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ABSTRACT

Spectrum cartography (SC) aims at estimating the multi-aspect (e.g.,
space, frequency, and time) interference level caused by multiple
emitters from limited measurements. Early SC approaches rely on
model assumptions about the radio map, e.g., sparsity and smooth-
ness, which may be grossly violated under critical scenarios, e.g., in
the presence of severe shadowing. More recent data-driven meth-
ods train deep generative networks to distill parsimonious represen-
tations of complex scenarios, in order to enhance performance of
SC. The challenge is that the state space of this learning problem
is extremely large—induced by different combinations of key prob-
lem constituents, e.g., the number of emitters, the emitters’ carrier
frequencies, and the emitter locations. Learning over such a huge
space can be costly in terms of sample complexity and training time;
it also frequently leads to generalization problems. Our method in-
tegrates the favorable traits of model and data-driven approaches,
which substantially ‘shrinks’ the state space. Specifically, the pro-
posed learning paradigm only needs to learn a generative model for
the radio map of a single emitter (as opposed to numerous combi-
nations of multiple emitters), leveraging a nonnegative matrix fac-
torization (NMF)-based emitter disaggregation process. Numerical
evidence shows that the proposed method outperforms state-of-the-
art purely model-driven and purely data-driven approaches.

Index Terms— Radio map, spectrum cartography, cognitive ra-
dio, deep generative model, nonnegative matrix factorization

1. INTRODUCTION

Spectrum cartography (SC) aims at estimating the radio frequency
(RF) interference level caused by emitters over multiple domains,
e.g., space, time, and frequency—a multi-aspect radio map [1–4].
SC is the first step towards full RF awareness, and is considered a
cornerstone for high-efficiency wireless resource management, net-
working, and user/system co-existence that are core tasks in future
wireless communications systems [1].

SC is an ill-posed high-dimensional data sampling and recov-
ery problem, since the radio map can only be sparsely measured in
the domains of interest, e.g., space and time. In the past decade, a
plethora of approaches were proposed to tackle this problem, using
dictionary learning, kernel interpolation, and tensor decomposition;
see, e.g., [2–6]. In a nutshell, these works can all be categorized
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into the model-based family, which rely on model assumptions—
e.g., that the radio map exhibits sparsity, smoothness, or/and low-
rank structures in certain domains. Model-based approaches work
to a certain extent, but serious challenges remain. For example, the
work in [2] assumes that the emitters’ spatial loss fields (SLFs)—
which models the power propagation in space—are low-rank matri-
ces. However, this assumption could be easily violated when the
shadowing effect is strong (e.g., in urban or indoor environments).

Recently, [7, 8] proposed a data-driven approach. There, the ra-
dio map is treated as a 3D image, and a neural network is employed
to learn its generative model. This way, the burden of modeling is
‘shifted’ to an off-line learning process. The new challenge is that
the state space of interest is extremely large, which contains all pos-
sible scenarios of different numbers of emitters, their frequency us-
age, their locations, and all possible fading/shadowing effects. Hav-
ing a representative training set would cost a large amount of re-
sources, let alone the costly training process. Learning over such a
huge space could also lead to high generalization errors, since the
‘test data’ could be far from any train sample (e.g., the number of
emitters can change drastically from training set to test set).

In this work, we propose a mixed model and data-driven frame-
work to address these challenges. Our idea is to keep the well-
modeled part in classic model-based approaches intact (i.e., the fact
that the overall radio map is an aggregation of the radio maps of in-
dividual emitters) [2, 4, 9], while let a deep neural network to repre-
sent the complex/uncertain part in the signal generating process—
particularly, the SLFs of emitters. This way, that the ‘modeling
burden’ of the neural network is substantially lower relative to that
in [7, 8]. To enable the training process, we propose a carefully de-
signed nonnegative matrix factorization (NMF)-based signal disag-
gregation method, which ensures that the individual radio maps of
different emitters can be separated from the incomplete observations,
under reasonable conditions. Simulations show that our method out-
performs a number of state-of-the-art baselines. In particular, our
framework successfully overcomes the problem of emitter miss de-
tection that is observed in existing purely data-driven methods, indi-
cating substantially improved generalization performance.

