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A B S T R A C T   

Object-based image analysis (OBIA), which has been commonly used for land cover and land use classification, 
may encounter challenges when satellite images’ spatial resolution achieves at the sub-meter level. An image 
object may exhibit spectral heterogeneity, causing traditional object-level statistical measures such as mean 
values of the pixels in an object not suited to represent the feature of the object. Additionally, an image object 
may have strong spatial association with its surroundings. Traditional OBIA only considers spatial features of 
individual object, but ignoring spatial arrangement or spatial association between objects. This paper proposes a 
new OBIA method by integrating within-object spectral variability and between-object spatial association. The 
within-object spectral variability is captured by the histograms of the pixels in an object across multispectral 
bands to reflect the heterogeneity of their pixel values. Based on this, the initial classification result is obtained 
using non-parametric curve matching methods. Then, the between-object spatial association is represented by 
curves derived from the frequency of pairwise classes in four main directions, also in the form of curves. The 
curves now composed of both the histograms of spectral feature and the class pair frequency of spatial feature are 
then fused for another curve matching based classification. This recurrent process is repeated and the spatial 
association is recaptured from the previous classification result at each iteration until a stopping criterion is 
satisfied. The curve matching classification method based on histograms of spectral feature is superior to 
traditional OBIA based on only object-level statistical measures since it fully characterizes spectral variability in 
the objects. The between-object spatial association works as a spatial filter that considers spatial arrangement of 
classes in a neighborhood. The developed method is especially suitable for classifying high spatial resolution 
(HSR) images with land cover/land use classes in typical urban areas.   

1. Introduction 

High spatial resolution (HSR) data provide large amount of detailed 
geospatial information. Developing methods of land cover/land use 
classification for HSR images has been one of the most active research 
areas in remote sensing. The increasing intra-class heterogeneity and 
decreasing inter-class variability in the spectral feature space often lead 
to misclassification of spectrally similar classes (Bruzzone and Carlin, 
2006; Lv et al., 2016), causing the classification of HSR image inaccu-
rate. The well-known object-based image analysis (OBIA) has advan-
tages in processing HSR images. OBIA first generates homogeneous 
image segments that correspond to real-world objects of interest by 

applying image segmentation, which groups spatially connected pixels 
with similar characteristics into segments (i.e., objects) (Blaschke et al., 
2014). Object-level statistical measures, such as the mean value and 
standard deviation of the pixels in an object are commonly used as the 
object’s features. Then classification methods are applied to classify 
image objects based on these object-level statistical measures. 

Traditional OBIA has encountered challenges when satellite images 
with a sub-meter spatial resolution became widely available. An object 
with multiple parts, which is common in reality, may exhibit increased 
spectral heterogeneity at finer spatial resolution (Tang et al., 2020). A 
typical example is a building can include several parts with very 
different materials such as concrete, glasses, tiles, etc. Traditional OBIA 
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based on statistical measures may not be suited when an object appears 
large spectral heterogeneity. It is because its pixel values do not follow a 
normal distribution for an object with multiple parts. Especially, when 
the distribution of pixel values in the object has multiple peaks, statis-
tical measures cannot characterize this object (Wang et al., 2019). 
Additionally, the traditional classification methods based only on the 
object-level statistical measures could not make the best use of the 
detailed information lies in the pixels in HSR images. 

The curve matching method compares two curves based on some 
functions and returns a measure to indicate the divergence between 
these two curves. Recently, this method has been extended for object- 
based classification (Stow et al., 2012; Toure et al., 2013; Sridharan 

and Qiu, 2013; Tang et al., 2020). In these studies, the spectral histo-
gram or the derivative of the histogram of the pixel values in an object 
are extracted as the feature curve, which can fully explore the spectral 
variability of HSR images. The functions such as the curve angle mapper 
(CAM) and the Kolmogorov-Smirnov (KS) distance are then employed to 
calculate the divergences between curves to perform the non-parametric 
classification. The previous research reported the curve matching 
methods can achieve higher accuracy than the traditional OBIA based on 
the statistical measures. Additionally, it was found that the curve 
matching methods facilitate to incorporate disparate data sources such 
as LiDAR to further improve classification performance because they are 
all fundamentally curves (Zhou and Qiu, 2015; Wan et al., 2021). 

Fig. 1. The process of the RCCM classification method.  
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However, not many studies have further explored the curve matching 
methods in OBIA, especially the ability of curve matching methods for 
incorporating spatial features. 

Spatial features, specifically, the spatial arrangement or spatial as-
sociation can be introduced into classification to utilize the connection 
between objects in order to reduce the risk of misclassification (Zhong 
et al., 2014; Bai et al., 2020). Except for the case of an object including 
multiple parts, another common case in a HSR image is that an object 
may encompass other smaller objects of a different class. For example, 
vehicles on the roads and parking lots are usually not land cover/land 
use class of interest and therefore are expected to be segmented as part 
of the roads or parking lots. However, due to their spectral uniqueness, 
vehicles are often separated from the roads and parking lots they are on 
after segmentation and thus misclassified as other classes. The spatial 
association is helpful to capture the spatial arrangement of the road or 
the parking lot object and its surroundings, and may prevent this type of 
misclassification. The object-level spatial association can also help to 
identify land use types or function zones. For example, a railway station 
can be identified from the characteristic of the objects that comprise it 
(e.g., long thin platforms) and the set of objects that surround it (e.g., 
railway track, parking lots and multiple roads) (Tang et al., 2016a). 
Currently, however, most studies only focus on the pixel-level spatial 
association such as the classification based on the Markov random field 

model (Solberg et al., 1996; Tarabalka et al., 2010; Sun et al., 2015). 
Some researchers proposed measures to establish object-level associa-
tion for some specific classes. For example, Hay et al. (1996) developed 
an image texture primitive neighborhood method to contextually assess 
the characteristics of forest objects of individual tree crowns. Huang and 
Zhang (2011, 2012) proposed a morphological index based on the 
building/shadow association to extract buildings. Recently, the geo-
statistical and multiple-point geostatistical weightings have been pro-
posed for the K nearest neighbor (KNN) classification at the object level 
(Tang et al., 2016a, 2016b, 2018), in which the between-object associ-
ation was modelled from the spatial covariance and multiple-point 
probability for each class. However, these methods rely on the perfor-
mance of the KNN classifier, thus their improvements are limited. Also, 
these methods only establish the spatial association for the same class, 
without exploring the spatial association between different classes. The 
deep learning technique has been widely used for scene classification 
(Yu et al., 2017; Chaib et al., 2017) and object detection (Ding et al., 
2018) due to its ability of extracting high-level features. Recently, the 
convolutional neural networks (CNN) have been combined with the 
OBIA for land cover and land use classification (Zhang et al., 2018; 
Zhang, Harrison, et al., 2020; Zhang, Yue, et al., 2020). Particularly, the 
pixel-wise fully convolutional networks (FCN) show better performance 
than the patch-wise CNN for OBIA (Fu et al, 2017; Liu et al., 2018). 

