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This study uses positional analysis to describe the student interaction networks in four research-based
introductory physics curricula. Positional analysis is a technique for simplifying the structure of a network
into blocks of actors whose connections are more similar to each other than to the rest of the network. This
method describes social structure in a way that is comparable between networks of different sizes and
densities and can show large-scale patterns such as hierarchy among positions. We detail one positional
analysis method and apply it to class sections of Peer Instruction, SCALE-UP, ISLE, and Minnesota
Model context-rich problems. At the level of detail shown in the blockmodels, most of the curricula are
more alike than different, showing a late-term tendency to form coherent subgroups that communicate
actively among themselves but have few interposition links. Initial position assignments tend to change
from beginning to end of the term, but in cases where the initial assignment is stable, those students appear
to become more connected to each other and to the largest network component. These trends in position
structure and stability may be network signatures of active learning classes, but wider data collection is

needed to investigate.
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I. INTRODUCTION

Social network analysis (SNA) is a powerful toolkit
for understanding the social structure of classrooms. It
quantitatively describes the student-student interactions
that are foundational to active learning. Network surveys
are usable at a class-wide scale even with large enroll-
ments, so they complement qualitative studies that can
give deep detail on one or a few student groups. Most
quantitative methods theoretically position individual
traits (concept inventory scores, pass or fail outcomes,
etc.) as the primary object of interest. However, in the
intentionally collaborative and interdependent environ-
ment of active learning classrooms, this abstraction
misses key ingredients of the learning experience.
Network methods place equal theoretical emphasis on
the actors and the patterns of connection among them.
This dual focus makes networks an excellent lens for
studying active learning.

This paper describes and applies a network technique,
positional analysis, which is established in sociology but
new to physics education research. Positional analysis gives
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a mesoscale view of network structure, between fine-
grained details such as individual centrality and whole-
network measures such as density. In this analysis, actors
are grouped into positions by looking for similarities in
their linking behavior, generating a small number of
“positions” and a map of how they connect to summarize
the terrain of the network.

We compare the social positions available in the class-
room networks of four research-based introductory physics
curricula. Various social network analyses have been done in
physics education research (PER), but there is a scarcity of
results that compare different institutions and class types
using the same surveys and collection methods. Using the
multisite data from the Characterizing Active Learning
Environments in Physics (CALEP) project and developing
a free implementation of a positional analysis algorithm,
we are able to show broad similarities and a few striking
differences in the social structures of these active learning
environments in physics. Each set of network data for a
given pedagogy comes from a single institution, so it is not
possible to make claims such as “pedagogy X will lead to
network structure Y.” The enactment of a pedagogy is
expected to differ between instructors and institutions, so
much more data would be required for such a theory.
However, this work aims to begin mapping the range of
network structures that occur in highly active classrooms,
with the long-term goal of helping researchers and instruc-
tors think more clearly about the structures of community in
physics courses.

Published by the American Physical Society
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A. Social network analysis in physics education

Physics education research and other discipline-based
education research (DBER) fields have identified active
learning as critical to effective instruction [1,2]. Though
definitions of active learning are not all precise and aligned,
they center interaction with others, particularly other
students [3]. Attending to the structure of these interactions
in classrooms and other learning environments has led to
the use of social network analysis in PER [4] and DBER
[5]. SNA has been used in PER in a variety of ways: to
identify patterns of participation in an informal learning
environment [6], to map conceptual flow in student inter-
view responses or discussions [7,8], to identify productive
online forum discussions [9], to predict grades in current or
future classes [10,11], and to predict persistence in physics
[12] and in degree programs [13].

Networks use relational data to quantify the connections
between a set of entities. In the case of social networks,
these entities (also known as nodes or actors) are people,
and the structure of relations (edges or links) describes the
structure of the social group along some dimension such as
friendship or advice. To date, many studies of physics
learning networks have focused on node-level traits and
outcomes rather than overall network structure. Examples
include mapping which students are most central, whether
that is influenced by demographic variables, and how
centrality interacts with outcomes like course success or
persistence. Some results suggest that traditional passive
lectures show sparse network structure and active learning
networks are more connected [14], but these results are not
universal [15], and are likely influenced by demographics,
course-taking history, and other factors. There has been no
systematic survey of what “normal” networks look like in
active learning classrooms, or how to summarize a typical
structure if one exists. Community detection algorithms
offer one possible tool for this purpose.

B. Community detection

Identifying and describing communities within broader
networks is an active research area in SNA [16]. In network
analysis, a community refers to “groups of vertices which
probably share common properties and/or play similar roles
within the graph” [17]. Communities have been applied in a
wide range of problems, such as understanding social
divisions among humans and animals, mapping the struc-
ture of the World Wide Web, and studying protein
interactions in cancerous cells [17]. In PER, community
detection has been used to find clusters of related items on
concept inventories [18,19], and to describe the number of
student communities as a function of time in the semester
[15,20]. If we wish to describe the structure of a network,
communities are one important tool for doing so.

Knowing which students work together in a classroom
can help to determine how information or other resources
are likely to spread in the class, or whether interventions to

build student connections have been successful. This
information can be collected through classroom observa-
tions, but these are difficult to gather systematically. There
is also value in having a student-derived account of the
social structure. Community detection provides one pos-
sible answer to the question “what do the interactions in my
interactive-engagement class look like?”

C. Positional analysis

Positional analysis can be classified as a community
detection method (see discussion of “blockmodels” in
Refs. [17,21]), because it looks for ways to group or block
nodes so that they are more like their community members
than they are the network as a whole. In many kinds of
community detection, link density is the guiding principle,
with algorithms finding node groups that are more con-
nected to each other than to the surrounding network
[22,23]. Other detection methods look for edges of high
“betweenness,” whose removal would disconnect groups
of nodes [24]. In other cases, “random walk” algorithms
look for minimal-information ways to describe the nested
structure of nodes, communities, and networks [25]. These
various approaches share a mathematical task of partition-
ing the network, ideally using only information contained
in the network object. But any answer to the problem also
contains theoretical assumptions about what network prop-
erties truly define a community.

Positional analysis comes from the sociological rather
than the physics tradition of network analysis (Ref. [26]
outlines this long-running theoretical divide). Rather than
looking for the most tightly interlinked clusters of nodes, or
those who could be separated by removal of key edges, it
looks for “individuals who are similarly embedded in
networks of relations” [27] (p. 348). These individuals
form a discrete set of social blocks, and each block is a
position. This level of abstraction helps us to think about
the network in terms of broad dynamics. Is it hierarchical,
with some positions dominant and others as hangers-on
[28]? Are there substantial changes in the coherence or
types of positions over time [29]? These questions are taken
up much more often in the sociology tradition of network
analysis. The methods in this paper come from that
tradition, so they are promising tools for studying the
social dynamics of classrooms.

