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Abstract— This paper introduces a framework for learning
a minimum-norm stabilizing controller for a system with un-
known dynamics using model-free policy optimization methods.
The approach begins by first designing a Control Lyapunov
Function (CLF) for a (possibly inaccurate) dynamics model for
the system, along with a function which specifies a minimum
acceptable rate of energy dissipation for the CLF at different
points in the state-space. Treating the energy dissipation con-
dition as a constraint on the desired closed-loop behavior of
the real-world system, we use penalty methods to formulate an
unconstrained optimization problem over the parameters of a
learned controller, which can be solved using model-free policy
optimization algorithms using data collected from the plant. We
discuss when the optimization learns a stabilizing controller for
the real world system and derive conditions on the structure
of the learned controller which ensure that the optimization is
strongly convex, meaning the globally optimal solution can be
found reliably. We validate the approach in simulation, first for
a double pendulum, and then generalize the framework to learn
stable walking controllers for underactuated bipedal robots
using the Hybrid Zero Dynamics framework. By encoding a
large amount of structure into the learning problem, we are
able to learn stabilizing controllers for both systems with only
minutes or even seconds of training data.

I. INTRODUCTION

Recently, the literature has displayed a renewed interest
in data-driven methods for controller design [1]–[4]. Much
of this excitement has been driven by recent advances in the
model-free reinforcement learning literature [5], [6]. Despite
their generality, model-free policy optimization methods are
known to suffer from poor sample complexity, as they
generally are unable to take advantage of known structure
in the control system. This paper bridges the gap between
model-based and model-free design paradigms by embedding
Lyapunov-based design techniques into a model-free rein-
forcement learning problem. By encoding basic information
about the structure of the system into the learning problem
through a Control Lyapunoc Function (CLF), our approach
is able to learn optimal stabilizing controllers for highly
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uncertain systems with as little as seconds or a few minutes
of data.

Specifically, the paper proposes a framework for learning a
min-norm stabilizing control law for an unknown system us-
ing model-free policy optimization techniques. Our approach
begins by first designing a CLF for a nominal dynamics
model of the system alongside a function which specifies
the desired rate of convergence for the closed-loop system.
To impose this desired behavior on the real world control
system, we then formulate a continuous-time optimization
problem over the parameters of a learned controller which
treats the energy dissipation condition as a constraint. The
cost function for the optimization encourages choices of
parameters which minimize control effort, but uses a penalty
term to ensure that the dissipation constraint is satisfied, if
possible, when the penalty term is chosen to be large enough.
The terms in the optimization depend on the dynamics of
the unknown system, but discrete-time approximations to the
problem can be solved using policy-optimization algorithms
and data collected from the plant. In general, the problem
may be non-convex, but when the learned controller is linear
in its parameters the problem becomes (strongly) convex,
meaning the globally optimal solutions for the problem can
be found using standard policy gradient [7] or random search
techniques [8].

To demonstrate the utility of the proposed framework,
we apply the method in simulation to a double pendulum
and a high-dimensional model of a bipedal robot. For the
double pendulum example, the learned controller is com-
prised of a linear combination of radial basis functions so
that the convexity result discussed above applies, and we
demonstrate empirically that the learned controller is able
to closely match the true min-norm controller performance.
The walking example demonstrates how to extend our results
in the body of the paper to encompass the Hybrid Zero
Dynamics framework as in [9]. For this high-dimensional
system, a feed-forward neural network is used for the learned
controller. While we cannot guarantee that the optimal set of
parameters is found, the learned controller still produces a
stable walking motion in the face of high model uncertainty.

A. Related Work

CLF-based controllers [10], [11] have been proved to be
effective for a wide variety of complex robotic tasks, such
as bipedal walking [12], [9], manipulation [13] and multi-
agent coordination [14]. In [12] and [13] quadratic programs
(CLF-QP), which integrate the CLF condition as a constraint,
are used to get optimal min-norm stabilizing controllers. The
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CLF-QP is solved online and additional constraints, such as
input saturation, can be added.

However, the dynamics of many real-world systems have
nonlinearities that might be difficult to model correctly
and/or physical parameters which could be difficult to iden-
tify. Input-to-state stability has been used to tackle this
problem in [15], [16]. Also, adaptive [17] and robust [18],
[19] versions of CLF-based controllers have been developed
in recent years. However, these approaches sometimes fail
to account for the correct amount of uncertainty due to
the typical assumptions they make on the uncertainties’
structures and bounds.