Fig. 2. An example of capturing spatial association from neighborhood for an object (class code: 1-bare land, 2-building, 3-road, 4-shadow, 5-vegetation). (a) An 
object and its neighborhood in four directions, (b) the class codes in the east direction and the weighted frequency of class pairs using three weighting schemes, (c) 
the curves of weighted frequency versus class pairs using three weighting schemes in four directions. 
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However, the CNN method commonly requires a large number of sam-
ples to achieve a desirable accuracy. 

To address the aforementioned problems, a recurrent curve matching 
method is developed to combine spectral and spatial features. The 
spectral features fully explore the variability of pixel spectral values 
within objects and the spatial features establish the class association 
between neighboring objects. The developed method is compared with 
curve matching methods that consider within-spectral features only and 
several advanced classification methods in three different study areas. 

2. Methods 

To test the developed method at the object level, image segmentation 
is first applied. Then the histogram is extracted for each object across 
multispectral bands to provide spectral features. The initial classifica-
tion result is obtained based on the histogram-based spectral features 
using a curve matching method. The spatial association is captured from 
the initial classification result for each object in four main directions. 
Spatial association is defined as the frequency of pairwise classes of the 
object under consideration and its neighboring objects, which when 
recorded in the form of curves, can feed back into the curve matching 
method as spatial features along with spectral features to improve the 
classification result. A new round of spatial association can be then 
captured from the second classification result. This recurrent process is 
repeated until a stopping criterion is satisfied. The spatial association is 
recurrently captured from the previous classification result at each 
iteration, thus we designate this method as the RCCM (ReCurrent Curve 
Matching) method. In comparison, the curve matching method based on 
the histogram-based spectral features only is designated as the CM 
method. The process of the RCCM method is shown in Fig. 1. 

2.1. Feature extraction 

The fractal net evolution algorithm (FNEA) method is firstly applied 
to produce the segmentation result (Benz et al., 2004). The histogram of 
the pixels in the objects is used as the within-object spectral feature. The 
between-object spatial association is recurrently captured from the 
previous classification result for each object. To do so, the center of an 
object is first extracted. Starting from this point, the classes of neigh-
boring objects in a pre-defined range r along four main directions (east, 
west, south and north) are detected for this object. The class pair is 
recorded when an object and its neighboring object are both within the 
image boundary. The frequency of a class pair is extracted for the 
combination of any two classes. If an image is classified to M classes, the 
number of total class pairs is M by M. The frequency of pairwise classes 
can generally reflect the spatial arrangement of neighboring objects. 
Since spatial distance may have different effects on spatial association, 
different weighting schemes can be applied according to the distance 
between the central object and its neighbors in the range r. Three 
weighting schemes are considered in the study: 1) Equal weight (EQ): 
assigning equal weighting to all the neighbors; 2) Multiscale weight 
(MS): giving larger weights to nearer neighbors and smaller weights to 
further neighbors; 3) Nearest neighboring weight (NN): considering only 
the adjacent neighbors. 

An example of extracting spatial association is shown in Fig. 2. The 
central object is classified as the building class. Starting from the center 
of this object, the spatial association is detected in a range r, which 
equals 5 objects. The sequential classes along the east direction are 
(including the central object): building, vegetation, shadow, building, 
shadow and shadow. The corresponding class codes are 2, 5, 4, 2, 4 and 
4. In the EQ weight scheme, the frequency of each class pair is counted, 
regardless of the distance between objects. For example, the weighted 
frequency of class pair 2–4 is 5. In the MS weight scheme, we use the 
inverse of the range value (i.e., 1/r) as the smallest weight assigned to 
the furthest neighbor, and the value of 1 as the largest weight assigned to 
the nearest neighbor, the weights in between are evenly distributed. 

Therefore, the weights are 1.0, 0.8, 0.6, 0.4 and 0.2 when r equals 1, 2, 3, 
4, and 5, respectively. The five distances between objects for class pair 
2–4 are 2, 4, 5, 1 and 2. Applying MS weight, the weighted frequency of 
class pair 2–4 equals 0.8 + 0.4 + 0.2 + 1.0 + 0.8 = 3.2. In the NN 
scheme, only the adjacent class pair is considered, thus the weighted 
frequency of class pair 2–4 is 1. The two-dimensional class pairs C1-C2 
can be converted to a one-dimensional variable by simply applying 
(C1 −1) × M + C2, where C1-C2 represents the class pair and M is the 
total number of classes. For example, the class pair 2–4 corresponds to 
(2 −1) × 5 +4 = 9 in the one-dimensional vector. The spatial association 
of class pair is plotted as curves with the one-dimensional class pair as x- 
axis, and the weighted frequency of the corresponding class pair as y- 
axis. The weighted frequency of spatial curves is standardized to values 
between 0 and 1 to keep the same value range with the spectral 
histogram. 

2.2. The RCCM method 

The classification is performed at the object level, in which the 
within-object spectral histogram and between-object spatial association 
are used as feature curves. Curve matching methods are adopted to 
integrate spectral and spatial features for classification. As mentioned 
previously, the curve matching method compares two curves by calcu-
lating their divergence. In this study, three curve matching methods are 
conducted: Kullback-Leibler (KL) divergence (Kullback, 1987), curve 
angle mapper (CAM) (Kruse et al., 1993), and root sum squared differ-
ential area (RSSDA) (Stow, 2012). 

For a pair of objects, the extracted feature curves are expressed as P1, 
P2. The divergence D calculated by the KL, CAM and RSSDA methods is 
as follows. 

DKL =
1
2

[
∑n

i=1
P1(i)log
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+
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where n is the total number of curve intervals. If P represents the his-
togram (i.e., the spectral feature), n is the number of histogram bins. If P 
represents the curve of weighted frequency of class pairs (i.e., the spatial 
feature), n is the number of class pairs. 

The histograms across multispectral bands are first obtained for each 
object as the within-object spectral features. The spectral features are 
used alone to derive the initial classification result. Since curve match-
ing methods are non-parametric, the histogram curves of each object to 
be classified are compared with the histogram curves of each training 
object. The divergences are calculated from Eqs. (1)–(3) for each pair of 
the training object and the object to be classified. The minimum diver-
gence indicates the feature curve of the object to be classified is closest 
to that of the training object, thus its associated class is assigned to this 
object. Then the recurrent process of extracting between-object spatial 
feature starts. In addition to the spectral divergences estimated from K 
multispectral bands, each pair of objects also has divergences derived 
from spatial association in four directions. The divergence of the RCCM 
method is the weighted sums of spectral and spatial divergences, as 
given in Eq. (4): 

DCM - spec + spat = w
∑K

k=1
D(k)spectral + (1 − w)

∑4

m=1
D(m)spatial (4)  

where Dspectral is the spectral divergence, summed across K multispectral 
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bands, whereas Dspatial is the spatial divergence, derived from four di-
rections. These two divergences are calculated by one of the methods 
from (1)–(3). w is the weight that balances the proportion of spectral and 
spatial features, ranging from 0 to 1. 

The curve matching method is then performed based on the com-
bined divergences. This process is repeated until the stopping criterion is 
satisfied, i.e., the change of classification accuracy is less than a pre- 
defined threshold compared with that of the previous result, or the 
pre-defined maximum number of recurrent iterations is achieved. 