Figure 1 shows a small example network, which might
represent three levels of workers and managers in an
organization. Positional analysis can pick out these struc-
tural levels as positions, even if not all the people in them
are connected to each other (such as nodes D, E, F, and G).
Positional analysis looks for similarity of connections and
groups together nodes who have the greatest equivalence
[27,29,30]. To find these groups, a positional analysis
algorithm needs a definition of equivalence, a measure
of similarity for describing how closely nodes approach
equivalence, and a process for maximizing that measure.

020129-2



NETWORK POSITIONS IN ACTIVE LEARNING ...

PHYS. REV. PHYS. EDUC. RES. 16, 020129 (2020)

FIG. 1. A sample work network, where ties mean “meets
weekly with.” Positional analysis can identify layers of this
example hierarchy, but structural equivalence will produce a more
restrictive grouping than regular equivalence. By exact structural
equivalence, only D/E (solid blue line) and F/G (dashed green
line) are grouped together, with all other actors occupying single-
member positions.

The two most commonly used definitions of equivalence
are structural and regular. Structural equivalence looks for
the same ties to same others [27]. In Fig. 1, nodes D and E
would be perfectly structurally equivalent (both connected
only to node B), as would nodes F and G (both connected to
C and to each other). On the other hand, regular equiv-
alence looks for similar ties to similar others. In Fig. 1,
nodes B and C might be regularly equivalent, and also
nodes D through G (each of which connects to a node in the
B/C group).

Regular equivalence is the more conceptually appeal-
ing definition in some ways—it can identify the three
“levels” in Fig. 1, while perfect structural equivalence
will not group any nodes beyond D/E and F/G.
However, regular equivalence is an ill-posed problem,
with most networks having many possible partitions that
all equally meet the definition of regular equivalence
[31]. Structural equivalence also is less sensitive to
missing data [32], which is a common concern in
survey-based networks. For these reasons, and because
it is mathematically more straightforward to define, we
will use structural equivalence to look for network
positions. Exact structural equivalence is rare to find
in real networks, so methods to calculate it look for the
closest possible match [27].

D. Research questions

We will address the following research questions:
1. What network positions emerge from the four
different curriculum types?
2. What differences exist between early- and late-term
network positions?
3. What major similarities or differences exist in net-
work positions across learning environments?

Section II describes the four classroom settings, the data
collection, and the details of the positional analysis
algorithm. Section III summarizes network characteristics
and positional analysis results for the early- and late-
semester classroom surveys. Section IV discusses class-
room and curricular implications of block structures.
Section V revisits the research questions to give concluding
notes, and Sec. VI outlines limitations and future work.

II. METHODS
A. Positional analysis with CONCOR

Positional analyses are done to partition a network into
blocks, where block members have similar links to each
other and to other nodes in the network. To do this, the
network is first represented as an adjacency matrix, where a
1 in position (i, j) indicates that node i named a link to
node j. Figure 2 shows the flow of positional analysis,
beginning with this adjacency matrix step. Positional
analysis permutes the adjacency matrix in order to group
together similar nodes. When finished, the matrix will have
blocks that are mostly filled with 1’s and blocks that are
mostly filled with 0’s, to the best extent possible for the
data. How to carry out this permutation, and what final
arrangement is the best possible one for the data, depends
on the algorithm used.

1. The CONCOR algorithm

The convergence of iterated correlations (CONCOR)
algorithm uses structural equivalence as its basis for sorting
the adjacency matrix into blocks [30]. This means that it
attempts to group nodes who have the “same ties to same
others”—in other words, similar rows and/or columns of
I’'s and 0’s in the matrix. CONCOR uses the Pearson
correlation to measure similarity between columns, iterat-
ing until all matrix entries converge to +1 or -1. These £1
values are used to separate the columns into two blocks:
after convergence, all +1 columns are known to have more
similar links to each other than they do to —1 columns. The
process can be repeated to further divide each block. Thus,
the structural equivalence criterion, together with the
Pearson correlation, give both a success condition and a
process for selecting the blocks.

The Pearson correlation between nodes i and j is defined
as follows for multiple relations on an N x N adjacency
matrix [27]:

_ %51 22’11 (Xikr — Xi0) (xjkr — )_‘j')
VI S (e = 522 S (e — )2
(1)

for i # k, j # k. This condition on i and j excludes the
diagonal of the matrix from the correlation—meaning that
we do not require a node to link to itself for the purposes of
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FIG. 2. Sample of blockmodel outputs. The network (top left) can be written as an adjacency matrix showing which nodes are linked
(top right). The bottom row shows the blockmodeling products: a permuted adjacency matrix (left), the matrix showing each block
density (center), and a reduced network where each diagonal block is treated as a node and inter- or intrablock links are present or absent

according to a density threshold.

similarity. R is the total number of relations (liking,
animosity, etc.) between N nodes. Our data is single
relation, but CONCOR’s ability to incorporate multiple
link types is an advantage over many community detection
methods. The symbol ;. is the mean of values in row i, and
similarly, x.; is the mean of values in column i.

The original formulation of CONCOR proposed
that correlations should be run on the columns of the
adjacency matrix, though rows could be used instead
[30]. Conceptually, this is the difference between look-
ing for similarity in incoming ties (adjacency matrix
columns) vs outgoing ties (adjacency matrix rows).
We use the later version of the correlation given by
Wasserman and Faust [27], which appends the transpose
of the adjacency matrix to the original and then
correlates the columns [28]. By this method, information
from both outgoing and incoming ties is used to
determine similarity.

When we began this work, we found one open-source
implementation of CONCOR in R [33], the concoR
package [34]. However, it was unable to reproduce known
results for Krackhardt’s high-tech managers network [27]
(p- 379). On further scrutiny, we found that the concoR
package only considered outgoing and not incoming ties
(i.e., no transpose was included in the column correlation).
Further, it used an unmodified form of the Pearson
correlation that did not exclude self-ties. This form of

the algorithm works similarly to the original version
described in Breiger et al. [30], but is missing the improve-
ments of Wasserman and Faust’s more modern form. We
could not find another fully functioning open source
version of CONCOR, so we wrote our own. Our version,
available in Ref. [35], incorporates information about both
tie directions and successfully reproduces Wasserman and
Faust’s results on the high-tech managers network data
[27] (Chap. 9).