2. PROBLEM STATEMENT AND BACKGROUND

We are interested in a spatio-spectral radio map recovery problem as
in [2,4,6,9]. Consider a two-dimensional geographical region that is
discretized into I×J grids. We hope to estimate the power spectrum
density (PSD) overK frequency bins at every grid—which gives rise
to an I×J ×K radio map tensor, i.e.,X ∈ RI×J×K . Note that the
tensor fiber X(i, j, :) ∈ RK represents the power spectrum density
(PSD) of the received signal measured at the location (i, j).
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Fig. 1. The SC scenario of interest.

To acquire the spectral information over the region, a num-
ber of sensors are placed at certain locations (in, jn) for n =
1, . . . , N where in ∈ [I] and jn ∈ [J ] and we use the notation
[I] = {1, . . . , I} (see Fig. 1 for illustration). Assume that there
is a set Ω ⊆ [I] × [J ] such that for every (i, j) ∈ Ω, there is
a spectrum sensing device (a sensor) that can measure the PSD
over K frequency bands at the location (i, j). This means that
X(i, j, :) ∈ RK , ∀(i, j) ∈ Ω is available, and we wish to use such
information to recover the entireX ∈ RI×J×K .

2.1. Classic Model and Methods

In [2, 4, 7, 10], a model for X is advocated. To be specific, consider
R emitters that are transmitting signals in the region. The power
propagation pattern of emitter r is a nonnegative matrix Sr ∈ RI×J ,
i.e., the SLF of emitter r. Let cr ∈ RK , column of C ∈ RK×R, be
the PSD of emitter r. Then, Sr(i, j)ck,r represents the interference
power level at location (i, j) and frequency k contributed by emitter
r; i.e.,

X(i, j, k) =

R∑
r=1

Sr(i, j, k)C(k, r). (1)

This model is considered fairly accurate if the bandwidth of interest
is not too wide relative to the central carrier frequency (e.g., 20MHz
bandwidth at a carrier frequency within 2-5 GHz.) [11,12]. Recently,
[2] modeled Sr as a low-rank matrix and connected (1) to a block-
term tensor decomposition (BTD) model [13], and provided a tensor
recovery framework with provable guarantees for estimatingX .

The theoretical guarantees in [2] are appealing. However, the
challenge is that the presumed models are often not accurate enough,
and such modeling error oftentimes gives rise to (large) performance
degradation in practice. For example, the low-rank assumption on
Sr could be easily violated if shadowing is strong, which may be
true for city centers or indoor environments (see Fig. 2).

2.2. Deep Generative Model-Based Approaches

Recently, [7, 8] proposed to utilize deep generative models for
completing the radio maps from sparse measurements. This line
of methods does not impose any signal model on X . Instead, a
mapping from the sampled measurements to the complete data is
learned through a deep generative network, e.g., deep autoencoders
(DAEs) [7] or generative adversarial networks (GANs) [8].To im-
plement this idea, L simulated radio maps are generated (denoted
by X(`) for ` = 1, . . . , L), and (randomly) sampled (denoted by
X(`)(Ω`, :) where Ω` ⊂ [I] × [J ] is a random sampling pattern
for training example `). Then, the pairs {(X(`)(Ω`, :),X

(`))}L`=1

Fig. 2. Shadowing effect affects the soundness of the low-rank as-
sumption on the SLFs. The SLFs under test are from a 50 × 50m2

region. The maps are generated following (1) and (3)-(4); see [2,14].
µi denotes the ith singular value normalized w.r.t. µ1. The singular
value decays much slower when the shadowing effect is more severe.

