
Security Study of Service Worker Cross-Site
Scripting.

Phakpoom Chinprutthiwong
Texas A&M University

cpx0rpc@tamu.edu

Raj Vardhan
Texas A&M University

raj_vardhan@tamu.edu

Guangliang Yang
Texas A&M University

guangliang.yang11@gmail.com

Guofei Gu
Texas A&M University

guofei@cse.tamu.edu

ABSTRACT

Nowadays, modern websites are utilizing service workers to pro-

vide users with app-like functionalities such as offline mode and

push notifications. To handle such features, the service worker is

equipped with special privileges including HTTP traffic manipula-

tion. Thus, it is designed with security as a priority. However, we

find that many websites introduce a questionable practice that can

jeopardize the security of a service worker.

In this work, we demonstrate how this practice can result in a

cross-site scripting (XSS) attack inside a service worker, allowing

an attacker to obtain and leverage service worker privileges. Due

to the uniqueness of these privileges, such attacks can lead to more

severe consequences compared to a typical XSS attack. We term this

type of vulnerability as Service Worker based Cross-Site Scripting

(SW-XSS). To assess the real-world security impact, we develop a

tool called SW-Scanner and use it to analyze topwebsites in the wild.

Our findings reveal a worrisome trend. In total, we find 40 websites

vulnerable to this attack including several popular and high ranking

websites. Finally, we discuss potential defense solutions to mitigate

the SW-XSS vulnerability.

CCS CONCEPTS

• Security and privacy→Web protocol security.

KEYWORDS

Service Worker, Cross-Site Scripting

ACM Reference Format:

Phakpoom Chinprutthiwong, Raj Vardhan, Guangliang Yang, and Guofei

Gu. 2020. Security Study of Service Worker Cross-Site Scripting.. In Annual

Computer Security Applications Conference (ACSAC 2020), December 7–11,

2020, Austin, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.

1145/3427228.3427290

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACSAC 2020, December 7–11, 2020, Austin, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8858-0/20/12. . . $15.00
https://doi.org/10.1145/3427228.3427290

1 INTRODUCTION

To improve the browsing experience of web users, modern websites

are utilizing service workers (SW) to enable app-like features such

as offline working mode and push notifications. Such features re-

quire a service worker to run in a special execution context which

is isolated from the main page. This allows a service worker to

intercept and modify network traffic of the corresponding website

to provide a cached HTTP response when the network is offline.

Additionally, as a service worker does not require a browser’s win-

dow to be open for its functionalities to execute, it can listen to and

handle push messages which can arrive spontaneously.

As a service worker provides such unique functionalities and exe-

cution environment, its security is critical. Generally, web browsers

enforce several rules to ensure a service worker will be safe from

outside tampering. For instance, only a same-origin file is allowed

to be registered as a service worker. Despite existing safeguards,

we find a new XSS vulnerability that allows an external source to

execute malicious code inside a service worker.

In this work, we discover a considerable number of websites

introduce a questionable programming practice and break the secu-

rity assumptions in favor of configurability and flexibility of their

service workers. These websites usually install a service worker

with URL search parameters as internal configurations, which are

blindly trusted inside the service worker. When a malicious parame-

ter is fed and reaches a sensitive function, it can allow an attacker to

execute a cross-site script and compromise the service worker. We

term this type of vulnerability as Service Worker based Cross-Site

Scripting (SW-XSS). Unlike other types of XSS, SW-XSS attackers

do not necessarily leverage a web page’s vulnerable parameters.

Instead, they target the vulnerable parameters of a service worker

and gain access to extra capabilities from the service worker that

are not available to other XSS attackers.

With the service worker’s capabilities, an attacker can gain sev-

eral advantages. Because a service worker runs in the background

and its lifetime lasts until a new service worker is provided or the

website’s data is manually cleared, the attacker can stealthily utilize

a compromised service worker for an extended period of time. The

attacker can also use the service worker to persistently monitor

the victim’s actions or inject malicious content into the web page.

In some cases, an attacker only needs to send victims a URL to

compromise the service worker. The compromised service worker

sw.js?p=<exploit>

SW

Register
Sensitive Sink

vulnerable.com?p=<exploit>

Document Context Service Worker Context

Strong Attacker

Weak Attacker

Victim

Malicious Content

Figure 2: An illustration of SW-XSS attack threat model

Activate. This event is dispatched when the installed service

worker is activated and becomes fully functional. Once a service

worker is activated, its event handlers will be ready to handle the

corresponding events. The activated service worker can operate

until it is put into idle. When its main page is closed, the service

worker will be put into idle within a short period of time (usually

less than a minute). All ongoing tasks will be frozen until an event

such as a push message’s arrival is dispatched, and then the service

worker will be activated again.

2.4 Cross-Site Scripting

Cross-site scripting or XSS attack is one of the most common types

of web attacks due to the simplicity with which it can be launched

(e.g., requires minimal interaction with the victim) and its imme-

diate impact. As a result, several forms of XSS attacks and the

corresponding countermeasures were proposed.

Typically, XSS attacks are a type of code injection generally in

the form of client-side scripts (e.g., JavaScript), which come from a

malicious cross-domain source. The XSS attackers exploit a flaw

that allows inputs, usually in the form of URL parameters, to reach a

sensitive function (such as eval) without proper sanitization. There

are three common types of XSS.