3. Experiments 

3.1. Experimental datasets and study sites 

Identifying land cover and land use classes from HSR imagery in 
urban areas is a difficult objective (Johnson and Xie, 2013). The 
developed RCCM method was performed on three different images in 
typical urban environments. The IKONOS, WorldView-2 (WV-2) and 
WorldView-3 (WV-3) images were used in the study. The IKONOS image 
acquired in May 2000 is located in Beijing, China (39◦57′57′′– 39◦58′30′′

N, 116◦23′19′′– 116◦24′46′′ E). With the spatial resolution of 4 m, five 
land cover classes can be identified in the IKONOS image, including bare 
land, building, road, shadow and vegetation. The bare land, the building 

and the road classes are difficult to be classified from their spectral 
signatures only. The WV-2 image was obtained in January 2010 over 
downtown Dallas, Texas (32◦50′18′′– 32◦51′21′′ N, 96◦45′49′′– 96◦47′8′′

W). With a spatial resolution of 2 m, seven land use classes can be 
distinguished, including bare land, car park, residential, non-residential, 
road, shadow and vegetation. The WV-3 image acquired in September 
2014 is also located in Beijing (39◦59′52′′–40◦0′31′′ N, 
116◦23′37′′–116◦24′7′′ E). The same seven land use classes are identified 
in the WV-3 image at a spatial resolution of 1.6 m. The non-residential 
class includes public, business, commercial and industry. It is not easy 
to classify residential and non-residential since they are essentially 
buildings made of various materials. The road and the car park classes 
also have very similar spectral signatures and are difficult to be 
separated. 

For the FNEA segmentation, the scale parameter was selected using 
the automated estimation of scale parameter (ESP) tool. The samples 
were selected at the object level from the segmentation results. The 
segmentation results and sample objects for the three study areas are 
shown in Fig. 3. Most classes can be manual interpreted from enhanced 
images using the Gram-Schmidt pansharpening method. Some of the 
residential and the non-residential classes in the WV-3 image were 
identified by site visitation and referencing the Gaode data (https://lbs. 
amap.com/). The developed method and all the benchmark methods 

Fig. 3. The segmentation results and the sample objects of three images used for the experiments: (a) segmentation result of IKONOS image, (b) samples of IKONOS 
image, (c) segmentation result of WV-2 image, (d) samples of WV-2 image, (e) segmentation result of WV-3 image, (f) samples of WV-3 image. 
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were repeated ten times on different samples for a robust test (Stehman, 
2009). Each time the ratio of training and testing samples is 1:2 using a 
random sampling scheme, selected from the sample objects in Fig. 3. The 
information about the sample objects is provided in Table 1. 

3.2. Classification 

For all the study areas, the three curve matching methods (i.e., KL, 
CAM and RSSDA) were applied to derive the initial classification results. 
These results were also used for the comparison purpose. Then the 
between-object spatial association was extracted, with three weighting 
schemes (i.e., EQ, MS, NN) applied to improve the initial classification 
results. For the parameter n, the number of bins for the spectral histo-
gram was set to 100, and the numbers of class pair equal 25, 49, and 49 
for the IKONOS, WV-2 and WV-3 images, respectively. To select the 
number of iterations and the weight w in each iteration, a 5-fold cross- 
validation was performed by randomly selecting 20% validation sam-
ples from training samples. The weight w was set to change from 0 to 1 
with an increment of 0.1. The maximum number of iterations was set to 
10, and the threshold of change in validation accuracy between two 
consecutive iterations was set to 0.1%, below which the iteration will be 
stopped. The number of iterations that achieves the highest validation 
accuracy was chosen, and their associated weight in each iteration was 
recorded. Then these parameters were applied to classify the whole 
image, and the testing samples were used to estimate the classification 
accuracy. 

To test the developed RCCM method, eight advanced benchmark 
classification methods were employed at the object level, including i) 
random forest (RF) classification, ii) support vector machine (SVM), iii) 
extreme gradient boosting (XGBoost) (Chen and Guestrin, 2016), iv) 
geostatistically weighted KNN (gKNN) (Atkinson, 2004; Atkinson and 
Naser, 2010), v) multiple-point weighted KNN (MPKNN) (Tang et al., 
2016a), vi) fully convolutional networks (FCN), vii) relearning method 
based on histogram (relearn-Hist) (Huang et al., 2014), and viii) 
relearning method based on the primitive co-occurrence matrix (relearn- 
PCM) (Huang et al., 2014). The RF, SVM and XGBoost are common 
machine learning methods. Seven spectral features, including mean, 
median, standard deviation, skewness, kurtosis, first and third quartile, 
were used in the RF, SVM and XGBoost methods. The gKNN method 
incorporates the spatial covariance into the KNN classifier, whereas the 
MPKNN method enhances gKNN by further considering spatial structure 
in an irregular data template of an object and its nearest neighbors in the 
feature space. Both the gKNN and MPKNN methods have been used at 
the object level for classification. In the FCN, the objects were resized to 
image patches of the same size and used as the input to the networks. 
The optimal input image patch size was set to 32 × 32 through trial-and- 
error approach. The FCN requires all the pixels in an image patch to be 
labeled, for which the pixels outside the object were labeled as 

background. Data augmentation, including flipping, rotating, noise 
adding and images blurring, was applied to derive more robust training 
data. The number of FCN layers was set to four to balance the network 
complexity and robustness (Chen S. et al., 2016; Chen Y. et al., 2016). 
The structure includes convolutional layers, pooling layers and decon-
volutional layers. Thirty-two filters with the size of 3 × 3 were used in 
the convolutional layers. To train the network, the images were 
randomly shuffled and fed into the network in batches, with each batch 
containing 40 images. The learning rate was set to 0.001 and the number 
of epochs was set to 500. Each pixel was classified with a label for an 
output image patch. The majority label of the pixels within the object 
was assigned to this object for each output image patch. The original 
relearn-Hist and relearn-PCM methods were proposed at the pixel level, 
extracting spatial association from a moving template for each pixel. The 
relearn-Hist uses a spatial feature of class frequency histogram, and the 
relearn-PCM adds one more spatial feature of spatial arrangement for 
classification. We extended these two methods to the object level to 
make a fair comparison. These two methods are based on the SVM 
classifier, where the spectral features are the same seven statistical 
measures used with the SVM, RF and XGBoost methods. For the spatial 
features, the same neighborhood objects used in our method were also 
adopted to derive class frequency histogram and spatial arrangement. 
Similar to our method, a 5-fold cross-validation was applied to select 
optimal parameters from a set of the candidate parameters for the 
benchmark classification methods. The candidate parameters used for 
cross-validation in the classification methods are listed in Table 2. 

3.3. Results and analysis 

3.3.1. Classification results 
Since there are three curve matching methods, and each has three 

weighting schemes, we use the abbreviations to distinguish the nine 
RCCM methods. For example, the RCCM methods based on the KL 
classifier with the EQ weighting scheme is written as KL-EQ. In total, 
three CM methods (KL, CAM, RSSDA), nine RCCM methods (KL-EQ, KL- 

Table 2 
The candidate parameters used for cross-validation in the classification 
methods.  