serve as the training pairs for learning a ‘completion network’. The
training problem can be summarized as follows

min
θ

1

L

L∑
`=1

∥∥∥fθ(X(`)(Ω`, :))−X(`)
∥∥∥2
F

(2)

where fθ : RI×J×K → RI×J×K is the generative network.
The DAE/GAN based approaches can effectively circumvent the

modeling challenges as in purely model-based approaches, e.g., [2,
4, 9]. However, other challenges arises. To be specific, since the
domain ofX consists of numerous scenarios with various numbers,
locations, and frequencies of emitters, generating a training set that
well covers all the possible scenarios is almost impossible. Conse-
quently, no matter how many scenarios are considered in the train-
ing set, the test case can easily go beyond these scenarios, since the
system designer typically has no control about some key problem
parameters, e.g., the number of emitters in the region of interest.

3. PROPOSED APPROACH

In this work, we offer a model-aided deep learning approach, with
the aim of reducing the ‘modeling burden’ of the network.

3.1. Main Framework

Our framework can be summarized in the following two steps:

• Step 1) FromX(Ω, :), estimateC andQr = WΩ ~Sr of
emitter r for r = 1, . . . , R, where ~ is the Hadamard product,
andWΩ(i, j) = 1 if (i, j) ∈ Ω andWΩ(i, j) = 0 otherwise.
• Step 2) Use a deep generative network to complete Sr from
Qr for all r.

In the above,Qr represents the SLF of emitter r but only the entries
indexed by (i, j) ∈ Ω are observed (see Fig. 3). Our motivation is
as follows. The modeling challenge of the radio map largely lies in
how to model the SLFs, while the aggregation model in (1) is rel-
atively accurate—see [2, 4, 11, 12] for real data validations. Using
the well-established aggregation model, one may be able to separate
the contributions from different emitters. This way, the SLF com-
pletion stage only concerns a single emitter—the state space of this



Fig. 3. Illustration for re-arranging the sensed PSDs at various loca-
tions (fibers in the left tensor). S(r,Ωcol) is reshaped intoQr .

learning problem is largely shrunk from that of the approach in [7,8],
which leads to a deep generative model that is much easier to train,
compared to those in [7, 8].

3.2. Nonnegativity-Based Disaggregation

To implement our framework, we offer an NMF-based approach for
separating the emitters’ SLFs. Consider the complete radio map
X ∈ RI×J×K . One can re-arrange all the spectrum measurements
at all the locationsX(i, j, :) ∈ RK as a matrix, i.e.,

X = [X(1, 1, :),X(2, 1, :), . . . ,X(I, J, :)] ∈ RK×IJ .

By (1), we have X = CS, where S(r, :) = vec(Sr). The column
index of X and the location coordinates (i, j) have the following
relation: q = I(i− 1) + j. Hence, there is a bijective mapping such
that Ω ⊆ [I] × [J ] can be mapped to Ωcol ⊆ [IJ ]. Consequently,
the observed data can be expressed as follows

X̃ = X(:,Ωcol) = CS(:,Ωcol) = CH.

The model X̃ = CH is an NMF model, since C consists of R
PSDs of the emitters as its columns, and the rows ofH are the sam-
pled SLFs of the emitters. By their physical meaning, C andH are
both nonnegative. Then, we have the following proposition:

Proposition 1 Under (1), assume that Sr’s are drawn from any
joint absolutely continuous distribution, that rank(C) = R,
and that every emitter has a designated frequency fr such that
C(fr, r) > 0 and C(fr, k) = 0 for k 6= r. Then, with probabil-
ity one, there exists a polynomial time algorithm that can estimate
Ĉ = CΠΛ, Ĥ = Π>Λ−1H, given that the number of samples
satisfies |Ω| ≥ R.