Our work most closely aligns with recent research that
use data-driven approaches to tackle the issue of model un-
certainty in nonlinear controllers. Our works builds on [20],
[21], where reinforcement learning is used to account for
uncertainty when performing feedback linearization of non-
linear systems. In contrast to recently proposed approaches
[1], [22] which focus on learning the uncertain terms in
a CLF-QP in order to indirectly improve the optimization-
based controller, the framework proposed in this paper di-
rectly learns the optimal stabilizing controller. By directly
learning the desired controller, our approach removes the
need for solving a real-time optimization problem involving
a potentially complex learned component, which may take
a non-trivial amount of time to process during real-time
applications. On hardware, CLF-based controllers frequently
need to be updated at frequencies exceeding 1000 Hertz to
maintain the stability of the system [9], placing strict timing
requirements on the rate at which the CLF-based controller
must be updated. Thus, we hypothesize that the direct
approach may have meaningful advantages in applications,
and future work will seek to validate this claim.

B. Organization

The rest of the paper is organized as follows. Section II
revisits Control Lyapunov Functions. Section III presents the
proposed learning problem, develops our theoretical guaran-
tees, and then demonstrates how the discrete-time approx-
imations to the problem can be solved using reinforcment
learning in an approach similar to [20], [21]. In Section IV
the proposed method is used to stabilize a double pendulum
and the walking gait of an underactuated nonlinear bipedal
robot. Finally, Section V provides concluding remarks.

C. Notation and Terminology

We let R≥0 = {x ∈ R : x ≥ 0} denote the closed right
half plane. We say that a function V : Rn → R≥0 is positive
definite if V (0) = 0 and V (x) > 0 if x 6= 0. We further say
that V is radially unbounded if V (x)→∞ as ‖x‖ → ∞. If
it exists, the gradient of a function V : Rn → R at the point
x ∈ Rn is denoted by the row vector ∇V (x) ∈ R1×n.

II. CONTROL LYAPUNOV FUNCTIONS

Throughout the paper we will consider nonlinear control-
affine systems of the form

ẋ = f(x) + g(x)u, (1)

where x ∈ Rn is the state and u ∈ Rm the input. The
mappings f : Rn → Rn and g : Rn → Rn×m are assumed
to be locally Lipschtiz continuous with f(0) = 0.

Definition 1: We say that a continuously differentiable,
positive definite, radially unbounded function V : Rn → R≥0

is a Control Lyapunov Function (CLF) for (1) with positive
definite energy dissipation rate σ : Rn → R≥0 if for each
x ∈ Rn \ {0}

inf
u∈Rm

∇V (x) · [f(x) + g(x)u] ≤ −σ(x). (2)

It is well-known that if the above conditions are satisfied
then the system is asymptotically controllable in the sense
that the state can be driven to the origin asymptotically for
every initial condition [11]. For many physical systems it is
desirable to find a locally Lipschitz continuous feedback rule
u : Rn → Rm so that for each x ∈ Rn \ {0}

∇V (x) · [f(x) + g(x)u(x)] ≤ −σ(x) (3)

and the closed loop system is asymptotically stable. It should
be noted that not all systems which satisfy (2) admit such a
controller [23], but a number of important systems such as
the ones considered in this document are continuously sta-
bilizable. One popular choice of control law which satisfies
the dissipation constraint (3) is the min-norm control law
u∗ : Rn → Rm which is defined point-wise by:

u∗(x) = arg min
u∈Rm

‖u‖22

s.t. ∇V (x) · [f(x) + g(x)u] ≤ −σ(x) (4)

At every point, this controller selects the smallest input which
ensures that the CLF decays at the desired rate. If V is a CLF
for the system, a sufficient condition for u∗ to be locally
Lipschitz continuous is that f , g and the gradient of V are
each locally Lipschitz continuous [24]. Moreover, when there
are no constraints on the input, one can derive a closed-
form expression for the controller (see e.g. [9]). However,
one advantage of formulating the min-norm controller as a
point-wise optimization as in (4) is that the optimization can
easily incorporate bounds on the allowable control efforts for
the system by restricting u ∈ U ⊂ Rm. This is important
in many applications where the actuators of the system have
physical limitations. Our theoretical results rely on the input
being unconstrained, however, in practice such constraints
can be added by restricting the range-space of the learned
controller.