Method Parameter Candidate values 

RF Number of trees 10, 15, 20 
The function to measure the 
quality of a split 

gini, entropy 

The minimum number of 
samples at a leaf node 

2, 4, 6  

SVM Kernel type linear, radial basis function 
Regularization parameter 1, 10, 100, 1000 
Kernel coefficient 10-4, 10-3  

XGBoost The maximum depth of the tree 4, 5, 6, 7 
Learning rate From 0.03 to 0.3 with an 

increment of 0.03 
Number of trees 100, 200  

gKNN Number of neighbors 1, 3, 5, 7 
Proportional weight From 0 to 1 with an 

increment of 0.1  

MPKNN Number of neighbors 1, 3, 5, 7 
Weight for spectral covariance From 0 to 1 with an 

increment of 0.1 
Weight for multiple-point 
probability 

From 0 to 1 with an 
increment of 0.1  

Relearn-Hist and 
relearn-PCM 

Number of iteration times An integer not exceeding 
10  

RCCM Number of iteration times An integer not exceeding 
10 

Weight for spectral feature in 
each iteration 

From 0 to 1 with an 
increment of 0.1  

Table 1 
The number of sample objects and the total objects in the study areas.  

IKONOS WV-2 WV-3 

Class Number 
of objects 

Class Number 
of objects 

Class Number 
of objects 

Bare land 22 Bare land 26 Bare land 21 
Building 233 Non- 

residential 
399 Non- 

residential 
198 

Road 25 Car park 147 Car park 58 
Shadow 142 Residential 104 Residential 220 
Vegetation 150 Road 131 Road 175   

Shadow 74 Shadow 94   
Vegetation 104 Vegetation 167 

Total 
samples 

572 Total 
samples 

985 Total 
samples 

933 

Total 
objects 

1188 Total 
objects 

3033 Total 
objects 

1911  
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MS, KL-NN, CAM-EQ, CAM-MS, CAM-NN, RSSDA-EQ, RSSDA-MS, 
RSSDA-NN), and eight advanced methods (SVM, RF, XGBoost, gKNN, 
MPKNN, FCN, relearn-Hist, relearn-PCM) were performed on three 
study areas, each method was performed ten times with different 
samplings. 

The average classification accuracies of the ten samplings for all the 
methods are reported in Table 3. The highest accuracy for each image is 
highlighted in bold. The McNemar test was performed to test if the in-
creases in classification accuracy of the RCCM method over other 
methods are significant at the 95% confidence interval for each sam-
pling. The number of improvements that are significant out of the ten 
samplings is indicated in parentheses. For the significance test, all the 
advanced classification methods were compared only with the RCCM 
method with the highest accuracy. The CM methods were each 
compared with the corresponding RCCM method using three weighting 
schemes (EQ, MS, and NN) with their respective number of significant 
improvement also included in parentheses. The classification results of 
the testing samples from one of the ten samplings and the corresponding 
testing samples are shown in Figs. 4–6. For simplicity only the results 
using the SVM, XGBoost, MPKNN, FCN, relearn-PCM, one of RCCM 
methods with the highest accuracy (KL-NN for the IKONOS image, CAM- 
NN for the WV-2 and WV-3 images) and the corresponding CM methods 
(KL for the IKONOS image, CAM for the WV-2 and WV-3 images) are 
displayed. The overall accuracies from one sampling (corresponding to 
Figs. 4–6) are listed in Tables 4–6, along with the F1-score of each class. 

As can be seen in Table 3, the RF and XGBoost results have similar 
accuracies, and the accuracy of SVM is lower. The gKNN and MPKNN 

methods are based on improvement over the KNN classifier, with the 
latter performs slightly better than the former. The FCN method does not 
show a great advantage over other methods, although it performs well 
for the IKONOS and WV-2 images. One of reasons could be that FCN may 
not be able to establish a stable architecture with the available sample 
data, even though data augmentation is applied. It could also be that 
FCN may be more suited to classify image patches with a larger and 
regular extent rather than image objects with irregular shapes, since the 
resizing process of FCN is quite arbitrary and may cause some useful 
information to be lost. The two relearning methods based on the histo-
gram and PCM show better accuracies than the other advanced classi-
fication algorithms, except for the relearn-Hist in the IKONOS image. 
The accuracy of the relearn-PCM method is constantly higher than that 
of the relearn-Hist method since the latter considers both class frequency 
and spatial arrangement. These two SVM-based relearning methods 
improves the accuracies of the SVM method up to 12% by the relearning 
process. 

Among three CM methods, the RSSDA method has the highest ac-
curacy for the IKONOS and WV-2 images, and the CAM method has the 
highest accuracy for the WV-3 image. All nine RCCM methods greatly 
improve the accuracies of their corresponding CM methods, with an 
increase in accuracy ranging from 1.95% to 18.72%. The RCCM methods 
demonstrate great advantages in classifying the HSR WV-2 and WV-3 
images with more detailed classes. The nearest weighting scheme 
(NN) always leads to the highest accuracy, such as the KL-NN method for 
the IKONOS image and the CAM-NN for the WV-2 and WV-3 images. 
Comparing with the relearn-Hist and relearn-PCM methods, the accu-
racies of the nine RCCM methods are similar for the IKONOS image but 
all higher for the WV-2 and WV-3 images. Overall, the developed RCCM 
methods are superior to the advanced classification and the CM methods 
considering spectral features only. 

For the IKONOS image with simpler classes, the accuracies of the 
advanced classification methods are already rather high. The KL-NN 
method has outperformed all other approaches, and it demonstrates 
significant improvements over the RF, SVM and XGBoost methods in 
two samplings, and over the MPKNN and relearn-PCM methods in one 
sampling of the total ten samplings. For the WV-2 image with more 
complex classes, the accuracies of the FCN and two relearning methods 
are over 72%, and the accuracies of all other methods are below 70%. In 
comparison, the accuracy of the CAM-NN method is 84.67%, resulting in 
significant improvement over the relearn-PCM in nine samplings and 
over all other methods in all the ten samplings. Similarly, for the WV-3 
image, the accuracy of the CAM-NN method is significantly better than 
all other advanced classification methods in all the ten samplings, except 
for only the relearn-Hist method, over which the CAM-NN method 
demonstrates significant improvement in nine samplings. When 
compared with the CM methods, all the nine RCCM methods demon-
strate significant improvement over CM counterparts in four to ten 
samplings for the IKONOS image and all the ten samplings for the WV-2 
and WV-3 images. 

The F1-score for each class shows that the bare land class in the 
IKONOS image has the greatest improvement (Table 4). Some advanced 
benchmark methods even misclassify all the objects of this class due to a 
small number of samples and lack of unique features. The F1-score of the 
KL method is 0.53 for the bare land class, and the KL-NN method im-
proves the F1-score to 0.8. The bare land class shows similar trend in the 
WV-2 and WV-3 images (Tables 5 and 6). Most RCCM methods have also 
outperformed the advanced benchmark methods for the car park, the 
residential and the road classes in the WV-2 and WV-3 images. It dem-
onstrates the effectiveness of the spatial association in classifying com-
plex land use classes. 