One special case that the code must handle is isolates,
nodes with no incoming or outgoing ties. We treat all
isolates as structurally equivalent to each other, as they have
the same connections (none) to all other nodes. The
correlation loop in CONCOR fails for matrix columns of
all zeros, so our code identifies and sets aside isolates
before partitioning the other columns. Isolates are reported
as a separate block at the end of the CONCOR-identified
blocks. Aside from this special case, the order of the blocks
is not significant. Our implementation works for an
arbitrary number of splits (assuming there are structurally
inequivalent nodes to separate) and allows for an arbitrary
number of different relations to be included. A single
measured network (for example, meaningful interactions in
week 1) is a single relation, but two time points for the same
network could be construed as multiple relations and used
to show the time development of positions [29]. In the
results below, we calculated single-relation CONCOR
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TABLE I. Survey response rates and proportions of observed and unobserved ties for the sections analyzed in this paper.
Nodes Responded Response Partially ~ Missing Missing
Site Time (n) (1 —m) rate Observed  observed  (NR-R) (NR-NR)
Peer Instruction Early 116 81 70% 0.49 0.21 0.21 0.09
Peer Instruction Late 116 76 66% 0.43 0.23 0.23 0.12
SCALE-UP Early 71 29 41% 0.16 0.25 0.25 0.35
SCALE-UP Late 71 41 58% 0.33 0.25 0.25 0.18
ISLE Early 27 14 52% 0.26 0.26 0.26 0.22
ISLE Late 27 16 59% 0.34 0.25 0.25 0.16
Context-rich problems Early 48 27 56% 0.31 0.25 0.25 0.19
Context-rich problems Late 48 20 42% 0.17 0.25 0.25 0.36

blocks for each network sample (week 1 and week 10 for
each class).

2. Treatment of missing data

Missing data are a common problem in network analy-
ses, and can bias results by altering the network structure
being studied. In real data, it is hard to know whether nodes
are missing entirely at random, or if there is a systematic
pattern to nonrespondents. There is some evidence that
missing responses are more likely for people who are
weakly connected to the network [36]. However, effects
that lead to missingness can vary based on population and
survey methods. For example, students who are often
absent from class may miss an in-person survey, or active
but very busy people might fail to respond to an email
invitation [37]. Without detailed follow-up, it is difficult to
say what effects might dominate in this case, so we will be
guided by results based on random missingness [38].

There are several common methods for handling this
issue: reporting rates but otherwise ignoring missing data,
restricting the network to ties between respondents, imput-
ing missing data, and correcting via exponential random
graph models [38,39]. Huisman [39] simulated the effects
of missing data and several imputation methods on a
friendship network of 50 actors, which is in the same size
and density range as the classroom networks in our study.
He found that for directed networks with more than small
amounts (30%) of missing data, imputing the unobserved
ties gave more biased estimates of network statistics than
ignoring missingness for most measures. In another study,
Znidarsi¢ ef al. [32] simulated the effects of missing data on
blockmodels of small networks. They found that overall,
restricting to complete cases (dropping nonrespondents and
any reported links to them) caused the least distortion in
identifying network positions.

Imputing data is also not advised if the respondents and
nonrespondents significantly differ in demographic traits
or linking behavior [40]. Claims about linking behavior can
be made by comparing the fraction of links received by
respondents and nonrespondents. However, claims about
demographic similarity would require additional data that

was unavailable to us. After reviewing these results, we
opted to avoid imputation and report results for two
versions of the networks: all observed ties (ignoring
missingness in the data), and complete cases only (remov-
ing nonrespondent nodes and any links to them). The all-
ties results are given in the main text, and the complete case
results are in the Supplemental Material [41].

3. Response rates

We chose sections for analysis with the highest possible
response rates while still representing a range of curricula.
If n is the number of possible actors (students in a section)
and m is the number who did not respond to the survey,
then the actor response rate is (1 — m/n) [32]. The (n — m)
respondents will have (n—m)(n—m—1) measured ties
among each other with values of either 0 or 1. These are
the fully observed ties, and their proportion to all possible
ties in the network is (n—m)(n—m—1)/n(n—1). Partially
observed ties connect respondents and nonrespondents,
and their proportion of the total is (n—m)m/n(n—1).
There are two categories of missing ties: those from
nonrespondents to respondents [fraction m(n—m)/
n(n—1)] and those between nonrespondents [fraction
m(m —1)/n(n —1)]. Table I shows the sections chosen
for analysis and their proportions of observed and unob-
served ties. The best-case data displayed here is for Peer
Instruction (66%—70% of ties partially or completely
reported) and the worst case is SCALE-UP (41%—-58%
of ties partially or completely reported).

4. Outputs

The first iteration of CONCOR on a matrix will divide it
into two sets of columns, representing two groups of nodes
whose edges are more similar to each other than to the
remaining nodes. Running CONCOR again will further
divide each of those groups into two subgroups. The
algorithm stops after it has reached a specified number
of “splits.” The appropriate number of splits depends on the
application and often must be found experimentally. In the
case of our data, one split tended to produce large positions,
which were not very informative. Three or more splits often
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failed, because the algorithm will not converge if it tries to
divide a completely connected group. We report results for
two CONCOR splits for all sections.

The outputs of positional analysis, whether by CONCOR
or another algorithm, are

e A blockmodel, which permutes the rows and columns
of the original adjacency matrix to partition the
network into positions.

* An image matrix, which shows only the edge density
within each block.

e A reduced network, which thresholds values in the
image matrix to 0 or 1 and plots the result as a
network.

Each level of output further condenses the information in the
original network, with the reduced network plot showing a
graphical summary of the network positions and the con-
nections between them. For calculating the density matrix,
each block (whether on- or off-diagonal) has a density equal
to its number of 1’s divided by the number of possible links
in it (number of rows x number of columns in the block).
Self-ties are omitted, so for on-diagonal blocks with n nodes,
the number of possible ties is n(n — 1).

Figure 2 shows the stages of the process for a fictional
network. We will show the original network, the block-
model, and the reduced network for each class section and
time point.

B. Data and class context

Project sites were chosen for having established, high-
fidelity implementations of research-based curricula in
introductory physics. A researcher visited each site to take
classroom observation data, discussed in another paper
[42]. In the first and tenth weeks of the term, a survey was
distributed to students through Qualtrics which asked them
to respond to the following prompt: “Please choose from
the list of people that are enrolled in your physics class the
names of any other student with whom you had a mean-
ingful interaction in class during the past week, even if you
were not the main person speaking.” Students were then
given a class roster of names to choose from. This form of
the survey prompt has been used and validated in previous
classroom network studies [12]. Providing a roster and a
specific time frame in network surveys boosts recall and
reliability of the question (that is, how consistently different
students interpret what they are asked) [43]. Survey
invitations were emailed by the researcher, and reminder
emails were sent after 1 to 3 days.

The curriculum types shown in this paper are Peer
Instruction, SCALE-UP, ISLE, and Minnesota Model
context-rich problems. The number of sections surveyed
varied from 1 (SCALE-UP) to 39 (ISLE), depending on the
size of the school and the teaching schedule for introduc-
tory physics. From each curriculum type, the section with
the best combined week 1 and week 10 response rate was
used in this analysis. Brief summaries of each institution

and class context are below; additional details appear in
Commeford, Brewe, and Traxler [42].

