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A B S T R A C T   

Object-based image analysis (OBIA) has been widely used to classify high spatial resolution (HSR) imagery. In a 
traditional OBIA, object-level statistical summaries such as mean values are usually used for classification. This 
implies that the spectral values within objects follow a Gaussian distribution. However, the pixel values in an 
object do not necessarily conform to a Gaussian distribution because of within object spectral heterogeneity. 
Consequently, these statistical summaries may misrepresent the features of the object. This shortcoming is 
addressed in this paper by integrating both the spectral variability and the spatial distribution of the pixels within 
objects to improve the traditional object-based image classification. The spectral variability is represented by 
histograms of the pixel values in the object, and the spatial distribution is characterized by the binary spatial 
covariogram of these pixels. To construct a binary spatial covariogram, a principal component analysis (PCA) is 
first applied to compress multiple bands into one, and the Otsu thresholding is then performed to generate a 
binary map reflecting the spatial configuration of the pixels. Spatial covariance is then computed for this binary 
map and plotted with different lag distances to derive the binary spatial covariogram. Our proposed model 
utilizing curves composed of the spectral histograms and binary spatial covariogram (referred to as the His-Cov 
model) are then used for classification based on curve matching approaches. The integration of spectral vari
ability and spatial distribution of the pixels in the object produced superior results to curve matching approaches 
based on spectral variability alone and to traditional OBIA based on spectral and spatial features of the objects 
when classifying complex land use types in urban environments.   

1. Introduction 

With advances in remote sensing technologies and growing demand 
for detailed spatial information, high spatial resolution (HSR) imagery is 
becoming one of the most used remote sensing data types for a variety of 
applications (Belward and Skøien, 2015). The higher spatial resolution 
of the data has posed great challenges to pixel-based land cover and land 
use classification, which fails to achieve desirable accuracy despite HSR 
imagery’s promise of more detailed geospatial information (Wang et al., 
2013). Object-based image analysis (OBIA) has now been widely 
accepted to be superior to pixel-based classification of HSR remotely 
sensed data, primarily because OBIA avoids salt-and-pepper noise, 
which commonly exists in the pixel-based classification (Blaschke and 
Strobl, 2001; Ma et al., 2017; Hossain and Chen, 2019; El-naggar, 2018; 
Su, 2019; Shen et al., 2019). A traditional object-based classification 
begins with image segmentation. This partitions the image scene into 
multiple image segments (set of pixels, also known as objects) according 

to some pre-defined homogeneity criteria (Blaschke, 2010; Newman 
et al., 2011). Classification is then undertaken at the object level instead 
of the individual pixel level. Most commonly, inputs into OBIA classi
fiers are based on statistical summaries of all the pixel values in an ob
ject, such as the mean and standard deviation. To further improve 
classification, object-level spatial features have also been incorporated 
based on summaries such as shape complexity (Russ, 2002; Jiao et al., 
2012) or a compactness index (Hay et al., 1996; Zhong et al., 2020). 
Most of these object-based classifiers use standard machine learning 
algorithms such as the support vector machine (SVM) (Geiß and Tau
benböck, 2015), decision trees (DT) (Laliberte, et al., 2007), random 
forest (RF) (Melville et al., 2018), multi-layer perceptron (MLP) (Zhang 
et al., 2018), K-nearest neighbor (KNN) (Tang et al., 2016) and some
times boosting classifiers (Georganos, et al., 2018). 

In traditional OBIA, each object is treated as if it is a pixel and the 
object-level statistical summaries are treated as their input pixel values. 
These object-level summaries are single-valued since only one value is 
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used to characterize one type of feature for an object. As a result, not all 
pixels of an image object participate in the object-based image classifi
cation, but only their object-level summaries. Since only single-valued 
statistical summaries are used to characterize each object, the rich in
formation provided by the many pixels constituting an object in HSR 
imagery is lost (Arroyo et al., 2006). Consequently, the utilization of 
traditional classifiers based on object-level summaries does not take full 
advantage of the potential that HSR images could provide. Additionally, 
these statistical summaries are representative of the object’s character
istics only when the pixel values follow a Gaussian distribution (Pedley 
and Curran, 1991; Shackelford and Davis, 2003; Berger et al., 2013). 
Unfortunately, a non-Gaussian frequency distribution is common for 
these pixel values (Stow et al., 2012; Sridharan and Qiu, 2013; Toure 
et al., 2013) in HSR imagery. At sub-meter level resolution, a real-world 
object, which is often composed of multiple elements, may not exhibit 
the spectral homogeneity that is often observed in an image at medium 
or coarse spatial resolution (Costa et al., 2017). For example, a building 
object can be an integration of various components with different ma
terials (e.g., glass and brick) and structures (e.g., chimney and flat roof) 
(Zhou and Troy, 2008). Since within-object spectral heterogeneity in
creases with the spatial resolution of imagery (Blaschke et al., 2004), 
statistical summaries may misrepresent the features of the objects and 
mislead the subsequent classification (Sridharan and Qiu, 2013). 

To overcome this problem, novel classifiers based on curve matching 
approaches have been proposed for object-based image classification 
(Stow et al., 2012; Sridharan and Qiu, 2013). These approaches were 
originally designed for hyperspectral image classification (van der Meer, 
2000, 2006; Liu and Han, 2017) and have been used for time-series 
analysis (Vorobiova and Chernov, 2017; Gao et al., 2020). The curve 
matching approaches measure spectral similarity/divergence between a 
spectrum of an unknown object and prior spectra from a spectral library 
(i.e., samples) (Kruse et al., 1993). Stow et al. (2012) suggested using the 
pixel frequency distribution of an object (i.e., its histogram signature) 
via a curve matching approach named the histogram matching root sum 
squared differential area (RSSDA) for classification. It was later 
compared with using a curve angle mapper (CAM) to classify an 
airborne multispectral image (Toure et al. 2013). Independently, Srid
haran and Qiu (2013) proposed a curve matching approach based on 
Kolmogorov-Smirnov (KS) distance using the empirical cumulative 
distribution function (i.e., cumulative histogram) of the pixels in an 
object as input for object-based classification. Building on this approach, 
Zhou and Qiu (2015) developed a method to synthesize object-based 
pseudo-waveform from discrete-returns LiDAR data by utilizing the 
count or intensity based histogram of the returns for an object. The 
pseudo-waveforms were then fused with the object-level spectral his
tograms from HSR imagery to improve object-based classification using 
a Kullback-Leibler (KL) divergence-based curve matching approach. 
Compared to object-level statistical summaries, an object-level histo
gram/pseudo-waveform provides far richer information about the 
spectral/structural components of an object since it characterizes their 
variability within the object. These studies have demonstrated that 
curve matching approaches based on object-level histogram/pseudo- 
waveform can achieve better performances than traditional OBIA based 
on statistical summaries. 