In the IKONOS image, the SVM, MPKNN and relearn-PCM results 

Table 3 
The average classification accuracies (%) and numbers of significant improve-
ments at 95% confidence level out of ten samplings (in parentheses).  

Methods  IKONOS WV-2 WV-3 

Advanced 
classification 
methods 

RF 92.62 (2) 68.59 (10) 61.93 (10)  

SVM 92.00 (2) 67.79 (10) 60.11 (10)  
XGBoost 92.60 (2) 69.16 (10) 61.64 (10)  
gKNN 92.49 (1) 64.67 (10) 61.64 (10)  
MPKNN 92.60 (0) 64.84 (10) 61.66 (10)  
FCN 92.65 (0) 72.45 (10) 61.56 (10)  
Relearn- 
Hist 

92.39 (1) 72.19 (10) 69.33 (9)  

Relearn- 
PCM 

92.84 (0) 74.81 (9) 72.11 (10)  

CM and RCCM 
methods 

KL 89.37 (10, 
9, 9) 

64.12 (10, 
10, 10) 

58.46 (10, 
10, 10)  

CAM 89.92 (6, 6, 
6) 

66.88 (10, 
10, 10) 

60.96 (10, 
10, 10)  

RSSDA 89.97 (4, 4, 
5) 

66.96 (10, 
10, 10) 

59.89 (10, 
10, 10)  

KL-EQ 93.07 80.97 73.20  
CAM-EQ 92.76 82.50 75.15  
RSSDA- 
EQ 

92.10 80.08 74.44  

KL-MS 93.62 81.89 74.84  
CAM-MS 93.02 84.29 77.53  
RSSDA- 
MS 

91.92 81.93 77.27  

KL-NN 93.86 82.09 76.96  
CAM-NN 92.78 84.67 79.68  
RSSDA- 
NN 

92.26 82.91 78.44 

In the significance test, all the advanced methods were compared only with the 
RCCM method with the highest accuracy. The CM methods were compared with 
their corresponding RCCM methods using three weighting schemes in a 
sequence of EQ, MS, and NN. 
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(Fig. 4b, d and f) all suffer from the misclassification of roads as build-
ings. The XGBoost and FCN methods (Fig. 4c and e) do better job in 
classifying the road. The KL method (Fig. 4g) misclassifies the road in 
the east-west direction as buildings and a few buildings as the roads. 
These misclassifications are corrected in the KL-NN result (Fig. 4h), but 
the road in the south-north direction is misclassified. The FCN, KL and 
KL-NN methods correctly classify the bare land class at most places, 
while all other methods fail to do so. 

The upper-left part of the WV-2 image mainly includes the residen-
tial, vegetation and shadow classes. Since the reflectance of most resi-
dential buildings is dark, the advanced classification and the CAM 
methods (Fig. 5b-g) misclassify the residential class to the non- 
residential and the shadow classes in the upper-left part. The CAM-NN 
result (Fig. 5h) has the best performance in classifying the residential 
class. The road class and the car park class are also easily to be mis-
classified. The car park class wrongly appears in the middle of the road 
class in the SVM, XGBoost, MPKNN, relearn-PCM and CAM results 
(Fig. 5b-d, f, g). The FCN method (Fig. 5e) has the best performance in 
classifying the main road than the other advanced classification 
methods, but some narrow and curvilinear roads are still misclassified. 
Only the CAM-NN method (Fig. 5h) correctly classifies most of the road 

and the car park classes. The non-residential class is somewhat confused 
with the residential and the other classes in the advanced classification 
and CAM results (Fig. 5b-g). Again the CAM-NN method provides the 
best result in classifying the non-residential class. 

Unlike in the WV-2 image, the residential and the non-residential 
classes tend to be mixed up in the WV-3 image. Specifically, the non- 
residential class is likely to appear near the road class, and the resi-
dential class is likely to be distributed in clusters in the WV-3 image. The 
relearn-PCM and the CAM-NN methods (Fig. 6g and h) show better 
performance in differentiate these two classes due to the consideration 
of spatial association. It also occurs that the road objects are often 
misclassified as other classes, such as in the SVM, XGBoost, MPKNN, 
FCN and relearn-PCM results (Fig. 6b-f). Only the CAM-NN method 
(Fig. 6h) shows a satisfied result for the road class. 

3.3.2. RCCM on each class 
To compare the RCCM methods with their CM counterparts on each 

land cover/land use class, Fig. 7 shows the changes in object numbers 
and the accuracy on the testing samples of the RCCM method over the 
CM method. 

In the IKONOS image, the number for buildings increases sharply 

Fig. 4. The testing samples and classification results of the IKONOS image. (a) testing samples, (b) SVM, (c) XGBoost, (d) MPKNN, (e) FCN, (f) relearn-PCM, (g) KL, 
(h) KL-NN. 
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whereas the numbers for the road class decreases (Fig. 7a). The number 
for the bare land class either increases slightly or remains unchanged. 
Most of these changes are correct, leading to improvements in accuracy 
for all three classes, especially for the road and the bare land classes 
(Fig. 7b). The vegetation and the shadow classes barely change either in 
object numbers or accuracies. 

In the WV-2 image, the number for the non-residential class increases 
the most, whereas the number for the road and the car park classes 
decreases the most (Fig. 7c). The residential class has different changes 
in object numbers for three classifiers: the CAM-NN and RSSDA-NN 
methods lead to an increase, the KL-NN method leads to a decrease. 
The bare land, vegetation and shadow classes barely change in numbers. 
The accuracies for all the seven classes gain improvements (Fig. 7d), 
with the car park and the residential classes have the greatest 
improvements. 

In the WV-3 image, the numbers for the residential class and the non- 
residential class increase, whereas the number for the car park and the 
non-residential classes decreases (Fig. 7e). Unlike those in the WV-2 
image, the number for the bare land and the vegetation classes also 
varies. Again, the accuracies of all the seven classes increase, with the 
improvement in the bare land class is the greatest (Fig. 7f). The car park, 
the non-residential, the residential, and the road classes gain similar 
improvements. 

This test shows that the complex land use classes that tend to be 

mixed with other classes, such as the residential, non-residential, road, 
car park and bare land classes, benefit the most from the RCCM method. 
Since CM methods have already performed well on the vegetation and 
the shadow classes, these two classes do not change much in accuracy 
for the RCCM methods. 

3.3.3. Effects of spatial association 
To illustrate how the spatial association introduced in the RCCM 

methods impacts on the classification, an example is shown for the WV-2 
image (Fig. 8). An object to be classified (indicated by a triangle in the 
object’s center in Fig. 8a) belongs to the car park class, but is mis-
classified using the CAM method. It has been corrected to the car park 
class using the CAM-NN method after one iteration (Fig. 8a). The curve 
of this object and the sample curves with the five smallest spectral di-
vergences (Fig. 8b) and spatial divergences (Fig. 8c) are shown. As can 
be seen, this object is misclassified as the road class using the CAM 
method, and three out of five most similar spectral sample curves are 
also of the road class. Not only this object is misclassified in the CAM 
result, but also one of its neighbors belonging to the car park is mis-
classified as residential. For the curves of spatial association, the most 
similar sample curve belongs to the car park class. Therefore, with the 
introduction of the spatial association, this object has now been 
correctly classified as a car park. Additionally, its misclassified neighbor 
has also been corrected after one iteration. 