1. Peer Instruction

Peer Instruction [44] was developed to allow for active
learning in large lecture halls, often with immobile seats.
The instructor poses questions with carefully chosen
distractors to elicit misconceptions and spark debate.
Students individually “vote” their answers (using electronic
clickers, paper cards, or other means), and the instructor
evaluates the answer distribution. In many cases it is useful
to have students discuss their answer with one or two
neighbors, then the class votes again. Peer Instruction has a
long record of evidence for student learning gains [45] and
is one of the most widely adopted research-based teaching
strategies for new physics faculty [46].

Peer Instruction data were taken from a large, primarily
residential private university in the northeastern United
States, with a Carnegie classification of very high research
activity. The 2017-2018 student body was 24 190 (64%
undergraduate). The racial and ethnic demographics of the
students at the university level in Fall 2018 were 8%
African American, 15% Asian, 6% Hispanic, 53% White,
3% more than one race, < 1% Native American and Pacific
Islander.

2. SCALE-UP

Student-Centered Activities for Large Enrollment
Undergraduate Programs (SCALE-UP) is a studio format
classroom type where lecture and lab time are combined
and computers are on hand to help with activities [47].
Students work in small groups, typically three groups of
three students to a table, on a variety of “tangible” or
“ponderable” activities, labs, or other problem types. Class
is usually divided into short segments of 5—15 min inter-
spersed with discussions, and lecture occurs among these
segments to synthesize and organize the activities.

SCALE-UP data were taken at a large, primarily resi-
dential public university in the midwestern United States,
with a Carnegie classification of high research activity.
The 2016-2017 student body was 14432 (86% under-
graduate). The racial and ethnographic demographics
of the students at the university level in Fall 2018 were
3% Black or African American, 2% Asian, 2% Hispanic,
82% White, 3% more than one race, 1% American Indian/
Alaskan, <1% Hawaiian/Pacific Islander.

3. ISLE

Investigative Science Learning Environment (ISLE), is a
curriculum that can be implemented in laboratory sections
or (ideally) across the lecture, lab, and recitation compo-
nents of a class. The units guide students through cycles
of observing phenomena, finding patterns, and developing
theories to test predictions [48]. There is an emphasis on
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TABLE IL

Network descriptive statistics for the classes analyzed: number of nodes (N) and edges (N,), fraction of named ties that

were reciprocated, network density, average degree, and transitivity. For the last three values, the standard error of the final digit is given

in parentheses.

Site Time N N, Reciprocity Density Average degree Transitivity
Peer Instruction Early 94 130 0.63 0.015(3) 2.8(3) 0.23(9)
Peer Instruction Late 97 159 0.70 0.017(3) 3.3(3) 0.23(9)
SCALE-UP Early 56 68 0.60 0.022(6) 2.4(3) 0.3(1)
SCALE-UP Late 66 176 0.65 0.041(7) 5.3(5) 0.52(9)
ISLE Early 20 19 0.50 0.05(2) 1.94) 0.3(2)
ISLE Late 24 47 0.93 0.09(2) 3.9(5) 0.6(2)
Context-rich problems Early 40 48 0.42 0.031(8) 2.403) 0.2(1)
Context-rich problems Late 41 96 0.62 0.06(2) 4.7(6) 0.24(9)

coordinating multiple representations, and the curriculum
uses a cognitive apprenticeship model to help students learn
about the nature of science as they develop their physics
ideas [48]. The section shown in this paper was a lab-only
implementation.

ISLE data were taken from a large, primarily residential
public university in the northeastern United States, with a
Carnegie classification of very high research activity. The
2018-2019 student body was 42 828 (78% undergraduate).
The racial and ethnographic demographics of the students
at the university level in Fall 2017 were 8% African
American, 22% Asian, 12% Hispanic, 40% White, 3%
more than one race, 13% international, and 2% other
(including Native American and Pacific Islander).

4. Context-rich problems

The Minnesota Model for Large Introductory Courses
[49] sets out a plan for coordinating the elements and
people involved in introductory physics courses. The most
widely known aspect of the model, published and dissemi-
nated in venues including the AAPT, AAS, and APS
New Faculty Workshops, is the use of cooperative group
problem solving with context-rich problems. Since this
aspect is often used as a shorthand for the larger framework,
we will use “context-rich problems” to refer to this
curriculum in the remainder of the paper.

Context-rich problems, also called cooperative problem
solving, is a method often used in recitation sections
attached to a lecture course [50,51]. Students work in
small groups on problems that are framed less straightfor-
wardly than typical textbook problems (“context rich”),
where deciding what quantities must be solved for is often a
necessary step. The solution process is explicitly structured
to follow expert problem-solving habits [50,51]. Groups
have been shown to outperform their highest-scoring
individual members, as well as a parallel class taught in
a traditional lecture style without this problem-solving
framework [51].

Context-rich problems data were taken from a very large
public associate’s college in the western United States.

The 2017-2018 student body was 34 642 (100% under-
graduate). The racial and ethnographic demographics of the
students in Fall 2017 were 2% African American, 5% Asian,
33% Latino, 50% White, 6% more than one race, 3%
unknown, and 1% Native American and Pacific Islander.

III. RESULTS

A. Network descriptions

Table II shows descriptive statistics for the networks
discussed in this paper. This includes number of nodes and
edges (including nonrespondents who were named by
survey takers), reciprocity among respondents, network
density, average degree, and clustering coefficient. The
Supplemental Material [41] gives the same results for the
complete-cases networks, where only survey respondents
and links among them are retained.

Reciprocity is calculated as the probability that for each
directed edge, the opposite-pointing edge is also in the
graph. Density, average degree, and transitivity are three
related ways of describing how well connected a network
is. Density is the fraction of present to possible ties, and for
a directed network, is

p=N/NN—-1), (2)

where N is the number of nodes and N, is the number of
edges. Because density scales as 1/N?, it is misleading to
compare densities between networks of different sizes
(larger networks will tend to have lower density). The last
two measures in the table give estimates of connectivity that
are comparable across networks of different sizes. Average
degree describes nodes’ number of outgoing and incoming
connections, and is calculated by averaging the row and
column sums of the adjacency matrix. Transitivity, or
clustering coefficient, is the probability that any two nodes
who have a neighbor in common will themselves be
connected (“the friend of my friend is also my friend”)
[21]. All statistics are calculated in R [33] using the igraph
package [52].
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Snijders and Borgatti [53] outline a bootstrap process for
estimating the variability in network statistics: resample the
network many times, recalculate the statistic using each
sampled network, and then calculate the standard deviation
of all the sampled statistic values. This estimates the
standard error for the measured value of the statistic.
Table II includes standard errors for density, average
degree, and transitivity using the method of Ref. [53] with
1000 bootstrap trials.

