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Object-based image analysis (OBIA) has been widely used to classify high spatial resolution (HSR) imagery. In a
traditional OBIA, object-level statistical summaries such as mean values are usually used for classification. This
implies that the spectral values within objects follow a Gaussian distribution. However, the pixel values in an
object do not necessarily conform to a Gaussian distribution because of within object spectral heterogeneity.
Consequently, these statistical summaries may misrepresent the features of the object. This shortcoming is
addressed in this paper by integrating both the spectral variability and the spatial distribution of the pixels within
objects to improve the traditional object-based image classification. The spectral variability is represented by
histograms of the pixel values in the object, and the spatial distribution is characterized by the binary spatial
covariogram of these pixels. To construct a binary spatial covariogram, a principal component analysis (PCA) is
first applied to compress multiple bands into one, and the Otsu thresholding is then performed to generate a
binary map reflecting the spatial configuration of the pixels. Spatial covariance is then computed for this binary
map and plotted with different lag distances to derive the binary spatial covariogram. Our proposed model
utilizing curves composed of the spectral histograms and binary spatial covariogram (referred to as the His-Cov
model) are then used for classification based on curve matching approaches. The integration of spectral vari-
ability and spatial distribution of the pixels in the object produced superior results to curve matching approaches
based on spectral variability alone and to traditional OBIA based on spectral and spatial features of the objects
when classifying complex land use types in urban environments.

to some pre-defined homogeneity criteria (Blaschke, 2010; Newman
etal., 2011). Classification is then undertaken at the object level instead

1. Introduction

With advances in remote sensing technologies and growing demand
for detailed spatial information, high spatial resolution (HSR) imagery is
becoming one of the most used remote sensing data types for a variety of
applications (Belward and Skgien, 2015). The higher spatial resolution
of the data has posed great challenges to pixel-based land cover and land
use classification, which fails to achieve desirable accuracy despite HSR
imagery’s promise of more detailed geospatial information (Wang et al.,
2013). Object-based image analysis (OBIA) has now been widely
accepted to be superior to pixel-based classification of HSR remotely
sensed data, primarily because OBIA avoids salt-and-pepper noise,
which commonly exists in the pixel-based classification (Blaschke and
Strobl, 2001; Ma et al., 2017; Hossain and Chen, 2019; El-naggar, 2018;
Su, 2019; Shen et al., 2019). A traditional object-based classification
begins with image segmentation. This partitions the image scene into
multiple image segments (set of pixels, also known as objects) according
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of the individual pixel level. Most commonly, inputs into OBIA classi-
fiers are based on statistical summaries of all the pixel values in an ob-
ject, such as the mean and standard deviation. To further improve
classification, object-level spatial features have also been incorporated
based on summaries such as shape complexity (Russ, 2002; Jiao et al.,
2012) or a compactness index (Hay et al., 1996; Zhong et al., 2020).
Most of these object-based classifiers use standard machine learning
algorithms such as the support vector machine (SVM) (Geil and Tau-
benbock, 2015), decision trees (DT) (Laliberte, et al., 2007), random
forest (RF) (Melville et al., 2018), multi-layer perceptron (MLP) (Zhang
et al., 2018), K-nearest neighbor (KNN) (Tang et al., 2016) and some-
times boosting classifiers (Georganos, et al., 2018).

In traditional OBIA, each object is treated as if it is a pixel and the
object-level statistical summaries are treated as their input pixel values.
These object-level summaries are single-valued since only one value is
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used to characterize one type of feature for an object. As a result, not all
pixels of an image object participate in the object-based image classifi-
cation, but only their object-level summaries. Since only single-valued
statistical summaries are used to characterize each object, the rich in-
formation provided by the many pixels constituting an object in HSR
imagery is lost (Arroyo et al., 2006). Consequently, the utilization of
traditional classifiers based on object-level summaries does not take full
advantage of the potential that HSR images could provide. Additionally,
these statistical summaries are representative of the object’s character-
istics only when the pixel values follow a Gaussian distribution (Pedley
and Curran, 1991; Shackelford and Davis, 2003; Berger et al., 2013).
Unfortunately, a non-Gaussian frequency distribution is common for
these pixel values (Stow et al., 2012; Sridharan and Qiu, 2013; Toure
et al., 2013) in HSR imagery. At sub-meter level resolution, a real-world
object, which is often composed of multiple elements, may not exhibit
the spectral homogeneity that is often observed in an image at medium
or coarse spatial resolution (Costa et al., 2017). For example, a building
object can be an integration of various components with different ma-
terials (e.g., glass and brick) and structures (e.g., chimney and flat roof)
(Zhou and Troy, 2008). Since within-object spectral heterogeneity in-
creases with the spatial resolution of imagery (Blaschke et al., 2004),
statistical summaries may misrepresent the features of the objects and
mislead the subsequent classification (Sridharan and Qiu, 2013).

To overcome this problem, novel classifiers based on curve matching
approaches have been proposed for object-based image classification
(Stow et al., 2012; Sridharan and Qiu, 2013). These approaches were
originally designed for hyperspectral image classification (van der Meer,
2000, 2006; Liu and Han, 2017) and have been used for time-series
analysis (Vorobiova and Chernov, 2017; Gao et al., 2020). The curve
matching approaches measure spectral similarity/divergence between a
spectrum of an unknown object and prior spectra from a spectral library
(i.e., samples) (Kruse et al., 1993). Stow et al. (2012) suggested using the
pixel frequency distribution of an object (i.e., its histogram signature)
via a curve matching approach named the histogram matching root sum
squared differential area (RSSDA) for classification. It was later
compared with using a curve angle mapper (CAM) to classify an
airborne multispectral image (Toure et al. 2013). Independently, Srid-
haran and Qiu (2013) proposed a curve matching approach based on
Kolmogorov-Smirnov (KS) distance using the empirical cumulative
distribution function (i.e., cumulative histogram) of the pixels in an
object as input for object-based classification. Building on this approach,
Zhou and Qiu (2015) developed a method to synthesize object-based
pseudo-waveform from discrete-returns LiDAR data by utilizing the
count or intensity based histogram of the returns for an object. The
pseudo-waveforms were then fused with the object-level spectral his-
tograms from HSR imagery to improve object-based classification using
a Kullback-Leibler (KL) divergence-based curve matching approach.
Compared to object-level statistical summaries, an object-level histo-
gram/pseudo-waveform provides far richer information about the
spectral/structural components of an object since it characterizes their
variability within the object. These studies have demonstrated that
curve matching approaches based on object-level histogram/pseudo-
waveform can achieve better performances than traditional OBIA based
on statistical summaries.