Fig. 5. The testing samples and classification results of the WV-2 image. (a) testing samples, (b) SVM, (c) XGBoost, (d) MPKNN, (e) FCN, (f) relearn-PCM, (g) CAM, 
(h) CAM-NN. 
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3.3.4. The recurrent process 
It is also of interest to examine how the recurrent process in the 

RCCM methods influences the classification results. The improved 
classification results by the recurrent process from one of the RCCM 
methods with the highest accuracy over the original CM methods are 
shown in Fig. 9 using one of the ten samplings. The KL-NN has run three 

iterations to reach convergence for the IKONOS image. The CAM-NN has 
run six and four iterations to reach convergence for the WV-2 image and 
the WV-3 image, respectively. Only two intermediate and the final re-
sults are shown for these two images. 

All three images show certain smoothing effects with the number of 
iterations increases. The most obvious change for the IKONOS image is 
the increase of the building class and the decrease of the road class, most 
of which are correct in the areas where buildings are densely distributed 
(Fig. 9a). On the other hand, some road objects misclassified as buildings 
using the KL method are now correctly classified by the recurrent pro-
cess of the KL-NN method (e.g., in the circles). 

In the WV-2 image, an obvious phenomenon is that objects belonging 
to the same class tend to group together in the recurrent process 
(Fig. 9b). The residential class and the non-residential class have been 
mixed up with each other and with many other classes in the initial 
classification (in the left and right sides of the image). They are being 
correctly separated from each other and from other classes in the third 
iteration. However, some narrow roads within the residential and the 
non-residential areas are over-smoothed in the recurrent process. 
Luckily, the roads in the south-north direction have strong spatial as-
sociation, and therefore the CAM-NN method is able to correct some of 
these roads that were misclassified as car parks in the initial CAM result 
(e.g., in the circles). 

The general class arrangement in the WV-3 image (Fig. 9c) is of 
typical single-family residential community, with the vegetation, resi-
dential and shadow classes generally appear in sequence in the south- 
north direction. The objects have been misclassified as the non- 
residential class in the initial CAM result, and are correctly classified 
as the residential class by the recurrent process (e.g., the bottom circles). 

Fig. 6. The testing samples and classification results of the WV-3 image. (a) testing samples, (b) SVM, (c) XGBoost, (d) MPKNN, (e) FCN, (f) relearn-PCM, (g) CAM, 
(h) CAM-NN. 

Table 4 
The overall accuracy (%) and the F1-score per class of classification results from 
one sampling for the IKONOS image.  

Method Total Bare land Building Road Shadow Vegetation 

RF 92.39 0 0.92 0.48 1 0.99 
SVM 90.81 0 0.91 0.36 0.97 0.98 
XGBoost 93.70 0.11 0.93 0.80 0.99 0.99 
gKNN 91.86 0.20 0.93 0.56 0.97 0.98 
MPKNN 92.65 0.21 0.94 0.64 0.97 0.98 
FCN 93.96 0.58 0.95 0.76 0.97 0.97 
Relearn-Hist 91.60 0.35 0.91 0.42 0.98 0.99 
Relearn-PCM 92.65 0.59 0.92 0.43 0.98 0.98 
KL 88.71 0.53 0.87 0.37 1 1 
CAM 88.45 0.43 0.87 0.31 0.99 0.99 
RSSDA 87.40 0.35 0.87 0.30 0.98 0.98 
KL-EQ 94.23 0.67 0.94 0.65 1 1 
CAM-EQ 92.39 0.62 0.92 0.58 0.99 0.98 
RSSDA-EQ 91.34 0.57 0.92 0.45 0.97 0.97 
KL-MS 94.49 0.69 0.94 0.59 1 1 
CAM-MS 92.91 0.62 0.92 0.57 0.99 0.99 
RSSDA-MS 92.13 0.59 0.93 0.55 0.97 0.96 
KL-NN 95.28 0.80 0.96 0.62 0.99 0.99 
CAM-NN 92.65 0.59 0.93 0.56 0.98 0.98 
RSSDA-NN 90.81 0.50 0.91 0.41 0.98 0.98  
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Additionally, most misclassified road objects in the initial CAM result 
have been filtered out after the first iteration, whereas the correctly 
classified vegetation objects on the road are well kept in the CAM-NN 
results (e.g., the left circle). 

4. Discussions 

4.1. Proportional weight 

The weight w in the RCCM method decides the influence of the 
spectral features. It therefore also determines the influence of the spatial 
features, which equals 1–w. This parameter was chosen automatically 
based on the highest validation accuracy for each recurrent iteration in a 
5-fold cross-validation. Fig. 10 shows the chosen weight w at each 
iteration using all nine RCCM methods. 

As can be seen, the KL based RCCM methods generally prefer large 
spectral weights. Most of the final weights are above 0.5 for all three 
weighting schemes, although the intermediate weight sometimes goes 

below 0.5 during the recurrent process. The CAM based RCCM methods 
favor a larger spatial weight for the WV-2 and WV-3 images, but a larger 
spectral weight for the IKONOS image. The final spectral weights for the 
RSSDA based RCCM methods in WV-2 and WV-3 images range from 0.2 
to 0.6, suggesting the spatial association plays an equally important role 
during recurrent process. This sensitivity analysis indicates that the 
RCCM methods favor different weights for different curve matching 
methods: the KL based methods prefer a larger spectral weight, whereas 
the CAM and the RSSDA based methods prefer a slightly larger spatial 
weight. 

4.2. Iteration of RCCM 

The irregular shapes of the FNEA segmentation results sometimes 
cause the neighborhood association inaccurate. For example, in Fig. 2a, 
the object belonging to the bare land class is counted twice in the west 
direction when the neighborhood association is being detected. Spatial 
association based on the frequency of class pairs can also reduce the 

Table 5 
The overall accuracy (%) and the F1-score per class of classification results from one sampling for the WV-2 image.  

