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Abstract— Safety is one of the fundamental problems in
robotics. Recently, a quadratic program based control barrier
function (CBF) method has emerged as a way to enforce safety-
critical constraints. Together with control Lyapunov function
(CLF), it forms a safety-critical control strategy, named CLF-
CBF-QP, which can mediate between achieving the control ob-
jective and ensuring safety, while being executable in real-time.
However, once additional constraints such as input constraints
are introduced, the CLF-CBF-QP may encounter infeasibility.
In order to address the challenge arises due to the infeasibility,
we propose an optimal-decay form for safety-critical control
wherein the decay rate of the CBF is optimized point-wise in
time so as to guarantee point-wise feasibility when the state lies
inside the safe set. The proposed control design is numerically
validated using an adaptive cruise control example.

I. INTRODUCTION

A. Motivation

Safety-critical optimal control and planning is one of the
fundamental problems in robotics, e.g., robots need to be
able to safely avoid obstacles while using minimal energy. In
order to ensure the safety of robotic systems while achieving
optimal performance, the tight coupling between potentially
conflicting control objectives and safety criteria is usually
formulated as an optimization problem. Recent work [1], [2]
formulates this problem using control barrier functions as an
optimization problem, where the safety criteria is formulated
as constraints. Additionally, a robotic system usually has a
constrained set for the admissible inputs due to physical
limitations, which can be taken as additional constraints
in the optimization problem [3]–[5]. However, the input
constraint and control barrier function constraint might be
in conflict in the optimization and make the optimization
infeasible. In this paper, we study this feasibility problem
and illustrate a variant form of safety-critical control with
control barrier functions which satisfies the input constraint
and guarantees point-wise feasibility along the trajectory.

B. Related Work

CBFs have recently been introduced as a promising way
to ensure set invariance by considering the system dynamics.
Furthermore, a safety-critical control design for continuous-
time systems was proposed by unifying a control Lyapunov
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function (CLF) and a control barrier function (CBF) through
a quadratic program (CLF-CBF-QP) [2], [6]. This method
could be deployed as a real-time optimization-based con-
troller with safety-critical constraints, shown in [1], [7].
The adaptive, robust, and stochastic cases of safety-critical
control with CBF have been considered in [8]–[10]. CBFs
have also been used for high relative degree safety constraints
for nonlinear systems [11], [12]. Besides the continuous-
time domain, the formulation of CBF was generalized into
discrete-time systems in [4], and systems evolving on mani-
folds in [7]. Recently, CBF constraints were also applied in
control problems using a data-driven approach [13]–[18] and
optimal control design [19], [20].

However, the input constraint was not considered in the
optimization in some of the previous work, such as [6], which
means the optimized control input might not be executable
due to the physical limitations of the system. Other work,
such as [3]–[5], [7]–[9], did consider the input constraint,
but the potential conflict between input constraint and CBF
constraint was not addressed, potentially resulting in an
unsolvable optimization problem. In [2], a valid CBF is
specifically designed for adaptive cruise control scenario
with explicit integration problem over the system dynamics
under input constraint, which could ensure the feasibility
in the optimization. However, the feasibility problem for
general nonlinear systems remains as an unsolved topic for
the safety-critical optimal control.

C. Contribution

The contributions of this paper are as follows.
• We present the reasons of potential infeasibility in the

CBF-QP and CLF-CBF-QP.
• With analysis in both input-space and state-space, we

reveal quantitatively and qualitatively that the infeasi-
bility appears potentially due to a small decay rate of
the control barrier function constraint.

• We propose an optimal-decay form of CBF-QP and
CLF-CBF-QP where the decay rate of the control barrier
function is optimized.

• We prove that our optimal-decay formulation is point-
wise feasible for any state lying strictly inside the
safe set. An adaptive cruise control example is used
to numerically verify this.

D. Paper Structure

The paper is organized as follows: in Sec. II, we present
the background about control barrier functions and point out
the potential infeasibility in safety-critical control. In Sec. III,
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we analyze quantitatively the point-wise feasibility problem
in the input-space. In Sec. IV, we show qualitatively the
point-wise feasibility problem from the perspective of the
state-space. In Sec. V, we propose an optimal-decay form
of CBF-QP and CLF-CBF-QP and prove their point-wise
feasibility for any state lying strictly inside the safe set.
An adaptive cruise control example is used to numerically
validate our proposed optimal-decay form in Sec. VI. Finally,
Sec. VII provides concluding remarks.