Stored XSS. An attacker crafts and navigates to a URL with a

parameter that will get stored in a server database. The parameter, in

the form of malicious JavaScript code, may normally be represented

as a message in a forum or the description of a user’s public profile.

When a victim visits the page with the malicious code, the code

can get executed in the victim’s browser, allowing the attacker to

steal sensitive information from the victim.

Reflected XSS. An attacker lures or redirects a victim to visit a

URL with a malicious parameter, which will then get forwarded to

the corresponding web server. In this case, the parameter does not

get stored, but it is immediately reflected (or echo-ed) back to the

victim and get executed in the victim’s browser.

DOM XSS. Similar to reflected XSS, an attacker first lures or

redirects a victim to visit a malicious URL. However, the specified

parameter will not get forwarded to the corresponding server, and

the attack occurs entirely in the client-side. A prime example of

DOM XSS vulnerability is when a website reads its URL (using

document.location) and writes the URL parameters onto its page

(i.e., using document.write) without proper sanitization.

3 THREAT MODEL

Generally, web attacks consider two separate contexts of client and

server. However, as shown in Figure 2, we extend the web attack

model and divide the client-side into two contexts: document con-

text and service worker context. Document context can be regarded

as the usual scope of client-side in a traditional web attacker’s

threat model, which covers the main page’s execution context or

the DOM. Service worker context, which was not accounted for in

the previous literature, can be regarded in a similar manner to the

server-side in a traditional web attack model, where an attacker

cannot directly tamper with it but can still leverage a vulnerability

in the service worker context to compromise it. In this work, we

consider two types of attackers which we term as weak attackers

and strong attackers.

Weak Attackers represent a threat model consistent with the

existing Web attackers present in any typical XSS attack. This type

of attacker can craft a URL that exploits certain vulnerable code in

the target website. When a victim navigates to the URL or visits

a malicious website that includes an iFrame pointing to the URL,

the victim’s service worker will be immediately compromised. The

attackers can use the service worker’s fetch event to inject malicious

code into the document context and carry out malicious tasks that

any typical XSS attacker can perform.

Strong Attackers are present in the form of JavaScript code

executing in the document context. This type of attacker has access

to document context’s other unprotected scripts and APIs, thus

they can already launch a wide range of attacks such as cookie

stealing, phishing, etc. Their goal is to infect and take control of the

presumably secure service worker to obtain additional capabilities

from the service worker context (discussed further in Section 4.1.2).

Such attackers can still greatly benefit from compromising a service

worker, given that, as stated by the W3C service worker’s security

consideration, service workers create the opportunity for a bad

actor to turn a bad day into a bad eternity.2

Nevertheless, both types of attackers share an important require-

ment. The target service worker must use URL search parame-

ters inside a sensitive function without proper sanitization during

the registration process, allowing code execution inside the ser-

vice worker. This basis defines what we consider a vulnerability

throughout this paper.

4 SW-XSS ATTACK

In this section, we analyze the SW-XSS vulnerability. First, we dis-

cuss the motivation of an attacker to conduct a SW-XSS attack, i.e.,

address the question of why an attacker would target and compro-

mise a benign service worker. For both weak and strong attackers,

we examine the additional advantages or special privileges pro-

vided by a service worker and how the attackers may utilize them.

Then, we discuss the challenges of compromising a service worker

and examine why existing safeguards may not be adequate. Finally,

we demonstrate how an attacker can compromise a benign service

worker through SW-XSS vulnerability and discuss the differences

of this attack compared to traditional XSS attacks.

4.1 Motivation

A service worker provides several unique functionalities that are

not available in other contexts, thereby making it a new target for

2https://www.w3.org/TR/service-workers/#security-considerations

3

attackers. As we assume two types of attackers, we discuss the

motivation for each type of attacker as follows.

4.1.1 Weak a�acker. For a weak attacker, the most prominent as-

pect of a service worker is that it creates a new attack vector in the

form of a new sensitive function called navigator.serviceWorker.register.

As we will later demonstrate in Section 4.3, this function plays an

important role in the SW-XSS attack as it can potentially allow URL

parameters to pass into the service worker, which can then be used

to inject malicious code back into the document context. There-

fore, the unsafe usage of this function can at least lead to similar

consequences as other sensitive functions such as document.write

or innerHTML utilized by a DOM-XSS attacker. To the best of our

knowledge, we are the first to identify the service worker’s register

API as a sensitive function.

Not only can a service worker open a new attack vector for

launching an XSS attack, it can also provides several unique func-

tionalities that can be leveraged by an attacker. For a weak attacker,

these features are a bonus that can be used to escalate the initial at-

tack, but they are the main goal for a strong attacker. Therefore, we

will explore these functionalities while discussing the motivation

for a strong attacker.

4.1.2 Strong a�acker. As a strong attacker already resides in the

document context, the motivation is different from a weak at-

tacker’s. A strong attacker mainly wants to compromise a benign

service worker to utilize its features to escalate or strengthen the

initial attack. We discuss the features unique to the service worker

context and how an attacker may utilize them as follows.