Although the advantages of curve matching approaches to OBIA
have been demonstrated, histogram features can only indicate the fre-
quency distribution of pixel values. They are unable to reflect their
spatial distribution or arrangement within the objects. Therefore, cur-
rent curve matching approaches cannot distinguish two objects having
similar frequency distributions but a different spatial distribution of the
pixels. In previous studies, (semi)variogram and covariogram measures
have proven to be effective to extract spatial features and can be
incorporated with spectral features to improve classification (Chica-
Olmo and Abarca-Hernandez, 2000; Berberoglu et al., 2000; Chen and
Gong, 2004; Wu et al., 2006; Berberoglu et al., 2007; Balaguer et al.,
2010; Balaguer-Beser et al., 2013; Wu et al., 2015). However, previous
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studies were all based on traditional classifiers and the spatial features
have not been incorporated in curve matching approaches. To address
this issue, a novel model is proposed which integrates both spectral and
spatial features into a curve matching based classifier. We designate the
previous curve matching model, which used an object-level histogram or
cumulative histogram, as the His model. The newly developed model,
which incorporates object-level spatial distribution using the binary
spatial covariogram, is designated as the His-Cov model. This study tests
whether the His-Cov model can improve upon a curve matching based
classification using only spectral features (i.e., the His model). The
ability of the His-Cov model is also compared with some state-of-the-art
classifiers based on machine learning algorithms which also incorporate
both spectral and spatial features.

2. Methods

As with most object-based classification methods, the His-Cov model
includes three general steps: image segmentation, feature extraction,
and classification. After segmentation, the object-level spectral and
spatial features are extracted from image objects. For the spectral
feature, the histogram for each multispectral band is generated by using
all the pixels in an object to represent the spectral variety of its pixels.
For the spatial feature, principal component analysis (PCA) is utilized to
compress all the bands of an image into the first principle component.
Otsu thresholding (Otsu, 1979) is then applied to this single-band image
to derive a binary map to reflect the general spatial configuration of the
pixels in the objects. Binary spatial covariograms (or simply “spatial
covariograms” for short) are then produced based on the spatial
covariance in east-west and north-south directions to represent the
spatial distribution of the pixels in an object. The spectral histogram and
spatial covariagram are then fed into a curve matching approach based
on the curve divergence between two objects for classification. During
this process, each testing object is compared with all the training objects
and is labeled with the class of the training object that has the minimum
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Fig. 1. Flowchart of the His-Cov model.
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divergence with the testing object. The flowchart of the His-Cov model is
shown in Fig. 1.

2.1. Image segmentation

Small objects can be problematic when exploring the spectral vari-
ability and spatial distribution of pixels in an object since they may not
provide sufficient data to be representative of a given land use type
(Stow et al., 2012). Therefore, the expectation for image segmentation in
this study is that a segment should include one dominant class. For
example, a road object may include a crosswalk and cars, and a building
object may include roof parts of different materials. Image segmentation
based on the simple linear iterative clustering (SLIC) (Radhakrishna
et al.,, 2012) and fractal net evolution algorithms (FNEA) (Comaniciu
and Meer, 2002) are adopted in this study. The SLIC algorithm outputs a
desired number of regular and compact objects with a low computa-
tional load. The algorithm is first adopted to ensure that the segmented
objects do not have extremely strange shapes, such as centroids outside
their boundaries. A regular shape is beneficial to the exploration of
spatial distribution. Since the SLIC may suffer from a severe under-
segmentation problem for small objects with rich spatial details, the
multi-resolution FNEA method is then applied to the SLIC output at a
fine scale to produce the final segmentation result. The FNEA is a
bottom-up region-merging approach based on local homogeneity
criteria, with small image objects iteratively merged into larger ones
(Comaniciu and Meer, 2002).

2.2. Feature extraction

The within-object spectral feature at a given multispectral band is
represented using relative frequency (i.e., a histogram) or cumulative -
frequency (i.e., a cumulative histogram) of all the pixels within this
object. Relative means that the values are normalized between zero and
one. The former is often referred to as the empirical probability distri-
bution function (PDF), and the latter as the empirical cumulative dis-
tribution function (CDF) of the objects. The PDF and CDF curves of an
object reflect the empirical distributions of its pixel’s spectral variability
and can better distinguish different land cover classes than traditional
OBIA based on single-valued statistical summaries (Sridharan and Qiu,
2013).

To characterize the pixel spatial distribution of an object, we first
transform the pixel values in a sample object to categorical variables to
capture the general spatial configuration of the pixels. As in many other
spectral-spatial classification methods (Dell’Acqua et al., 2004; Bene-
diktsson et al., 2003), the first spectral principal component (PC) is used.
The first PC maximizes information from all the original multispectral
bands. The Otsu thresholding method is then applied to the first PC for
each object to derive the spatial configuration of the pixels in that object.
The Otsu thresholding algorithm returns a single intensity threshold that
can be used to separate a group of pixels into two classes, foreground
and background. This threshold is iteratively determined by minimizing
intra-class intensity variance, or equivalently by maximizing inter-class
variance (Otsu, 1979). After applying Otsu thresholding for each sample
object, a binary map is derived in which pixel values less than or equal to
the threshold are assigned a one (i.e., the foreground) and all other
pixels are assigned a zero (i.e. the background).

The covariogram and variogram are two common geostatistical
measures for modeling spatial distributions. The former measures sim-
ilarity (auto-covariance) between pixels and their neighbors at various
distances, whereas the latter measures dissimilarity at various distances.
The covariogram is formed from a series of spatial covariances at a range
of lag distances. Atkinson and Naser (2010) used it to measure similarity
for categorical variables. We use the covariogram to measure similarity
for a binary variable. The spatial covariance of a binary variable in an
object cov(h)op; is computed as:
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where u; represents a pixel u at location i in an object, M is the number of
pixels in the object. I is an indicator function taking a value of one where
the conditional statement is true and zero where it is false, whereas u; =
1 means the pixel u; belongs to the foreground (derived by the Otsu
thresholding). h is a spatial lag in a certain direction, and u;,p, is a pixel
separated by distance h from pixel u;. The pixel u;,p is evaluated only if
its location i + h is not beyond the border of the current object. The
condition of the numerator is stricter than the condition of the denom-
inator. Therefore, Eq. (1) is a conditional probability ranging from O to
1. When h equals O, the spatial covariance equals 1. The spatial
covariance of an auto-correlated pattern is usually larger for two pixels
separated by a smaller distance than a larger distance, whereas the
random noise is presumed to have a constant spatial covariance (Tang
et al., 2019). Since the spatial covariance is detected within an object,
the maximum lag distance h cannot exceed the smaller dimension of the
object. The spatial covariance along four directions (east, west, north
and south) is detected. We use the average spatial covariance in the east
and the west directions as one feature for the spatial covariance in the
east-west direction instead of two. A similar calculation is used for the
north-south direction. The spatial covariogram is then plotted with the
lag distances on the x-axis and the spatial covariance on the y-axis.