The Peer Instruction network shows only a marginal
increase in density over the semester, but in the other three
classes, the week 10 density roughly doubles from its week
1 value. A similar pattern exists for average degree. For
transitivity, the Peer Instruction and context-rich problems
values stay relatively steady, while the other two class types
increase.

In the Peer Instruction and SCALE-UP sections, the
majority of links are reciprocated in both week 1 and
10. In ISLE, the week 1 reciprocity rate is lower at 50%,
but in week 10 is the highest, at 90%. Context-rich
problems show a smaller increase, with the lowest
starting reciprocity but a week 10 value comparable
to Peer Instruction and SCALE-UP. There is no clear
pattern connecting class size with reciprocity, average
degree, or transitivity.

B. Peer Instruction

The top row of Fig. 3 shows the network diagrams for
week 1 and week 10 of a Peer Instruction section. The
larger circles are survey respondents, while smaller circles
are named nonrespondents. The links are directed, so only a
double-headed arrow between two nodes is reciprocal.
Nodes are colored by their position (the partition they were
assigned by CONCOR, which can change from week 1 to
week 10). In week 1, the giant component is comprised of
the first two positions (orange and light blue nodes), the
fourth position (yellow), and some nodes in the third
position (green). (The “giant component,” or largest set
of connected nodes, is of interest because it is the largest
information-sharing pool in the network [21].) Largely,
however, green nodes are in smaller clumps not linked to
the giant component. From week 1 to week 10, more of the
nodes become linked to the giant component, but there are
still several smaller groups and seven isolates (compared to
12 in week 1).

The middle row of Fig. 3 shows the blockmodel for each
week, which is the adjacency matrix permuted to group
together CONCOR positions in blocks. Each square on the
plot would be a 1 rather than a 0 if the adjacency matrix was
plotted as numbers. The blockmodel plots contextualize the
change in reduced networks from early to late semester. In
week 1, the first two positions (the top two on-diagonal
blocks, orange and light blue) are notably higher density
than others. The second two positions (green and yellow)
show CONCOR’s attempt to segregate a more diffuse

collection of links. In week 10, the on-diagonal blocks
have a more similar density.

The bottom row of Fig. 3 shows the corresponding
reduced networks. Each node in a reduced network repre-
sents all nodes of that color from the original network (and
the diagonal block of that color on the blockmodel). Four of
the positions have substantial communication among them-
selves both early and late semester, represented by the self-
connected “loop” edges on the reduced network. Early in the
semester, there appears to be more cross-talk between
positions, with one additional link between positions four
and three, and another between positions one and two.

C. SCALE-UP

Figure 4 shows the network diagrams, blockmodels, and
reduced networks for week 1 and week 10 of the SCALE-
UP section. There is a significant increase in link density
from week 1 to week 10, and all late-term survey
respondents reported at least one meaningful interaction
(no isolates exist on the week 10 graph). In week 1, only
48% of the nodes are in the giant component, which
includes all of positions one and two (orange and light
blue) and some of position three (green). Position four
(yellow) is a fairly coherent subgroup of seven nodes. In
week 10, the giant component has grown to contain 88% of
the nodes. CONCOR divides most of the giant component
into three subgroups that are fairly coherent among
themselves. The fourth position (yellow) is a collection
of relatively peripheral nodes.

In the week 1 blockmodel plot, there were three small
positions—two of them fairly coherent—and a large group
of nodes with less interconnection. This group (third
diagonal block) corresponds to the green nodes on the
graph, many of whom were named by survey respondents
but did not take the survey themselves (and thus links they
may have are unknown). By week 10, the positions are
more uniform in size, and have higher internal link density.
On the reduced graphs, both early and late term, all
positions except the isolates (dark blue) talk among
themselves. In week 1, there is also an appreciable
amount of interaction from position two to one (light
blue — orange), but this is gone in week 10.

D. ISLE

Figure 5 shows the plots for week 1 and week 10 of the
ISLE section. In week 1, the network is low density, with
fewer than half of the nodes in the giant component. In
week 10, that component is larger (71% of nodes), and is
now divided between three of the four CONCOR-identified
positions.

The network and blockmodel diagrams for week 1 show
some of the differences between positional analysis and
most community-funding algorithms. Light blue nodes
connect to orange and vice versa, but are only adjacent
to nodes in their own position in one case (the single light
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FIG. 3. (a) Network diagrams for week 1 (left column) and week 10 (right column) Peer Instruction section. Smaller circles show
students who were named but did not take the survey. Nodes are colored by CONCOR partition, and indicate the same nodes in the
blockmodel and reduced network below. (b) The corresponding blockmodel. Each link from the survey is a black square. The dotted
lines mark the CONCOR group partitions. Colors along the sides mark which blocks of nodes belong to each partition. (c) Reduced
network diagrams. Each circle represents a position from the blockmodel and stands for all of the nodes of the same color in the network
diagram. Links in the reduced network plots show connections within and between positions and come from applying a density
threshold to the blockmodel.

blue — light blue link on the week 1 blockmodel). On the reduced networks, the week 10 diagram shows
Community detection routines do not generally “skip”  the relatively clean separation of the network into sub-
in-between nodes to cluster two or more nodes that do ~ components. This separation, visible on the network dia-
not link to each other. gram, translates into a reduced network with four “island”
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o

(a) Network diagrams, (b) blockmodels, and (c) reduced network diagrams for SCALE-UP section. Smaller circles on the

network diagrams are students who did not take the survey but were named by respondents. Nodes are colored by CONCOR partition,

and dotted lines on the blockmodel plots show the same partition.

positions. Students named other people from their
position on the survey, but rarely indicated links between
blocks.

E. Context-rich problems

Figure 6 shows the network diagrams, blockmodel plots,
and reduced networks for week 1 and week 10 of the
context-rich problems section. In week 1 (and as in other

early-term classes), the network is relatively sparse, with a
loosely connected giant component, two island groups, and
several isolates. The week 10 network has doubled in
density, with all respondents in the giant component and a
nearly 50% increase in reciprocity in naming interactions.
The reduced network has the highest number of links
between positions of any class analyzed, both early and late
in the semester.
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FIG. 5. (a) Network diagrams, (b) blockmodels, and (c) reduced network diagrams for ISLE section. Smaller circles on the network
diagrams are students who did not take the survey but were named by respondents. Nodes are colored by CONCOR partition, and dotted
lines on the blockmodel plots show the same partition.