Although the advantages of curve matching approaches to OBIA 
have been demonstrated, histogram features can only indicate the fre
quency distribution of pixel values. They are unable to reflect their 
spatial distribution or arrangement within the objects. Therefore, cur
rent curve matching approaches cannot distinguish two objects having 
similar frequency distributions but a different spatial distribution of the 
pixels. In previous studies, (semi)variogram and covariogram measures 
have proven to be effective to extract spatial features and can be 
incorporated with spectral features to improve classification (Chica- 
Olmo and Abarca-Hernández, 2000; Berberoglu et al., 2000; Chen and 
Gong, 2004; Wu et al., 2006; Berberoglu et al., 2007; Balaguer et al., 
2010; Balaguer-Beser et al., 2013; Wu et al., 2015). However, previous 

studies were all based on traditional classifiers and the spatial features 
have not been incorporated in curve matching approaches. To address 
this issue, a novel model is proposed which integrates both spectral and 
spatial features into a curve matching based classifier. We designate the 
previous curve matching model, which used an object-level histogram or 
cumulative histogram, as the His model. The newly developed model, 
which incorporates object-level spatial distribution using the binary 
spatial covariogram, is designated as the His-Cov model. This study tests 
whether the His-Cov model can improve upon a curve matching based 
classification using only spectral features (i.e., the His model). The 
ability of the His-Cov model is also compared with some state-of-the-art 
classifiers based on machine learning algorithms which also incorporate 
both spectral and spatial features. 

2. Methods 

As with most object-based classification methods, the His-Cov model 
includes three general steps: image segmentation, feature extraction, 
and classification. After segmentation, the object-level spectral and 
spatial features are extracted from image objects. For the spectral 
feature, the histogram for each multispectral band is generated by using 
all the pixels in an object to represent the spectral variety of its pixels. 
For the spatial feature, principal component analysis (PCA) is utilized to 
compress all the bands of an image into the first principle component. 
Otsu thresholding (Otsu, 1979) is then applied to this single-band image 
to derive a binary map to reflect the general spatial configuration of the 
pixels in the objects. Binary spatial covariograms (or simply “spatial 
covariograms” for short) are then produced based on the spatial 
covariance in east–west and north–south directions to represent the 
spatial distribution of the pixels in an object. The spectral histogram and 
spatial covariagram are then fed into a curve matching approach based 
on the curve divergence between two objects for classification. During 
this process, each testing object is compared with all the training objects 
and is labeled with the class of the training object that has the minimum 

Fig. 1. Flowchart of the His-Cov model.  
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divergence with the testing object. The flowchart of the His-Cov model is 
shown in Fig. 1. 

2.1. Image segmentation 

Small objects can be problematic when exploring the spectral vari
ability and spatial distribution of pixels in an object since they may not 
provide sufficient data to be representative of a given land use type 
(Stow et al., 2012). Therefore, the expectation for image segmentation in 
this study is that a segment should include one dominant class. For 
example, a road object may include a crosswalk and cars, and a building 
object may include roof parts of different materials. Image segmentation 
based on the simple linear iterative clustering (SLIC) (Radhakrishna 
et al., 2012) and fractal net evolution algorithms (FNEA) (Comaniciu 
and Meer, 2002) are adopted in this study. The SLIC algorithm outputs a 
desired number of regular and compact objects with a low computa
tional load. The algorithm is first adopted to ensure that the segmented 
objects do not have extremely strange shapes, such as centroids outside 
their boundaries. A regular shape is beneficial to the exploration of 
spatial distribution. Since the SLIC may suffer from a severe under- 
segmentation problem for small objects with rich spatial details, the 
multi-resolution FNEA method is then applied to the SLIC output at a 
fine scale to produce the final segmentation result. The FNEA is a 
bottom-up region-merging approach based on local homogeneity 
criteria, with small image objects iteratively merged into larger ones 
(Comaniciu and Meer, 2002). 

2.2. Feature extraction 

The within-object spectral feature at a given multispectral band is 
represented using relative frequency (i.e., a histogram) or cumulative
frequency (i.e., a cumulative histogram) of all the pixels within this 
object. Relative means that the values are normalized between zero and 
one. The former is often referred to as the empirical probability distri
bution function (PDF), and the latter as the empirical cumulative dis
tribution function (CDF) of the objects. The PDF and CDF curves of an 
object reflect the empirical distributions of its pixel’s spectral variability 
and can better distinguish different land cover classes than traditional 
OBIA based on single-valued statistical summaries (Sridharan and Qiu, 
2013). 

To characterize the pixel spatial distribution of an object, we first 
transform the pixel values in a sample object to categorical variables to 
capture the general spatial configuration of the pixels. As in many other 
spectral-spatial classification methods (Dell’Acqua et al., 2004; Bene
diktsson et al., 2003), the first spectral principal component (PC) is used. 
The first PC maximizes information from all the original multispectral 
bands. The Otsu thresholding method is then applied to the first PC for 
each object to derive the spatial configuration of the pixels in that object. 
The Otsu thresholding algorithm returns a single intensity threshold that 
can be used to separate a group of pixels into two classes, foreground 
and background. This threshold is iteratively determined by minimizing 
intra-class intensity variance, or equivalently by maximizing inter-class 
variance (Otsu, 1979). After applying Otsu thresholding for each sample 
object, a binary map is derived in which pixel values less than or equal to 
the threshold are assigned a one (i.e., the foreground) and all other 
pixels are assigned a zero (i.e. the background). 

The covariogram and variogram are two common geostatistical 
measures for modeling spatial distributions. The former measures sim
ilarity (auto-covariance) between pixels and their neighbors at various 
distances, whereas the latter measures dissimilarity at various distances. 
The covariogram is formed from a series of spatial covariances at a range 
of lag distances. Atkinson and Naser (2010) used it to measure similarity 
for categorical variables. We use the covariogram to measure similarity 
for a binary variable. The spatial covariance of a binary variable in an 
object cov(h)obj is computed as: 

cov(h)obj =

∑M

i=1, i+h∈obj
I(ui+h= 1|ui = 1)

∑M

i=1
I(ui = 1)

(1)  

where ui represents a pixel u at location i in an object, M is the number of 
pixels in the object. I is an indicator function taking a value of one where 
the conditional statement is true and zero where it is false, whereas ui =

1 means the pixel ui belongs to the foreground (derived by the Otsu 
thresholding). h is a spatial lag in a certain direction, and ui+h is a pixel 
separated by distance h from pixel ui. The pixel ui+h is evaluated only if 
its location i + h is not beyond the border of the current object. The 
condition of the numerator is stricter than the condition of the denom
inator. Therefore, Eq. (1) is a conditional probability ranging from 0 to 
1. When h equals 0, the spatial covariance equals 1. The spatial 
covariance of an auto-correlated pattern is usually larger for two pixels 
separated by a smaller distance than a larger distance, whereas the 
random noise is presumed to have a constant spatial covariance (Tang 
et al., 2019). Since the spatial covariance is detected within an object, 
the maximum lag distance h cannot exceed the smaller dimension of the 
object. The spatial covariance along four directions (east, west, north 
and south) is detected. We use the average spatial covariance in the east 
and the west directions as one feature for the spatial covariance in the 
east–west direction instead of two. A similar calculation is used for the 
north–south direction. The spatial covariogram is then plotted with the 
lag distances on the x-axis and the spatial covariance on the y-axis. 

