, e5)-witness point set for
the multiaffine variety Y C C™ x C"2. The system

(4.1) H(t) == (F,tL° + (1—t)L{1e2))

is a homotopy that connects the solutions Y N V(L) of the start system H(1) to solutions
Y N V(L) of the target system H(0).

Algorithm 4.3 (Transforming witness sets under refinement).

Input: A witness set (F, LY N V(L)) for an equidimensional affine variety Y C C" of
dimension e, a splitting C* = C™ x C"2, and integers 0 < e, eo with e; + e5 = e.
Output: An (ey, e2)-witness point set for the multiaffine variety Y C C™ x C"2.

Do: Form the homotopy (4.1) and follow the points of Y N V(L) along H from t =1 to
t =0, keeping those whose paths are bounded near t = 0.

Executing Algorithm 4.3 for each (e1,e3) € Dim(Y') computes the witness point sets
for the full witness collection of the multiaffine variety Y € C™ x C"2. In Example 4.1
Algorithm 4.3 amounts to rotating the line L in the middle picture to either a horizontal
or a vertical line.

Proof of correctness. Since L€ is general, the intersection Y NV(L€) is transverse and con-
sists of d = deg(Y’) points. Thus, for general ¢, the intersection Y N V(L€ + (1 — ¢)L(c1:2))
is also transverse and consists of d points, and so (4.1) is a homotopy. As the affine forms
in L(12) are general given their variables, the intersection Y N V(L(1¢2)) is transverse
and consists of Degy- (e, e2) points. Thus Degy (e1, e5) paths in the homotopy end at the
points of Y N V(L2 and d — Degy (e1, e2) paths diverge as t approaches 0. O
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Remark 4.4. Suppose that Y € C™ x ... x C™ is a multiaffine variety with £ > 1 and
that C™ = C™ x C™ is a refinement splitting the ith factor C". We may use the ideas
in Algorithm 4.3 to transform an e-witness point set for Y into one for this refinement.
Given an e-witness point set Y N V(L®), we wish to compute a €’-witness point set for
the refinement, where the component e; of e is split into €, + ¢/ in €’. For this, let Lgei’ei)
be e; general affine forms with e} in Cly;] and ¢ in Cly;~], where y; = (yu,y:) is the
corresponding split of the variable group y;. Replacing the e; affine forms of L; C Cly;]
in L® by the convex combination ¢L; 4 (1 — t)LEei’ei) gives a homotopy as in Algorithm 4.3
that transforms Y N V(L) into Y N V(L.

4.2. Coarsening. Suppose that ne = (n1,n9) and set n := ny + ny. Let Y,,, C P" x P
be an irreducible multiprojective variety of intrinsic dimension e. For each i = 1,2, let
A; € C[x"] be a general linear polynomial. Then

Klﬂ‘ = Yn. AN V(Al . AQ) C P x P V(Al . Ag) ~ C" x C™

is a multiaffine variety with the same multidimension and multidegree as Y,,,. Regarding
C™ x C™ = C" as an affine patch in P", let Y be the closure of Y,¢ in P". We investigate
how to transform a witness collection for Y,,, into a witness set for Y. In particular, we
describe Algorithm 4.5, which transforms witness sets under coarsening. In this algorithm
we first construct a witness set for the Segre embedding ¢(Y') from witness points of Y,
and then degenerate this witness set into another witness set of o(Y) whose pullback is
a witness set for Y. In fact, all steps of Algorithm 4.5 operate in local coordinates for
P™ x P" not in the ambient space for the Segre map.
The multiprojective space P" x P™ is a projective variety under the Segre map

o P x Py pnmtmine o N

A linear polynomial on PV pulls back to a bilinear form B on P™ x P"2. Writing PV as
P(C"H @Cm*) = P(Mat(n, 11)x (ns+1)(C)), a linear form ¢ on PV corresponds to a matrix
M. When M has rank one, the pullback o*(¢) = *°¢°! is a product of linear polynomials,
one in each set of variables. Thus V(t/1°°! + (1—#)B) is a family (of hyperplane sections
of o(P™ x P")) that transforms the union Y,, N (V(¢') U V(£')) of multilinear sections
into the bilinear section Y,, N V(B).