To illustrate, two pairs of simulated images are shown in Fig. 2. Each
image can be viewed as an object. The first pair of images includes pixels
with differing spatial aggregation, and the second pair has regular but
different overall spatial patterns. Since these images consist of 50 x 50
pixels, the maximum lag distance h is set at 40 pixels to plot the spatial
covariogram. For the first pair (Fig. 2a), the Moran coefficient (MC) of
the upper image has a high of 0.92, common for remotely sensed im-
agery. The lower image is a random distribution of the pixels in the
upper image, so it appears as random noise and the MC equals 0.09. The
second pair of images both contain contrasting 1600 low value pixels
and 900 high value pixels (Fig. 2b) but their patterns differ. The upper
image includes four squares and the lower five stripes. The binary results
using Otsu thresholding reflect the general spatial configuration of these
images and are displayed beside their original counterparts.

In the first pair of images, the histogram and cumulative histogram
are identical, although the spatial distribution of the two images is very
different. The spatial covariogram of the highly spatial auto-correlated
image shows the typical curve common to most remotely sensed im-
ages. It has higher values for smaller than larger distances, and it be-
comes stabilized at a low value when a certain lag distance is reached,
such as the case in the spatial covariogram for the east-west direction.
The stabilized value is known as the sill and the lag distance at the sill is
known as the correlation range. Correlations decrease with increasing
range distances, but do not change beyond the range. However, in some
cases high values reappear at longer distances because of the repetition
of a pattern or spatial configuration, such as the case in the spatial
covariogram for the north-south direction. The spatial covariogram of
the lower image has little variation in either direction, indicating there is
no spatial similarity in random noise.

In the second pair of images, the spatial covariogram in both di-
rections effectively distinguishes between the images with stripes and
squares. However, neither histograms nor cumulative histograms can
distinguish these different patterns because they have similar frequency
distributions of spectral values for the pixels. The spatial covariogram of
the stripe image in the east-west direction has more peaks than that of
the square image, indicating more repetitions of the spatial configura-
tion are found in the stripe image. Since the spatial distance between
two repetitions (i.e., two stripes) is 9 pixels, the spatial lag between two
peaks in the spatial covariogram also equals 9. The distance between
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Fig. 2. Frequency distribution of spectral values and spatial covariogram
different overall patterns.

repetitions in the stripe image is smaller than that of the square image, as
indicated by the two curves of their spatial covariograms for the east-
—west direction.

2.3. Classification

For classification, the spectral histogram and spatial covariogram are
used as the spectral and spatial features respectively for an object. Since
both are in the form of curves, curve matching approaches are used. This
approach evaluates the divergence between two image objects by
comparing their feature curves. Six curve matching approaches were
used in the experiments: Kullback-Leibler (KL) divergence (Chang,
2000; Zhou and Qiu, 2015), Kolmogorov-Smirnov (KS) test (Burt and
Barber, 1996; Sridharan and Qiu, 2013), curve angle mapper (CAM)
(Kruse et al., 1993; Toure et al. 2013), cumulative curve angle mapper
(CCAM), root sum squared differential area (RSSDA) (Hamada et al.,
2007; Stow et al., 2012), and cumulative root sum squared differential
area (CRSSDA) (Zhou et al., 2016). The aim is to assess if the addition of
object-level spatial features (i.e., His-Cov model) can enhance classifi-
cation compared to using only spectral features (i.e., His model) with
these six curve matching approaches.

Given two objects, their feature curves are represented as P;, Py, and
their cumulative feature curves are presented as Fy, Fo. The divergence D
measured by the above six curve matching approaches is as follows.

AN N Pi) N 10)
Dy = 3 ;Pl (l)logp2 0 + ; P, (1)logp1 B 2)
Dxs = imax[Fl(i) —F(i)] 3)

for simulated images: (a) images with different spatial aggregation, (b) images with

> Py(i)Pa(i)
Dcam = arccos n':]—n 4
;1"1(1')2 ;1"2(!')2
S F(i)Fa (i)
Dceam = arccos n':1 = (5)
;Fl(l)z ;Fz(l)2
Drsspa = Z [P1(i) = P2 (i) I (6)
i1
Dcrsspa = Z [F1(i) = F2(i) P )

i=1

where i is a discrete interval of the curves, and n is the number of in-
tervals. For the spectral feature, curves P and F are the spectral histo-
gram and cumulative histogram, respectively, and n is the number of
histogram bins. For the spatial feature, curves P and F are the spatial
covariogram and cumulative spatial covariogram, respectively, and n in
this case represents the number of spatial lags. For an object, the above
divergence is calculated for k multispectral bands in two directions
(east-west and north—south). The number of bins and number of lags can
differ. The final divergence was determined by combining spectral and

spatial features according to Eq. (8):
Dhjigt - cov = W-k-Dipeciral +2(1 — w)-Dypagian 8

where Dgpeciral and Dgparial Tepresent divergences derived from spectral
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and spatial features, respectively. Both divergences are based on the decided by cross-validation or trial-and-error.

same curve matching approach and are derived from one of the ap- To illustrate, two examples of KL based classification are shown in
proaches in Egs. (2)—(7). k is the number of multispectral bands. w is the Fig. 3. The first object to be classified belongs to the parking lot class
weight for the spectral feature ranging from O to 1. This weight can be (Fig. 3a). The curve of this object and those of the samples with the five
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Fig. 3. Two examples of classification using curve matching approaches. The curves of spatial covariograms and curves of histograms, and the corresponding five
most similar sample curves for (a) a parking lot object, (b) a road object.

324



Y. Tang et al.

smallest divergences for both the spectral and the spatial features are
shown in the figure. This object is misclassified as the commercial and
public class in the His model. However, the directional spatial cova-
riograms show that the sample curve is most similar to the parking lot
class, which is especially obvious in the east-west direction. Conse-
quently, combining the spectral and spatial features in the His-Cov
model correctly classifies this object to the parking lot class. The sec-
ond illustrative object belongs to the road class (Fig. 3b). The curves of
the spectral histogram show that the five curves with the smallest
divergence from the object to be classified belong to either the road or
parking lot classes. The curve with the minimum divergence belongs to a
sample of the parking lot class, as shown most obviously in the red, red
edge, and two near infrared (NIR) bands. Consequently, the object is
misclassified as the parking lot class using the His model. However, the
five sample curves of the spatial covariograms with the smallest diver-
gence all belong to the road class, which easily corrects this object to the
road class in the His-Cov model. These examples demonstrate how the
spatial covariogram can help improve the classification of objects having
similar spectral features.

3. Experiments
3.1. Datasets and study areas

Test were conducted on three differing HSR images with the aim of
classifying complex land cover and land use classes in urbanized areas.
Typical land cover classes such as water and vegetation were excluded
because spectral signatures based on curve matching classifiers have
been successfully demonstrated for these classes (Stow et al., 2012;
Sridharan and Qiu, 2013). Although there are some trees of several
different species scattered in the study area, identification of vegetation
types was also excluded. Our focus is on classes having similar spectral
responses and therefore easily misclassified, such as building and road,
or more complex function zones such as residential, commercial and
public.