To illustrate, two pairs of simulated images are shown in Fig. 2. Each 
image can be viewed as an object. The first pair of images includes pixels 
with differing spatial aggregation, and the second pair has regular but 
different overall spatial patterns. Since these images consist of 50 × 50 
pixels, the maximum lag distance h is set at 40 pixels to plot the spatial 
covariogram. For the first pair (Fig. 2a), the Moran coefficient (MC) of 
the upper image has a high of 0.92, common for remotely sensed im
agery. The lower image is a random distribution of the pixels in the 
upper image, so it appears as random noise and the MC equals 0.09. The 
second pair of images both contain contrasting 1600 low value pixels 
and 900 high value pixels (Fig. 2b) but their patterns differ. The upper 
image includes four squares and the lower five stripes. The binary results 
using Otsu thresholding reflect the general spatial configuration of these 
images and are displayed beside their original counterparts. 

In the first pair of images, the histogram and cumulative histogram 
are identical, although the spatial distribution of the two images is very 
different. The spatial covariogram of the highly spatial auto-correlated 
image shows the typical curve common to most remotely sensed im
ages. It has higher values for smaller than larger distances, and it be
comes stabilized at a low value when a certain lag distance is reached, 
such as the case in the spatial covariogram for the east–west direction. 
The stabilized value is known as the sill and the lag distance at the sill is 
known as the correlation range. Correlations decrease with increasing 
range distances, but do not change beyond the range. However, in some 
cases high values reappear at longer distances because of the repetition 
of a pattern or spatial configuration, such as the case in the spatial 
covariogram for the north–south direction. The spatial covariogram of 
the lower image has little variation in either direction, indicating there is 
no spatial similarity in random noise. 

In the second pair of images, the spatial covariogram in both di
rections effectively distinguishes between the images with stripes and 
squares. However, neither histograms nor cumulative histograms can 
distinguish these different patterns because they have similar frequency 
distributions of spectral values for the pixels. The spatial covariogram of 
the stripe image in the east–west direction has more peaks than that of 
the square image, indicating more repetitions of the spatial configura
tion are found in the stripe image. Since the spatial distance between 
two repetitions (i.e., two stripes) is 9 pixels, the spatial lag between two 
peaks in the spatial covariogram also equals 9. The distance between 
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repetitions in the stripe image is smaller than that of the square image, as 
indicated by the two curves of their spatial covariograms for the east
–west direction. 

2.3. Classification 

For classification, the spectral histogram and spatial covariogram are 
used as the spectral and spatial features respectively for an object. Since 
both are in the form of curves, curve matching approaches are used. This 
approach evaluates the divergence between two image objects by 
comparing their feature curves. Six curve matching approaches were 
used in the experiments: Kullback-Leibler (KL) divergence (Chang, 
2000; Zhou and Qiu, 2015), Kolmogorov-Smirnov (KS) test (Burt and 
Barber, 1996; Sridharan and Qiu, 2013), curve angle mapper (CAM) 
(Kruse et al., 1993; Toure et al. 2013), cumulative curve angle mapper 
(CCAM), root sum squared differential area (RSSDA) (Hamada et al., 
2007; Stow et al., 2012), and cumulative root sum squared differential 
area (CRSSDA) (Zhou et al., 2016). The aim is to assess if the addition of 
object-level spatial features (i.e., His-Cov model) can enhance classifi
cation compared to using only spectral features (i.e., His model) with 
these six curve matching approaches. 

Given two objects, their feature curves are represented as P1, P2, and 
their cumulative feature curves are presented as F1, F2. The divergence D 
measured by the above six curve matching approaches is as follows. 

DKL =
1
2

[
∑n

i=1
P1(i)log

P1(i)
P2(i)

+
∑n

i=1
P2(i)log

P2(i)
P1(i)

]

(2)  

DKS =
∑n

i=1
max[F1(i) − F2(i) ] (3)  

DCAM = arccos

⎡

⎢
⎢
⎣

∑n

i=1
P1(i)P2(i)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
P1(i)2 ∑n

i=1
P2(i)2

√

⎤

⎥
⎥
⎦ (4)  

DCCAM = arccos

⎡

⎢
⎢
⎣

∑n

i=1
F1(i)F2(i)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
F1(i)2 ∑n

i=1
F2(i)2

√

⎤

⎥
⎥
⎦ (5)  

DRSSDA =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
[P1(i) − P2(i) ]

2

√

(6)  

DCRSSDA =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
[F1(i) − F2(i) ]

2

√

(7)  

where i is a discrete interval of the curves, and n is the number of in
tervals. For the spectral feature, curves P and F are the spectral histo
gram and cumulative histogram, respectively, and n is the number of 
histogram bins. For the spatial feature, curves P and F are the spatial 
covariogram and cumulative spatial covariogram, respectively, and n in 
this case represents the number of spatial lags. For an object, the above 
divergence is calculated for k multispectral bands in two directions 
(east–west and north–south). The number of bins and number of lags can 
differ. The final divergence was determined by combining spectral and 
spatial features according to Eq. (8): 

Dhist - cov = w⋅k⋅Dspectral + 2(1 − w)⋅Dspatial (8)  

where Dspectral and Dspatial represent divergences derived from spectral 

Fig. 2. Frequency distribution of spectral values and spatial covariogram for simulated images: (a) images with different spatial aggregation, (b) images with 
different overall patterns. 
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and spatial features, respectively. Both divergences are based on the 
same curve matching approach and are derived from one of the ap
proaches in Eqs. (2)–(7). k is the number of multispectral bands. w is the 
weight for the spectral feature ranging from 0 to 1. This weight can be 

decided by cross-validation or trial-and-error. 
To illustrate, two examples of KL based classification are shown in 

Fig. 3. The first object to be classified belongs to the parking lot class 
(Fig. 3a). The curve of this object and those of the samples with the five 

Fig. 3. Two examples of classification using curve matching approaches. The curves of spatial covariograms and curves of histograms, and the corresponding five 
most similar sample curves for (a) a parking lot object, (b) a road object. 
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smallest divergences for both the spectral and the spatial features are 
shown in the figure. This object is misclassified as the commercial and 
public class in the His model. However, the directional spatial cova
riograms show that the sample curve is most similar to the parking lot 
class, which is especially obvious in the east–west direction. Conse
quently, combining the spectral and spatial features in the His-Cov 
model correctly classifies this object to the parking lot class. The sec
ond illustrative object belongs to the road class (Fig. 3b). The curves of 
the spectral histogram show that the five curves with the smallest 
divergence from the object to be classified belong to either the road or 
parking lot classes. The curve with the minimum divergence belongs to a 
sample of the parking lot class, as shown most obviously in the red, red 
edge, and two near infrared (NIR) bands. Consequently, the object is 
misclassified as the parking lot class using the His model. However, the 
five sample curves of the spatial covariograms with the smallest diver
gence all belong to the road class, which easily corrects this object to the 
road class in the His-Cov model. These examples demonstrate how the 
spatial covariogram can help improve the classification of objects having 
similar spectral features. 

3. Experiments 

3.1. Datasets and study areas 

Test were conducted on three differing HSR images with the aim of 
classifying complex land cover and land use classes in urbanized areas. 
Typical land cover classes such as water and vegetation were excluded 
because spectral signatures based on curve matching classifiers have 
been successfully demonstrated for these classes (Stow et al., 2012; 
Sridharan and Qiu, 2013). Although there are some trees of several 
different species scattered in the study area, identification of vegetation 
types was also excluded. Our focus is on classes having similar spectral 
responses and therefore easily misclassified, such as building and road, 
or more complex function zones such as residential, commercial and 
public. 