Network traffic interception. Unlike the document context, a

service worker has access to the network traffic of the website. It can

intercept network traffic of the files under its scope and modify any

HTTP’s header and content. This type of interception can be used

to inject malicious content, and it is not subjected to the monitoring

or security enforcement of existing defenses. For example, when a

malicious third-party script in the document context is prohibited

from modifying other DOM elements (e.g., by other scripts that

wrap sensitive functions like document.writewith security checks or

by an extended in-browser defense mechanism [25, 28] that limits

the access of third-party origins), it can use the service worker to

directly modify the web page’s DOM content. Therefore, an attacker

can potentially use a compromised service worker to circumvent

certain types of defenses in the document context and execute the

actual payload.

Persistent across sessions. Once successfully registered, the

service worker’s content (e.g., event listeners) will persist until a

newer service worker replaces the old one. Similarly, a malicious

payload stored in a service worker can last across sessions. An

attacker can use this capability in conjunction with the network

traffic manipulation to fully take control of the target website for

an extended period of time. This can especially benefit a temporary

strong attacker (i.e., in the case of reflected XSS attacks) as she

can turn the attack into a permanent one by hijacking the service

worker.

Instant push notification. One feature of a service worker

is that it allows a service provider (or an attacker) to remotely

activate a push event and display a push message at any time

regardless of whether the browser is open. This feature brings about

two advantages for an SW-XSS attacker. First, the attacker is not

required to wait for a victim to visit the website on her own accord

to launch a phishing attack. The attacker can initiate the attack

at any time through a push message. Second, the push message’s

sender is shown as coming from the website, which is normally

a legitimate website. Therefore, the phishing message will appear

more realistic compared to a message that comes from a different

and unknown website.

4.2 Challenges

As a service worker contains unique privileges that other contexts

do not have, it is designed with security as one of its priorities.

Naturally, an attacker cannot easily compromise a benign service

worker due to the service worker’s built-in safeguards. Here we

discuss the challenges that an attacker could face while targeting a

benign service worker and how the attacker may circumvent the

corresponding protections. We also discuss why certain safeguards

may be inadequate in preventing the attacker.

First-party only registration. A browser only allows a first-

party file to be registered as a service worker. This ensures third-

party scripts embedded in the document context will not register

their own script as a service worker. However, it does not prevent

the registered service worker from importing an additional script

from an external domain through the importScripts API. Therefore,

this API can still create an opportunity for an attacker to launch an

SW-XSS attack.

Order of execution. A service worker runs mostly in an event-

based environment, thus the privileges are provided in the form

of events that can be handled. For instance, the fetch event is used

to handle network traffic, and the push event is used to handle

push messages. These event handlers can only be added (using

the addEventListener API) during the install lifecycle. Once the

installation is finished, the browser will deny any attempt to register

a new event listener. Similarly, an event cannot have more than

one listener attached to it. Therefore, the goal of attackers is to add

event handlers before the legitimate code adds its own handlers.

When an attacker fails to add an event listener, the impact of

the attack is greatly limited. The injected malicious code would

not gain any privileges and it will only get executed when the

service worker is activated (i.e., when the website itself is visited),

which is no different than compromising the document context.

In this scenario, to indirectly influence the handler, the malicious

code could still try overriding existing functions inside the service

worker that will be called by an event handler.

While the SW-XSS attack heavily relies on the order of execution

of the malicious code, we find that it is not difficult to launch this

attack in practice. As we will later show in Section 6.2.1, websites

with service workers often add event listeners at a later stage after

having imported additional scripts. This action of importing addi-

tional scripts is actually the root cause of the SW-XSS vulnerability.

As a result, the current trend in how websites implement their

service workers surprisingly favors the SW-XSS attackers.

Service worker’s freshness. Generally, a web browser will

constantly check a registered service worker and compare it to

the hosted service worker file to make sure the service worker is

up-to-date. When there is a different version available (i.e., a byte

4

SW/Imported files Babel

sw.js

hooks.js

Iroh

Fetch

Eval

Report

Code Instrumentation Code Evaluation

Figure 4: An illustration of SW-Scanner’s pipeline.

HTTP headers, in which it can freely modify. More importantly,

the handler also has access to the corresponding responses and can

easily modify or replace their HTTP headers or bodies.

By using the fetch event handler, the attacker can inject a mali-

cious payload into the document context. The malicious payload

is usually for stealing cookie, launching a phishing attack, or per-

forming any task normally done in a typical XSS attack. As shown

in Figure 3, the attacker can easily use the fetch event to modify a

betting page of vulnerable.com to launch a phishing attack. When

the victims click on the link, they will be redirected to another

phishing page that can steal sensitive data, especially regarding

payment information.

It is worth noting that during the whole process, the victims

may not even realize that they are under attack. Because service

worker registration does not require any permission from users

and occurs silently in the background, when the attacker registers a

malicious service worker inside a benign website especially through

an iFrame, the victims are given no visual cues. Additionally, even

after the victims close the browser, the malicious service worker

can stealthily infect the victims for as long as vulnerable.com does

not update the service worker file or the victims manually remove

the service worker.

4.4 SW-XSS in comparison with existing XSS

Although SW-XSS shares some similarities with existing XSS at-

tacks such as DOM-XSS, there are certain differences which make

the SW-XSS novel. We highlight the main differences between this

attack and the existing XSS as follows.