III. LEARNING MIN-NORM STABILIZING CONTROLLERS

A. Learning a Min-norm Stabilizing Controller for a System
with Unknown Dynamics

Despite the wide-spread utility of the CLF-based con-
trollers introduced in the previous section, the primary
drawback of these methods is that they require an accurate
dynamics model to implement. Our present objective is to
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learn a min-norm stabilizing controller for the plant with
unknown dynamics

ẋ = fp(x) + gp(x)u, (5)

while ensuring that the learned controller adheres to the dissi-
pation constraint imposed by some candidate CLF V : Rn →
R≥0 and associated decay rate σ : Rn → R≥0.

We will focus on learning the min-norm controller for the
plant on a compact subset of the state-space. Specifically, we
will focus on learning the min-norm stabilizing controller for
the system on the set

W c := {x ∈ Rn : V (x) ≤ c}, (6)

where c > 0 is a design parameter.
We will make the following technical assumptions

throughout the paper unless otherwise specified:

Assumption 1: The components fp, gp, σ and ∇V are
each locally Lipschitz continuous.

Assumption 2: There exists a locally Lipschitz continuous
control law ũp : Rn → Rm such that for each x ∈W c

∇V (x)[fp(x) + gp(x)ũp(x)] ≤ −σ(x). (7)

Remark 1: Assumption 2 ensures that V is a true CLF
for the system with associated dissipation rate σ. While
our approach does not explicity require a nominal dynamics
model for the plant, in practice, our candidate CLF for the
plant is constructed using a nominal dynamics model

ẋ = fm(x) + gm(x)u, (8)

which incorporates any information we have about the
plant, but may be inaccurate due to nonlinearities which
are difficult to model or dynamics parameters which are
challenging to identify. However, despite model mismatch
between (5) and (8), we can often design a CLF for the
model and reasonably expect it to also be a CLF for the plant.
For example, our two numerical examples systematically
construct CLF’s for the unknown system using feedback-
linearizing coordinates. In these examples Assumption 2 is
tantamount to knowing the relative degree of the system, a
rather mild structural assumption.

Since we do not know the terms in (5), we now propose
a method to learn a stabilizing CLF-based controller for
the system using data collected from the plant. Under the
preceding assumptions, and recalling our discussion from
Section II, we know that there is a well-defined control law
u∗p : W c → R≥0 which asymptotically stabilizes the plant on
W c and is given point-wise by

u∗p(x) = arg min
u∈Rm

‖u‖22

s.t. ∇V (x)[fp(x) + gp(x)u] ≤ −σ(x).

We will denote our learned approximation for u∗p by û : Rn×
Θ → Rm. For each choice of parameter θ ∈ Θ ⊂ RK the
control law û(·, θ) : Rn → Rm defines the learned control
law supplied to the plant, with Θ ⊂ RK a convex set of

allowable learned parameters. It is assumed that û is locally
Lipschitz continuous in its first argument and continuously
differentiable in its second argument. Common function
approximators such as feed-forward neural networks, radial
basis functions or bases of polynomials can be used to
construct the learned controller.

Remark 2: In general, the learned controller can incorpo-
rate information from a nominal dynamics model by giving
it the structure

û(x, θ) = um(x) + δu(x, θ), (9)

where um is a nominal model-based controller and δu : Rn×
RK → Rm is the learned component.

Next, in order to find parameters for the learned controller
which satisfy the dissipation constraint (7), we will solve
optimizations over the parameters of the learned controller
of the form

(Pλ) : min
θ∈Θ

Lλ(θ), (10)

where for each λ ∈ R≥0 we define the loss function

Lλ(θ) = Ex∼X
[
‖u(x, θ)‖22 + λH(∆(x, θ))

]
, (11)

where X is the uniform probability distribution over W c, the
mapping ∆: Rn ×Θ→ R is defined by

∆(x, θ) = ∇V (x)[fp(x) + gp(x)û(x, θ)] + σ(x) (12)

and finally H : R→ R≥0 is defined for each y ∈ R by

H(y) =

{
y if y ≥ 0,

0 if y < 0.
(13)

The first term in the loss Lλ encourages small control
efforts while the second term penalizes violations of the CLF
dissipation constraint, with λ ∈ R≥0 used to control the
magnitude of the penalty. While we do not know ∆(x, θ)
a priori, we can measure this quantity by applying the
control û(x, θ) to the plant at the point x and measuring
the resulting time derivative of V . Then, equation (12) can
be used to compute the desired quantity. Thus, any stochastic
optimization algorithm can be used to solve Pλ by running
experiments to evaluate the terms in Lλ. We will discuss
this in further detail when we present practical approaches
for solving Pλ below.