The low response rate in week 10 appears to cause F. Time development of blocks
some artifacts in the CONCOR blocking. In particular,
position one (orange) is dominated by nonrespondents,
and likely would have more outgoing links if those . .
people had taken the survey. The other positions, of a.data se't changes from one time point to another.
particularly three and four, have a lesser version of Applied to this data, they show to what extent students stay
the same problem. in the same CONCOR block from week 1 to week 10 of the

Figure 7 shows alluvial diagrams [54] for all four
sections. Alluvial diagrams show how the categorization
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FIG. 6. (a) Network diagrams, (b) blockmodels, and (c) reduced network diagrams for context-rich problems section. Smaller circles
on the network diagrams are students who did not take the survey but were named by respondents. Nodes are colored by CONCOR
partition, and dotted lines on the blockmodel plots show the same partition.

term. Each panel in Fig. 7 shows the week 1 block
assignments in the first column, and the week 10 assign-
ments for the same people in the second column. The
portion of each column coded “missing” is students who
were not present in that survey.

In the Peer Instruction section, a substantial portion of
students in blocks 1, 2, and 3 retained their week 1
positional assignment, with smaller portions of blocks 4
and 5 also staying. Comparing with the network diagrams
in Fig. 3, the “core” of the giant component was largely
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FIG. 7. Each diagram shows students’ week 1 CONCOR block assignment in the first column, and their week 10 assignment in the
second column. Colors match the original block assignment to help with visually following the flow. The missing label indicates
students who were not present (either as survey takers or named) in that week’s data.

occupied by positions 1 and 2 and was relatively stable.
Position 4 (yellow) was also in the giant component but was
more tenuously connected (both among itself and to the
giant component), and was also the most fragmented in the
week 1 — week 10 alluvial diagram.

The SCALE-UP alluvial diagram in Fig. 7 shows some
apparent shifting of positions that is actually an artifact
of the algorithm. In particular, positions 2 and 4 stay
coherent from week 1 to week 10, but their numbering is
different in week 10, so that the light blue nodes of week
1 become orange nodes in week 10, and the yellow nodes
of week 1 are colored light blue in week 10. Position 2
was part of the giant component in week 1, and is more
strongly connected to it in week 10. The students in
position 4 in week 1 were separate from the giant
component, but connected to it (now as position 2) in
week 10. Positions 1, 3, and 5 are less stable between the
two time points.

In the ISLE alluvial diagram, position 1 keeps three of its
original four students and adds two more. Interestingly, in
week 1 none of the position 1 nodes reported any links to
each other, but in week 10 the same students are well
connected. In general, positions in this section showed
more mixing than stability in the time between surveys.
This is likely due in part to the small section size, which

means that even two students shifting substantially changes
the block membership.

In the alluvial diagram for context-rich problems, blocks
2 and 4 keep substantial fractions of their membership
together (though the largest coherent group in 4 is relabeled
to position 3 in the week 10 results). Blocks 1, 3, and 5
show a fair amount of splitting after week 1. The week 10
survey had a response rate of 42%, so it is possible that the
block assignments and stability picture would change with
more complete student link data.

Figure 7 suggests that for many students, their initial
block assignment does little to predict their week 10
position. This is not particularly surprising, as the first
survey happens early in the class, when they have generally
fewer connections and may not keep all of those initial
links. One point of interest is the tendency for stable blocks
to accumulate in the giant component. This appeared to
happen in the Peer Instruction and SCALE-UP sections, but
should be checked for in a wider sample of data, preferably
with response rates of 70% or higher. This might indicate
students who already had peer groups coming in to the
class, or alternately students who “found their people”
early. Whatever the cause, these relatively stable social
groups also became more central in the whole-class
network.
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G. Interpreting blockmodels

Blockmodels can be interpreted by validating against
actor attributes, by describing the overall blockmodel,
and by detailing the individual positions [27]. Detailed
actor information is not available for most of our data,
but might include demographic details, grades or other
learning outcomes, or schedule information such as
students’ lab sections [20]. We can describe the overall
blockmodel and individual positions even without addi-
tional data.

1. Describing the blockmodel

A large-scale view of the network structure can come
from the image matrix, which summarizes the block-
model as an adjacency matrix of 1’s and 0’s between and
within blocks. The reduced networks in Figs. 3-6 show
the image matrix visually. Blocks are thresholded to O or
1 by comparing their internal density values to a single
value (@) for the network. We use the density of the full
network as the threshold value a [27]. For example, a
three-person block would have six possible ties among
members, and a density of 0.5 if three of those ties were
actually present. A network density of a = 0.1 would
mean that the three-person block had an image matrix
value of 1 for its self-tie.

Image matrices can be compared to ideal types as a
limiting case. Ideal patterns include cohesive subgroups,
center and periphery, centralized, and others [27]. In the
cohesive subgroups pattern, actors in one block primarily
talk to each other and not to members of other blocks,
corresponding to an image matrix with 1’s on the diagonal
and 0’s elsewhere:

S O O =
S O = O
S = O O
- o O O

In a centralized network, all positions link to one other
position, whose members also talk among themselves:

e
o O O O
o o o O
S O O O

Reference [27] (Chap. 10) and Ref. [29] discuss more
detailed examples.

For comparison, the week 1 image matrices for each of
the sections in this paper are shown below:

1 1.0 00
01 0 00
PI=10 0 1 0 O
001 10
10 0 0 0 O]
[1 0 0 0 0]
1 1.0 0 0
SCALE-UP= {0 0 1 0 O],
00 0 10
10 0 0 0 0]
[0 1 0 0 O]
1 1.0 00
ISLE=10 0 1 0 O
00 0 1 0
|10 0 0 0 O]
[1 1 0 0 O]
1 00 0O
Contextrich= {0 0 1 0 O
01 0 1 0
10 0 0 0 O]
and the week 10 image matrices are
(1 0 0 0 O]
1 1.0 00
PI=10 0 1 0 O
00 010
10 0O 0 0 0]
0 0 0
SCALE - UP = 0100 ,
001 0
L0 0 0 1
1000 0000
ISLE= 0100 Contextrich = Lo .
0010 0010
0001 0001

Many of the class networks do not perfectly match any of
the ideal types, though the alignment is generally closer in
week 10. In two cases—late-semester SCALE-UP and
ISLE—the cohesive subgroups pattern is exactly present.
More commonly, the image matrices largely resemble
cohesive subgroups, with one or two links “extra” or a
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self-tie missing. The image matrices for context-rich
problems display the least resemblance to any of the ideal
types, but also had the lowest response rates. It is possible
that a more regular structure was simply not observed.

2. Describing individual positions

Each position in the blockmodel can also be considered
in light of how it connects to the others and its ratio of
communication inside vs outside the block [27] (Chap. 10).
If there are N nodes in the network, and N, in position £,
there are N (N, — 1) ties possible within the position.
Collectively, the position has N(N — 1) ties possible with
the whole network (including itself). We can quantify a
block’s tendency toward self-interactions by comparing to
the ratio of internal to total ties. For blocks with no internal
vs external preference, this ratio is

NN —1) N1
ACED ] ®)

N-1"

Positions with a greater ratio of internal:total ties than this
value prefer to communicate among themselves. Positions
with a smaller fraction of internal:total ties than Eq. (3)
prefer to communicate “outward.” By also considering
whether the position tends to receive ties (proportion
received ~0 or > 0), a social function for the group can
be approximated. Burt [28] names these roles as

¢ Isolate (prefer internal ties, ~0 received),

* Primary (prefer internal, > 0 received),

* Sycophant (prefer external, ~0 received), and

* Broker (prefer external, > O received).