In a nutshell, the designated frequency condition translates to the
separability condition in NMF [15, 16]—which is normally satisfied
if the emitters sparsely take different subbands; see more discussions
in [12]. Then, the proof relies on the fact that the so-called separa-
ble NMF admits polynomial time solvers. One can see that only R
samples are needed for the disaggregation stage. In this work, we
employ the NMF algorithm in [16]. The method is a greedy algo-
rithm that is similar to the Gram-Schmidt procedure, and thus is fast
and scalable—which fits the need of wireless systems.

3.3. Deep Generative Model-based SLF Completion

After Ĥ(r, :) is obtained, we obtain an estimate for the ‘masked ver-
sion’ of Sr , i.e., Q̂r = WΩ ~ Ŝr (see Fig. 3).The remaining task is
to recover Sr fromWΩ~Ŝr , where ~ denotes the Hadamard prod-
uct. This is a matrix completion problem—but low-rank completion
techniques may not be applicable, as seen in Fig. 2.
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Fig. 4. The autoencoder-based SLF completion network.

In SC, it is reasonable to assume that one has some general
knowledge about the region of interest—e.g., if this is an indoor,
outdoor, urban, or suburban area. With such information, shadowing
and fading simulators can be employed to generate a large number
of synthetic SLFs for an individual emitter. For example, one can
follow a joint path loss and log-normal shadowing model in [14]:

Sr(y) = ‖y − zr‖−αr
2 10zr(y)/10 (3)

where y = (i, j) denotes the spatial coordinates, zr is the location
of r-th emitter, αr is the path loss coefficient of r, and zr(y) is
the correlated log-normal shadowing component sampled from zero-
mean Gaussian with variance σ2

r with the autocorrelation between y
and y′ as follows:

E(zr(y), zr(y
′)) = σ2

r exp(−‖y − y′‖2/Xc), (4)

in which Xc is the so-called decorrelation distance. For example,
for an outdoor environment, the typical values of Xc and σ range
from 50 to 100 and 4dB to 12dB, respectively [14]. Our simulator-
generated training examples include as many as possible positions
of the emitter, to cover more cases and scenarios. Let us denote this
set of training samples as M (`) ∈ RI×J for ` = 1, . . . , L. Our
training is by finding a neural network that minimizes the following
loss function:

min
θ

1

L

L∑
`=1

∥∥∥fθ (WΩ` ~M
(`)
)
−M (`)

∥∥∥2
F
, (5)

where Ω` is a uniformly and random sampling mask for example
` and fθ(·) : RI×J → RI×J is a deep neural network. After the
network is trained, the completion stage is implemented by the fol-
lowing: Ŝr = fθ̂(Q̂r), where θ̂ represents the trained network pa-
rameters by tackling the problem in (5). In this work, we set fθ to be
an autoencoder, but other generative models such as the variational
autoencoder and GAN can also be readily employed. We refer to the
proposed approach as the NMF-DAE method.

4. NUMERICAL RESULTS

In this section, we use numerical examples to showcase the effec-
tiveness of the proposed approach. We consider an urban outdoor
region discretized to 51 × 51 grids over 64 frequency bins. We fol-
low the shadowing model in [14] [see (3)-(4)] to generate SLFs for
3 to 6 emitters. Their PSDs are generated as in [2]. In our training
examples, we randomly vary the standard deviation parameter in (4)
(i.e., σr) from 2 to 7, decorrelation distance (Xc) from 50 to 100,
which is a setting typical for outdoor scenarios [14]. The path-loss



Fig. 5. Ground-truth and reconstructed radio maps by various meth-
ods at frequency bin 1; ρ = 5%, R = 5, Xc = 50, σ = 4.

exponent α is sampled from the uniform distribution between 2 and
3. For sample `, we generate a uniformly random maskΩ` such that
ρ = |Ω`|/(IJ) × 100% ranges from 1% to 20%. In the prediction
stage, we use σr = 4, Xc = 50, unless specified otherwise. For
NMF-DAE, we assume that R is previously estimated, which can be
done by classic model order selection methods, e.g., those in [17].
Note that separable NMF algorithm can also be employed for esti-
mating the model order; see [18, 19].