The three images were acquired from different sources: IKONOS,
WorldView-2 and WorldView-3. The spatial resolution of the multi-
spectral bands for all three images was improved using the Gram-Sch-
midt pansharpening method. In the IKONOS image with a 1 m spatial
resolution, three simple land cover classes can be visually distinguished,
including building, road, and barren land. These three classes all include
objects with a concreate surface, causing the classification difficult. The
WorldView-2 and WorldView-3 images are with a sub-meter spatial
resolution, five more detailed land use classes can be visually identified,
including residential, commercial and public, road, parking lot, and
barren land. The residential and the commercial and public areas in
WorldView-2 are located separately in most places, therefore it is easy to

Table 1
The information of three study areas and characteristics of classes.
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visually differentiate the residential from the commercial and public
classes. However, these two classes in WorldView-3 image are
geographically mixed up and their spectral reflectance is more similar.
Thus, the identification of objects of the residential, commercial and
public classes was aided by referencing Google Earth and Open-
StreetMap for the WorldView-3 image. Additionally, the parking lot and
the road classes are also difficult to be classified in the WorldView-2 and
WorldView-3 images, since both classes include cars and parking lines or
crosswalk. The information of three study areas and the characteristics
of classes are list in Table 1.

The three images and samples are shown in Fig. 4. Table 2 provides
information on the samples used in the study. The samples are used for
either training or testing purposes. A 33.3% training versus 66.7%
testing sample split was used, selected randomly from the sample
dataset to alleviate the influence of spatial autocorrelation. Since sam-
pling has a great effect on classification accuracies (Ye et al., 2018; Li
et al.,, 2018), all classifications were performed ten times based on
different training and testing samples selected randomly and indepen-
dently to ensure a robust test.

3.2. Segmentation and classification

Image segmentation based on the SLIC and FNEA were applied in this
study. The quality of image segmentation is important to the outcome of
any object-based classification (Liu et al., 2012). A supervised method
namely adjusted rand index (ARI) (Hubert and Arabie, 1985) was used
for evaluating the segmentation quality on samples. The ARI is built on
counting pairs of items in which two segments agree or disagree. A large
ARI value indicates a high correspondence of the segmentation result to
the reference, with an upper bound of 1.

For the three study areas, the six curve matching approaches (KL, KS,
CAM, CCAM, RSSDA and CRSSDA) introduced previously were used.
Each approach was applied with spectral features only (i.e., the His
model) as well as with both spectral and spatial features (i.e., the His-
Cov model), resulting in twelve experiments on each of the images.
For further comparison, four state-of-the-art classification methods
based on machine learning algorithms were applied: (1) support vector
machine (SVM), (2) random forest (RF) classification, (3) extreme
gradient boosting (XGBoost) (Chen and Guestrin, 2016), and (4) struc-
tural feature set (SFS) (Huang et al., 2007).

Among these four methods, SVM and RF have been used commonly
in object-based classification. XGBoost, a variant of the gradient boost-
ing machine, is an ensemble of classification and regression tree.
Twenty-seven object-level statistical summaries were used in these three
methods, including seven spectral features, six gray-level co-occurrence
matrix (GLCM) texture features, and fourteen semivariogram features,
as listed in Table 3. The spectral features are calculated for each

Image IKONOS WorldView-2 WorldView-3
Location Beijing Dallas Beijing
Coordinate 39°57'57"- 39°58'30"N, 32°50'18"- 32°51'21"N, 96°45'49"— 39°59'52"-40°0'31"N, 116°23'37"-116°24'7"E

116°23'19"-116°24'46"E
4-band bundle, S2A

96°47'8"W

Data product 8-band bundle, S2A

Spatial resolution 1m 0.5m
Image size 2048 x 1024 4000 x 4000
Acquisition time May 2000 January 2010
Classes and Barren land: includes bare soil and
characteristics playground. under-developed area.

Road: main roads with cars inside.

Barren land: includes soil land, playground and

Road: main roads with crosswalk and cars

4-band bundle, S2A

0.4 m

1760 x 3035

September 2014

Barren land: mainly playground.

Road: main roads with crosswalk and cars inside.

inside and some narrow roads.

Building: a mix of residential,
commercial and public.

Commercial and public: includes shopping
centers, schools, factories, etc.

Residential: buildings with smaller size than
commercial and public.

Parking lot: with parking lines and cars inside.

Commercial and public: includes shopping centers, schools, office
buildings, etc.

Residential: buildings are of a similar size to commercial and
public, but away from main roads.

Parking lot: with parking lines and cars inside.
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Fig. 4. Three images in true color composite used for the experiments: (a) IKONOS image and samples, (b) WorldView-2 image and samples, (c) WorldView-3 image

and samples.

Table 2
The samples per class for the study areas.

IKONOS WorldView-2 WorldView-3

Class # of objects # of pixels Class # of objects # of pixels Class # of objects # of pixels

Barren land 102 95,791 Commercial and public 139 340,306 Commercial and public 148 270,514

Building 324 245,923 Barren land 126 433,364 Barren land 34 101,805

Road 74 142,428 Road 188 579,748 Road 199 514,983
Parking lot 93 265,134 Parking lot 82 168,140
Residential 151 192,990 Residential 207 405,180

Total 500 484,142 Total 697 1,811,542 Total 670 1,460,622

multispectral band of each object. One GLCM is computed for each ob-
ject to describe the co-occurrences of the pixels that are separated at
one-pixel lag distance interval inside the object. The average value in all
four directions on all multispectral bands is derived (Haralick, 1979;
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Hall-Beyer, 2007). Similarly, the semivariogram features are extracted
for each object, also based on the average value for all four directions
and all multispectral bands. The equations for these semivariogram
features can be found in Yue et al. (2013) and Wu et al. (2015). The SFS
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Table 3
The object-level features used in the SVM, RF and XGBoost methods.

Spectral features Semivariogram features

Mean Ratio between total variance and first semivariance
(RVF)

Median Ratio between the first and the second semivariance
(RSF)

Standard deviation
Skewness

Kurtosis

First quartile

First derivative near the origin (FDO)

Second derivative at third lag (SDT)

First maximum lag value (FML)

Mean of the semivariogram values up to the first
maximum (MFM)

Variance of the semivariogram values up to the first
maximum (VFM)

Difference between MFM and the first semivariance

Third quartile

GLCM texture features

(DMF)

Contrast Ratio between the first local maximum semivariance and
MFM (RMM)

Homogeneity Second-order difference between first lag and first
maximum (SDF)

Dissimilarity Area until the first maximum (AFM)

Energy Distance between the first and the second local maxima
(DMS)

Correlation Distance between the first local maximum and the first

local minimum (DMM)
Angular second moment Hole area (HA)

(ASM)

method uses statistical summaries of the histogram along four directions
in the objects. These statistical features include length, width, pixel
shape index, weighted mean, ratio, and standard deviation. Compared
with the His model, the SFS method uses only six features based on
summaries of the histogram of the object in four directions, rather than
the complete histogram of the object itself. Also, the SFS is based on the
SVM classifier and the His model is based on the curve matching
approach. For the SVM-based classification, a non-linear radial basis
kernel was chosen. A 10-fold cross-validation was applied to select
optimal parameters for the penalization constant and the kernel
parameter. For the RF classification, the number of trees was set to 10,
and the supported criteria were based on the Gini impurity. For the
XGBoost method, a tree-based booster was used, and the maximum
depth of tree was set to 6.