Passing from P™t x P™ to P" through affine patches, both B and ¢!°/°! remain bilinear
forms. Given a linear polynomial ¢ on P™ and a choice zy of coordinate for the hyperplane
at infinity, zof is another bilinear form whose variety in the affine patch P™ . V(z) is the
hyperplane V(¢). Thus tB + (1 — t)zf or better t/1°0°" + (1 — t)zyl is a family that may
be used to transform the union Y,,, N (V(£*%) U V(L)) of sections of Y, into the union of
the section Y NV(¢) with its part Y NV(2p) at infinity.

This may be used to transform a multilinear section Y,, N V(L(**2)) into a subset
of a linear section Y N V(L?), but only if we work in an affine patch P" \ V(z), as
the bilinear forms coming from linear polynomials in L¢ all have 2, as a factor. By the
inequality among degree and multidegree in Proposition 4.2, we typically obtain a subset
of Y NV(L°) (a partial witness set).



A NUMERICAL TOOLKIT FOR MULTIPROJECTIVE VARIETIES 17

Let us describe a homotopy for this. Let £1°,... (1% € Cly,], ',..., (%" € Clys], and
l1,...,l. € Cly] be general affine forms. Set M = (¢]9¢9* ... £1°0°") and L = (4, ..., L,).
Form the homotopy

(4.2) H(t) = (F,tM + (1-t)L°).

We describe the start points for H(t) at t = 1. For a partition S U T of {1,...,e} with
(IS],|T) € Dim(Yag), let LS := {£}° | i € S} U{" | j € T}, a subset of linear forms
involved above. Then, (F,tLUSHTD 4 (1 —+)L%T) is a homotopy transforming the witness
point set Yoz N V(LUSHTD) into the multilinear section Wy := Yog N V(LST), which is a

transverse intersection as the affine forms are general. Let 1 be the disjoint union of all
the Wg . These are disjoint as the affine forms are general.

Algorithm 4.5 (Transforming witness sets under coarsening).

Input: A witness collection {(F,L°,Y NV(L®)) | e € Dim(Y)} for an equidimensional
multiaffine variety Y, C C™ x C"2,

Output: A witness point set Y° N V(L®) for the affine variety Y° C C* = P" . V(2).
Do: Recall from above that W is the union of all the Wg . Compute the points of W and
use the homotopy (4.2) to follow the points of W along H fromt =1 to t = 0, keeping
those whose paths are bounded near t = 0.

Proof of correctness. Observe that in P™ x P™ we have

VM) = veeat ey = ) vasT).

AsY,, NV(L5T) = Wy, we have

.y = vnv@s =[] W = W

By (1.2), we have

(43 dogpn(o)) = X () Dy, feren) = 71,

as |Wsr| = Degy, (S|, [T]). Thus Y,, N V(M) is a transverse intersection consisting of
0 := degpn (0(Y,,)) points. Since W C Y,g, for general ¢ the intersection

(4.4) Yar NV(EM + (1—1)L°)

is also transverse and consists of § points. Thus, (4.2) is a homotopy.
Consider the variety in P"* x C,; defined by

(4.5) (Y xCy) [ VAM + (1—1)(20l1,. .., 20le)) -

(Note the homogenizing variable zy.) Since (4.4) is transverse and consists of § points for
general ¢, the components of (4.5) that map onto C; form a curve C' whose general fiber
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over t is ¢ points. Restricting C' to an arc in C, with endpoints {0, 1} gives ¢ arcs that
start (when ¢ = 1) at the points of W and end (at ¢ = 0) in

Y N V(2l, . z20l) = YNV | YN V(=)

As the affine forms /1, ..., /. are general, Y N V(L) C Y° is transverse and consists of
d = degpn (Y') points. Thus d paths in the homotopy end at the points of Y° N V(L) and
0 — d paths diverge as t approaches 0. 0

Algorithm 4.5 may use up to 2¢ witness sets and tracks ¢ = degpn (0(Y;,,)) as in (4.3)
paths. While 4 is typically enormous, when Y, is a curve, 6 = Degy, | (1, 0)—|—Degyn. (0,1),
which is the cardinality of the witness collection for Y,,,. In Example 4.1, Algorithm 4.5
starts with five points on the intersection of the cubic curve with the horizontal and
vertical lines at right, passes through a family of hyperbolas, and ends at the intersection
of the cubic curve with the line L in the middle, with two paths diverging to infinity.