Remark 3: The uniformity of the distribution X ensures
that all points in W c are considered when optimizing over
the parameters of û. This requirement is seen to be analogous
to the persistency of excitation conditions which are common
in the adaptive control literature [25]. In the proofs of the
following theoretical results this condition ensures that each
component of the learned controller is activated sufficiently
during the learning process.

B. Theoretical Results

We now study how the solution set of Pλ changes as the
penalty parameter λ is increased and derive conditions under
which the problem is convex, meaning that it can be solved
reliably to global optimality using iterative gradient-based
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optimization algorithms. To simplify the statement of our
results, for each λ ∈ R≥0 we define

Sλ : =

{
θ ∈ Θ: θ ∈ arg min

θ∈Θ
Lλ(θ)

}
(14)

to capture the set of global minimizers for Pλ. We also define

Ξ: = {θ ∈ Θ: ∆(x, θ) ≤ 0, ∀x ∈W c} ⊂ Θ (15)

to be the set of parameters for which the corresponding
learned controller satisfies the desired CLF dissipation con-
straint at every point in W c. Next, we present our theoretical
results in Lemma 1 and Theorems 1 and 2, whose proofs can
be found in the Appendix.

First, we compare the sets Ξ and Sλ as the penalty term
λ is increased:

Lemma 1: Assume that Ξ is non-empty so that there exists
at least one choice of learned parameters which satisfy the
desired CLF constraint. Then there exists λ̄ ∈ R≥0 such that
for each λ > λ̄ all global optimizers of Pλ also satisfy the
dissipation constraint, namely, Sλ ⊂ Ξ.

In other words, if the penalty parameter λ ∈ R≥0 is chosen
to be large enough then Pλ recovers the set of learned param-
eters which stabilize the plant and satisfy the CLF constraint.
Note that if θ∗ ∈ Ξ is one such choice of parameters then
it must be the case that Ex∼X [λH(∆(x, θ∗))] = 0. Thus,
when Ξ is non-empty and λ is chosen to be large enough
the minimizers of Pλ are selected by the set of parameters
which minimize the term Ex∼X

[
‖u(x, θ)‖22

]
, which is the

average control effort exerted over the state-space by the
corresponding learned controller. By definition, the min-
norm stabilizing controller u∗p minimizes the control effort
needed to satisfy the CLF dissipation constraint at every
point in the state-space. Thus, if λ is large enough and u∗p
is in the space of learned controllers spanned by û, it must
be recovered by the optimization:

Theorem 1: Assume that there exists θ̄ ∈ Θ such that
û(x, θ̄) = u∗p(x) for each x ∈ W c. Then there exists
λ̄ ∈ R≥0 such that for each λ > λ̄ and θ∗ ∈ Sλ we have
û(x, θ∗) = u∗p(x) for each x ∈W c.

However, the family of optimization problems we have
formulated over the parameters of the learned controller will
generally be non-convex, meaning that we cannot efficiently
find their globally optimal solutions. Thus, we seek condi-
tions under which Pλ becomes convex so that we can reliably
find its global minimizers using iterative methods. Towards
this end we will now assume that

û(x, θ) =
K∑
k=1

θkuk(x), (16)

where {uk} is a set of locally Lipschitz continuous mappings
from Rn to Rm and θk is the k-th entry of the learned
parameter1. Linearity assumptions of this sort are common

1Alternatively, one could also assume that the learned controller is of
the form û = um(x) +

∑K
k=1 θkuk(x) if the system designer wishes to

augment a known model-based controller as in (9). The statement and proof
of Theorem 2 go through with minor modifications in this case.

in convergence proofs found in both the adaptive control
and reinforcement learning literature. In the statement of the
following result we informally view each basis element uk
as a subset of C(W c,Rm), the vector space of continuous
functions from W c to Rm.

Lemma 2: Assume that û is of the form (16) and that the
set {uk}Kk=1 is linearly independent on C(W c,Rm). Then
for each λ ∈ R≥0 the loss Lλ is strongly convex.

This leads to the main theoretical result of this paper,
which follows from an immediate application of Theorem
1 and Lemma 2.

Theorem 2: Assume that u is of the form (16) and that the
set {uk}Kk=1 is linearly independent on C(W c,Rm). Further
assume that Θ ⊂ RK is convex and that there exists θ∗ ∈ Θ
such that û(x, θ∗) = u∗p(x) for each x ∈ W c. Then there
exists λ̄ ∈ Rλ ≥ 0 such that for each λ > λ̄ the problem Pλ
is a strongly convex optimization problem with θ∗ its unique
global minimizer.