The three images were acquired from different sources: IKONOS, 
WorldView-2 and WorldView-3. The spatial resolution of the multi
spectral bands for all three images was improved using the Gram–Sch
midt pansharpening method. In the IKONOS image with a 1 m spatial 
resolution, three simple land cover classes can be visually distinguished, 
including building, road, and barren land. These three classes all include 
objects with a concreate surface, causing the classification difficult. The 
WorldView-2 and WorldView-3 images are with a sub-meter spatial 
resolution, five more detailed land use classes can be visually identified, 
including residential, commercial and public, road, parking lot, and 
barren land. The residential and the commercial and public areas in 
WorldView-2 are located separately in most places, therefore it is easy to 

visually differentiate the residential from the commercial and public 
classes. However, these two classes in WorldView-3 image are 
geographically mixed up and their spectral reflectance is more similar. 
Thus, the identification of objects of the residential, commercial and 
public classes was aided by referencing Google Earth and Open
StreetMap for the WorldView-3 image. Additionally, the parking lot and 
the road classes are also difficult to be classified in the WorldView-2 and 
WorldView-3 images, since both classes include cars and parking lines or 
crosswalk. The information of three study areas and the characteristics 
of classes are list in Table 1. 

The three images and samples are shown in Fig. 4. Table 2 provides 
information on the samples used in the study. The samples are used for 
either training or testing purposes. A 33.3% training versus 66.7% 
testing sample split was used, selected randomly from the sample 
dataset to alleviate the influence of spatial autocorrelation. Since sam
pling has a great effect on classification accuracies (Ye et al., 2018; Li 
et al., 2018), all classifications were performed ten times based on 
different training and testing samples selected randomly and indepen
dently to ensure a robust test. 

3.2. Segmentation and classification 

Image segmentation based on the SLIC and FNEA were applied in this 
study. The quality of image segmentation is important to the outcome of 
any object-based classification (Liu et al., 2012). A supervised method 
namely adjusted rand index (ARI) (Hubert and Arabie, 1985) was used 
for evaluating the segmentation quality on samples. The ARI is built on 
counting pairs of items in which two segments agree or disagree. A large 
ARI value indicates a high correspondence of the segmentation result to 
the reference, with an upper bound of 1. 

For the three study areas, the six curve matching approaches (KL, KS, 
CAM, CCAM, RSSDA and CRSSDA) introduced previously were used. 
Each approach was applied with spectral features only (i.e., the His 
model) as well as with both spectral and spatial features (i.e., the His- 
Cov model), resulting in twelve experiments on each of the images. 
For further comparison, four state-of-the-art classification methods 
based on machine learning algorithms were applied: (1) support vector 
machine (SVM), (2) random forest (RF) classification, (3) extreme 
gradient boosting (XGBoost) (Chen and Guestrin, 2016), and (4) struc
tural feature set (SFS) (Huang et al., 2007). 

Among these four methods, SVM and RF have been used commonly 
in object-based classification. XGBoost, a variant of the gradient boost
ing machine, is an ensemble of classification and regression tree. 
Twenty-seven object-level statistical summaries were used in these three 
methods, including seven spectral features, six gray-level co-occurrence 
matrix (GLCM) texture features, and fourteen semivariogram features, 
as listed in Table 3. The spectral features are calculated for each 

Table 1 
The information of three study areas and characteristics of classes.  

Image IKONOS WorldView-2 WorldView-3 

Location Beijing Dallas Beijing 
Coordinate 39◦57′57′′– 39◦58′30′′N, 

116◦23′19′′– 116◦24′46′′E 
32◦50′18′′– 32◦51′21′′N, 96◦45′49′′– 
96◦47′8′′W 

39◦59′52′′–40◦0′31′′N, 116◦23′37′′–116◦24′7′′E 

Data product 4-band bundle, S2A 8-band bundle, S2A 4-band bundle, S2A 
Spatial resolution 1 m 0.5 m 0.4 m 
Image size 2048 × 1024 4000 × 4000 1760 × 3035 
Acquisition time May 2000 January 2010 September 2014 
Classes and 

characteristics 
Barren land: includes bare soil and 
playground. 

Barren land: includes soil land, playground and 
under-developed area. 

Barren land: mainly playground. 

Road: main roads with cars inside. Road: main roads with crosswalk and cars 
inside and some narrow roads. 

Road: main roads with crosswalk and cars inside. 

Building: a mix of residential, 
commercial and public. 

Commercial and public: includes shopping 
centers, schools, factories, etc. 

Commercial and public: includes shopping centers, schools, office 
buildings, etc.  

Residential: buildings with smaller size than 
commercial and public. 

Residential: buildings are of a similar size to commercial and 
public, but away from main roads.  

Parking lot: with parking lines and cars inside. Parking lot: with parking lines and cars inside.  
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multispectral band of each object. One GLCM is computed for each ob
ject to describe the co-occurrences of the pixels that are separated at 
one-pixel lag distance interval inside the object. The average value in all 
four directions on all multispectral bands is derived (Haralick, 1979; 

Hall-Beyer, 2007). Similarly, the semivariogram features are extracted 
for each object, also based on the average value for all four directions 
and all multispectral bands. The equations for these semivariogram 
features can be found in Yue et al. (2013) and Wu et al. (2015). The SFS 

Fig. 4. Three images in true color composite used for the experiments: (a) IKONOS image and samples, (b) WorldView-2 image and samples, (c) WorldView-3 image 
and samples. 

Table 2 
The samples per class for the study areas.  

IKONOS WorldView-2 WorldView-3 

Class # of objects # of pixels Class # of objects # of pixels Class # of objects # of pixels 

Barren land 102 95,791 Commercial and public 139 340,306 Commercial and public 148 270,514 
Building 324 245,923 Barren land 126 433,364 Barren land 34 101,805 
Road 74 142,428 Road 188 579,748 Road 199 514,983    

Parking lot 93 265,134 Parking lot 82 168,140    
Residential 151 192,990 Residential 207 405,180 

Total 500 484,142 Total 697 1,811,542 Total 670 1,460,622  
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method uses statistical summaries of the histogram along four directions 
in the objects. These statistical features include length, width, pixel 
shape index, weighted mean, ratio, and standard deviation. Compared 
with the His model, the SFS method uses only six features based on 
summaries of the histogram of the object in four directions, rather than 
the complete histogram of the object itself. Also, the SFS is based on the 
SVM classifier and the His model is based on the curve matching 
approach. For the SVM-based classification, a non-linear radial basis 
kernel was chosen. A 10-fold cross-validation was applied to select 
optimal parameters for the penalization constant and the kernel 
parameter. For the RF classification, the number of trees was set to 10, 
and the supported criteria were based on the Gini impurity. For the 
XGBoost method, a tree-based booster was used, and the maximum 
depth of tree was set to 6. 

The weight for the spectral feature w in Eq. (8) was set automatically 
from 0 to 1 with an increment of 0.01 using a k-fold cross-validation 
scheme at each performance, with k set at 5. The selection was 
repeated 50 times, and the value with the majority of votes from these 
50 repetitions was selected. The number of histogram bins was set to 
100. The number of spatial lags for the spatial covariaogram was set to 
50 pixels, derived from the average dimension of the objects. 