XSS entry point. In traditional XSS, an attacker normally ini-

tiates the attack by crafting a malicious URL of a vulnerable web

page, which may be in the form of HTML or PHP. We consider such

URL as an XSS entry point. While it is true that a weak attacker

can also initiate the SW-XSS attack in a similar fashion, the actual

entry point of SW-XSS comes from the URL of the registered service

worker, which is strictly a JavaScript file. A weak attacker may be

able to launch a normal XSS attack, but it does not necessarily lead

to SW-XSS if the service worker and its URL are not vulnerable.

XSS target. While traditional XSS can compromise a web page

or other web workers, to the best of our knowledge, we are the

first to identify XSS in a service worker. Naturally, a service worker

does not have direct access to the DOM, thus it is conflicting to

regard this attack as DOM-XSS. Additionally, a service worker has

unique features, such as network manipulation, that other types of

web workers or web pages do not have. Therefore, we distinguish

and regard this type of attack as SW-XSS.

5 DETECTING SW-XSS IN THE WILD

In this section, we introduce our tool called SW-Scanner. First, we

discuss the goal of SW-Scanner in detecting SW-XSS in the wild.

Then, we present the design of SW-Scanner and its implementation.

We open source our tool and the collected data, which can be found

at https://u.tamu.edu/sw-scanner, to support more research in this

direction.

Ultimately, the SW-XSS vulnerability stems from the unsafe

usage of URL parameters in a sensitive function inside a service

worker. Therefore, to search for SW-XSS vulnerability in real-world

websites, we need to track how a service worker consumes a given

URL search parameter. To accomplish this goal, we develop SW-

Scanner as a taint tracking tool that can taint URL search parameters

of a service worker and report when a tainted value reaches a sen-

sitive function. Specifically, the taint source is the self.location API

and the taint sinks are the importScripts, Function, eval, setTimeout,

and setInterval APIs. SW-Scanner mainly consists of two modules:

the Code Instrumenter module can add taint tracking capability

onto the target script; the Code Evaluation module acts like the

controller and will execute the instrumented code and ensure that

the taint tracking runs and reports correctly.

5.1 Code Instrumenter Module

This module accepts a JavaScript file as an input. Then it checks

the input’s validity using Babel [1], a JavaScript compiler. When

the input JavaScript code is malformed, this module will use Ba-

bel to try fixing the code before rejecting it if Babel cannot do so.

After the code is validated and normalized, the instrumenter will

instrument the code to add the taint tracking capability using an ex-

isting dynamic analysis library called Iroh [2]. Iroh uses JavaScript

parser to read the target’s code and transforms it into an interme-

diate representation, which can easily locate and instrument key

locations such as the variable declaration, conditional check, or

function’s enter/exit. The full list of such locations is presented in

Iroh’s Github website [3]. Once one of these predefined locations

is reached during an execution, Iroh generates a corresponding

event that can be handled. This allows SW-Scanner to instrument

JavaScript code into the predefined key locations.

For the purpose of tracking URL search parameters, SW-Scanner

instruments taint information (by adding object’s properties) into

the taint source. The information includes a tainted label and a list

of tainted words. For example, when a tainted string "example.com"

is concatenated with a static string "/index.html", the resulting

string "example.com/index.html" will have the tainted label and a

list ["example.com"].

To correctly propagate the taint information, SW-Scanner adds

hooks to the following events: the Function and API call events, the

New operator event, and the Binary operation event. In the case of

functions and API calls, when the calling object or the parameters

contain a tainted value, the hook will taint the resulting object.

Similarly, when a New operator is called, SW-Scanner checks the

parameters and taints the resulting object if a parameter is tainted.

For a binary operation event, SW-Scanner will check the left and

right operands and taint the result if at least one of the operand is

tainted. When a tainted value reaches a sensitive sink, SW-Scanner

will log the tainted value.

6

Table 1: A table summary of the taint tracking analysis re-

sult.

Taint Source Taint Sink

Parameter Type Count importScripts Function

Hash 367 4 0

URL 141 80 (35) 0

Code 1 0 1

5.2 Code Evaluation Module

This module is developed as a website. It accepts the instrumented

files as an input and reports the taint result. The workflow of SW-

Scanner follows these simple steps. First, SW-Scanner prepares

its environment to mimic that of the target website. It overrides

the self.location object and modifies all origin-related properties

into the target’s origin. SW-Scanner also registers its own service

worker file using the same search parameters as the target ser-

vice worker. Next, the target’s instrumented service worker and

imported files are saved in a folder, and SW-Scanner strips off all

directory hierarchy from each file’s path. By overriding the im-

portScripts API, SW-Scanner can redirect all fetch requests to the

local copies to avoid CORS-related errors. After the environment is

set, SW-Scanner proceeds to eval the target’s instrumented service

worker file inside the service worker context. This will reenact

the registration process and report the taint tracking result upon

completion.