II. BACKGROUND

We consider a nonlinear affine system of the form

ẋ(t) = f(x(t)) + g(x(t))u, (1)

where x ∈ Rn, u ∈ Rm, with f : Rn → Rn and g : Rn →
Rn×m being locally Lipschitz. The system is subject to input
constraints

u(t) ∈ Uadm(x(t)), ∀t ≥ 0, (2)

where Uadm(x(t)) ⊂ Rm denotes the set of admissible
inputs, which could be state dependent.

We consider a set C ⊂ Rn defined as the zero-superlevel
set of a continuously differentiable function h : Rn → R,
yielding:

C = {x ∈ Rn : h(x) ≥ 0},
∂C = {x ∈ Rn : h(x) = 0},

Int(C) = {x ∈ Rn : h(x) > 0}.
(3)

Throughout this paper, we refer to C as a safe set.
The definitions of control barrier functions and control

Lyapunov functions are summarized as follow, see [6] for
detailed explanations. The function h becomes a control

barrier function if
∂h

∂x
6= 0 for all x ∈ ∂C, and there exists

an extended class K∞ function α such that for the control
system (1), h satisfies

∃ u s.t. ḣ(x,u) ≥ −α(h(x)), α ∈ K∞. (4)

Besides the system safety, we are also interested in sta-
bilizing the system with a feedback control law u under a
control Lyapunov function V with a class K function γ, i.e.,

∃ u s.t. V̇ (x,u) ≤ −γ(V (x)), γ ∈ K. (5)

Note that we can write down

ḣ(x,u) = Lfh(x) + Lgh(x)u, (6)

where Lfh(x) and Lgh(x) are Lie-derivatives of h(x) along
f(x) and g(x), respectively. We can also write down

V̇ (x,u) = LfV (x) + LgV (x)u, (7)

where LfV (x) and LgV (x) are Lie-derivatives of V (x). The
above construction of the CLF and CBF allows us to define
safety-critical control for a nonlinear affine system (1).

Given a feedback controller u = k(x) for the con-
trol system (1), we wish to guarantee safety. We consider
the following Quadratic Program (QP) based controller
that finds the optimal u in the optimization as follows:

CBF-QP:

u(x) = argmin
u∈Rm

1

2
||u− k(x)||2 (8a)

s.t. Lfh(x) + Lgh(x)u ≥ −α(h(x)), (8b)
u ∈ Uadm(x). (8c)

When the input constraint (8c) is excluded, we have a
single inequality constraint, thus the CBF-QP has a closed-
form solution per the KKT conditions, and this method was
used in [21], [22]. However, when the input constraint is
considered, there might not exist any u satisfying both input
constraint and CBF constraint simultaneously. This could
lead to a potential infeasible optimization problem.

We could also use a QP based formulation of safety-
critical control which unifies safety and stability. Con-
cretely, we consider the following QP based controller:

CLF-CBF-QP:

u(x) = argmin
(u,δ)∈Rm+1

1

2
uTH(x)u + pδ2 (9a)

s.t. LfV (x) + LgV (x)u ≤ −γ(V (x)) + δ, (9b)
Lfh(x) + Lgh(x)u ≥ −α(h(x)), (9c)
u ∈ Uadm(x). (9d)

where H(x) is any positive definite matrix (point-wise in x),
and we have a relaxation variable δ on the CLF constraint
(9b) with additional quadratic cost in (9a). When we exclude
the input constraint (9d) out of the optimization, the solv-
ability can be guaranteed since the CLF constraint is relaxed
and the CBF constraint (9c) is the only hard constraint. This
method was applied in [23], [24]. However, when the input
constraint (9d) is also considered, we might again encounter
an infeasible optimization problem.

III. POINT-WISE FEASIBILITY IN INPUT-SPACE

Having presented the background of safety-critical control,
we will now show how to pick an appropriate α in the
CLF-CBF-QP/CBF-QP to guarantee point-wise feasibility
from the perspective of input-space, i.e., how to guarantee
feasibility of the optimization problem at a given state x(t) =
xt.