In practice, since we do not have a parametric model for
the system, it is unlikely that there exists a set of learned
parameters which exactly reconstructs the true min-norm
controlller for the plant. However, many model-free learning
schemes [26] make use of function approximation schemes
which can recover a continuous function up to a desired level
of accuracy, if enough terms are included in the basis of
features. It is a matter for future work to show that we can
leverage these results to learn u∗(x) up to a pre-specified
degree of accuracy. However, in practice the number of
elements required in such an expansion can quickly become
prohibitively large as the dimension of the state grows. Thus,
for high dimensional systems, such as the bipedal robots we
consider below, practical implementations may require the
use of more compactly represented function approximation
schemes, such as multi-layer feed-forward neural networks,
which can also approximate continuous functions to a de-
sired degree of accuracy (Universal Approximation Theorem
[27], [28]), but lead to non-convexities in our optimization
problem (16).

C. Solving Discrete-time Approximations with Reinforce-
ment Learning

Many real-world systems have digital sensors and actua-
tors which can only be updated at some maximum frequency,
meaning we can only obtain finite difference approximations
of V̇ when different control signals are applied to the plant.
Thus, in this section we introduce discrete-time approxima-
tions to Pλ and discuss how they can be solved with standard
reinforcement learning algorithms [29], [30]. Our description
of this process will be brief, since the approach is similar to
the one described in [20].

For the reinforcement learning problem we will assume
that the control supplied to the plant can only be updated
at a fixed minimum sampling period ∆t > 0. We will let
tk = k × ∆t for each k ∈ N denote the set of sampling
intervals. When the control û(x, θ) ∈ Rm is applied over the
interval [tk, tk+1] a Taylor expansion can be used to show
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that

∆(x, θ) =
V (x(tk+1))− V (x(tk))

∆t
+ σ(x(tk))︸ ︷︷ ︸

: =∆̃(x,θ)

+O(∆t2).

(17)
Thus for small ∆t we use the loss

l̃λ(x, θ) = ‖u(x, θ)‖22 + λH(∆̃(x, θ)). (18)

We use this approximate pointwise loss to define the fol-
lowing reinforcement learning problem, which serves as an
approximation to Pλ:

P̃λ : min
θ∈Θ

Ex0∼X

[
N∑
k=0

l̃(xk, θ)

]
(19)

s.t. xk+1 = xk +

∫ tk+1

tk

[f(x(t)) + g(x(t))uk]dt

uk = û(xk, θ).

Here, the curve x : R → Rn is the trajectory of the plant
starting from initial condition x(0) = x0, and N ∈ N is the
number of time steps in each rollout. Probing noise can be
added to the input to encourage exploration, e.g, by instead
setting uk = û(xk, θ) + wk, where wk ∼ N (0, σ2

wI) is
zero mean random noise. Note that in the special case that
N = 1 the cost incurred when solving P̃λ approaches the
cost incurred when solving Pλ as ∆t → 0. In future work
we plan to more formally study the relationship between
these two problems. The policy optimization problem (19)
is in a standard form for reinforcement learning problems
[7], and in the following section we demonstrate how these
discrete-time approximations can be used to successfully
learn stabilizing controllers for unknown systems.

IV. EXAMPLES

A. Double Pendulum

We first use our approach to learn a controller which
stabilizes the double pendulum depicted in Figure 2 to
the upright position, using the input-output linearization-
based CLF design approach introduced in [9] to design the
candidate CLF for the learning problem. The system has
two generalized coordinates q = (q1, q2) which represent
the angles that each of the arms make with the vertical, with
a motor attached at each joint so the system is fully actuated
by torques τ = (τ1, τ2). The precise dynamics of the model
can be found in [31], with states x = (q, q̇) and input u = τ .
Below we use the configuration variables as outputs when
applying the linearization-based CLF design [9].

As depicted in Figure 2a) the system is parameterized by
the masses of the two arms m1,m2 as well as their lengths,
l1, l2 ∈ R. For the purposes of simulation, we set m1 =
m2 = l1 = l2 = 1. To set up the learning problem, we
assume that we are given an inaccurate dynamics model with
inaccurate estimates m̂1, m̂2, l̂1, l̂2. Specifically, we set m̂1 =
m̂2 = l̂1 = l̂2 = 1

2 so that each of the parameter estimates
are half of their true value.

Fig. 1: Learning curve for the double pendulum.