Adding taint information can affect the execution path of the

service worker because primitive data types in JavaScript (such as

String or Number) can transform into an Object when the taint

properties are added. When the service worker checks a variable’s

type and finds the type mismatch, it can essentially alter the ex-

ecution path. SW-Scanner ensures that this does not happen by

executing the target service worker twice during the analysis. For

the first execution, SW-Scanner does not add the taint information

to the sources. Instead, SW-Scanner adds hooks to path-related

events such as the If-Else and Switch-Case events. When the target

service worker is eval-ed the first time, SW-Scanner records the

path and the order that the target service worker has taken. Then

during the second eval-ed, SW-Scanner adds the taint information

and forces the path according to the first execution.

6 EVALUATION

In this section, we conduct an evaluation of the security impact

of the SW-XSS vulnerability in real-world websites. First, we de-

scribe the data collection process and the overall statistics of service

worker and its parameter usage in top websites. Next, we uncover

the SW-XSS vulnerabilities in the wild, present the results of SW-

Scanner, and discuss the responsible disclosure we made of the

vulnerabilities discovered. Then, we evaluate the practicality of

attackers utilizing the persistency of service workers by measuring

the service worker’s "freshness." Finally, we provide a case study of

a vulnerable popular shopping website.

6.1 Data Collection and Overall Statistics

We first crawl the top 100,000 websites, based on Tranco’s list

created in December 2019 [15], using a custom Chromium build

that we slightly modify to log the service worker registration and

importScripts API calls. We record the path, including the URL

search parameters, used in these APIs. After this step, we are left

with 7,060 websites with a service worker registered.

Next, we use Puppeteer’s headless browser to revisit the websites

in the list and download the JavaScript files. Then, we use Babel,

a JavaScript compiler, to check the code’s validity and possibly fix

small syntax issues. If Babel is unable to parse the files, then we

consider the files corrupted or protected from external download

requests, and disregard these websites. After this step, we are left

with 6,182 websites.

From the 6,182 websites, we measure the URL search parameter

usage in the registration process. Specifically, we check the log files

obtained from the data collection and analyze the service worker’s

paths. We use a regular expression to match the ‘?[key]=[value]&...’

patterns in the path. Overall, We find that 2,525 of 6,182 websites

(40.84%) specify at least one parameter in the registration API, and

each website includes 1.29 URL search parameters on average.

6.2 SW-XSS Vulnerabilities in the Wild

For the 2,525 websites with parameter usage in service worker, we

use SW-Scanner to identify the SW-XSS vulnerability. For the taint

source, we use heuristics to further categorize the parameter types

and count the number of websites with a corresponding parameter

type as shown in Table 1. We originally divided parameters into six

types (Hash, URL, Version, Flag, Key, and Code), but only three types

associated with at least one vulnerable website are reported here.

Note that the numbers on the Taint Source column only represent

the numbers of websites with a corresponding parameter type (not

necessarily used in a sensitive sink). Instead, the Taint Sink column

shows the number of websites that have at least one taint flow from

the taint source reaching a corresponding sink.

We find that there are 367 websites with hashed parameters.

Mostly, these parameters do not represent sensitive information.We

manually analyze a set of sample websites that utilize these hashed

variables and find that most of the samples used the variables as

public API’s keys or visitor’s public information like username,

which poses no immediate threat in our threat model. Nevertheless,

we find four websites reported by SW-Scanner that hash a URL

path used in the importScripts API.

The URL-type is the most dangerous type as it is used mostly

to interact with external sources, and it can be manipulated to

point to an attacker’s host. We find that 141 websites pass URL

as a parameter. Although the majority of websites use them in a

non-sensitive sink, there are 80 websites originally reported by SW-

Scanner that use it in the importScripts API. However, some of these

reports contain parameters that cannot be leveraged by an attacker.

For example, the parameter "?target=production" used in a website

reaches the importScripts API, but the string is concatenated to a

static domain, thus the attacker will not be able to import a cross-

domain script into this website. SW-Scanner performs a filtering

based on whether the tainted value can affect the imported file’s

origin by checking the list of tainted words. Unless the list contains

7

1 ...

2 function i(t) {

3 var e = /^ MATCH PATTERN$ /.exec(t);

4 if (!e)

5 throw new TypeError('Err ');

6 var n, r = o()(e, 4), i = r[1], u = r[2], a = r[3];

7 c = unescape(a);

8 ...

9 n = decodeURIComponent(escape(atob(c)));

10 ...

11 return new Function(n)

12 }

13 ...

14 var a = o.value; // o is service worker 's URL

15 ...

16 f = new URL(a.uri ,location);

17 ...

18 i(f.href)()

19 ...

Listing 2: A partial of service worker’s code of a vulnerable

website showing direct code execution from URL search pa-

rameters.

Starting at line 14, the service worker obtains its URL parameters

and use it to craft a URL object with its own origin at line 16.

Afterward, the crafted URL, stored as f, is passed into the function

i(). In the function, the URL pattern is tested at line 3, but the test

does not affect the attack in any way as it simply checks if the URL

contains certain tags indicating that JavaScript code is specified

in the parameters. From line (6-9) the code is extracted from the

parameters and returned at line 11, which later gets executed at

line 18. This process happens before any event handler is registered.

Therefore, an attacker can specify JavaScript code in the service

worker’s URL parameter to register her own event handlers and

hijack the service worker.

From this case study, we illustrate that SW-XSS can be found

even in high-profile websites and can occur in a complicated man-

ner making it hard to be detected. Therefore, such problem may be

overlooked by web developers. We hope that our work will help

raise awareness regarding the importance of service worker’s secu-

rity and provide useful insights for web developers to implement

secure service workers in the future.