For the state xt at time t, we define the feasible superlevel
set Ucbf (xt) as the region satisfying CBF constraint in input-
space, i.e.,

Ucbf (xt) :={u ∈ Rm : Lfh(xt) + Lgh(xt)u ≥
− α(h(xt))}.

(10)

Note that Ucbf (xt) is a half-space in the input-space Rm
since the CBF constraint is affine in u. The level set of the
CBF constraint in input-space is defined as ∂Ucbf (xt),

∂Ucbf (xt) ={u ∈ Rm : Lfh(xt) + Lgh(xt)u =

− α(h(xt))}.
(11)
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Fig. 1: The set of admissible inputs Uadm(xt) is defined as a convex
polytope with r vertices. The upper half-spaces, indicated by the
red, blue, green arrows, repsent the feasible superlevel set ucbf (xt)
corresponding to three different superlevel sets. We can see clearly
that at least one vertex of polytope Uadm(xt) needs to lie inside
or on the surface of the set Ucbf (xt) to guarantee the intersection
set between Uadm(xt) and Ucbf (xt) is not empty.

Then the feasibility problem becomes whether the intersec-
tion between Ucbf (xt) and Uadm(xt) as defined in (2) is
empty or not. If the intersection is not empty, the optimiza-
tion in CBF-QP or CLF-CBF-QP is feasible at xt.

In order to provide a quantitative way of explaining point-
wise feasibility from the perspective of input-space, We
suppose that the set of admissible inputs Uadm(xt) could
be described as a convex polytope defined with r vertices,
presented in Fig. 1, where each vertex is noted as vi(xt) ∈
Rm and i ∈ {1, 2, ..., r(xt)}. Then we have Uadm(xt) could
be written as

Uadm(xt) ={u ∈ Rm : u =

r(xt)∑
i=1

λi(xt)vi(xt),

r(xt)∑
i=1

λi(xt) = 1, λi(xt) ≥ 0}.

(12)

Then the necesary and sufficient condition of having the
intersection between Ucbf (xt) defined in (10) and Uadm(xt)
defined in (12) being not empty is that, at least one vertex
of polytope Uadm(xt) lies inside or on the surface of the set
Ucbf (x), shown as follows,

Uadm(xt) ∩ Ucbf (xt) 6= ∅ ⇔ ∃i, vi ∈ Ucbf (xt). (13)

Hence, the set of candidate α functions in the CBF constraint
(4), denoted as Kαfea(xt), that guarantees the feasibility of
the optimization, becomes the union of the set of functions
that guarantees any vertex in Uadm(xt) lies inside or on the
surface of the set Ucbf (xt), which could be written as follows

Kαfea(xt) =

r(xt)⋃
i=1

{α ∈ K∞ : α(h(xt)) ≥

− Lfh(xt)− Lgh(xt)vi(xt)},

and it could be reformulated with a minimum operator

Kαfea(xt) ={α ∈ K∞ : α(h(xt)) ≥
min
i

(−Lfh(xt)− Lgh(xt)vi(xt))}.
(14)

Therefore, given a function α, the CBF-QP/CLF-CBF-QP in
(8) and (9) are point-wise feasible if ∃α ∈ K∞ s.t.,

α(h(xt)) ≥ min
i

(−Lfh(xt)− Lgh(xt)vi(xt))

is satisfied at state xt.
Moreover, given a state xt, from (14), we can see when

min
i

(−Lfh(xt)− Lgh(xt)vi(xt)) ≤ 0, (15)

we have Kαfea(xt) = K∞, i.e., we have the point-wise
feasibility, for any α ∈ K∞. However, when (15) is not
satisfied, Kαfea(xt) becomes a proper subset of K∞ and the
function α has a lower bound at state xt to guarantee the
point-wise feasibility.

From above, we could pick an appropriate α function to
guarantee point-wise feasibility at a given state xt. Beside
feasibility, we are also interested in whether the CBF con-
straint is activated during the optimization.