Remark 4.6. Suppose that Y € C" x --- x C™ is a multiaffine variety with k& > 2. Let
Y’ Cmtm2 x C" x --- x C™ be the variety Y with the multiaffine structure induced by
merging the first two factors. As in Remark 4.4, Algorithm 4.5 may be used to transform
a witness collection for Y into one for Y.

For each © = 1,...,k, let y; be n; indeterminates—these are the indeterminates for
C™ x---xC™. Write x := (y1,y2). Then the partition of the indeterminates for C™ "2 x
C"x.--xC™ is (x,y3,...,Yr). Weexplain how to compute an € = (e, es, ..., ex)-witness

point set for Y’ given a witness collection for Y. (The indexing in €’ is intended.)

An e/-witness point set for Y is an intersection Y’NV(L®"), where L¢ = (L€, Ls, ..., Ly)
with L¢ consisting of e general affine forms ¢4,...,¢, € C[x] and for ¢ > 3, L; consists
of e; general affine forms in Cly;]. As in the discussion preceding Algorithm 4.5, let
0% ..., 0% € Clyy] and 2',... (% € Clys] be general affine forms and set M to be
(01000t . 01009 Following the same discussion, for each ST = {1,...,e} construct
L5T | substitute this for L¢ in L*, use the (|S|,|T], es,...,ex)th witness set for Y to
compute Wy, and set W to be the union of the Wy .

Let L(t) be the convex combination (tM + (1 —¢)L®, Ls,...,Ly). Then, as in Al-
gorithm 4.3, we will have a homotopy that transforms the union of witness point sets
W =Y NV(M,Ls, ..., L) into the e-witness point set Y’ N V(L¢'). o

Example 4.7. Let us revisit Example 1.6, which involved varieties V(f, g) and V(f, h) in
C, xC, xC, xC,. Both have their multidimension the vertices of an octahedron. Of the
many coarsenings, we consider four, merging either the last two factors, the first two, both
the first and the last two, and finally the last three. Table 1 displays the multidegrees of
the original varieties in C, x C, x C, x C,, and after merging. o

5. SLICING

While the dimension of an equidimensional affine or projective variety X is reduced by 1
under a general linear section (a slice), its degree is preserved—if dim(X) > 1. Similarly,
the (ir)reducibility of X is preserved when dim(X) > 2, by the classical Bertini Theorem.
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TABLE 1. Coarsenings of V(f, g) and V(f, h) from Example 1.6.

[ C.xC,xC,xC, | C,xC,xC;, | C; xC.xC, | C:; xC:, |C,xC}

v |

0110
1100 011 110 | 011 110
0101
Dim
010 02 11 20| 02 11
00111 002 101 101 200

V(f,9) 3244
V(f. h) 4376

5

Consequently decomposing a variety into irreducible components is reduced to the case
of curves.

When X is a multiprojective or multiaffine variety, information about its multidimen-
sion and multidegrees may be lost under a general linear section, and its (ir)reducibility
may not be preserved, even when X has dimension at least 2. However, this may be
quantified and it leads to useful reductions. The subsequent reductions will be exploited
in our algorithm for numerical irreducible decomposition in Section 6.

For i = 1,...,k let m; be the projection onto the ith factor in multiprojective or
multiaffine space. Let ¢, € N* be the vector whose ith component is 1 and others are 0.

Lemma 5.1. Let X C P" (or X C C") be an equidimensional multiprojective or mul-
tiaffine variety and suppose that { is a general linear polynomial/affine form in the ith
variable group.

(1) Ifdimmyy(X) = 0, then XNV(€) = (. This is equivalent to e € Dim(X) = e; = 0.
(2) If dimmgy(X) > 1, then

Dim(XNV({)) = {e—¢|eeDim(X) and e; >0},
Degyry(e) = Degy(e+e).
(3) If dim 7y (X) > 2, then X is (ir)reducible if and only if X NV({) is (ir)reducible.