The weight for the spectral feature w in Eq. (8) was set automatically
from O to 1 with an increment of 0.01 using a k-fold cross-validation
scheme at each performance, with k set at 5. The selection was
repeated 50 times, and the value with the majority of votes from these
50 repetitions was selected. The number of histogram bins was set to
100. The number of spatial lags for the spatial covariaogram was set to
50 pixels, derived from the average dimension of the objects.

4. Results and analysis
4.1. Segmentation quality
To assess segmentation quality, Table 4 shows the overall ARI of

segmentation results and the ARI for each class. The reference segments

Table 4
The ARI of segmentation results for three study areas.

IKONOS WorldView-2 WorldView-3

Class ARI Class ARI Class ARI

Barren 0.86 Commercial and 0.91 Commercial and 0.92

land public public

Building 0.91 Barren land 0.87  Barren land 0.65

Road 0.82 Road 0.84 Road 0.82
Parking lot 0.82  Parking lot 0.81
Residential 0.92 Residential 0.90

Overall 0.90 Overall 0.89  Overall 0.88
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are delineated manually. As can be seen, the overall ARI ranges from
0.88 to 0.90 for three study areas. The relatively high accuracy of image
segmentation ensures the quality of subsequent image classification. For
specific classes, the segmentation has a good performance on the small
objects such as the residential and the commercial and public classes.
The building class in the IKONOS image, the commercial and public
class and the residential class in the WorldView-2 and WorldView-3
images, dominated by the FNEA segmentation result, show high ARIs
(above 0.90). However, large objects such as the barren land, the road,
and the parking lot classes have low ARIs (between 0.65 and 0.87).
These three classes are usually of large size and therefore are over-
segmented by the SLIC segmentation. For example, a good segmenta-
tion of a road object is expected to result in a long, narrow shape. Many
small and compact objects segmented by SLIC for the road class are
actually more suited to a curve matching based classification. This is
because roads segmented as one complete, long object have a greater
chance of being misclassified by curve matching approaches, since the
spatial dimensions of the roads could be very different in size and thus
may greatly affect their effective ranges. These large objects are over-
segmented intentionally because over-segmentation is beneficial to the
His-Cov model. The final classification map will be formed when the
adjacent small segments of the same classes are recombined into a large
object.

4.2. Classification results

There are sixteen classification methods (twelve curve matching
approaches and four machine learning algorithms) for each study area,
and each method is performed ten times using different samples. One
classification result randomly selected from the ten performances is
shown in Figs. 5-7. Among these, the results using the four machine
learning methods are all presented. For the curve matching approaches,
only the KL and CRSSDA are displayed, with His and His-Cov models,
respectively, since these two approaches have the best performance, as
discussed below. All the classified objects are delineated by polygons
with the color of their boundary corresponding to their reference class
label, and the misclassified objects are filled with the color corre-
sponding to the misclassified class label. To provide a quantitative
assessment, the classification accuracy was calculated. The overall ac-
curacy based on the average value from the ten performances is shown
in Table 5. The standard deviations of accuracies vary from 0.1 to 0.3 for
all the methods, thus are not shown in the table. The overall classifica-
tion accuracy from one sampling (correspond to Figs. 5-7) and F1-score
of each class are shown in Tables 6 and 7.

In the classification results for the IKONOS image (Fig. 5), most small
buildings with a regular shape are correctly classified. Larger buildings,
however, may be misclassified as road objects, as in the SVM, XGBoost
and CRSSDA results (Fig. 5a, ¢ and g). The misclassification of the road
class as buildings exists in all results, although worse in some than
others. The SFS result (Fig. 5d) includes many barren land objects, most
of them misclassified. This class has the smallest sample size, which
suggests that the SFS method does not properly consider the unbalanced
sample size. Barren land with a soil surface is easier to identify than that
with a concrete surface (e.g., a playground), and the latter is sometimes
confused with the smaller building such as in the RF, XGBoost, SFS and
KL results (Fig. 5b-e). The His-Cov model correctly classified the road
objects in the north—south direction (in the right portion of the image in
Fig. 5f and h), which were misclassified by the His model based on the
KL and CRSSDA approaches (Fig. 5e and g).

More complex classes are involved in the WorldView-2 image. As can
be seen from classification results in Fig. 6, the residential class usually
has small sized, dark colored roofs, whereas most commercial and public
class objects have large sized, light colored roofs. The parking lot class
and the road class are easily confused with each other since both tend to
be affected by vehicles within the objects. The SVM, KL and CRSSDA
approaches (Fig. 6a, e and g) misclassify roads as parking lots, whereas
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Fig. 5. Classification results using different methods for the IKONOS image (left) and their zoomed view for the subset (right): (a) SVM, (b) RF, (c) XGBoost, (d) SFS,
(e) KL with His, (f) KL with His-Cov, (g) CRSSDA with His, and (h) CRSSDA with His-Cov.

the His-Cov model was able to correct some of these misclassifications
with the KL and CRSSDA approaches (Fig. 6f and h). The RF and SFS
methods (Fig. 6b and d) misclassified some commercial and public ob-
jects as parking lots, while the road class is mostly correctly classified by
SES (Fig. 6d).

The residential class and the commercial and public class are more
easily confused with each other in the WorldView-3 image than in the
WorldView-2 image because their spectral reflectance is more similar.
All methods suffer from the misclassification of these two classes,
although four of the curve matching approaches (Fig. 7e-h) perform
slightly better than the machine learning algorithms (Fig. 7a-d) in the
bottom right part of the image. Some residential class and commercial
and public class objects are misclassified to the road class in the SVM and
SFS results (Fig. 7a and d). Many residential objects are misclassified as
parking lots in the KL and CRSSDA results (Fig. 7e and g), although the
His-Cov model corrects some with its additional consideration of spatial
distribution. However, the road objects in the east-west direction in the
lower middle of the image are severely misclassified, and even the His-
Cov model can only correct a few of them.

As revealed by the average classification accuracy in Table 5, the six
statistical summaries of the histogram in the SFS method do not fully
utilize the rich information within the objects, resulting in the lowest
accuracy. The SVM method has the worst performance among the three
methods based on the combination of spectral, GLCM and
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semivariogram features. The XGBoost method has the highest accuracy
among the four machine learning methods. It is the only method able to
achieve results comparable to the curve matching approaches based on
the His-Cov model. The His-Cov model consistently produces higher
accuracies than the His model for all six curve matching approaches. In
fact, not only is the average accuracy for the His-Cov model higher, but
also the accuracy for all the performances is highest among all the ten
samplings. This result demonstrates that the spatial covariogram is a
powerful object-based feature that can capture spatial distributions
within objects and thus enhance curve matching approaches to classi-
fication based on spectral features only.