Remark 1. We have ∀i, vi(xt) ∈ Ucbf (xt) when

α(h(xt)) ≥ max
i

(−Lfh(xt)− Lgh(xt)vi(xt)), (16)

which means Uadm(xt) ⊂ Ucbf (xt), therefore in this case,
the CBF constraint does not confine the input constraint
during the optimization. This case is illustrated by the green
Ucbf (xt) in Fig. 1. When (16) is not satisfied, we have
the CBF constraint confine the input constraint, i.e., the
intersection between Uadm(xt) and Ucbf (xt) becomes a
proper set of Uadm(xt), indicated by the blue Ucbf (xt) in
Fig. 1. When the intersection is empty, illustrated by the red
Ucbf (xt) in Fig. 1, the optimization problem is infeasible.

Remark 2. We say a constraint is active in the optimiza-
tion when the optimal solution lies on the constraint line
[25]. When the CBF constraint does not confine the input
constraint, the CBF constraint becomes inactive during the
optimization. However, when the CBF constraint confines the
input constraint, it does not necessarily guarantee the CBF
constraint activation, as the value of optimal solution also
depends on the design of cost function in the optimization.
Therefore, the choice of α function together with the design
of cost function determine the activation of CBF constraint
in the safety-critical optimal control, shown in Fig. 1.

Remark 3. In this section, the admissible set is assumed as
a bounded convex polytope. In fact, these discussions could
be easily generalized for an unbounded convex set, as any
unbounded set could be regarded as a limit of a sequence
of bounded sets [26, Chap. 11]. Moreover, our proposed
optimal-decay approach in this paper that guarantees point-
wise feasibility will only rely on the admissible set being
convex while not strictly assuming it as a bounded convex
polytope, see Theorem 1.

We have seen point-wise feasibility in input-space in this
section. Next, we will look at point-wise feasibility in the
state-space in Sec. IV. After that, we provide a formulation
which allows us to guarantee the point-wise feasibility with-
out parameter tuning in Sec. V.
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IV. POINT-WISE FEASIBILITY IN STATE-SPACE

The point-wise feasibility problem could also be under-
stood through qualitative illustration in the state-space. Given
a state xt at time t, we will define R(xt,Uadm, δt) to
represent the set of reachable states after infinitesimal time
δt while satisfying system dynamics (1) and input constraint
Uadm(xt) starting from state x(t) = xt, i.e.,

R(xt,Uadm, δt) = {x(t+ δt) ∈ Rn : ∀t̄ ∈ [t, t+ δ],

ẋ(t̄) = f(x(t̄)) + g(x(t̄))u(t̄),

u(t̄) ∈ Uadm(x(t̄)),x(t) = xt}.
(17)

The evolution of the system dynamics also needs to be safe
and thus satisfy the definition of control barrier function (4)
during time segment [t, t+ δt], thus we have

h(x(t+ δt)) ≥ h(x(t))−
∫ t+δt

t

α(h(x(t̄)))dt̄. (18)

This allows us to define the superlevel set in state-space for
x(t+ δt) satisfying the CBF constraints,

Scbf (xt, δt) = {x ∈ Rn : h(x) ≥ h(xt)

−
∫ t+δt

t

α(h(x(t̄)))dt̄,x(t) = xt}.
(19)

We also define

Scbf (xt, 0) = {x ∈ Rn : h(x) ≥ h(xt)}, (20)

motivated by
∫ t+δt
t

α(h(x(t̄)))dt̄ = 0 when δt = 0. The set
Scbf (xt, 0) corresponds to the set of all possible x for which
h(x) ≥ h(xt).

Since the state x(t+δt) should satisfy the system dynam-
ics and control barrier function constraint, the optimization
problem is then point-wise feasible at state xt when the
intersection between R(xt,Uadm, δt) and Scbf (xt, δt) is
not empty. We are interested in whether the intersection
between R(xt,Uadm, δt) and Scbf (xt, δt) is empty or not
under different circumstances. However, it is numerically
complicated or even impossible to calculate R(xt,Uadm, δt)
for a general nonlinear affine system. Thus, we provide
an intuition of understanding point-wise feasibility problem
through geometry in state-space.

Remark 4. Notice that we always have Scbf (xt, 0) ⊂
Scbf (xt, δt) as α is class K∞ function and h(.) is positive.