4. Results and analysis 

4.1. Segmentation quality 

To assess segmentation quality, Table 4 shows the overall ARI of 
segmentation results and the ARI for each class. The reference segments 

are delineated manually. As can be seen, the overall ARI ranges from 
0.88 to 0.90 for three study areas. The relatively high accuracy of image 
segmentation ensures the quality of subsequent image classification. For 
specific classes, the segmentation has a good performance on the small 
objects such as the residential and the commercial and public classes. 
The building class in the IKONOS image, the commercial and public 
class and the residential class in the WorldView-2 and WorldView-3 
images, dominated by the FNEA segmentation result, show high ARIs 
(above 0.90). However, large objects such as the barren land, the road, 
and the parking lot classes have low ARIs (between 0.65 and 0.87). 
These three classes are usually of large size and therefore are over- 
segmented by the SLIC segmentation. For example, a good segmenta
tion of a road object is expected to result in a long, narrow shape. Many 
small and compact objects segmented by SLIC for the road class are 
actually more suited to a curve matching based classification. This is 
because roads segmented as one complete, long object have a greater 
chance of being misclassified by curve matching approaches, since the 
spatial dimensions of the roads could be very different in size and thus 
may greatly affect their effective ranges. These large objects are over- 
segmented intentionally because over-segmentation is beneficial to the 
His-Cov model. The final classification map will be formed when the 
adjacent small segments of the same classes are recombined into a large 
object. 

4.2. Classification results 

There are sixteen classification methods (twelve curve matching 
approaches and four machine learning algorithms) for each study area, 
and each method is performed ten times using different samples. One 
classification result randomly selected from the ten performances is 
shown in Figs. 5–7. Among these, the results using the four machine 
learning methods are all presented. For the curve matching approaches, 
only the KL and CRSSDA are displayed, with His and His-Cov models, 
respectively, since these two approaches have the best performance, as 
discussed below. All the classified objects are delineated by polygons 
with the color of their boundary corresponding to their reference class 
label, and the misclassified objects are filled with the color corre
sponding to the misclassified class label. To provide a quantitative 
assessment, the classification accuracy was calculated. The overall ac
curacy based on the average value from the ten performances is shown 
in Table 5. The standard deviations of accuracies vary from 0.1 to 0.3 for 
all the methods, thus are not shown in the table. The overall classifica
tion accuracy from one sampling (correspond to Figs. 5–7) and F1-score 
of each class are shown in Tables 6 and 7. 

In the classification results for the IKONOS image (Fig. 5), most small 
buildings with a regular shape are correctly classified. Larger buildings, 
however, may be misclassified as road objects, as in the SVM, XGBoost 
and CRSSDA results (Fig. 5a, c and g). The misclassification of the road 
class as buildings exists in all results, although worse in some than 
others. The SFS result (Fig. 5d) includes many barren land objects, most 
of them misclassified. This class has the smallest sample size, which 
suggests that the SFS method does not properly consider the unbalanced 
sample size. Barren land with a soil surface is easier to identify than that 
with a concrete surface (e.g., a playground), and the latter is sometimes 
confused with the smaller building such as in the RF, XGBoost, SFS and 
KL results (Fig. 5b-e). The His-Cov model correctly classified the road 
objects in the north–south direction (in the right portion of the image in 
Fig. 5f and h), which were misclassified by the His model based on the 
KL and CRSSDA approaches (Fig. 5e and g). 

More complex classes are involved in the WorldView-2 image. As can 
be seen from classification results in Fig. 6, the residential class usually 
has small sized, dark colored roofs, whereas most commercial and public 
class objects have large sized, light colored roofs. The parking lot class 
and the road class are easily confused with each other since both tend to 
be affected by vehicles within the objects. The SVM, KL and CRSSDA 
approaches (Fig. 6a, e and g) misclassify roads as parking lots, whereas 

Table 3 
The object-level features used in the SVM, RF and XGBoost methods.  

Spectral features Semivariogram features 

Mean Ratio between total variance and first semivariance 
(RVF) 

Median Ratio between the first and the second semivariance 
(RSF) 

Standard deviation First derivative near the origin (FDO) 
Skewness Second derivative at third lag (SDT) 
Kurtosis First maximum lag value (FML) 
First quartile Mean of the semivariogram values up to the first 

maximum (MFM) 
Third quartile Variance of the semivariogram values up to the first 

maximum (VFM) 
GLCM texture features Difference between MFM and the first semivariance 

(DMF) 
Contrast Ratio between the first local maximum semivariance and 

MFM (RMM) 
Homogeneity Second-order difference between first lag and first 

maximum (SDF) 
Dissimilarity Area until the first maximum (AFM) 
Energy Distance between the first and the second local maxima 

(DMS) 
Correlation Distance between the first local maximum and the first 

local minimum (DMM) 
Angular second moment 

(ASM) 
Hole area (HA)  

Table 4 
The ARI of segmentation results for three study areas.  

IKONOS WorldView-2 WorldView-3 

Class ARI Class ARI Class ARI 

Barren 
land 

0.86 Commercial and 
public 

0.91 Commercial and 
public 

0.92 

Building 0.91 Barren land 0.87 Barren land 0.65 
Road 0.82 Road 0.84 Road 0.82   

Parking lot 0.82 Parking lot 0.81   
Residential 0.92 Residential 0.90 

Overall 0.90 Overall 0.89 Overall 0.88  
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the His-Cov model was able to correct some of these misclassifications 
with the KL and CRSSDA approaches (Fig. 6f and h). The RF and SFS 
methods (Fig. 6b and d) misclassified some commercial and public ob
jects as parking lots, while the road class is mostly correctly classified by 
SFS (Fig. 6d). 

The residential class and the commercial and public class are more 
easily confused with each other in the WorldView-3 image than in the 
WorldView-2 image because their spectral reflectance is more similar. 
All methods suffer from the misclassification of these two classes, 
although four of the curve matching approaches (Fig. 7e–h) perform 
slightly better than the machine learning algorithms (Fig. 7a–d) in the 
bottom right part of the image. Some residential class and commercial 
and public class objects are misclassified to the road class in the SVM and 
SFS results (Fig. 7a and d). Many residential objects are misclassified as 
parking lots in the KL and CRSSDA results (Fig. 7e and g), although the 
His-Cov model corrects some with its additional consideration of spatial 
distribution. However, the road objects in the east–west direction in the 
lower middle of the image are severely misclassified, and even the His- 
Cov model can only correct a few of them. 

As revealed by the average classification accuracy in Table 5, the six 
statistical summaries of the histogram in the SFS method do not fully 
utilize the rich information within the objects, resulting in the lowest 
accuracy. The SVM method has the worst performance among the three 
methods based on the combination of spectral, GLCM and 

semivariogram features. The XGBoost method has the highest accuracy 
among the four machine learning methods. It is the only method able to 
achieve results comparable to the curve matching approaches based on 
the His-Cov model. The His-Cov model consistently produces higher 
accuracies than the His model for all six curve matching approaches. In 
fact, not only is the average accuracy for the His-Cov model higher, but 
also the accuracy for all the performances is highest among all the ten 
samplings. This result demonstrates that the spatial covariogram is a 
powerful object-based feature that can capture spatial distributions 
within objects and thus enhance curve matching approaches to classi
fication based on spectral features only. 