Using the input-output linearization design technique from
[9], we design a CLF for the system of the form V : R4 → R,
V := xTPx, with

P =

[
1.5I 0.5I
0.5I 0.5I

]
, (20)

where I is the 2×2 identity matrix and by setting the desired
dissipation rate to be σ(x) = xTx. This can be shown to be
a valid CLF for both the inaccurate dynamics model and
the true plant. We focus on learning the min-norm controller
for the plant on the set W c = {V (x) ≤ c} with the design
parameter c = 2 and construct our learned controller by
setting

û(x, θ) = um(x) + δu(x, θ), (21)

where um is the min-norm CLF controller computed using
the inaccurate dynamic parameters and the learned augmen-
tation δu is comprised of a linear combination of 500 radial
basis functions so as to match the assumptions of Lemma 2.

We trained the learned component using a policy-gradient
algorithm with action conditioned baselines [7]. Each train-
ing epoch consisted of 50 1-step roll-outs and a total of 500
epoch were used. The time-step for the simulator was 0.05
seconds. The performance of the ultimate learned controller
is depicted in Figure 2, where we see that the learned
controller closely matches the behavior of the true min-norm
controller for the system. To further evaluate the performance
of the learned controller, we randomly selected 1000 states
{xi}1000

i=1 in W c and calculated the ratio

R =
1000∑
i=1

∥∥û(xi, θ
∗)− u∗p(xi)

∥∥
2∥∥u∗p(xi)∥∥2

, (22)

where u∗p is the true min-norm controller for the system
and θ∗ is the parameter selected by the training process. We
calculated R = 0.044, indicating that the learned controller
was able to closely match the performance of the true min-
norm controller for the system. As depicted in Figure 1,
the learning converges in about 200 iterations, which corre-
sponds to about eight minutes of data. Our implementation
of the learning algorithm for this problem was hand-coded,
and we believe the sample efficiency for this problem could
match that of the walking example below by improving the
implementation.
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Fig. 2: (a) Depiction of the double pendulum model with the states and physical parameters shown. (b) Trajectories corresponding to different initial
conditions for the learned controller and true min-norm controller for the system. Each color represents trajectories starting from a specific initial condition.
Solid lines denote the trajectories generated by the true min-norm controller for the system while the dashed lines correspond to the trajectories generated
by the learned controller. Observe that the learned controller closely matches the desired closed-loop behavior. Note that the velocities of the trajectories
are not depicted, which is why several of the plotted curves intersect.

B. Bipedal Walking

Next, we discuss how to apply our method to the Hybrid
Zero Dynamics (HZD) framework using the CLF-based
design approach proposed in [9] in order to learn an efficient,
stable walking controller for a bipedal robot. We model the
robot as a hybrid system with impulse effects as in [9],

Σ :


η̇ = f(η, z) + g(η, z)u,

ż = h(η, z) when (η, z) /∈ S,
η+ = ∆X(η−, z−),

z+ = ∆Z(η−, z−) when (η, z) ∈ S,

(23)

where η ∈ X ⊂ Rna represents the controlled (actuated)
states, z ∈ Z ⊂ Rnu represents the uncontrolled states
and u ∈ U ⊆ Rm represents the control inputs. The model
assumes alternating phases of single support, where one foot
is off the ground (swing foot) and the other (stance foot)
is assumed to remain at a fixed point without slipping. The
impact between the swing foot and the ground is modelled
as a rigid impact and occurs when (η, z) ∈ S , where S is
a smooth switching manifold. Here, η+ ∈ X and z+ ∈ Z
represent the post-impact states while η− ∈ X and z− ∈ Z
denote the pre-impact states.

Following the framework in [9], an input-output lineariza-
tion based CLF is designed for the actuated coordinates
during the continuous portion of the evolution of the state.
Namely, we design a Lyapunov function V : Rnu → R and
dissipation rate σ : Rnu+na → R≥0 such that the following
condition holds for each (η, z) ∈ X × Z:

inf
u∈U
∇V (η)[f(η, z) + g(η, z)u] ≤ −σ(η, z). (24)

Thus, the control objective is to drive only the actuated
states to zero. As shown in [9], when the coordinates for
the actuated and unactuated portions of the system are
chosen correctly the condition η → 0 corresponds to the
robot converging to a periodic walking gate. The CLF and
dissipation rate are designed so that the actuated coordinates
are driven to zero fast enough to overcome shocks to the
system introduced by the switching condition. We refer the
readers to [9] for more details on this procedure.