In practice, we usually define the safety set C in (3)
corresponding to the free space outside the obstacle, illus-
trated in Fig. 2. ∂Scbf (xt, 0) and ∂Scbf (xt, δt) are illustrated
with black solid and colorful dashed curves respectively, and
Scbf (xt, δt), Scbf (xt, 0) are illustrated as the regions on the
top-right side of them. Since we always have Scbf (xt, 0) ⊂
Scbf (xt, δt), ∂Scbf (xt, δt) is always closer to the obstacle,
lying on the bottom-left side of ∂Scbf (xt, 0) for any choice
of α function. We classify the point-wise feasibility problem
into three scenarios as follows.

A. Moving away from obstacles

When R(xt,Uadm, δt) ⊂ Scbf (xt, 0), i.e., the system is
moving away from obstacles. The scenario is illustrated
in Fig. 2a. In this scenario, we have R(xt,Uadm, δt) ⊂
Scbf (xt, 0) ⊂ Scbf (xt, δt). This means that for any class
K∞ function α, the optimization will always be point-wise
feasible at state xt.

B. Moving around obstacles

When R(xt,Uadm, δt) intersects with ∂Scbf (xt, 0), we
have the reachable state-space lies partly on the top-right
side of ∂Scbf (xt, 0), shown in Fig. 2b. In this scenario, the
optimization is always feasible for any class K∞ function α,
as R(xt,Uadm, δt)∩Scbf (xt, 0) is not empty and is always
a subset of Scbf (xt, δt).

C. Moving close to obstacles

When R(xt,Uadm, δt) ∩ Scbf (xt, 0) = ∅, this usually
happens when the system is moving close to obstacles,
shown in Fig. 2c and 2d. In this scenario, when α becomes
too small (CBF level set in red), the intersection between
R(xt,Uadm, δt) and Scbf (xt, δt) is empty and the optimiza-
tion problem becomes infeasible at state xt. This indicates
that α(h(xt)) needs to be greater than a lower bound to make
the optimization point-wise feasible at state xt.

Remark 5. When R(xt,Uadm, δt) ⊂ Scbf (xt, δt), the CBF
constraint does not confine the reachable set which means the
CBF constraint is inactive in the optimization, shown with
green level sets Scbf (xt, δt) in Fig. 2. When the intersection
between R(xt,Uadm, δt) and Scbf (xt, δt) is non-empty and
becomes as a proper subset of R(xt,Uadm, δt) shown with
blue level sets Scbf (xt, 0) in Fig. 2, the CBF constraint does
confine the reachable set. This does not necessarily guarantee
CBF constraint activation, as the constraint activation also
depends on the design of cost function, which is similar
to what we discussed in Remark 2. For the red level sets
Scbf (xt, 0) in Fig. 2c and 2d, the optimization is infeasible.

V. POINT-WISE FEASIBLE FORMULATION

A. Formulation and Point-wise Feasibility

In Sec. III and IV, we have seen that the optimization
in safety-critical control might become point-wise infeasible
at a given state xt, if either Ucbf (xt) ∩ Uadm(xt) = ∅ or
R(xt,Uadm, δt)∩Scbf (xt, δt) = ∅ which means the conver-
gence of control barrier function is less than a lower bound.
In other words, when the decay rate of the lower bound of
h(x) is not large enough, we might encounter infeasibility in
the optimization problem. To solve this problem, we could
manually tune the form of α function to make the optimiza-
tion feasible, however, this tuning process becomes relatively
difficult when the system dynamics becomes complicated.
This motivates us to introduce an optimal-decay form of CBF
constraint to guarantee the point-wise feasibility for any x
with h(x) > 0.

With the same notation as CBF-QP in (8) and CLF-CBF-
QP in (9), we introduce an optimal-decay form of CBF-QP
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(a) (b) (c) (d)

Fig. 2: Point-wise feasibility problem in different scenarios. Given a state xt, we illustrate R(xt,Uadm, δt) as a closed region of yellow
color and ∂Scbf (xt, 0) as level sets in black. ∂Scbf (xt, δt) are plotted in red (infeasible), blue (feasible with active/inactive CBF constraint)
and green (feasible with inactive CBF constraint) for different scenarios. Scbf (xt, 0) (grey) and Scbf (xt, δt) (green, blue, red) are regions
on the top-right side of their corresponding level sets.

and CLF-CBF-QP in this section. The optimal decay CBF-
QP is formulated as follows