Method Total Bare land Non-residential Car park Residential Road Shadow Vegetation 

RF 68.49 0.07 0.78 0.45 0.50 0.54 0.84 0.96 
SVM 67.43 0.10 0.75 0.44 0.54 0.49 0.78 0.96 
XGBoost 69.10 0.15 0.77 0.49 0.57 0.52 0.91 0.95 
gKNN 64.84 0.44 0.76 0.33 0.50 0.46 0.87 0.99 
MPKNN 64.84 0.44 0.76 0.33 0.50 0.46 0.87 0.99 
FCN 72.45 0.31 0.78 0.43 0.67 0.61 0.96 0.99 
Relearn-Hist 73.36 0 0.81 0.55 0.58 0.65 0.86 0.97 
Relearn-PCM 76.10 0.15 0.82 0.61 0.62 0.71 0.88 0.94 
KL 65.14 0.18 0.76 0.35 0.43 0.57 0.85 1 
CAM 68.04 0.31 0.79 0.39 0.49 0.54 0.90 1 
RSSDA 67.58 0.17 0.80 0.40 0.49 0.48 0.93 0.98 
KL-EQ 79.76 0.54 0.89 0.66 0.69 0.72 0.84 0.89 
CAM-EQ 84.93 0.75 0.90 0.70 0.88 0.76 0.90 0.94 
RSSDA-EQ 78.84 0.34 0.86 0.62 0.71 0.68 0.92 0.98 
KL-MS 82.50 0.79 0.88 0.72 0.76 0.78 0.81 0.92 
CAM-MS 86.91 0.91 0.92 0.78 0.91 0.80 0.85 0.86 
RSSDA-MS 84.17 0.30 0.89 0.75 0.81 0.74 0.94 0.98 
KL-NN 79.45 0.52 0.86 0.71 0.75 0.77 0.80 0.81 
CAM-NN 88.74 0.42 0.92 0.79 0.93 0.84 0.94 0.97 
RSSDA-NN 82.19 0.53 0.88 0.75 0.84 0.71 0.81 0.89  

Table 6 
The overall accuracy (%) and the F1-score per class of classification results from one sampling for the WV-3 image.  

Method Total Bare land Non-residential Car park Residential Road Shadow Vegetation 

RF 64.79 0 0.40 0.47 0.55 0.60 1 0.98 
SVM 61.74 0.06 0.43 0.36 0.50 0.59 0.95 0.98 
XGBoost 64.95 0.12 0.44 0.40 0.54 0.63 0.97 0.98 
gKNN 63.83 0 0.42 0.37 0.53 0.62 0.97 0.98 
MPKNN 63.34 0 0.42 0.37 0.53 0.62 0.97 0.97 
FCN 62.06 0.12 0.17 0.18 0.55 0.64 0.98 0.96 
Relearn-Hist 71.22 0 0.49 0.52 0.63 0.73 1 0.98 
Relearn-PCM 76.37 0.14 0.61 0.57 0.67 0.81 1 0.98 
KL 58.52 0.26 0.39 0.19 0.42 0.56 1 0.97 
CAM 63.02 0.24 0.41 0.17 0.54 0.63 0.99 0.98 
RSSDA 60.61 0.17 0.36 0.20 0.53 0.60 0.99 0.98 
KL-EQ 74.76 0.62 0.66 0.42 0.70 0.86 0.83 0.85 
CAM-EQ 78.14 0.64 0.69 0.48 0.78 0.83 0.87 0.88 
RSSDA-EQ 69.13 0.57 0.62 0.51 0.60 0.79 0.82 0.80 
KL-MS 76.05 0.52 0.61 0.37 0.69 0.81 0.98 0.95 
CAM-MS 80.55 0.72 0.69 0.46 0.77 0.84 0.99 0.94 
RSSDA-MS 77.49 0.70 0.65 0.52 0.72 0.82 0.97 0.94 
KL-NN 78.78 0.64 0.66 0.49 0.74 0.82 0.96 0.94 
CAM-NN 85.05 0.83 0.77 0.56 0.83 0.89 0.99 0.93 
RSSDA-NN 78.94 0.40 0.61 0.51 0.75 0.85 1 0.97  
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effect of this inaccurate neighborhood association, because the most 
frequent class pairs can reflect the dominant spatial association and the 
recurrent process further reinforces the dominant spatial association and 
suppresses the atypical spatial association. 

Usually more iterations lead to a more smoothing result, but there 
are exceptions since a larger spectral weight could suppress the 
smoothing effects of the recurrent process. The maximum number of 
iterations was set to 10 in this study. In general, the iterations will be 
stopped way before this maximum is reached. For example, the accuracy 
of the IKONOS image with five classes reaches its stability after 2 to 4 
iterations, whereas those of the WV-2 and WV-3 images with seven 
classes reach their stability after 5 to 8 iterations. Some of the RCCM 
methods reach this maximum when applied to the WV-2 image. As a 
result, certain places are somewhat over-smoothed (Fig. 9b), thus a 
value larger than 10 is not desired. 

As a non-parametric method, the efficiency of the CM method is not 

high. Testing on a laptop with 1.8-GHz Intel Core-i7 CPU and 16-GB 
memory, the CM method costs 87, 501, and 144 s on average for the 
IKONOS, WV-2 and WV-3 images, respectively. The computational cost 
of the RCCM method is about 1.8 to 3.8 times longer than the CM 
method depending on the number of iterations. The generalization of the 
curve matching method and the recurrent process can be further 
explored to improve the classification efficiency. 

Spatial association of an object is decided by the detected directions 
and the range distance. In this study, the neighborhood range was set to 
6 in four main directions to capture spatial association within a large 
distance, which allows the exploration of higher-order spatial associa-
tions. Traditional OBIA seldom considers higher-order association, 
because the rook and queen connectivity is commonly used. The three 
weighting schemes do not show significant difference in classification 
results, even though the nearest neighboring scheme always results in 
the highest accuracy. 

Fig. 7. The changes of numbers and accuracy on testing samples based on the RCCM methods with the NN weighting scheme compared with the CM methods.  
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4.3. Neighborhood and range 

To further explore the effects of neighborhood and range distances 
on the classification accuracy, Fig. 11 compares the classification ac-
curacies of the RCCM methods using the spatial association based on 
eight directions (east, west, south, north, south-east, south-west, north- 
east, north-west) with those of the results that were based on four di-
rections. Fig. 12 shows the changes of classification accuracies using the 
RCCM methods (only the method with the highest accuracy was used for 
each study area) with the range distance varying from 1 to 10 neighbors. 

The accuracy is higher when using four neighbors than that using 
eight neighbors most of the time (Fig. 11). Due to the irregular shapes of 
the segmentation results, it is common that the neighboring object in the 
south direction, for example, is the same with that in the south-east and 
south-west directions. It is therefore unnecessary to detect the neighbors 
in all the directions. The accuracy shows an increase and then a decrease 
when the range distance increases for all three study areas (Fig. 12). It 
demonstrates that the higher-order spatial association is preferred, and 
the range of 6 neighbors is sufficient to achieve a satisfied classification 
accuracy. 

4.4. Pros and cons 

The curve matching method is capable of integrating large amount of 

object features without applying feature optimization, which is a very 
common process in traditional object-based classifications (Pu and 
Landry, 2012; Löw et al., 2013; Gil-Yepes et al., 2016). Unlike histo-
grams, the x-axis of the spatial curve representing class pairs are cate-
gorical variables. Different class pair coding can lead different curves, 
but the results of the three curve matching methods used in the exper-
iments are not affected by the order of the coding, because they are all 
based on the total divergence between two curves. Some of other curve 
matching methods, such as the Kolmogorov-Smirnov (KS) test, are based 
on cumulative curves. Theoretically these methods can also be used for 
the RCCM methods. However, the cumulative curve is affected by the 
order of the class code, which means different coding of class pairs 
would lead different classification results. Therefore, we do not use 
methods based on cumulative curves in this study. 