Proof. Statements (1) and (2) follow from the definitions given in Subsection 1.3, and (3)
follows from the Bertini Theorem for maps to projective space [9, Thm. 6.3 (4)]. O

Example 5.2. Let n, = (3,3,3) and consider a subvariety X of P™ given by six gen-
eral multihomogeneous polynomials, each of multidegree (1,2,3). Then X is irreducible
and has intrinsic dimension 3. Following Remark 1.2 and [4], its multidimension and
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multidegree are computed as follows. Its cohomology class in P" is the normal form of
(51 4 289 + 3s3)8 in Z[sy, so, 53] /{57, 53, s3), which is

1605353 4 720535253 + 1440575553 + 1080535953 + 3240575252
+ 4320518555 + 540sys + 3240s7s2s5 + 6480515555 + 43205555 .
Its homology class is obtained by replacing s %s3 °s3 ¢ by T, We display its multidi-
mension and multidegree below. (The central point in Dim(X) is 111.)
030
021 120
012 210

003 102 201 300
160 1440 4320 4320

Slicing with a general linear polynomial V(¢) in the ith variable group gives a variety of
dimension two in a product P? x P? x P? (permuted so that P? is the sth factor) with
multidimension and multidegrees as shown below.

3240

020 1080 540
01@0 720 3240 1080 3240 3240 6480

002 101 200 160 1440 4320 720 3240 6480 1440 4320 4320
=1 =2 1 =3
Slicing with another general linear polynomial gives an irreducible curve in either P! x
P3 x P3 or P? x P? x P? (with possibly permuted factors) of multidimension {001,010, 100},
and multidegrees corresponding to one of the six upright shaded triangles in (5.1). o

A consequence of Lemma 5.1 is that obtaining a witness collection for a linear slice
X NVY(¢) from one for X is a matter of bookkeeping. We recall the definitions from
Subsection 1.3. Let X be an equidimensional union of components of V(F). Choose
general linear polynomials ¢;1,...,¢; . € C[x;] for each ¢ € {1,...,k}, and for e € [n,],
set LY = (l;1,...,lie,) and L® := (L', ..., L¥). Then, for e € Dim(X), the e-witness
set is (F,L®, W,), where W, := X N V(L®). We use the same notation for a multiaffine
variety X C C".

Algorithm 5.3 (Witness collection of a slice).

Input: A witness collection {(F,L®, We)} for an equidimensional multiprojective or mul-
tiaffine variety X C P™ (or X C C™ ) and an indexi € {1,...,k}.

Output: A witness collection for X N V({;1).

Do: Return {(FU{l;1},L®~{l;1}, We) | € € Dim(X) and e; > 0}.

Proof of correctness. By Lemma 5.1, Dim(XNV(¢;1)) = {e—¢; | e € Dim(X) and e; > 0},
as {;1 is general. Moreover, We = X NV(L®) = X N V(¢;1) N V(L® \ {l;1}), so that W,
is both an e-witness point set for X and an (e — ¢;)-witness point set for X N V(¢;;). O
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Remark 5.4. As indicated in Example 5.2, both Lemma 5.1 and Algorithm 5.3 may be
applied in succession to a variety and its witness collection. If the projection of the variety
to the ith factor has dimension at least two, this preserves the irreducible components.
The choice of slice affects the size of the output. In Example 5.2, slicing twice with a
linear polynomial in x; gives a witness collection with 160 4 720 + 1440 = 2320 points,
while slicing twice with a linear polynomial in x3 yields 4320+4320+ 6480 = 15120 points.

6. NUMERICAL DECOMPOSITIONS OF ALGEBRAIC VARIETIES

6.1. Affine and projective varieties. Any variety has a unique (irredundant) decom-
position into irreducible components. For subvarieties of C™ or P, a numerical irreducible
decomposition mirrors the irreducible decomposition by producing a formal union of wit-
ness sets, one for each irreducible component. As described in Subsection 1.2, we sum-
marize a well-known approach for computing a numerical irreducible decomposition for
equidimensional varieties in C™.

Algorithm 6.1 (Equidimensional numerical irreducible decomposition in C").

Input: A witness set (F, L,W) for equidimensional X C V(F).

Output: A numerical irreducible decomposition of X.

Do: Perform monodromy loops to partition the witness point set W into subsets of points
P U---UP; where all points in each P; lie on the same irreducible component. Repeat until
the trace test confirms that each P; is a witness point set for some irreducible component
yielding the numerical irreducible decomposition U;(F, L, P;).

For varieties that are not equidimensional, one simply performs a numerical irreducible
decomposition on each of its equidimensional components.

6.2. Multiprojective varieties. For a numerical irreducible decomposition of a mul-
tiprojective variety V(F'), it makes sense to set a goal to partition an arbitrary set of
general points according to membership in the irreducible components. Algorithm 6.2
(below) still applies to points in witness collections and can be modified to look similar
to Algorithm 2.4 in a special case, which is explained in Remark 6.3.