From the F1-score in Tables 6–8, the barren land class in the IKONOS 
image, the commercial and public and the barren land classes in the 
WorldView-2 image, and the barren land, the residential and the road 
classes in the WorldView-3 image have the greatest improvements. The 
other classes do not constantly result in the highest accuracy using the 
His-Cov model, but have higher accuracy than the machine learning 
methods and the His model for most curve matching approaches. The 
machine learning methods show a few exceptions: the road class in the 
IKONOS image using the XGBoost method, the parking lot and the road 
classes in the WorldView-2 image using the XGBoost, and the parking lot 
class in the WorldView-3 image using the SFS method achieve the ac
curacy that is higher than or comparable with the His-Cov model. The 
accuracies of the His model are generally higher than the machine 

Fig. 5. Classification results using different methods for the IKONOS image (left) and their zoomed view for the subset (right): (a) SVM, (b) RF, (c) XGBoost, (d) SFS, 
(e) KL with His, (f) KL with His-Cov, (g) CRSSDA with His, and (h) CRSSDA with His-Cov. 
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learning methods and lower than the His-cov model, except for the 
parking lot class in the WorldView-2 and WorldView-3 images, where 
the machine learning methods perform better than the His model. The 
F1-score accuracy shows that the classification of spectral similar classes 
(e.g., barren land, road, parking lot) can be improved by spatial features, 
either from the semivariogram features or spatial covariogram. In gen
eral, the classes show the greatest improvements when the spatial 
covariogram is introduced by the His-Cov model most of the time. 

4.3. His-Cov model on each class 

It is of interest to further explore how the His-Cov model performs for 

each class compared with the His model. For the six curve matching 
approaches, changes in numbers and accuracies (at the object level) in 
each class for the His-Cov model relative to the His model are shown in 
Fig. 8 for one of the ten performances. This allows approaches based on 
the His-Cov model to be compared with those based on the His model. 
Positive values for the object number or accuracy indicate an increase 
from applying the His-Cov model, whereas negative values indicate a 
decrease. 

For most curve matching approaches, the number of buildings in
creases most among all the classes in the IKONOS image, and the 
number of roads decreases after applying the His-Cov model (Fig. 8a). 
All methods have accuracy increases for building and road classes 

Fig. 6. Classification results using different methods for the WorldView-2 image (left) and their zoomed view for the subset (right): (a) SVM, (b) RF, (c) XGBoost, (d) 
SFS, (e) KL with His, (f) KL with His-Cov, (g) CRSSDA with His, and (h) CRSSDA with His-Cov. 
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Fig. 7. Classification results using different methods for the WorldView-3 (left) and their zoomed view for the subset (right): (a) SVM, (b) RF, (c) XGBoost, (d) SFS, 
(e) KL with His, (f) KL with His-Cov, (g) CRSSDA with His, and (h) CRSSDA with His-Cov. 

Table 5 
The average of the overall accuracy (%) of the classification results over ten 
samplings. The highest accuracies among all methods are marked in bold.  

Type Method IKONOS WorldView- 
2 

WorldView- 
3 

Machine learning 
algorithms 

SVM 79.37 73.61 63.36 
RF 81.14 71.85 66.47 
XGBoost 82.31 76.80 67.99 
SFS 76.88 72.39 62.86 

Curve matching 
approaches based on His 
model 

KL 81.83 74.64 68.57 
KS 81.14 73.31 64.41 
CAM 81.26 73.81 65.37 
CCAM 81.74 73.85 64.65 
RSSDA 80.78 73.76 64.27 
CRSSDA 81.74 74.26 64.99 

Curve matching 
approaches based on His- 
Cov model 

KL 82.88 77.05 70.36 
KS 82.76 75.42 67.38 
CAM 82.85 76.21 69.37 
CCAM 83.42 75.51 67.09 
RSSDA 81.98 76.51 68.03 
CRSSDA 83.54 75.83 67.38  

Table 6 
The overall accuracy (%) and the F1-score per class of classification results from 
one sampling for the IKONOS image.  

Type Method Total Barren 
land 

Building Road 

Machine learning 
algorithms 

SVM 82.28 0.72 0.88 0.67 
RF 80.78 0.64 0.87 0.70 
XGBoost 83.78 0.69 0.89 0.78 
SFS 73.87 0.61 0.83 0.51 

Curve matching approaches 
based on His model 

KL 82.58 0.75 0.88 0.70 
KS 81.98 0.72 0.87 0.72 
CAM 81.38 0.74 0.87 0.68 
CCAM 83.78 0.75 0.89 0.73 
RSSDA 79.88 0.70 0.85 0.70 
CRSSDA 83.78 0.75 0.89 0.73 

Curve matching approaches 
based on His-Cov model 

KL 83.78 0.72 0.89 0.76 
KS 84.08 0.77 0.89 0.71 
CAM 83.18 0.77 0.88 0.70 
CCAM 86.19 0.81 0.91 0.73 
RSSDA 81.08 0.70 0.87 0.72 
CRSSDA 86.49 0.81 0.91 0.73  
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(Fig. 8b), with the latter more obvious than the former. This indicates 
that most misclassification of road as building using the His model is 
corrected by applying the His-Cov model. For the WorldView-2 image in 
Fig. 8c, numbers in the commercial and public class and the parking lot 
class decrease whereas numbers in the residential class and the road 
class increase when introducing the His-Cov model. The accuracies in 
Fig. 8d shows that the parking lot, residential and road classes benefit 
most from the His-Cov model. A similar situation is also observed in the 
WorldView-3 image (Fig. 8e and f). Reductions in the parking lot class 
lead to the greatest improvement in accuracy. The increase in residential 
class numbers also generates an improvement in accuracy, but not as 
much as in the WorldView-2 result. The number and accuracy of the 
road and the barren land classes do not show an obvious change for most 
methods. The numbers for the commercial and public class vary in both 
the WorldView-2 and WorldView-3 images, but accuracy improvement 
is limited or even decreases slightly. This suggests that the commercial 
and public class is the most difficult to identify. In general, objects with a 
distinctive spatial distribution, such as parking lots with vehicles and 
parking lines, are more recognizable using the His-Cov model, whereas 
the objects without a distinctive spatial distribution inside, such as the 
barren land and the commercial and public classes, are difficult to 
identify even with the His-Cov model. Overall in an urban environment, 
the spatial covariogram has a positive impact on typical land use classes 
most of the time, with residential, road and parking lot classes benefit
ting the most from applying the His-Cov model. 

4.4. Computational cost 

The total computational cost of each classification method is 
compared in Table 9. All computations used Python on a laptop with 
1.8-GHz Intel Core-i7 CPU and 16-GB memory. 

The most efficient methods are curve matching approaches based on 
the His model since only the histogram-based spectral features are 
extracted. For this model, feature extraction accounts for 37% to 77% of 
the time used, implying classification takes more than half of the 
computation time for some classifiers (KL, CAM and CCAM). The SFS 
method is based on the SVM classifier and almost all time is spent on 
feature extraction. It extracts seven object-level spectral features and six 
spatial features from directional histograms, without calculating semi
variogram features, less efficient than the curve matching approaches 
based on the His model. 