“Sycophant” is a pointlessly negative term in class settings
where students are encouraged to seek help from peers, so
that label is worth revisiting, but this position profile does
not appear in our data.

When we calculate the tie ratios and received links for
each position in the week 1 and week 10 networks, we find
that the island positions shown on many of the reduced
networks are actually a mixture of primary and isolate types.
[For true isolates—dark blue nodes on the socigrams—
the ratio to compare to Eq. (3) is undefined because there
are no ties, internal or otherwise. We include them with the
isolate classification.] The results by class type were as
follows:

e Peer Instruction: Both week 1 and week 10 have
four primary positions (preferring within-block inter-
actions, incoming ties) and one isolate.

e SCALE-UP: Week 1 has one primary (block 1) and
four isolates (blocks 2-5). Week 10 has four primaries.

e ISLE: Week 1 has one broker (incoming ties but low
internal communication), one primary, and three
isolates, in that order. Week 10 has four isolates
(blocks 1 and 2 have only one incoming link each).

e Context-rich problems: Week 1 has one primary, one
broker, and three isolates. Week 10 has four primaries.

Figure 9 in the Supplemental Material [41] shows the link
ratios and counts of incoming links for each position.

Considering tie ratios and incoming links adds nuance to
the reduced network plots (Figs. 3-6). In many cases, the
number of incoming ties was small enough to be thresh-
olded out of the reduced network display, but is not actually
zero. In the SCALE-UP section, an early-semester trend
of isolate positions became a late-semester tendency for
primary positions, reflecting a higher level of overall
connectivity even as subgroups gained coherence. On
the other hand, for ISLE, the late-semester islands on
the reduced network have very little between-position
communication. The context-rich problems section, despite
its many partially or completely unobserved ties, has a large
amount of between-position traffic.

IV. DISCUSSION

The results of positional analysis live between under-
standing individuals and the class as a whole. It allows us to
hypothesize about the ways the enactment of a pedagogy
influences the “terrain” of a class. While we can make
inferences about the enactment of the pedagogy in these
instances, it is impossible to tease out (at least from a single
institution) how the design of the pedagogy and the
enactment differ.

A. Block structure and reduced networks

The mixture of isolate and primary positions, which
can both appear as self-connected islands on reduced
networks, is interesting. The distinction between isolates
and primaries is not trivial—some positional analysis
approaches argue that any link at all between blocks
should be regarded as a positive tie on the image matrix,
and a complete absence of links is the most significant
structural cue to look for [29]. If this stricter standard
were to be applied, the reduced networks would be more
interlinked, and only a small number of self-linked
islands would remain.

Reduced networks are a representation that is uncom-
mon outside of positional analysis, though there are some
similar ideas in the flow diagrams of the Infomap
algorithm [25] or in node-consolidating analyses of large
networks [55]. Reduced networks abstract out most of the
detail of the full network diagram, but permit comparing
position structure between networks of different sizes. We
also found that the reduced networks were relatively stable
to missing data (details in Supplemental Material [41]).
We would not recommend reduced networks as the only
description of a network, because the nuance they lose is
important to many research questions. But in our data,
they show broad structural similarities between classroom
networks of different sizes and densities. A wider future
data collection, including multiple sites implementing the
same curriculum, would allow for claims about what
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block-level structures are “typical” for active learning
environments.

B. Curricular impacts on positions

The two most common types of positions across the
different curricula were isolate and primary, both of which
prefer internal links. It should also be noted that the
collection of students that make up these positions are
not equivalent to classroom groups. For example, in
SCALE-UP one might expect to find positions that include
the nine students that make up a table of students as
prescribed by the SCALE-UP approach. Instead we find
that the whole class network is dissociable into four
separate components, each of which includes a number
of students much larger than nine. This is not simply an
artifact of the number of CONCOR splits, because par-
ticularly the late-term positions are not made up of isolated
“pods,” but consist of well-linked parts of the giant
component. We do not have data on the table assignment
of students within the SCALE-UP class, but we can infer
that the prescribed tables are interacting, plausibly with
other adjacent tables of students. The positions identified in
SCALE-UP late in the term might indicate that several
groups of tables develop working relationships with one
another and these relationships become more productive
over time, resulting in blocks where there is a preference for
internal interaction but still some interaction with other
blocks. Similar patterns can be seen in this enactment of the
ISLE pedagogy. The week 10 context-rich problem solving
environment yielded entirely primary positions, as well as a
high average degree in the network despite the sizable
fraction of missing data. This indicates that in this enact-
ment, students are building many connections, possibly
through the sharing of problem solving approaches.

In addition to the prevalence of primary and isolate
positions, the lack of brokering and sycophant positions is
interesting. The broker position provides a bridge to
connect disjoint groups. In active learning pedagogies, it
seems unlikely to find groups of students in this role;
individuals may play such a role [56], but groups of
students would be less likely to connect other groups.
The lack of the sycophant position suggests that there are
not large groups of students looking to gain from other
groups in an unreciprocated way. This suggests that across
the active learning we studied, individual students who
needed help were able to identify members within their
own block who could provide this help.

C. CONCOR and community detection

In Sec. I, we noted that CONCOR can be classified as a
community detection algorithm, because it seeks to parti-
tion a network based only on information contained in the
network object. By consulting the network diagrams in
Figs. 3-6, we can now appreciate some of the differences
between positional analysis and other community detection

methods. In Fig. 3(a), for example, the week 1 diagram
shows that block 3 (green nodes) consists of several
isolated components and a subset of the nodes in the giant
component. This particular collection of nodes would not
be partitioned together by methods such as Infomap or edge
betweenness, because community detection algorithms
do not typically group entirely disconnected components
into the same partition. However, CONCOR’s criterion is
linking behavior, not direct connection. The separate small
components in block 3 all show a similar “stringy”
structure of short chains with low transitivity and low
reciprocity. The green nodes in the giant component have a
similar trend of low-reciprocity, low-transitivity links, and
this trend is different from the more interlinked parts of the
giant component (yellow, orange, and light blue nodes).
Other community detection methods [17] address questions
such as “which students work closely together?” but
CONCOR targets the complementary question of “which
students have similar connection-building behavior?” To
characterize the social texture of an active learning class-
room, both perspectives are useful.