The underlying idea is to systematically loop through the given points and determine
if a point lies on a previously computed irreducible component. If not, information about
this new irreducible component must be computed and it is then added to the list of known
components. At a minimum, a membership test for this new irreducible component must
be developed. To that end, one uses the given point p to compute the (multi)dimension of
the corresponding irreducible component. This determines a sequence of slices that pre-
serve irreducibility (Lemma 5.1) and coarsenings (Subsection 4.2) which can be used to
produce a system of linear polynomials L vanishing at p such that the irreducible compo-
nent becomes an irreducible affine curve C, C V(F)NV(L) containing p. Then, a complete
witness point set for C', can be constructed from p via monodromy (Algorithm 2.5), with
the trace test used as a stopping criterion.

Given another point ¢ from the given set of general points, one first checks if p and ¢
have the same (multi)dimension. If so, then one produces a system L’ of similar structure
to L but vanishing at ¢q. After computing a witness point set of the corresponding C'y/
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from C7p, testing membership (Remark 1.1) of ¢ in C/ is equivalent to determining if p
and ¢ lie on the same irreducible component. Note that genericity assumptions on p and ¢
are needed here to avoid losing transversality as in [6, Ex. 3.2].

Algorithm 6.2 (Numerical irreducible decomposition in C").

Input: A finite set W C V(F) C C™ of general smooth points.

Output: A partition of W into sets corresponding to irreducible components.

Do: Make use of the developed toolkit to represent irreducible components of V(F) con-
taining points W with curves in an affine space and use this representation to sort the
points into the respective components as follows:

e [nitialize the numerical irreducible decomposition N to be the empty set.
o While W is nonempty:
(1) Select a point p € W, and let X, denote the irreducible component of V(F)
containing p.
(2) Determine Dim(X,) using Algorithm 2.5.
(3) Let m denote a coordinatewise mazximal integer vector in [ne| such that L™ is
slice preserving the irreducibility of X,.
(4) Choose an element e in Dim(X, N V(L™)) C {0, 1}".

(5) Let I = {i1,...,ije|} denote the positions of e with a nonzero entry indexed
such that j = dim g, 54(X,).
(6) Forje{1,...,|e| =1}, let £; be a general linear polynomial in X;,, ..., X;,,.

(7) Let L :=LeU{ly,... , Lig—1}. Use Algorithm 2.5 to compute a witness set for
CL = X, NV(L), thereby deriving a membership test for X,,.
(8) Let M, denote the points of W which are members of X,,.
(9) Replace W with W \ M, and append to N the set M,.
e Return the numerical irreducible decomposition N of W.

Proof of correctness. Steps (3), (4), and (7) are the only steps needing further justification.
The existence of m in Step (3) is a consequence of iterating Lemma 5.1. Furthermore, for
i € {1,...,k} the projection 7y (X NV(L™)) is a point or a curve because m is maximal.
Then it follows Dim(X, NV(L™)) C {0, 1}* as stated in Step (4). Finally, by Remark 1.3,
a witness set (F'U L, ¢, S) for C}, yields a membership test for ¢ in the variety X, using
the homotopy H (t) = (F, L — (1 —t)L(q), ¢ — (1 — t)¢(q)) with start points S. O

Theorem 3.1 can be used to simplify computation for the points that belong to compo-
nents that are Cartesian products by an obvious divide-and-conquer procedure.

Remark 6.3. Given a complete witness collection for an equidimensional variety X C
V(F') C C™, one can apply monodromy as in Algorithm 6.1 as a heuristic for numerical
irreducible decomposition. However, without slicing and coarsening, the trace test cannot
be used to ensure the completion of such an algorithm.

Coarsening changes the geometry, rendering the prior witness collection irrelevant. One
can create a new witness collection using the old one in the fashion of Algorithm 4.5
to avoid using monodromy to reconstruct witness points in the hope of reducing the
computational cost. In some cases, the completeness of the new witness collection is
guaranteed. For a curve in a product of two projective spaces considered in detail in [10],
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the original witness collection is linked to the new witness set with an optimal (one-to-one)
homotopy. Hence, a decomposition via Algorithm 6.1 on the new witness set induces a
decomposition on the original witness collection.