Optimal-decay CBF-QP:

u(x) = argmin
(u,ω)∈Rm+1

1

2
||u− k(x)||2 + pω(ω − ω0)2 (21a)

s.t. Lfh(x) + Lgh(x)u ≥ −ωα(h(x)), (21b)
u ∈ Uadm(x). (21c)

Compared with CBF-QP, we optimize the decay rate of the
CBF constraint with a new variable ω in (21b) and add a
quadratic cost in (21a). pω is a positive scalar and a scalar
ω0 could usually be chosen to tune the performance of the
controller. Similarly, we develop the optimal form of CLF-
CBF-QP as follows

Optimal-decay CLF-CBF-QP:

u(x) = argmin
(u,δ,ω)∈Rm+2

1

2
uTH(x)u + pδ2 + pω(ω − ω0)2

(22a)
s.t. LfV (x) + LgV (x)u ≤ −γ(V (x)) + δ, (22b)

Lfh(x) + Lgh(x)u ≥ −ωα(h(x)), (22c)
u ∈ Uadm(x). (22d)

We call (21) and (22) as optimal-decay form of CBF-QP and
CLF-CBF-QP, since it actually optimizes the decay rate of
lower bound of the control barrier function with variable ω in
the optimization. The point-wise feasibility of optimization
for any x ∈ Int(C) in (21), (22) is illustrated with the
following theorem.

Theorem 1. When Uadm(x) is convex, the optimizations
in optimal-decay CBF-QP and CLF-CBF-QP are point-wise
feasible for any x lying inside C, i.e., the optimizations are
solvable with a unique solution for any x when h(x) > 0.

Proof. For optimal-decay CBF-QP, since ω ∈ R is a variable
to optimize and h(x) > 0, −ωα(h(x)) could vary between
−∞ and +∞ for any x. Then, for any x. there always exists

a value ω such that the feasible region between (21b) and
(21c) is non-empty.

Moreover, we notice that the CBF constraints and input
constraints are convex with respect to optimization variables
u and ω. Hence, the feasible region in the optimal-decay
CBF-QP is convex and not empty. Additionally, our cost
function (21a) is a quadratic form and positive-definite,
which is strictly convex. Therefore, the minimization in
(21) is convex (convex cost and constraints) with non-empty
feasible region, which is solvable and holds a unique solution
[25, Chap. 5].

Compared to optimal-decay CBF-QP, the optimal-decay
CLF-CBF-QP is nothing different except there is a CLF
constraint in (22b), which is also convex with respect to
optimization variables and is optimized with the relaxation
variable δ. Therefore, the optimization in optimal CLF-CBF-
QP is also convex with a non-empty feasible region, which
is feasible with an unique solution.

In fact, we could generalize the point-wise feasibility in
Thm. 1 for any x when h(x) 6= 0, as ωα(h(x)) could vary
between −∞ and ∞ when h(x) 6= 0 with ω ∈ R. However,
this is not interesting since the system is already unsafe when
h(x) < 0.

Remark 6. The optimization variable ω is not required to be
positive. In fact, when the optimized value of ω is negative,
this implies that the control barrier function is increasing with
the optimized control input, correpsonding to the safety with
set invariance. In the scenario of ω as negative, the system
is keeping further away from the obstacles.

B. Convergence of CBF constraint

The variable ω optimizes the convergence rate of the CBF
constraint, with ωα(.) still being a class K∞ function. There-
fore, with optimal-decay CBF-QP and CLF-CBF-QP, we
equivalently use a state-dependent rate for the convergence
of the CBF constraint, since the optimized value of ω will
be calculated differently at different state x.

Moreover, smaller ω0 and larger pω would make the
control barrier function decay slower. This makes sense from
a mathematical perspective, since the larger ω0 optimizes the
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nominal CBF constraint with larger decay rate. Similarly, for
smaller pω , we will have optimized value of ω deviating more
from the value ω0, which also brings a larger decay rate on
the control barrier function.

C. Persistent Feasibility and Safety
Note that point-wise feasibility for all x with h(x) > 0

does not guarantee that our system is persistently feasible,
i.e., the system might become unsafe even if the system is
initialized at x(0) = x0 with h(x0) > 0. This is due to
the fact that when we reach h(x) = 0, we can’t change ω to
make the optimization problem feasible while simultaneously
enforcing the optimal-decay CBF constraint (22c) and the
input constraint. This makes the control barrier function
invalid with respect to the safe set defined in (3) due to the
input constraint. In this case, the CBF-based control policy
isn’t safe, i.e., it is not forward complete, see [6, Def. 1].
However, given any invariant set that is a subset of the
safe set C, our optimal-decay CBF-QP/CLF-CBF-QP will
be persistently feasible if the initial state lies inside this safe
invariant set.