From the F1-score in Tables 6-8, the barren land class in the IKONOS
image, the commercial and public and the barren land classes in the
WorldView-2 image, and the barren land, the residential and the road
classes in the WorldView-3 image have the greatest improvements. The
other classes do not constantly result in the highest accuracy using the
His-Cov model, but have higher accuracy than the machine learning
methods and the His model for most curve matching approaches. The
machine learning methods show a few exceptions: the road class in the
IKONOS image using the XGBoost method, the parking lot and the road
classes in the WorldView-2 image using the XGBoost, and the parking lot
class in the WorldView-3 image using the SFS method achieve the ac-
curacy that is higher than or comparable with the His-Cov model. The
accuracies of the His model are generally higher than the machine
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Fig. 6. Classification results using different methods for the WorldView-2 image (left) and their zoomed view for the subset (right): (a) SVM, (b) RF, (c) XGBoost, (d)
SFS, (e) KL with His, (f) KL with His-Cov, (g) CRSSDA with His, and (h) CRSSDA with His-Cov.

learning methods and lower than the His-cov model, except for the
parking lot class in the WorldView-2 and WorldView-3 images, where
the machine learning methods perform better than the His model. The
F1-score accuracy shows that the classification of spectral similar classes
(e.g., barren land, road, parking lot) can be improved by spatial features,
either from the semivariogram features or spatial covariogram. In gen-
eral, the classes show the greatest improvements when the spatial
covariogram is introduced by the His-Cov model most of the time.

4.3. His-Cov model on each class

It is of interest to further explore how the His-Cov model performs for
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each class compared with the His model. For the six curve matching
approaches, changes in numbers and accuracies (at the object level) in
each class for the His-Cov model relative to the His model are shown in
Fig. 8 for one of the ten performances. This allows approaches based on
the His-Cov model to be compared with those based on the His model.
Positive values for the object number or accuracy indicate an increase
from applying the His-Cov model, whereas negative values indicate a
decrease.

For most curve matching approaches, the number of buildings in-
creases most among all the classes in the IKONOS image, and the
number of roads decreases after applying the His-Cov model (Fig. 8a).
All methods have accuracy increases for building and road classes
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Fig. 7. Classification results using different methods for the WorldView-3 (left) and their zoomed view for the subset (right): (a) SVM, (b) RF, (c) XGBoost, (d) SFS,
(e) KL with His, (f) KL with His-Cov, (g) CRSSDA with His, and (h) CRSSDA with His-Cov.

Table 5 Table 6
The average of the overall accuracy (%) of the classification results over ten The overall accuracy (%) and the F1-score per class of classification results from
samplings. The highest accuracies among all methods are marked in bold. one sampling for the IKONOS image.
Type Method IKONOS  WorldView- WorldView- Type Method Total Barren Building  Road
2 3 land
Machine learning SVM 79.37 73.61 63.36 Machine learning SVM 82.28 0.72 0.88 0.67
algorithms RF 81.14 71.85 66.47 algorithms RF 80.78  0.64 0.87 0.70
XGBoost 82.31 76.80 67.99 XGBoost 83.78 0.69 0.89 0.78
SFS 76.88 72.39 62.86 SFS 73.87 0.61 0.83 0.51
Curve matching KL 81.83 74.64 68.57 Curve matching approaches KL 82,58 0.75 0.88 0.70
approaches based on His ~ KS 81.14 73.31 64.41 based on His model KS 81.98 0.72 0.87 0.72
model CAM 81.26 73.81 65.37 CAM 81.38 0.74 0.87 0.68
CCAM 81.74 73.85 64.65 CCAM 83.78 0.75 0.89 0.73
RSSDA 80.78 73.76 64.27 RSSDA 79.88 0.70 0.85 0.70
CRSSDA 81.74 74.26 64.99 CRSSDA 83.78 0.75 0.89 0.73
Curve matching KL 82.88 77.05 70.36 Curve matching approaches KL 83.78  0.72 0.89 0.76
approaches based on His-  KS 82.76 75.42 67.38 based on His-Cov model KS 84.08 0.77 0.89 0.71
Cov model CAM 82.85 76.21 69.37 CAM 83.18 0.77 0.88 0.70
CCAM 83.42 75.51 67.09 CCAM 86.19 0.81 0.91 0.73
RSSDA 81.98 76.51 68.03 RSSDA 81.08 0.70 0.87 0.72
CRSSDA 83.54 75.83 67.38 CRSSDA 86.49 0.81 0.91 0.73
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Table 7
The overall accuracy (%) and the F1-score per class of classification results from one sampling for the WorldView-2 image.
Type Method Total Commercial and public Parking lot Barren land Residential Road
Machine learning algorithms SVM 72.69 0.64 0.51 0.85 0.77 0.78
RF 69.03 0.59 0.45 0.75 0.72 0.80
XGBoost 75.70 0.62 0.62 0.81 0.81 0.83
SFS 72.47 0.63 0.52 0.80 0.78 0.80
Curve matching approaches based on His model KL 74.84 0.74 0.53 0.91 0.76 0.75
KS 74.62 0.73 0.47 0.91 0.72 0.80
CAM 72.47 0.72 0.44 0.89 0.68 0.77
CCAM 73.12 0.71 0.45 0.89 0.74 0.77
RSSDA 74.41 0.76 0.48 0.89 0.72 0.78
CRSSDA 73.55 0.71 0.47 0.89 0.75 0.76
Curve matching approaches based on His-Cov model KL 78.28 0.75 0.62 0.89 0.78 0.81
KS 77.63 0.76 0.53 0.90 0.79 0.81
CAM 77.85 0.74 0.55 0.89 0.80 0.81
CCAM 78.28 0.74 0.57 0.89 0.82 0.80
RSSDA 78.71 0.76 0.52 0.92 0.81 0.83
CRSSDA 78.49 0.75 0.55 0.90 0.83 0.80
Table 8
The overall accuracy (%) and the Fl-score per class of classification results from one sampling for the WorldView-3 image.
Type Method Total Commercial and public Parking lot Barren land Residential Road
Machine learning algorithms SVM 60.85 0.50 0.64 0.67 0.47 0.82
RF 66.00 0.48 0.69 0.71 0.62 0.83
XGBoost 65.55 0.45 0.70 0.65 0.59 0.86
SFS 60.85 0.44 0.75 0.60 0.54 0.76
Curve matching approaches based on His model KL 67.56 0.46 0.56 0.81 0.65 0.88
KS 65.77 0.48 0.46 0.86 0.64 0.87
CAM 67.79 0.49 0.51 0.83 0.65 0.89
CCAM 65.77 0.48 0.50 0.86 0.65 0.85
RSSDA 67.11 0.51 0.47 0.83 0.64 0.89
CRSSDA 65.77 0.49 0.51 0.86 0.65 0.84
Curve matching approaches based on His-Cov model KL 72.26 0.49 0.72 0.81 0.69 0.90
KS 69.57 0.49 0.59 0.86 0.69 0.87
CAM 72.26 0.50 0.70 0.83 0.70 0.89
CCAM 69.80 0.48 0.67 0.86 0.68 0.85
RSSDA 70.69 0.53 0.59 0.86 0.68 0.89
CRSSDA 70.25 0.50 0.66 0.86 0.69 0.86