The machine learning algorithms involving semivariogram (SVM, RF 
and XGBoost) are markedly more computational intense. The feature 
extraction for these machine learning algorithms and the curve match
ing approaches based on the His-Cov model accounts for more than 98% 
of the total computational cost. The total cost for these machine learning 
algorithms compared with the curve matching approaches based on the 
His-cov model is about 3.5, 13.7 and 8.7 times longer for the IKONOS, 
WorldView-2 and WorldView-3 images, respectively. The main reason is 
that the semivariogram is calculated based on continuous variables (i.e., 
pixel values) for each multi-spectral band, whereas the spatial cova
variogram is estimated based on binary variables (i.e., Otsu thresholding 
results) for only one band (i.e., the first PC). Therefore, the spatial fea
tures extracting from the binary spatial covariogram is more efficient 

Table 7 
The overall accuracy (%) and the F1-score per class of classification results from one sampling for the WorldView-2 image.  

Type Method Total Commercial and public Parking lot Barren land Residential Road 

Machine learning algorithms SVM 72.69 0.64 0.51 0.85 0.77 0.78 
RF 69.03 0.59 0.45 0.75 0.72 0.80 
XGBoost 75.70 0.62 0.62 0.81 0.81 0.83 
SFS 72.47 0.63 0.52 0.80 0.78 0.80 

Curve matching approaches based on His model KL 74.84 0.74 0.53 0.91 0.76 0.75 
KS 74.62 0.73 0.47 0.91 0.72 0.80 
CAM 72.47 0.72 0.44 0.89 0.68 0.77 
CCAM 73.12 0.71 0.45 0.89 0.74 0.77 
RSSDA 74.41 0.76 0.48 0.89 0.72 0.78 
CRSSDA 73.55 0.71 0.47 0.89 0.75 0.76 

Curve matching approaches based on His-Cov model KL 78.28 0.75 0.62 0.89 0.78 0.81 
KS 77.63 0.76 0.53 0.90 0.79 0.81 
CAM 77.85 0.74 0.55 0.89 0.80 0.81 
CCAM 78.28 0.74 0.57 0.89 0.82 0.80 
RSSDA 78.71 0.76 0.52 0.92 0.81 0.83 
CRSSDA 78.49 0.75 0.55 0.90 0.83 0.80  

Table 8 
The overall accuracy (%) and the F1-score per class of classification results from one sampling for the WorldView-3 image.  

Type Method Total Commercial and public Parking lot Barren land Residential Road 

Machine learning algorithms SVM 60.85 0.50 0.64 0.67 0.47 0.82 
RF 66.00 0.48 0.69 0.71 0.62 0.83 
XGBoost 65.55 0.45 0.70 0.65 0.59 0.86 
SFS 60.85 0.44 0.75 0.60 0.54 0.76 

Curve matching approaches based on His model KL 67.56 0.46 0.56 0.81 0.65 0.88 
KS 65.77 0.48 0.46 0.86 0.64 0.87 
CAM 67.79 0.49 0.51 0.83 0.65 0.89 
CCAM 65.77 0.48 0.50 0.86 0.65 0.85 
RSSDA 67.11 0.51 0.47 0.83 0.64 0.89 
CRSSDA 65.77 0.49 0.51 0.86 0.65 0.84 

Curve matching approaches based on His-Cov model KL 72.26 0.49 0.72 0.81 0.69 0.90 
KS 69.57 0.49 0.59 0.86 0.69 0.87 
CAM 72.26 0.50 0.70 0.83 0.70 0.89 
CCAM 69.80 0.48 0.67 0.86 0.68 0.85 
RSSDA 70.69 0.53 0.59 0.86 0.68 0.89 
CRSSDA 70.25 0.50 0.66 0.86 0.69 0.86  
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Fig. 8. Comparison of the six curving matching approaches showing increase/decrease of object numbers and accuracy for each class based on the His-Cov model 
relative to the His model. 
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than that from the traditional semivariogram. 

4.5. Parameter setting 

The new parameter introduced in the His-Cov model is the weight w 
(proportion of influence for the spectral feature), which decides the 
balance between spectral and spatial features. This parameter was set 
automatically using a k-fold cross-validation, where k equals 5. The 
selection was repeated 50 times, and the value with the majority of votes 
was selected. In order to check the influence of the different weights, 
Fig. 9 displays a sensitivity analysis of the parameter for one perfor
mance. The weights vary from 0 to 1 with an increment of 0.01 for all six 
curve matching approaches. The accuracies of corresponding ap
proaches based on the His model are shown with horizontal dashed 
lines. The optimal weight with the maximum accuracy is marked by a 
cross, and the weight selected by cross-validation is marked by a dot in 
the figure. Generally, an appropriate weight selection is dependent on 
the curve matching approach. Most approaches prefer a large weight for 
spectral features. For the CAM and RSSDA approaches, accuracy im
proves more rapidly when the spatial distribution is introduced, so 
median to large values of weights can all lead to a higher accuracy for 
the His-Cov model. The two cumulative approaches, CCAM and 
CRSSDA, have slower improvements in accuracy when incorporating 
spatial distribution, leading to a large optimal weight when maximum 
accuracy is achieved. The KL approach, although not based on cumu
lative curves, also requires a large weight (around 0.9), primarily 
because its accuracy for the His model is already relatively high among 
all six approaches. The KS approach also prefers a large weight, but the 
increase in accuracy is faster than the other two cumulative approaches 
(CCAM and CRSSDA). All the selected weights are close to or even equal 
their optimal weights. This sensitivity analysis demonstrates that the 
His-Cov model with appropriate weights improves the accuracy of all 

curve matching approaches relative to the His model, and provides 
guidance on setting optimal weights for the different curve matching 
approaches. 

The number of lags was set to 50 according to the average dimension 
of objects in this study. When the dimension of an object is less than 50 
pixels, the spatial covariogram reaches 0 before the lag distance reaches 
50. The actual range when the spatial covariance reaches 0 is called the 
effective range. One concern is whether different effective ranges be
tween samples affects the classification results. Commonly, the spatial 
covariogram decreases sharply as the distance lag increases. Therefore, 
if a sample has a large effective range and another a small one, the 
difference between two spatial covariogram curves at a large lag dis
tance is usually small. In this study, we adopted two measures to prevent 
a possible spatial covariogram mismatch due to different effective 
ranges. First, ten trials with different samples ensure that effective 
ranges of the spatial covariogram for the training and testing samples 
would be balanced in general. For example, the testing object in Fig. 3b 
has a small effective range in the east–west direction. Similarly, some 
training objects of the road class also have small effective ranges in the 
east–west direction. These should match well with the testing object. 
Second, as previously mentioned, SLIC segmentation was performed to 
ensure that an object will not have an overly long shape and thus the 
effective range will not be too large. 

The foreground and background of the spatial configuration from the 
binary map was self-defined, with the foreground assigned to pixels with 
values less than or equal to a threshold. Technically, the foreground and 
background can be switched. We chose the dark pixels as foreground 
because the light pixels are usually a minority in an object, such as ve
hicles in a road object and parking lines in a parking lot object. If the 
light pixels are used as foreground, some objects belonging to the same 
class may have very different spatial distributions. 