7 POTENTIAL DEFENSE SOLUTIONS

As the main cause of SW-XSS comes from the unsafe/unsanitized

usage of URL search parameters in service workers, themost natural

solution is to properly check how the parameters are used inside

the service workers. Nevertheless, we notice that the reason why

websites follow the bad practice in the first place is because the

service worker lacks a way to initially communicate with other

contexts while being installed. Note that the postMessage API itself

cannot be accessed until after the installation process is finished

and the service worker is successfully activated. Therefore, viable

options are to restrict URL search parameters of a service worker,

to provide another way for the document context or web server to

communicate with the service worker during the installation, or to

limit script inclusion in the SW context.

To restrict the URL search parameters of a service worker, we

suggest a method involving the manifest file, which is normally

already included in SW-enabled websites. While the worker-src di-

rective of the Content-Security-Policy (CSP) can limit the domains

and paths that can be registered as a service worker, our attack

utilizes the parameters of the same service worker file. According to

the CSP3 specification [7, 8], the path does not include the parame-

ters. Therefore, this CSP directive is currently not effective (unless a

new specification includes URL search parameters for source lists).

In any case, we notice that the Manifest used to have the service-

worker property that can tell the browser which service worker the

developers intend to install. Although this property has become

obsolete [9], we believe that such a method could help mitigate the

SW-XSS vulnerability as the intended URL search parameters can

be specified as the service worker src property. One downside of

this method is that the Manifest file is usually static, so the web

server may need to provide multiple versions of the Manifest files

if the URL search parameters needs to be varied for each visitor.

This leads to our second suggestion that is to use cookie, which can

provide more dynamic values.

Even though cookie is currently not accessible by a service

worker, there is an active development of the Cookie Store API,

which allows cookie access to a service worker. This can help web

servers communicate with the service worker during the instal-

lation. However, an attacker in the document context could still

launch SW-XSS attack by manipulating a service worker’s cookie.

Therefore, we suggest that service worker’s cookie should be iso-

lated (or at least give an option/flag) from the document’s cookie.

For instance, an additional SWOnly flag can limit access from the

document context but allows the Cookie Store API from the service

worker to access it. One downside of this method is that it may

require browsers to change their implementation to additionally

check the calling context of the cookie API (whether it is from the

service worker context). This could lead to an additional overhead.

Another feasible defense solution for the SW-XSS attack is to

limit script inclusion through the importScripts API. To this end,

web developers can utilize the CSP script-src directive in the service

worker to specify which domain names can be imported inside the

SW context. This can effectively prevent SW-XSS attackers from

importing malicious cross-domain files to hijack the service worker.

However, there are two downsides to this solution. First, it cannot

prevent SW-XSS attacks when the payload can be specified directly

through the URL search parameters because the attackers do not

need to use the importScripts API. This requires web developers

to also implement a defense for URL search parameters (i.e., by

using the Manifest as we suggested) to fully prevent SW-XSS at-

tacks. Second, CSP is not widely deployed [24] and can be hard to

configure correctly or can be bypassed [27]. Although specifying

the script-src for service workers is seemingly simple and effective,

we cannot guarantee that it is impossible for attackers to find a way

to bypass this directive in the future.

Lastly, we suggest a mitigation approach in addition to other

previously discussed solutions that could be helpful in the long

term. We notice that while the service worker gives better expe-

rience for users, it also gives attackers a new attack surface and

additional privileges. For example, web attacks used to happen

when a victim opens a malicious or compromised web page, but

now service workers can execute malicious payload off-screen and

enable several novel attacks [21, 26]. By simply visiting a website,

users are exposed to potential risks of a service worker. Therefore,

we suggest that web browsers could provide an indicator when

a website has a service worker installed (possibly similar to the

10

lock icon for HTTPS websites). This could help users be aware of

the risk when visiting an untrusted website and prompt them to

clear the website’s content or remove unnecessary service workers

more often. While this approach may not yield any result at this

moment, with increasing adoption of service worker, this approach

may prove to be useful. In any case, such an approach will need a

user study in the future to fully understand its effectiveness.

8 RELATED WORK

Web Attack. Generally, web attacks can be categorized into either

client- or server-side. Saxena et al. and Mendoza et al. show that

on the server-side, a bad or malicious parameter controlled by the

attackers can potentially compromise users’ sensitive data [19, 22].

Our work, on the other hand, shares similarities in terms of how the

attackers can craft a malicious parameter to subvert the security.

However, SW-XSS does not involve the server-side and occurs in

the client-side instead.

Cross-Site Scripting attacks are one of the most infamous client-

side attacks. Stock et al. study the history of XSS attacks over a

decade and find that script inclusion or data access from cross-

domain plays a role in the website’s security, which is also in line

with Nikiforakis et al. findings [20, 24]. Our attack also utilizes

cross-domain file inclusion to launch the SW-XSS attack, thus we

share the same sentiment regarding this issue. In recent years, a

variant of XSS called DOM-XSS is emerging [17, 18, 23]. DOM-XSS

can be similar to our attack in a sense that it allows attackers to

execute remote code on the client-side. However, SW-XSS does not

execute the payload in the DOM but in the service worker unlike

DOM-XSS.