To accommodate this new objective, our goal is to learn
a control law u : X × Z ×Θ→ Rm such that

∇V (η)[fp(η, z) + gp(η, z)u(η, z, θ)] + σ(η, z)︸ ︷︷ ︸
:=∆̂(η,z,θ)

≤ 0 (25)

for each (η, z) ∈ X ×Z for our choice of learned parameters
θ ∈ Θ. Here, fp and gp are the terms in true dynamics of
the plant, which may differ from the nominal dynamics in
(23). To modify our approach to this new setting, for each
λ ∈ R≥0 we now define the loss

L̂λ(θ) = E(η,z)∼X

[
‖u(η, z, θ)‖22 + λH(∆̂(η, z, θ))

]
, (26)

where X is now the uniform distribution over X × Z .
Despite the fact that the CLF is defined only over the lower
dimensional state η, the theoretical results from section III-B
naturally extend to this case. Moreover, the techniques from
section III-C can be used to find local minimizers of L̂λ.

In particular, the proposed method is validated on a model
for RABBIT [32], an under-actuated five-link planar bipedal
robot with seven degrees-of-freedom. Model uncertainty is
introduced by scaling the mass of each of RABBIT’s links
by a factor of two, i.e., the real plant’s masses are twice the
nominal model’s masses. Our learned controlled is

û(η, z, θ) = um(η, z) + δu(η, z, θ), (27)

where um is the min-norm CLF controller obtained using the
nominal model dynamics. The term δu(η, z, θ) ∈ R4 takes
the form of a Multi-Layer Perceptron (MLP) neural network
with 2 hidden layers of width 64 each, tanh activation
functions and layer normalization. We use the Soft Actor
Critic algorithm [30], an off-policy method, for training the
learned policy δu(η, z, θ). The training is done on episodes
consisting of one walking step each. The simulations are
conducted on the open-source physics simulator PyBullet
[33] using a discrete time-step of one millisecond. As it
can be seen in Figure 3, the training converges in about
20,000 time steps, which corresponds to roughly 50 steps of
the biped and about 20 seconds of data collection from the
system. Altogether, the simulations and training took about
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Fig. 3: Learning curve using PyBullet [33] for the walking simulation.

Fig. 4: Tracking error (top) and norm of control inputs (bottom) of the
learned min-norm controller (blue), the nominal controller (green) and the
actual CLF-based controller of the plant computed using the true robot
dynamics (red), each simulated for 4 seconds of walking.

10 minutes of computation using the six cores of an Intel(R)
Core(TM) i7-8705G CPU (3.10GHz), without using a GPU.

Figure 4 shows a comparison between the proposed
learned controller, the nominal controller um and u∗p, which
is the CLF-based controller of the plant computed using
the true (unknown) dynamics. This figure shows that while
the nominal controller fails after ten walking steps making
the robot fall, the learned controller achieves stable walking
for an indefinite number of steps and gives good tracking
error performance. It is also important to notice that the
learned controller achieves this while using similar magni-
tudes of control inputs as the nominal and the true CLF-
based controllers. However, the tracking error performance
is not as good as with the actual CLF-based controller of
the plant, as expected, and is likely due to the fact that the
learner has converged to a local minima. Additionally, we
note that the walking speeds for the learned controller and
the true min-norm CLF controller for the plant are different.
Underactuated robots such as RABBIT may contain multiple
periodic orbits on the surface {(η, z) ∈ X×Z : η = 0}. Thus,
while both controllers successfully drive the system to this
set, the periodic orbits the two controllers converge to are
different.

V. CONCLUSION

There are several important avenues for future work.
Demonstration of the proposed method on actual robotic sys-
tems in the face of sensor and actuator noise will be required
before wider adoption of the technique. Future work will
also investigate the inclusion of other local constraints on the

dynamics of the closed loop system, such as those imposed
by control barrier functions [34]. On the theoretical side,
sample complexity guarantees for the methods and a stronger
characterization of the trade-off between our approach and
model-based methods would more clearly characterize the
advantages and disadvantages of the proposed approach.

APPENDIX

This Appendix contains proofs for several assertions made
in the body of the document.

A. Proof of Lemma 1

To prove the desired result, we demonstrate that for each
θ∗ ∈ Θ \ Ξ there exists a finite λ̄ ∈ R≥0 such that θ∗ 6∈ Sλ
for each λ > λ̄. For a fixed θ∗ ∈ Θ \ Ξ, define Mθ∗

1 =
Ex∼X [‖û(x, θ∗)‖22] and Mθ∗

2 = Ex∼X [H(∆(x, θ∗))] so
that for each λ > 0 we have Lλ(θ∗) = Mθ∗

1 + λMθ∗

2 .
Since θ∗ 6∈ Ξ, there must exist x∗ ∈ W c such that
H(∆(x∗, θ∗)) > 0. Under our standing assumptions, the map
H(∆(·, θ∗)) can be seen to be continuous, since the space of
continuous functions is closed under addition, multiplication
and composition. Putting these two facts together, there must
exist a δ > 0 such that for each x ∈ Bδ(x∗) ∩W c we have
H(∆(x, θ∗)) > 0. This in turn implies that Mθ∗

2 > 0. Thus,
we see that Lλ(θ∗)→∞ as λ→∞.