In general, however, a witness set produced by Algorithm 4.5 is incomplete and thus,
this one-to-one correspondence is lost. One can choose to complete the witness set and
decompose the result yielding a decomposition of the original witness collection. Whether
this approach has an advantage over the method outlined in the beginning of this subsec-
tion depends on the number and nature of coarsenings taken.

Example 6.4. Consider Y := V(f, h) C C, xC, xC, xC,, from Example 1.6. We discuss
three of the ways to reduce to an affine curve preserving irreducibility.

One could simply coarsen to C* and then intersect with a general hyperplane in C*.
This yields an irreducible curve of degree 15 showing that Y is irreducible.

Another option is to coarsen C, x C, x C,, to C?, intersect with a general hyperplane in
this C?, and then coarsen C, x C3 to C*. This also yields an irreducible curve of degree 15.

A final option that we will consider is to coarsen C, x C, to C?, intersect with a general
hyperplane in this C?, and then coarsen C, x C,, x C? to C*. This yields an irreducible
curve of degree 12. o

As demonstrated in Example 6.4, different reductions to affine curves can yield different
degrees. We leave it as a possible topic for future research to consider finding combinations
of coarsening, slicing, and potential factoring that result in the smallest degree.

7. FIBER PRODUCT EXAMPLES

Computing exceptional sets using fiber products [21] yields multihomogeneous systems.
We illustrate some of the tools from the toolkit on two examples: rulings of a hyperboloid
and exceptional planar pentads.

7.1. Rulings of a hyperboloid. Motivated by [21, § 4], we use fiber products to compute
the two rulings of the hyperboloid H C C? defined by

h(x) = o3+ 25— a5 —1.

Since a generic line meets H in two points, a line which meets H in three points must be

NAAA
S

N e %

F1GURE 3. A hyperboloid with its two rulings.
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contained in H. For each A € C3}, we associate a line Ly = V({y) C C* where
E)\(X) = (/\1.171 + )\QZEQ — X3, /\31’1 + /\4[E2 — 1) .
Consider the following system on C§ x C3 x C3 x C3

F(A x1,X2,%3) = (Ia(x1), Ix(x2), Ix(x3), h(x1), h(x2), h(xs)) .

A ruling of H corresponds to a four-dimensional irreducible component X C V(F') such
that there exists an irreducible curve C' C C3§ where

(7.1) X = [J{x1.x2,x3) 1 x; € V(L))

In particular, m (X) = C and m;(X) = H for i = 2,3, 4.

For e = (1,1,1,1), the witness point set W, := V(F) N V(L®) consists of 16 isolated
points. The following uses our toolkit to determine the irreducible components corre-
sponding to the rulings.

Using Algorithms 2.3 and 2.4, we compute the dimensions of components containing
points of W, under different projections. The following table records the relevant infor-
mation up to symmetry.

# points in We ‘ dim 733 (X) ‘ dim 79y (X) ‘ dim 7y 93 (X) ‘ dim 7y 233 (X)
4 1 2 2 3
12 4 2 4 4

The first column shows that the points of W, lie on components of V(F') having two
distinct multidimensions. Let W/ consist of the four points from the first row of this table.
For each (X, x1,%2,x3) € W/, the last column implies that the fiber over (A, x;,,x;,) for
distinct 1,19 € {2,3,4} is one-dimensional. The trace test shows that each irreducible
component of the fiber is linear as expected from (7.1). We note that the number of
witness points when treating F' as system in C'? is 120 and much larger than the number
of points in the witness sets in the previous table.

Finally, we compute the irreducible components of 7713 (V(F)). Using monodromy and
the trace test in C*, we partition W/ into two sets of size two, each corresponding to a
distinct ruling of the hyperboloid. The rulings correspond to the two irreducible curves

{()\1,/\2, —)\2,)\1) | )\% + )\% = 1} and {()\1,)\2,)\2, —)\1) | )\% + /\g = 1} .

The symbolic expressions of these curves are classically known, but one can also recover
them directly from the computed witness points via [1].