Service worker security is rarely studied in the past but is attract-

ing more attention. Lee et al. are possibly the first to discuss attacks

related to Progressive Web App and service worker [16]. However,

they assume that the vulnerable website runs in HTTP while our

threat model assumes full HTTPS. Papadopoulos et al. also ana-

lyze the impact of when a service worker runs a malicious code in

which the attackers can mine crypto-currency in the background

or control a botnet inside the victim’s browser [21]. Nevertheless,

Papadopoulos et al. assume that the target website and the service

worker are already malicious or compromised but does not discuss

a way to compromise a service worker. Watanabe et al. discuss how

an attacker can register a malicious service worker for a re-hosted

website to compromise other re-hosted websites of the same service

provider [26]. We look at the service worker in a different angle

and assume the service worker is benign while the goal is to com-

promise it instead of registering a malicious service worker. Stuart

Larsen discovers a bug allowing a vulnerable JSONP endpoint to be

used to register arbitrary code for a service worker [10]. Our work

shows an alternative way to compromise a benign service worker

through URL search parameters of a service worker.

JavaScript Analysis. Static analysis tools such as JSHint or

SonarJS can help identify generic coding issues [11, 12], but JavaScript

is an extremely dynamic language, so the report generated by static

analysis will contain a lot of false negative or false positive, and

they cannot detect sophisticated attacks such as XSS. Therefore,

most recent studies focus on utilizing dynamic analysis. Saxena et

al., Melicher et al., and Lekies et al. propose dynamic analysis tools

based on browser or JavaScript engine modification [17, 18, 22].

However, service worker development is still in an early stage and

its specification changes frequently. Tools that are based on browser

modification cannot naturally keep up with the changes, and they

do not take the service worker context into account. While Jueck-

stock et al. concurrently propose a light-weight in-browser dynamic

analysis tool that can monitor JavaScript’s native APIs usage and

quickly adapt into a new browser version, it cannot currently per-

form taint tracking [13]. Therefore, we implement SW-Scanner in

JavaScript, which provides taint tracking capability and can run in

any browser.

9 CONCLUSION

In this work, we found a growing problematic practice in SW-

enabled websites. These websites use URL search parameters during

their service worker’s installation and blindly trust those param-

eters. This allows attackers to feed a malicious parameter into a

benign service worker to compromise it. We termed this attack as

SW-XSS. We developed a tool called SW-Scanner to evaluate the

impact of SW-XSS in real-world websites. Our findings showed

40 websites to be vulnerable, wherein more than a hundred mil-

lion users could potentially be affected per month. We reported

our findings to all affected developers. With growing adoption and

forthcoming additional features of service workers, more vulner-

abilities or new types of attacks may emerge if web developers

neglect this problem. We hope that this work will provide useful

insights that can help minimize such outcomes in future.

ACKNOWLEDGMENTS

This material is based upon work supported by the NSF/VMware

Partnership on Software Defined Infrastructure as a Foundation for

Clean-Slate Computing Security (SDI-CSCS) program under Award

Title “S2OS: Enabling Infrastructure-Wide Programmable Security

with SDI” and No. 1700544. It is also supported in part by NSF Grant

No. 1617985, 1642129, and ONR Grant No. N00014-20-1-2734. Any

opinions, findings, and conclusions or recommendations expressed

in this material are those of the authors and do not necessarily

reflect the views of NSF, VMware and ONR.

REFERENCES
[1] [n.d.]. https://babeljs.io/.
[2] [n.d.]. https://maierfelix.github.io/Iroh/.
[3] [n.d.]. https://github.com/maierfelix/Iroh/blob/master/API.md.
[4] [n.d.]. https://www.similarweb.com/.
[5] [n.d.]. https://web.archive.org/.
[6] [n.d.]. https://www.openbugbounty.org/.
[7] [n.d.]. https://www.w3.org/TR/CSP3/#framework-directive-source-list.
[8] [n.d.]. https://tools.ietf.org/html/rfc3986#section-3.3.
[9] [n.d.]. https://developer.mozilla.org/en-US/docs/Web/Manifest/serviceworker.
[10] [n.d.]. https://c0nradsc0rner.com/2016/06/17/xss-persistence-using-jsonp-and-

serviceworkers/.
[11] [n.d.]. https://jshint.com/.
[12] [n.d.]. https://github.com/SonarSource/SonarJS.
[13] Jordan Jueckstock and Alexandros Kapravelos. 2019. VisibleV8: In-browser Mon-

itoring of JavaScript in the Wild. In Proceedings of the ACM Internet Measurement
Conference (IMC).

[14] Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad, William Robertson, Christo
Wilson, and Engin Kirda. 2017. Thou Shalt Not Depend on Me: Analysing the
Use of Outdated JavaScript Libraries on the Web. In 24th Annual Network and
Distributed System Security Symposium, NDSS 2017, San Diego, California, USA,
February 26 - March 1, 2017. The Internet Society.