(Fig. 8b), with the latter more obvious than the former. This indicates
that most misclassification of road as building using the His model is
corrected by applying the His-Cov model. For the WorldView-2 image in
Fig. 8c, numbers in the commercial and public class and the parking lot
class decrease whereas numbers in the residential class and the road
class increase when introducing the His-Cov model. The accuracies in
Fig. 8d shows that the parking lot, residential and road classes benefit
most from the His-Cov model. A similar situation is also observed in the
WorldView-3 image (Fig. 8e and f). Reductions in the parking lot class
lead to the greatest improvement in accuracy. The increase in residential
class numbers also generates an improvement in accuracy, but not as
much as in the WorldView-2 result. The number and accuracy of the
road and the barren land classes do not show an obvious change for most
methods. The numbers for the commercial and public class vary in both
the WorldView-2 and WorldView-3 images, but accuracy improvement
is limited or even decreases slightly. This suggests that the commercial
and public class is the most difficult to identify. In general, objects with a
distinctive spatial distribution, such as parking lots with vehicles and
parking lines, are more recognizable using the His-Cov model, whereas
the objects without a distinctive spatial distribution inside, such as the
barren land and the commercial and public classes, are difficult to
identify even with the His-Cov model. Overall in an urban environment,
the spatial covariogram has a positive impact on typical land use classes
most of the time, with residential, road and parking lot classes benefit-
ting the most from applying the His-Cov model.
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4.4. Computational cost

The total computational cost of each classification method is
compared in Table 9. All computations used Python on a laptop with
1.8-GHz Intel Core-i7 CPU and 16-GB memory.

The most efficient methods are curve matching approaches based on
the His model since only the histogram-based spectral features are
extracted. For this model, feature extraction accounts for 37% to 77% of
the time used, implying classification takes more than half of the
computation time for some classifiers (KL, CAM and CCAM). The SFS
method is based on the SVM classifier and almost all time is spent on
feature extraction. It extracts seven object-level spectral features and six
spatial features from directional histograms, without calculating semi-
variogram features, less efficient than the curve matching approaches
based on the His model.

The machine learning algorithms involving semivariogram (SVM, RF
and XGBoost) are markedly more computational intense. The feature
extraction for these machine learning algorithms and the curve match-
ing approaches based on the His-Cov model accounts for more than 98%
of the total computational cost. The total cost for these machine learning
algorithms compared with the curve matching approaches based on the
His-cov model is about 3.5, 13.7 and 8.7 times longer for the IKONOS,
WorldView-2 and WorldView-3 images, respectively. The main reason is
that the semivariogram is calculated based on continuous variables (i.e.,
pixel values) for each multi-spectral band, whereas the spatial cova-
variogram is estimated based on binary variables (i.e., Otsu thresholding
results) for only one band (i.e., the first PC). Therefore, the spatial fea-
tures extracting from the binary spatial covariogram is more efficient
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Fig. 8. Comparison of the six curving matching approaches showing increase/decrease of object numbers and accuracy for each class based on the His-Cov model

relative to the His model.
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Table 9
Computational cost of all classification methods (unit: second), and the time for
feature extraction is reported as the percentage of the total time in parentheses.

Type Method IKONOS WorldView-2 ~ WorldView-
3

Machine learning SVM 1292.3 19916.3 9079.5
algorithms (100%) (100%) (100%)

RF 1292.2 19916.2 9078.9
(100%) (100%) (100%)

XGBoost  1292.4 19917.0 9080.1
(100%) (100%) (100%)

SFS 223.4 180.7 270.0
(100%) (100%) (100%)

Curve matching KL 20.0 95.5 (45%) 107.7 (44%)
approaches based on (47%)

His model KS 13.0 59.7 (72%) 62.0 (76%)
(72%)
CAM 23.9 114.2 (38%) 112.3 (42%)
(39%)
CCAM 24.6 115.8 (37%) 94.6 (50%)
(38%)
RSSDA 14.5 68.0 (64%) 61.3 (77%)
(64%)
CRSSDA  14.6 69.7 (62%) 61.5 (77%)
(64%)

Curve matching KL 289.8 1452.7 1045.7
approaches based on (99%) (99%) (99%)
His-Cov model KS 287.7 1447.3 1039.4

(99%) (100%) (99%)
CAM 290.7 1454.9 1048.3
(98%) (99%) (99%)
CCAM 291.2 1455.3 1049.0
(98%) (99%) (99%)
RSSDA 288.2 1448.6 1040.7
(99%) (100%) (99%)
CRSSDA  288.5 1449.0 1040.9
(99%) (100%) (99%)

than that from the traditional semivariogram.

4.5. Parameter setting

The new parameter introduced in the His-Cov model is the weight w
(proportion of influence for the spectral feature), which decides the
balance between spectral and spatial features. This parameter was set
automatically using a k-fold cross-validation, where k equals 5. The
selection was repeated 50 times, and the value with the majority of votes
was selected. In order to check the influence of the different weights,
Fig. 9 displays a sensitivity analysis of the parameter for one perfor-
mance. The weights vary from 0 to 1 with an increment of 0.01 for all six
curve matching approaches. The accuracies of corresponding ap-
proaches based on the His model are shown with horizontal dashed
lines. The optimal weight with the maximum accuracy is marked by a
cross, and the weight selected by cross-validation is marked by a dot in
the figure. Generally, an appropriate weight selection is dependent on
the curve matching approach. Most approaches prefer a large weight for
spectral features. For the CAM and RSSDA approaches, accuracy im-
proves more rapidly when the spatial distribution is introduced, so
median to large values of weights can all lead to a higher accuracy for
the His-Cov model. The two cumulative approaches, CCAM and
CRSSDA, have slower improvements in accuracy when incorporating
spatial distribution, leading to a large optimal weight when maximum
accuracy is achieved. The KL approach, although not based on cumu-
lative curves, also requires a large weight (around 0.9), primarily
because its accuracy for the His model is already relatively high among
all six approaches. The KS approach also prefers a large weight, but the
increase in accuracy is faster than the other two cumulative approaches
(CCAM and CRSSDA). All the selected weights are close to or even equal
their optimal weights. This sensitivity analysis demonstrates that the
His-Cov model with appropriate weights improves the accuracy of all
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curve matching approaches relative to the His model, and provides
guidance on setting optimal weights for the different curve matching
approaches.