V. CONCLUSIONS

A. Research questions

The goal of this investigation was to compare the
network positions available in four active learning class-
room types using the method of positional analysis. This
technique provides a kind of mesoscale description of
social structure, between fine-grained dyad interactions and
whole-network descriptions. The investigation was struc-
tured around three research questions, discussed below:

1. What network positions emerge from the four differ-
ent curriculum types? As detailed in Sec. III G 2 and
Fig. 6 of the Supplemental Material [41], most of the
node blocks identified by CONCOR preferred links
among themselves, but possessed at least some
incoming links, leading to a mixture of isolate
and primary positions. The image matrices (0/1
representations of the reduced networks) showed a
corresponding tendency toward the “coherent sub-
groups” type, where most positions connected only to
themselves.

2. What differences exist between early- and late-term
network positions? The week 1 networks had more
deviations from the pattern described above, while
the week 10 blockmodel plots generally showed
more distinct and coherent positions. Link reciproc-
ity also increased from early to late in the term, as
did the density and average degree (though not
always significantly, see Table II). This increase
in network connectivity is likely a mixture of effects:
social connections forming through the class, plus
more students knowing each other’s names by the
time of the late-semester network survey.
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3. What major similarities or differences exist in net-
work positions across learning environments? At
the level of analysis provided by CONCOR, there
appear to be more similarities than differences in the
network position structure. From the data available
here, we might say that the “signature” of active
learning at the positional analysis level is one of
coherent subgroups plus a handful of interposition
links. Only a small number of students, if any, are
true isolates (degree 0).

B. Significance to PER

Active learning classrooms often encourage students to
work in small groups or pairs, so it may be unsurprising that
the class-level network structure most closely resembles
coherent subgroups. However, many social groups of this
size show different positional patterns. Classic blockmod-
eling studies often find unofficial structures of authority,
deference, or a center and periphery structure between
positions [29]. CONCOR studies of the world trade net-
work have explored its core-periphery structure [57],
reinforcing that the coherent subgroups pattern is not
simply an artifact of the algorithm. If a block of students
was systematically more popular under the “meaningful
interaction” prompt, in an unreciprocated way, the reduced
networks would show a more starlike structure with single-
direction links going to a central hub. In comparison to
those findings, the social structure of the classes we
surveyed appears to be “flatter,” with less hierarchical
tendency for the ties between positions.

Positional analysis provides a different lens for examin-
ing networks: more detail than whole-network statistics
like average degree or centralization, but abstracting away
some of the node-level detail of centrality scores. If
centrality analyses ask “who has the most power?”,
positional analyses ask “what is the terrain?” Both char-
acterizations are valuable for understanding the complex
system of interactions in a classroom.

One thing that is not obvious from this analysis is
whether there is a preferred or ideal position structure for an
active learning environment. Anecdotally, when discussing
network analysis with instructors for the first time, a
common expectation is that “everyone will just work with
the smart student.” If it were the case that students
informally identified the student(s) most likely to know
the correct answers, and worked with those people exclu-
sively, we might see a hierarchy pattern on the image
matrix: a few students occupying a position that all other
positions directed links toward, creating a single column
and row with 1’s and 0’s in most or all other spaces. This
pattern, which did not appear in our data, might indicate an
inefficient use of the opportunities in group collaboration.
While a few students will often have more prior knowledge
and practice with a topic, even initially high-scoring
students benefit from collaborating [51], so a strong

hierarchy is unlikely to be a desirable signature for active
learning environments. Beyond that, other factors are likely
to intervene, such as the physical layout of the classroom
and the social structure encouraged by the curriculum. For
example, Peer Instruction directs students to talk to a
neighbor, and in a large lecture hall with immobile seating,
this may tend to lead to “chains” in the network rather than
large interconnected clusters [42]. The coherent subgroups
pattern here, when checked against the network diagrams,
often “unpacks” into a collection of higher-density groups
with a smaller number of ties between them. For this study,
we chose project sites with expert implementations of
successful active learning curricula, so we argue that the
coherent subgroups pattern is one (though not necessarily
the only) signature of a well-functioning active learning
environment.

VI. LIMITATIONS AND FUTURE WORK

One of the substantial challenges of this study was
response rate: even though instructors endorsed the survey
data being collected in their classes, the invitation to
participate came from an outside researcher, and this
may have contributed to the lower response in many
sections. The highest-response section in the data was
one where the instructor allocated a few minutes of class
time for students to do the survey, but we did not ask for
this broadly to keep the “cost” to instructors low. Ideally,
structural analyses of directed networks would use data
with a response rate of 70% or higher, which was
unfeasible in our sample. We were able to somewhat check
for the severity of this effect by comparing the all-response
with complete cases data (see Supplemental Material [41]),
but better estimates ultimately must come from more
complete sampling of the network. Instructors collecting
data in their own classes tend to see higher return rates, so
we hope that other researchers may take up this analysis
method for their own classrooms.

Data from a wider range of classrooms can also help to
separate out the design of a pedagogy from its enactment.
Even widely known and well-documented pedagogies such
as Peer Instruction can vary greatly in enactment [58], and
we expect that such implementation differences could have
consequences for the student networks that arise. The R
code we developed for the CONCOR algorithm is publicly
available [35], including blockmodels, reduced networks,
and image matrices. We anticipate that the coherent
subgroups pattern we saw in many cases may be common
across a wider range of active learning physics classes.

Unlike many other PER analyses of student networks
mentioned in Sec. I, this study did not include outcome data
to link with network properties. We did find that student
networks generally become more connected over the course
of the semester, as noted in other work [14,15]. Combining
positional analysis with outcome or demographic data
opens additional possibilities. Outcome information such
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as pass or fail rates, concept inventory scores, or other
measures of learning would allow researchers to test whether
a more stable initial block assignment is associated with
more favorable grade outcomes (i.e., if students who “find a
home” in the network sooner are more successful in the
class). Alternately, the coherent subgroups pattern appears
to be common but not ubiquitous, so outcomes could be
compared between students in isolate and primary positions,
or between more and less popular primary positions (the
most-popular positions being those with an additional
incoming link on the reduced network, such as block 1 in
the week 10 Peer Instruction network). Demographic data
such as gender or race and ethnicity might reveal additional
nuances in the position structure. Node-level information
about student demographics would allow looking for effects
such as homophily, the tendency to socially group with
others we perceive as “like” us [20,59], or looking for
widespread disparities in who sends and receives links.
Finally, networks with multirelation or longitudinal data
are especially good candidates for positional analysis.

By combining snapshots of the connections between nodes
and the pattern of connection between positions, more
complicated patterns of interlocking roles can be extracted
[27,29]. PER studies with access to such data [10,11] might
benefit from this additional layer of analysis.

By now, there are a number of descriptive results of
student networks in introductory physics courses. To move
beyond this stage of collecting baselines and into more
inferential and predictive questions, network analysis in
PER needs careful survey design, reasonably standard data
collection protocols, and community discussion about the
models and measures most appropriate to capture the
interactions of active learning.
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