The maximum invariant set for an optimal-decay controller
could be different with respect to hyperparameters, such as
pω and ω0, which will be illustrated in Sec. VI-D. Notice that
solving an explicit representation of this control invariant set
for a nonlinear system is usually intractable [27]–[29] and
this exceeds the scope of this paper. We will discuss the
invariant safety and related performance in future work.

Remark 7. When pω tends to +∞ in (21) and (22), then
given a state x, if the original CBF constraint is satisfied,
i.e.,

∃u ∈ Uadm(x), Lfh(x) + Lgh(x)u ≥ −α(h(x)),

we will have the optimized value of ω as ω∗(x) = ω0.
Specifically, when ω0 = 1, it will make the optimal-decay
CBF-QP and CLF-CBF-QP as the original CBF-QP/CLF-
CBF-QP. However, when the original CBF-QP and CLF-
CBF-QP become infeasible, i.e.,

∀u ∈ Uadm(x), Lfh(x) + Lgh(x)u < −α(h(x)),

our optimal-decay form is still feasible and the optimal value
of ω is as follows

ω∗(x) = sup
u∈Uadm

Lfh(x) + Lgh(x)u

−α(h(x))
.

To sum up, when pω = +∞ and ω0 = 1, the optimal-decay
CBF-QP and optimal-decay CLF-CBF-QP are equivalent to
original CBF-QP and CLF-CBF-QP, if the original ones are
already feasible. When the original constraint is infeasible,
the optimization variable ω makes the proposed one still
feasible.

VI. CASE STUDY: ADAPTIVE CRUISE CONTROL

Having presented our optimal-decay CBF-QP/CLF-CBF-
QP formulation, we proceed to validate the proposed strategy
using an adaptive cruise control (ACC) example, which
has been commonly used to validate safety-critical control
strategies [1], [12].

A. Simulation Setup

Consider a point-mass model of an ego vehicle moving
along a straight line to follow a lead vehicle. The dynamics
are given as follows

ẋ =

 x2

− 1

m
Fr(x)

vl − x2

 +

 0
1

m
0

u, (23)

where (x1, x2) are the position and velocity (x2 = ẋ1) of
the ego vehicle, m is the mass of the vehicle, and x3 is the
distance between the vehicle and the lead vehicle traveling
at a velocity of vl. Fr represent the aerodynamic drag and
we use the empirical form given as below

Fr = f0 + f1x2 + f2x
2
2, (24)

where f0, f1, and f2 are empirical constants.
A CLF-CBF-QP controller is designed to solve this ACC

problem. In order to regulate speed, we pick a control
Lyapunov function as follows

V = (x2 − vd)2. (25)

A control barrier function is used to guarantee that the ego
vehicle will not collide with the leading vehicle. We consider
a control barrier function as

h = x3 − 1.8x2, (26)

where the factor of 1.8 is a result of converting to SI units.
Besides speed regulation and safe distance maintenance, we
also consider input constraints as follows

cdmg ≤ u ≤ camg, (27)

where ca and cd are coefficients for maximum and minimum
wheel forces.

Using the control Lyapunov function (25) and the control
barrier function (26), we design an original CLF-CBF-QP
controller and an optimal-decay CLF-CBF-QP controller
with formulation in (9) and (22), respectively. The system
is simulated with the two controllers with a frequency at
100Hz, and the values of parameters in the simulations are
shown in Tab. I. Notice that in the simulations, we consider
α(.) and γ(.) in (9) and (22) as linear functions with constant
coefficients α and γ.

B. Point-wise Feasibility

To compare the performance between our optimal-decay
CLF-CBF-QP and the original form, we simulate the system
with different initial conditions and illustrate them together
in Fig. 3, where solid and dashed lines represents the results
from our optimal-decay CLF-CBF-QP and the original form,
respectively. For our optimal-decay form, we firstly pick the
hyperparameters ω0 and pω as 1 and 108, which corresponds
to the choice we discussed in Sec. V-B.