The number of lags was set to 50 according to the average dimension
of objects in this study. When the dimension of an object is less than 50
pixels, the spatial covariogram reaches 0 before the lag distance reaches
50. The actual range when the spatial covariance reaches 0 is called the
effective range. One concern is whether different effective ranges be-
tween samples affects the classification results. Commonly, the spatial
covariogram decreases sharply as the distance lag increases. Therefore,
if a sample has a large effective range and another a small one, the
difference between two spatial covariogram curves at a large lag dis-
tance is usually small. In this study, we adopted two measures to prevent
a possible spatial covariogram mismatch due to different effective
ranges. First, ten trials with different samples ensure that effective
ranges of the spatial covariogram for the training and testing samples
would be balanced in general. For example, the testing object in Fig. 3b
has a small effective range in the east-west direction. Similarly, some
training objects of the road class also have small effective ranges in the
east-west direction. These should match well with the testing object.
Second, as previously mentioned, SLIC segmentation was performed to
ensure that an object will not have an overly long shape and thus the
effective range will not be too large.

The foreground and background of the spatial configuration from the
binary map was self-defined, with the foreground assigned to pixels with
values less than or equal to a threshold. Technically, the foreground and
background can be switched. We chose the dark pixels as foreground
because the light pixels are usually a minority in an object, such as ve-
hicles in a road object and parking lines in a parking lot object. If the
light pixels are used as foreground, some objects belonging to the same
class may have very different spatial distributions.

5. Discussion

The developed His-Cov model has several advantages over other
traditional OBIA classification. First, the His-Cov model is able to
incorporate rich spectral and spatial features in the form of curves
without conducting feature selection or optimization, which is usually
required in a traditional OBIA classification. Second, the His-Cov model
performs well on classifying spectral similar classes, which are difficult
to be distinguished by histogram-based features in the curve matching
approaches. The performance of the His-Cov model is generally superior
to traditional classifiers based on the other spatial features (e.g., semi-
variogram) in classifying complex land cover classes such as the resi-
dential and the commercial and public classes, and the road and the
parking lot classes. Finally, the spatial feature extraction from spatial
covariogram is easier than from (semi)variogram. Because of the
extensive computation load, a common way to calculate the (semi)
variogram is through modeling from a few samples. Setting appropriate
parameters for the (semi)variogram model, such as sill and range, can be
subjective and problematic. The His-Cov model, on the other hand, es-
timates spatial covariogram from all the pixels in the object and avoids
the involvement of expert knowledge in determining initial parameters
during the modeling process. The His-Cov model uses binary variables to
reflect the general spatial configuration of the pixels. The binary vari-
ables are less sensitive to noise, makes the spatial distribution infor-
mation extracted more robust and less computationally expensive.
Additionally, (hyper-)parameters are not required in the curve matching
approaches, thus parameter setting for the His-Cov model based classi-
fication is easier than some traditional classifiers such as SVM.

The His-Cov model developed here integrates spectral and spatial
features by treating them all as curves. Instead of using statistical
summaries of the objects’ features, all the pixels of an object are used to
reflect as much as possible of their spectral variability and spatial dis-
tribution. By incorporating spatial distribution, the His-Cov model im-
proves the performance of the curve matching approaches based on
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Fig. 9. Plots of overall classification accuracies against weight w, with the maximum accuracy indicated by a cross, and the selected weight indicated by a dot: (a) the

IKONOS image, (b) the WorldView-2 image, and (c) the WorldView-3 image.

spectral features only. It also demonstrates advantages in both classifi-
cation accuracy and efficiency over some state-of-the-art classifiers
based on machine learning algorithms, which also consider spectral and
spatial features. Objects with a distinctive spatial distribution benefit the
most from the His-Cov model. In the worst scenario, if an object is very
small and cannot provide useful spatial information, the His-Cov model
degrades to the His model that does not consider spatial features.
Although only tested in typical urban environments, the His-Cov model
theoretically works in other environments. Potentially, the His-Cov
could be used to combine the spatial features from HSR data with
spectral features from hyperspectral data to classify, for example, tree
species or crop types.

Given our experimental results, two types of misclassification require
further discussion. One is the case where an object is correctly classified
in the curve matching approaches with the His model but misclassified
with the His-Cov model. This type of error is likely to happen to those
classes without a distinctive spatial distribution such as the commercial
and public class. A possible solution to the problem is to apply different
weights to different classes. For example, assigning a larger spatial
weight to the classes with a distinctive spatial distribution such as road
and parking lot, and a smaller spatial weight to the classes without a
distinctive spatial distribution such as commercial and public. Another
solution is to make use of the uncertainty ratio of the classification based
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on the His and His-Cov models. When the two most similar samples of an
object are of different classes but have very close divergence values for
the spectral features (i.e., the uncertainty ratio is close to 1), the un-
certainty of the classification by the His model is large. The classification
of this object should be given a greater chance to change to a different
class in the His-Cov model. On the other hand, if the uncertainty ratio is
small in the His model, this object should be given a smaller chance to
change to another class in the His-Cov model.

The second type of misclassification occurs when both the His and
His-Cov models cannot correctly classify the object. Acquiring addi-
tional features may be required. For example, some road objects in the
east-west direction are misclassified as the residential class or the
commercial and public class in the WorldView-3 image (Fig. 7). This is
because most sample objects of the road class are oriented north-south,
resulting in matching problems in the east-west direction. This is not
necessarily a sampling issue since topography or urban structure could
result in a predominant orientation for roads. However, it is not common
for buildings to be found in the middle of a road (although structures are
occasionally built above highways). This knowledge of relative spatial
location for object classes may be introduced into the curve matching
approaches to correctly classify these objects into the road class.
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6. Conclusion

This paper proposes a His-Cov model to enhance object-based clas-
sification by using curve matching approaches for both spectral vari-
ability and spatial distribution in the objects being considered. The
spectral variability is derived from histograms or cumulative histograms
of the pixel values in an object across all the multispectral bands, while
their spatial distribution is established by the binary spatial covariogram
in two directions. The method was tested on three different HSR images
for land cover and land use classification in typical urban environments.
The His-Cov model based on six curve matching approaches was
compared with the corresponding approaches based on the His model, as
well as with four advanced machine learning algorithms that also
incorporate spectral and spatial features. All the results show that the
proposed method can achieve higher accuracies, demonstrating the
advantage of the spatial covariogram in characterizing the spatial dis-
tribution of the pixels in an object. The His-Cov model is especially
suited for classifying objects containing distinctive spatial distribution
information such as road and parking lot classes. Currently, however,
only within-object spatial features are considered. In the future, we
intend to consider the inclusion of between-object spatial relationships
using the curve matching approach. Incorporating known spatial re-
lationships between objects to be classified, such as road segments
forming continuous links uninterrupted by other classes such as build-
ings, should further improve classification accuracy. An integration of
machine learning and curve matching approaches will also be explored
in an attempt to provide a fully generalized classification capability.
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