11

[15] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Ko-
rczyński, and Wouter Joosen. 2019. Tranco: A Research-Oriented Top Sites
Ranking Hardened Against Manipulation. In Proceedings of the 26th Annual
Network and Distributed System Security Symposium (NDSS 2019). https:
//doi.org/10.14722/ndss.2019.23386

[16] Jiyeon Lee, Hayeon Kim, Junghwan Park, Insik Shin, and Sooel Son. 2018. Pride
and Prejudice in ProgressiveWeb Apps: Abusing Native App-like Features inWeb
Applications. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’18). ACM, New York, NY, USA, 1731–1746.
https://doi.org/10.1145/3243734.3243867

[17] Sebastian Lekies, Ben Stock, and Martin Johns. 2013. 25 million flows later:
large-scale detection of DOM-based XSS. In 2013 ACM SIGSAC Conference on
Computer and Communications Security, CCS’13, Berlin, Germany, November 4-8,
2013, Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung (Eds.). ACM, 1193–
1204. https://doi.org/10.1145/2508859.2516703

[18] William Melicher, Anupam Das, Mahmood Sharif, Lujo Bauer, and Limin Jia.
2018. Riding out DOMsday: Towards Detecting and Preventing DOM Cross-Site
Scripting. In 25th Annual Network and Distributed System Security Symposium,
NDSS 2018, San Diego, California, USA, February 18-21, 2018. The Internet Soci-
ety. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/
ndss2018_07A-4_Melicher_paper.pdf

[19] Abner Mendoza and Guofei Gu. 2018. Mobile Application Web API Reconnais-
sance: Web-to-Mobile Inconsistencies & Vulnerabilities. In 2018 IEEE Symposium
on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco,
California, USA. IEEE, 756–769. https://doi.org/10.1109/SP.2018.00039

[20] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker,
Wouter Joosen, Christopher Kruegel, Frank Piessens, and Giovanni Vigna. 2012.
You are what you include: large-scale evaluation of remote javascript inclusions.
In the ACMConference on Computer and Communications Security, CCS’12, Raleigh,
NC, USA, October 16-18, 2012, Ting Yu, George Danezis, and Virgil D. Gligor (Eds.).
ACM, 736–747. https://doi.org/10.1145/2382196.2382274

[21] Panagiotis Papadopoulos, Panagiotis Ilia, Michalis Polychronakis, Evangelos P.
Markatos, Sotiris Ioannidis, and Giorgos Vasiliadis. 2019. Master of Web
Puppets: Abusing Web Browsers for Persistent and Stealthy Computation.
In 26th Annual Network and Distributed System Security Symposium, NDSS

2019, San Diego, California, USA, February 24-27, 2019. The Internet Soci-
ety. https://www.ndss-symposium.org/ndss-paper/master-of-web-puppets-
abusing-web-browsers-for-persistent-and-stealthy-computation/

[22] Prateek Saxena, Steve Hanna, Pongsin Poosankam, and Dawn Song. 2010. FLAX:
Systematic Discovery of Client-side Validation Vulnerabilities in Rich Web Appli-
cations. In Proceedings of the Network and Distributed System Security Symposium,
NDSS 2010, San Diego, California, USA, 28th February - 3rd March 2010. The In-
ternet Society. https://www.ndss-symposium.org/ndss2010/flax-systematic-
discovery-client-side-validation-vulnerabilities-rich-web-applications

[23] Marius Steffens, Christian Rossow, Martin Johns, and Ben Stock. 2019. Don’t
Trust The Locals: Investigating the Prevalence of Persistent Client-Side
Cross-Site Scripting in the Wild. In 26th Annual Network and Distributed System
Security Symposium, NDSS 2019, San Diego, California, USA, February 24-27, 2019.
The Internet Society. https://www.ndss-symposium.org/ndss-paper/dont-trust-
the-locals-investigating-the-prevalence-of-persistent-client-side-cross-site-
scripting-in-the-wild/

[24] Ben Stock, Martin Johns, Marius Steffens, and Michael Backes. 2017. How the
Web Tangled Itself: Uncovering the History of Client-Side Web (In)Security. In
26th USENIX Security Symposium, USENIX Security 2017, Vancouver, BC, Canada,
August 16-18, 2017., Engin Kirda and Thomas Ristenpart (Eds.). USENIX Associa-
tion, 971–987. https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/stock

[25] Tung Tran, Riccardo Pelizzi, and R. Sekar. 2015. JaTE: Transparent and Efficient
JavaScript Confinement. In Proceedings of the 31st Annual Computer Security
Applications Conference (ACSAC 2015). ACM, New York, NY, USA, 151–160. https:
//doi.org/10.1145/2818000.2818019

[26] Takuya Watanabe, Eitaro Shioji, Mitsuaki Akiyama, and Tatsuya Mori. 2020.
Melting Pot of Origins: Compromising the IntermediaryWeb Services that Rehost
Websites.

[27] Lukas Weichselbaum, Michele Spagnuolo, Sebastian Lekies, and Artur Janc. 2016.
CSP Is Dead, Long Live CSP! On the Insecurity of Whitelists and the Future of
Content Security Policy. In Proceedings of the 23rd ACM Conference on Computer
and Communications Security. Vienna, Austria.

[28] Y. Zhou and D. Evans. 2015. Understanding and Monitoring Embedded Web
Scripts. In Proc. IEEE Symp. Security and Privacy. 850–865. https://doi.org/10.
1109/SP.2015.57

12