5. Discussion 

The developed His-Cov model has several advantages over other 
traditional OBIA classification. First, the His-Cov model is able to 
incorporate rich spectral and spatial features in the form of curves 
without conducting feature selection or optimization, which is usually 
required in a traditional OBIA classification. Second, the His-Cov model 
performs well on classifying spectral similar classes, which are difficult 
to be distinguished by histogram-based features in the curve matching 
approaches. The performance of the His-Cov model is generally superior 
to traditional classifiers based on the other spatial features (e.g., semi
variogram) in classifying complex land cover classes such as the resi
dential and the commercial and public classes, and the road and the 
parking lot classes. Finally, the spatial feature extraction from spatial 
covariogram is easier than from (semi)variogram. Because of the 
extensive computation load, a common way to calculate the (semi) 
variogram is through modeling from a few samples. Setting appropriate 
parameters for the (semi)variogram model, such as sill and range, can be 
subjective and problematic. The His-Cov model, on the other hand, es
timates spatial covariogram from all the pixels in the object and avoids 
the involvement of expert knowledge in determining initial parameters 
during the modeling process. The His-Cov model uses binary variables to 
reflect the general spatial configuration of the pixels. The binary vari
ables are less sensitive to noise, makes the spatial distribution infor
mation extracted more robust and less computationally expensive. 
Additionally, (hyper-)parameters are not required in the curve matching 
approaches, thus parameter setting for the His-Cov model based classi
fication is easier than some traditional classifiers such as SVM. 

The His-Cov model developed here integrates spectral and spatial 
features by treating them all as curves. Instead of using statistical 
summaries of the objects’ features, all the pixels of an object are used to 
reflect as much as possible of their spectral variability and spatial dis
tribution. By incorporating spatial distribution, the His-Cov model im
proves the performance of the curve matching approaches based on 

Table 9 
Computational cost of all classification methods (unit: second), and the time for 
feature extraction is reported as the percentage of the total time in parentheses.  

Type Method IKONOS WorldView-2 WorldView- 
3 

Machine learning 
algorithms 

SVM 1292.3 
(100%) 

19916.3 
(100%) 

9079.5 
(100%) 

RF 1292.2 
(100%) 

19916.2 
(100%) 

9078.9 
(100%) 

XGBoost 1292.4 
(100%) 

19917.0 
(100%) 

9080.1 
(100%) 

SFS 223.4 
(100%) 

180.7 
(100%) 

270.0 
(100%) 

Curve matching 
approaches based on 
His model 

KL 20.0 
(47%) 

95.5 (45%) 107.7 (44%) 

KS 13.0 
(72%) 

59.7 (72%) 62.0 (76%) 

CAM 23.9 
(39%) 

114.2 (38%) 112.3 (42%) 

CCAM 24.6 
(38%) 

115.8 (37%) 94.6 (50%) 

RSSDA 14.5 
(64%) 

68.0 (64%) 61.3 (77%) 

CRSSDA 14.6 
(64%) 

69.7 (62%) 61.5 (77%) 

Curve matching 
approaches based on 
His-Cov model 

KL 289.8 
(99%) 

1452.7 
(99%) 

1045.7 
(99%) 

KS 287.7 
(99%) 

1447.3 
(100%) 

1039.4 
(99%) 

CAM 290.7 
(98%) 

1454.9 
(99%) 

1048.3 
(99%) 

CCAM 291.2 
(98%) 

1455.3 
(99%) 

1049.0 
(99%) 

RSSDA 288.2 
(99%) 

1448.6 
(100%) 

1040.7 
(99%) 

CRSSDA 288.5 
(99%) 

1449.0 
(100%) 

1040.9 
(99%)  
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spectral features only. It also demonstrates advantages in both classifi
cation accuracy and efficiency over some state-of-the-art classifiers 
based on machine learning algorithms, which also consider spectral and 
spatial features. Objects with a distinctive spatial distribution benefit the 
most from the His-Cov model. In the worst scenario, if an object is very 
small and cannot provide useful spatial information, the His-Cov model 
degrades to the His model that does not consider spatial features. 
Although only tested in typical urban environments, the His-Cov model 
theoretically works in other environments. Potentially, the His-Cov 
could be used to combine the spatial features from HSR data with 
spectral features from hyperspectral data to classify, for example, tree 
species or crop types. 

Given our experimental results, two types of misclassification require 
further discussion. One is the case where an object is correctly classified 
in the curve matching approaches with the His model but misclassified 
with the His-Cov model. This type of error is likely to happen to those 
classes without a distinctive spatial distribution such as the commercial 
and public class. A possible solution to the problem is to apply different 
weights to different classes. For example, assigning a larger spatial 
weight to the classes with a distinctive spatial distribution such as road 
and parking lot, and a smaller spatial weight to the classes without a 
distinctive spatial distribution such as commercial and public. Another 
solution is to make use of the uncertainty ratio of the classification based 

on the His and His-Cov models. When the two most similar samples of an 
object are of different classes but have very close divergence values for 
the spectral features (i.e., the uncertainty ratio is close to 1), the un
certainty of the classification by the His model is large. The classification 
of this object should be given a greater chance to change to a different 
class in the His-Cov model. On the other hand, if the uncertainty ratio is 
small in the His model, this object should be given a smaller chance to 
change to another class in the His-Cov model. 

The second type of misclassification occurs when both the His and 
His-Cov models cannot correctly classify the object. Acquiring addi
tional features may be required. For example, some road objects in the 
east–west direction are misclassified as the residential class or the 
commercial and public class in the WorldView-3 image (Fig. 7). This is 
because most sample objects of the road class are oriented north–south, 
resulting in matching problems in the east–west direction. This is not 
necessarily a sampling issue since topography or urban structure could 
result in a predominant orientation for roads. However, it is not common 
for buildings to be found in the middle of a road (although structures are 
occasionally built above highways). This knowledge of relative spatial 
location for object classes may be introduced into the curve matching 
approaches to correctly classify these objects into the road class. 

Fig. 9. Plots of overall classification accuracies against weight w, with the maximum accuracy indicated by a cross, and the selected weight indicated by a dot: (a) the 
IKONOS image, (b) the WorldView-2 image, and (c) the WorldView-3 image. 
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6. Conclusion 

This paper proposes a His-Cov model to enhance object-based clas
sification by using curve matching approaches for both spectral vari
ability and spatial distribution in the objects being considered. The 
spectral variability is derived from histograms or cumulative histograms 
of the pixel values in an object across all the multispectral bands, while 
their spatial distribution is established by the binary spatial covariogram 
in two directions. The method was tested on three different HSR images 
for land cover and land use classification in typical urban environments. 
The His-Cov model based on six curve matching approaches was 
compared with the corresponding approaches based on the His model, as 
well as with four advanced machine learning algorithms that also 
incorporate spectral and spatial features. All the results show that the 
proposed method can achieve higher accuracies, demonstrating the 
advantage of the spatial covariogram in characterizing the spatial dis
tribution of the pixels in an object. The His-Cov model is especially 
suited for classifying objects containing distinctive spatial distribution 
information such as road and parking lot classes. Currently, however, 
only within-object spatial features are considered. In the future, we 
intend to consider the inclusion of between-object spatial relationships 
using the curve matching approach. Incorporating known spatial re
lationships between objects to be classified, such as road segments 
forming continuous links uninterrupted by other classes such as build
ings, should further improve classification accuracy. An integration of 
machine learning and curve matching approaches will also be explored 
in an attempt to provide a fully generalized classification capability. 
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