7.2. Exceptional planar pentads. A planar pentad is a 3-RR mechanism constructed

by connecting the vertices of two triangles by three legs with revolute joints as shown in

Figure 4. We fix one of the triangles in the plane to remove the trivial motion of the

entire mechanism. A generic mechanism can be assembled in six different configurations,

which is the degree of SE(2) as described in [7, Table 1]. Since a generic planar pentad is

rigid (i.e., does not move), a planar pentad is exceptional when it exhibits motion.
Using isotropic coordinates, the parameters in Figure 4 are

([Uo,ul,UQ,U3,U4,UO,U4], [607ﬂl7ﬂ2yﬂ3aﬂ4760764]) S ]P)G X ]P)6
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FIGURE 4. A planar pentad mechanism

with the following assemblability restrictions:
UU+U1+U2+U4 :ﬂo +ﬂ1 +ﬂ2 +ﬂ4 :Uo+U1+U3+U4:EQ+E1 +ﬂ3—|—@4 = 0.

A mechanism is degenerate if a parameter, ug — vg, Uy — Vg, Ug — Vg, OF Uy — Vy IS ZETO.
Since nondegenerate mechanisms are desired, we dehomogenize the parameter space by
setting vy = vy = 1. Hence, the parameter space becomes

(uaﬁ) = (’LLl,Ug,Ug,U4,ﬂ1,ﬂ2,63,ﬂ4) € (C4 X C47
where
Uy = —(U1 +UQ+U4), ﬂo = —(ﬂl +ﬂ2 +ﬂ4), Vg4 = —(u1 +U3+ 1), 54 = —(ﬂl —|—ﬂ3+ ]_)

A mechanism is physically meaningful if @ = conjugate(u).
For (0,0) € C* x C*, the poses corresponding to link lengths (u,u) satisfy

0,0, — 1
0.0, — 1
005 — 1
G(u,1,6,0) — 0404 — 1 ~ 0

Ug + ulﬁl + UQQQ + U464
Ty + U101 + Ty + s,y
1+ u16’1 + u36’3 + U494
1+ W01 + Usbs + U404

The six configurations of a general planar pentad correspond with the six points in the
witness point set W, = V(F) N V(L®) for e = (4,4,0,0).

The only family of nondegenerate exceptional planar pentads are the double-parallel-
ogram linkages [22|, namely

U = {(uua) | u+us=u +us =T +U =1 +u3 =0} ¢ C'xC".

We aim to compute U directly from G by using fiber products. Since U has codimension
four, Corollary 2.14 of [21] shows that ¢/ will correspond with an irreducible component
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of the fourth fiber product system, namely

F(u7ﬁ7 017517 027527 037537 04764) =

The irreducible component X C V(F) C (C*)' corresponding to U is called a main
component in [21]. In fact, X is a Cartesian product of U with four copies of

{(,, 0,1, 7ot a™t 1) e C x C* | a € C*).

This corresponds with rotating AABC about a fixed ADEF'.

A necessary condition for locating such an exceptional component of codimension four
consisting of nondegenerate and physically meaningful linkages with one dimension of
motion is that there exists e € Dim(V(F')) such that e; = e; =2 and e3 +e4 = €5 + ¢ =
er +es = eg + e;9p = 1. A sufficient condition for such a component to exist is that one
of the isolated points in V(F) N V(L®) is a general point of X. To that end, we first
compute the e-witness point set W, for V(F') where e = (2,2,1,0,1,0,1,0,1,0) resulting
in 14,828 isolated nonsingular points in V(F') N V(L®). The results of using Algorithm 2.3
to compute the the local dimension at each of these 14,828 witness points along with the
local fiber dimensions obtained by fixing the (u, @) coordinates and coarsening the fiber
to the natural (C®)* are summarized in the following.

# points in W, | local dimension Dim,(F) | local fiber dimension over (u, )

14,144 (4,4,4,4,4,4,4,4,4,4) (0,0,0,0)
678 (2,2,3,3,3,3,3,3,3,3) (1,1,1,1)
6 (2,2,1,1,1,1,1,1,1,1) (1,1,1,1)

The first collection of 14,144 witness points correspond with rigid planar pentads. The sec-
ond collection of 678 witness points correspond with degenerate planar pentads. The final
collection of 6 witness points correspond with five degenerate planar pentads arising from
one of the five nonconstant edges of AABC or ADEF being zero (recall vy =7y = 1).
The other witness point in this collection is the unique point in W, that is a general
point on X thereby confirming (2,2,1,0,1,0,1,0,1,0) € Dim(V(F')) and the existence
of nondegenerate exceptional planar pentads. On the other hand, working without the
multihomogeneous structure, leads to approximately 10® witness points which we can’t
robustly compute.

Acknowledgements. We thank Tim Duff for his helpful comments on the paper.
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