Next, letting θ̄ be defined as in the statement of the
lemma, for each λ ∈ R≥0 we have Lλ(θ̄) = M θ̄

1 where
M θ̄

1 = Ex∼X [‖û(x, θ̄)‖22] and we note that the term
Ex∼X [H(∆(x, θ∗))] contributes nothing to Lλ(θ̄) since θ̄ ∈
Ξ. Thus, if we set λ̄ = max

{
0,

M θ̄
1−M

θ∗
1

Mθ∗
2

}
we see that

Lλ(θ∗) > Lλ(θ̄) for each λ > λ̄, proving the desired
statement for our fixed θ∗.

B. Proof of Theorem 1

Let λ̄ be defined as in the statement of Lemma 1. Then
for each λ > λ̄ we have Sλ ⊂ Ξ, where Ξ is defined as
in (15). This implies that for each θ ∈ Sλ we have L(θ) =
Ex∼X [‖u(x, θ)‖22]. Let θ̄ be defined as in the statement of
the theorem, and let θ ∈ Sλ be arbitrary. By the definition of
the min-norm control law we have ‖û(x, θ̄)‖2 ≤ ‖û(x, θ)‖2
for each x ∈ W c, which in turn implies that L(θ̄) ≤ L(θ).
Next, suppose that u(x∗, θ) 6= u∗p(x

∗) for some x∗ ∈ W c.
Again, using the definition of u∗p we have ‖û(x∗, θ̄)‖2 <
‖û(x∗, θ)‖2. By the continuity of û(·, θ), we know that there
exists δ > 0 such that for each x ∈ Bδ(x∗) ∩W c we have
‖û(x, θ̄)‖22 < ‖û(x, θ)‖22. This implies that L(θ̄) < L(θ),
demonstrating the desired result.

C. Proof of Lemma 2

To prove the claim, we will first consider the two maps
θ → Ex∼X

[
‖u(x, θ)‖22

]
and θ → Ex∼X [λH(∆(x, θ))]

separately. In particular, we will show that the first term is
strongly convex in θ while the second term is simply convex.
The result of the theorem then follows from the fact that the
addition of a strongly convex function and a convex function
yields a strongly convex function.
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First, we rewrite ‖u(x, θ)‖22 as θTW (x)TW (x)θ where
W (x) = [u1(x), u2(x), . . . , uK(x)]T collects the basis of
control functions. Note that the positive semi-definite matrix
W̄ = Ex∼X

[
W (x)TW (x)

]
is the Grammian for {uk}Kk=1

on C(W c,Rm), and thus will be full-rank and positive def-
inite iff {uk}Kk is linearly independent on this space. Based
on these facts, we see that Ex∼X

[
‖u(x, θ)‖22

]
= θT W̄θ is

a strongly convex quadratic function of the parameters.
Next, we turn to the term Ex∼X [λH(∆(x, θ))]. We

demonstrate that for a fixed x∗ ∈ W c and each λ ∈ R≥0

the mapping θ → ‖u(x∗, θ)‖22 + λH(∆(x∗, θ)) is strongly
convex using basic properties of convex functions [35].
We begin by examining the term H(∆(x, θ)). Examining
equations (16) and (12) we see that the map θ → ∆(x∗, θ)
is affine in θ for each fixed x∗ ∈W c. Furthermore, we may
rewrite the term λH(y) = max{0, λy}. Since the pointwise
maximum of two affine functions defines a convex function,
we see that θ → λH(∆(x∗, θ)) is convex, implying that

λH(∆(x, αθ3)) ≤ αλH(∆(x, θ1)) + (1− α)λH(∆(x, θ2))

for each x ∈ W c, θ1, θ2 ∈ RK and θ3 = αθ1 + (1 − α)θ2

for some α ∈ [0, 1]. This pointwise fact implies that

Ex∼X [λH(∆(x, θ3))] ≤ αEx∼X [λH(∆(x, θ1))]

+ (1− α)Ex∼X [λH(∆(x, θ2))].

Thus, θ → Ex∼X [λH(∆(x, θ))] is convex, as desired.
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