The extraction of spatial feature in the RCCM methods is realized by 
simply deriving the weighted frequency of class pairs. In other studies, 
detecting spatial association is not as straightforward as this one. The 
well-known variograms or spatial covariance can be used to quantify 
spatial dependence between objects such as in the gKNN and MPKNN 
methods, and a modelling process is usually required. However, the type 
of model and some of its parameters need to be predetermined, which 
can be subjective and problematic. Additionally, the modelling process 
in OBIA may suffer from the so-called change-of-support problem 
(COSP) (Cressie, 1996), because the spatial association may be modelled 

Fig. 8. An example of the RCCM method correctly classifies an object that is misclassified by the CM method. (a) An object belongs to the car park class (marked by a 
triangle) classified as a road using CAM method, and correctly classified using the CAM-NN method after one iteration, (b) the curves of histograms of this object 
across multispectral bands and its five most similar sample curves, (c) the curves of spatial association of the object based on the NN weighting scheme and its five 
most similar sample curves (class code: 1-bare land, 2-non-residential, 3-car park, 4-residential, 5-road, 6-shadow, 7-vegetation). 
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inaccurately without considering different geometries of objects (Tang 
et al., 2018). The current method does not include a modelling process 
and thus can avoid these problems. 

The spatial association is detected only between two classes in this 
study. Spatial association between more than two classes may be helpful 
to better capture spatial details of sophisticate curvilinear objects in the 
classification results and will be explored in the future. The RCCM 
methods are designed to capture spatial association through introducing 
the spatial features and recapture the association through the recurrent 
process. A deep learning based on recurrent neural network (RNN) may 
achieve a similar goal if sufficiently large number of training samples are 
available. Albeit tested only in complex urban environments, the RCCM 
methods should theoretically work well in other environments, which 
will be also verified in future studies. 

5. Conclusion 

The developed RCCM method is able to integrate within-object 
spectral variability and between-object spatial association. The curve 
matching method provides an easy way to fuse these disparate features 
in the simple form of curves. The curves derived from histogram of the 
pixels within an object characterize spectral variability across multi-
spectral bands. The curves derived from the weighted frequency of class 
pairs quantify the spatial association with neighborhood objects. The 
method can either filter out isolated objects based on the neighborhood 
association of the same class, or correct misclassification based on 
spatial arrangements of different classes. The recurrent process re-
inforces dominant patterns and suppresses atypical patterns by recap-
turing spatial association from previous classification result to improve 

Fig. 9. The original classification, the improved intermediate and final results of the RCCM (from top to bottom): (a) KL, and KL-NN after 1, 2 and 3 iterations for the 
IKONOS image, (b) CAM, and CAM-NN after 1, 3 and 6 iterations for the WV-2 image, (c) CAM, and CAM-NN after 1, 2 and 4 iterations for the WV-3 image. 
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classification results. The experiments on the three HSR images 
demonstrate that the developed method constantly achieves higher ac-
curacy than the curve matching methods using only spectral features 
and some advanced OBIA classification methods. The method is suited 
to classify complex urban land use types such as the residential, non- 
residential, car park, road and bare land classes. 
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Fig. 10. Plots of iterations against weight w for nine RCCM methods: (a) IKONOS image, (b) WV-2 image, and (c) WV-3 image.  

Fig. 11. The changes of classification accuracy with the spatial association detected along four and eight directions for nine RCCM methods: (a) IKONOS image, (b) 
WV-2 image, and (c) WV-3 image. 

Y. Tang et al.                                                                                                                                                                                                                                    



International Journal of Applied Earth Observations and Geoinformation 101 (2021) 102367

16

Acknowledgements 

This study was supported by the National Key R&D Program of China 
[grant number 2019YFC1520800], the National Science Foundation 
(NSF) [grant number BCS-1826839], the key project of the Aerospace 
Information Research Institute, CAS [grant number Y951150Z2F], and 
the National Natural Science Foundation of China [grant numbers 
41501489, 42071312]. We thank two anonymous reviewers for 
providing valuable comments and suggestions. 

References 

Atkinson, P.M., 2004. Spatially weighted supervised classification for remote sensing. 
Int. J. Appl. Earth Obs. Geoinf. 5, 277–291. 

Atkinson, P.M., Naser, D.K., 2010. A geostatistically weighted K-NN classifier for 
remotely sensed imagery. Geographical Analysis 42, 204–225. 

Bai, H., Cao, F., Atkinson, P.M., Chen, Q., Wang, J., Ge, Y., 2020. Incorporating spatial 
association into statistical classifiers: local pattern-based prior tuning. Int. J. 
Geographical Inform. Sci. 34 (10), 2077–2114. 

Benz, U.C., Hofmann, P., Willhauck, G., Lingenfelder, I., Heynen, M., 2004. Multi- 
resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready 
information. ISPRS J. Photogramm. Remote Sens. 58, 239–258. 

Blaschke, T., Hay, G.J., Kelly, M., Lang, S., Hofmann, P., Addink, E.A., Queiroz 
Feitosa, R., van der Meer, F., van der Werff, H., van Coillie, F., Tiede, D., 2014. 
Geographic object-based image analysis - towards a new paradigm. ISPRS J. 
Photogramm. Remote Sens. 87, 180–191. 

Bruzzone, L., Carlin, L., 2006. A multilevel context-based system for classification of very 
high spatial resolution images. IEEE Trans. Geosci. Remote Sens. 44, 2587–2600. 

Chaib, S., Liu, H., Gu, Y., Yao, H., 2017. Deep feature fusion for VHR remote sensing 
scene classification. IEEE Trans. Geosci. Remote Sens. 55 (8), 4775–4784. 

Chen, S., Member, S., Wang, H., Xu, F., Member, S., 2016a. Target classification using the 
deep convolutional networks for SAR images. IEEE Trans. Geosci. Remote Sens. 54, 
4806–4817. 

Chen, T., Guestrin, C., 2016. XGBoost: A scalable tree boosting system. In Proceedings of 
the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data 
Mining, San Francisco, CA, USA, 13-17 August 2016; p. 785. 

Chen, Y., Jiang, H., Li, C., Jia, X., Member, S., 2016b. Deep feature extraction and 
classification of hyperspectral images based on convolutional neural networks. IEEE 
Trans. Geosci. Remote Sens. 54, 6232–6251. 

Cressie, N., 1996. Change of support and the modifiable areal unit problem. 
Geographical Systems 3, 159–180. 

Ding, P., Zhang, Y., Deng, W.-J., Jia, P., Kuijper, A., 2018. A light and faster regional 
convolutional neural network for object detection in optical remote sensing. ISPRS J. 
Photogramm. Remote Sens. 141, 208–218. 

Fu, G., Liu, C., Zhou, R., Sun, T., Zhang, Q., 2017. Classification for high resolution 
remote sensing imagery using a fully convolutional network. Remote Sensing 9, 498. 

Gil-Yepes, J.L., Ruiz, L.A., Recio, J.A., Balaguer-Beser, Á., Hermosilla, T., 2016. 
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