Precisely, the ego vehicle is initialized at origin x1(0) = 0
m, the initial distance between the ego car and the leading
one is set as x3(0) = 100 m and initial speed x2(0)
ranges from 26 m/s to 32 m/s, shown in Fig. 3b. We can
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Fig. 3: Simulation results of adaptive cruise control using original/optimal-decay form of CLF-CBF-QP with different initial velocities.
The solid and dashed lines correspond to simulation with optimal-decay CLF-CBF-QP and original CLF-CBF-QP, respectively. Different
colors represent different initial conditions. The colorful vertical dashed lines in Fig. 3b represents when the original CLF-CBF-QP
becomes infeasible and we can clearly see that the original CLF-CBF-QP becomes infeasible for purple (x2(0) = 32m/s) and yellow
(x2(0) = 30m/s) initial conditions.
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Fig. 4: Illustration of the influence of hyperparameters ω0 and pω
on CBF decay rates and system safety performance. The left plot
is in log scale on the y-axis to show the difference in the decay
rate.

see that CLF-CBF-QP with initial speed as 30 m/s and
32 m/s will become infeasible during the simulations. This
infeasibility comes from the conflict between input constraint
and original CBF constraint and we can see clearly that the
CLF-CBF-QP fails with input saturation and our optimal-
decay form handles the problem properly, shown in Fig. 3c.
The simulation with initial speed as 26 m/s and 28 m/s does
not encounter any infeasible issues where the CLF-CBF-
QP and our optimal-decay form shared the same control
performance. Moreover, we notice ω becomes not equal to
one only when there is a conflict between the input constraint
and the original CBF constraint, shown in Fig. 3d. The
evolution of control barrier function for two controllers are
shown in Fig. 3a. To sum up, the optimal-decay CLF-CBF-
QP is equivalent to the original one when ω0 = 1 if the
original one is already feasible, while still being as a feasible
problem even when the original CLF-CBF-QP is infeasible.

C. Convergence rate with hyperparameters

As we have stated in Sec. V-C, the system might become
unsafe if it is initialized outside its invariant set. To illustrate
this property, we simulate the controller from an initial speed
x2(0) = 32 m/s and leading distance x3(0) = 100 m with

System Parameters
m 1650 kg vl 16 m/s vd 30 m/s
f0 0.1 N f1 5 Ns/m f2 0.25 Ns2/m2

cd -0.25 ca 0.25 g 9.81 m/s2

Controller Parameters
γ 1.0 p 1.0 α 0.5

TABLE I: Parameter values used in simulation.

different values of hyperparameters ω0 and pω . We keep the
same Lyapunov function and control barrier function with
the same parameters in Table. I and the simulation results
are shown in Fig. 4. In Fig. 4a, we can observe that smaller
ω0 and larger pω would make the control barrier function
decay slower, which verified exactly what was stated in Sec.
V-B.

D. Safety with hyperparameters

The simulations in Sec. VI-A and VI-C that we have seen
are all safe with set invariance on C defined in (3). However,
for the same initial condition x2(0) = 32 m/s, if we decrease
pω , the system could be unsafe after a while. Specifically,
we show that when ω0 = 1, pω = 102, our system actually
becomes unsafe after around 4s. This happens since the
initial condition no longer lies inside the invariant set for
the optimal-decay CLF-CBF-QP with this configuration of
hyperparameters, which was previously discussed in Sec.
V-C. It must be noted that while a formulation guarantees
point-wise feasibility for h(x) > 0, this does not guarantee
persistent feasibility for h(x) > 0 in a sufficiently long-
time trajectory. This is seen in Fig. 4b, where point-wise
feasibility for all states with h(x) > 0 still leads to the
system unsafe after a while.

VII. CONCLUSION

In this paper, we have analyzed the point-wise feasibility
problem of safety critical control from the perspective of
input-space and state-space. Then, in order to deal with the
conflict between CBF constraint and input constraint, we

3862

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 17,2021 at 18:04:58 UTC from IEEE Xplore.  Restrictions apply. 



proposed an optimal-decay form for CBF-QP and CLF-CBF-
QP to guarantee point-wise feasibility inside the safe set. We
numerically verified this control design in an ACC example.
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