In terms of network structure, we use an 11-layer convolutional
neural network (CNN)-based autoencoder, where layers 1-5 act as
the encoder and layers 6-11 the decoder. Our filter size for all the
layers is 4 × 4, except that layers 5 and 6 use 3 × 3 filters. The
stride size is set to be 2. The number of channels for all the lay-
ers are annotated in Fig. 4. This network structure is used for our
approach and a baseline that directly completes X without disag-
gregation (denoted as ‘Deep-Only’). The baseline is reminiscent
of the methods in [7, 8]. Both models are trained with the same hy-
perparameters and the Adam algorithm (where the learning rate is
0.001 for first 30 epochs and 0.0001 for the last 70 epochs; batch
size of Adam is set to be 128) using 500,000 training examples. We
also use the thin plate spline (TPS) method, which is a classic spatial
kernel based interpolation method [20,21], and the block-term tensor
decomposition approach (BTD) in [2] as additional benchmarks.

Fig. 5 shows the ground-truth and recovered radio maps at the
first frequency bin. Several observations are in order. First, the pro-
posed NMF-DAE method outputs an estimated map that is visually
most consistent with the ground-truth map among all the method un-
der comparison. Second, one can see that the Deep-Only method
misses some emitters—i.e., under estimates the power levels at some
emitter locations. This can be detrimental to applications such as
cognitive radio, where discovering unoccupied frequency bins and
un-interfered locations are of great interest. This effect may attribute
to the ‘out-of-distribution’ problem that the Deep-Only method
encounters: Since the training samples at most contain 6 emitters
and it not so often that 5 emitters appear in the same frequency in
the training samples. Hence, the Deep-Only method experiences
such generalization challenges. Since the proposed method first dis-
aggregates the radio map to the individual emitter level, it does not
have such issues. This effect will be quantified later in Fig. 6.

Fig. 7 [Left] and [Right] show the normalized absolute er-
ror (NAE) (see [2] for definition) under different ρ’s when R =

Fig. 6. [Left] Detection probability with respect to sampling size, Ω.
[Right] Detection probability with respect to number of emitters.

Fig. 7. [Left] Performance evaluation with respect to sampling size.
[Right] Performance evaluation with respect to number of emitters.

10,K = 64, Xc = 50, σ = 4 and R’s when ρ = 5%, Xc =
50, σ = 4, respectively. In Fig. 7, one can see that Deep-Only is
comparable in terms of NAE relative to NMF-DAEwhen ρ ≥ 17.5%,
but deteriorates much faster when ρ decreases. In Fig. 7 [Right],
we explicitly test the performance of the auto-encoders beyond the
range of parameters used in the training examples—by increasing
the number of emitters beyond 6. One can see that Deep-Only is
less competitive under such settings whereas the proposed method
exhibits good robustness, again, since our NMF-disaggregation
stage makes the method insensitive to such out-of-range scenarios.

In Fig. 6, we quantify the emitter miss detection problem by
showing the detection probability of emitters at reconstruction. If an
emitter at a frequency bin is estimated to admit a power level that
is decreased by 75% from the original power value in the ground-
truth map at the same emitter location, we treat it as miss-detected.
Fig. 6 shows the detection probabilities of different methods under
different ρ’s andR’s. It is clear from the figure that Deep-Only has
a tendency to miss emitters, especially when ρ < 5%. The proposed
method keeps a good detection probability even if ρ ≈ 2%.

5. CONCLUSION

In this work, we proposed an NMF-aided learning framework for
DAE-based blind spectrum cartography. With the assistance of a
model-based signal disaggregation stage, the training and gener-
alization of the deep learning-based SC stage exhibits robust and
promising performance, outperforming purely model-based and
purely data-driven approaches. Our results suggest that classic sig-
nal processing models may continue playing critical roles in deep
learning-based system design, with proper design.
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