Representing and Reasoning about Dynamic Code

Jesse Bartels
Department of Computer Science
The University Of Arizona
Tucson, AZ 85721, USA
jessebartels@cs.arizona.edu

ABSTRACT

Dynamic code, i.e., code that is created or modified at run-
time, is ubiquitous in today’s world. The behavior of dynamic
code can depend on the logic of the dynamic code genera-
tor in subtle and non-obvious ways, e.g., JIT compiler bugs
can lead to exploitable vulnerabilities in the resulting JIT-
compiled code. Existing approaches to program analysis do
not provide adequate support for reasoning about such behav-
ioral relationships. This paper takes a first step in addressing
this problem by describing a program representation and a
new notion of dependency that allows us to reason about
dependency and information flow relationships between the
dynamic code generator and the generated dynamic code.
Experimental results show that analyses based on these con-
cepts are able to capture properties of dynamic code that
cannot be identified using traditional program analyses.

KEYWORDS

Program Analysis, Program Representations, Dynamic Code,
Self-Modifying Code, Slicing

1 INTRODUCTION

Dynamic code, i.e., code that is created or modified at run-
time, is ubiquitous in today’s world. Such code arises in
many contexts, including JIT-compilation, obfuscation, and
dynamic code unpacking in malware. Dynamic code raises
a host of new program analysis challenges, arising partly
from the fact that the behavior of an application contain-
ing dynamic code may depend in part on logic that is not
part of the application itself, but rather is in the dynamic
code generator. As a concrete example, Rabet describes a
JIT compiler bug in Chrome’s V8 JavaScript engine that
causes some initialization code in the application program to
be (incorrectly) optimized away, resulting in an exploitable
vulnerability (CVE-2017-5121) [38]. As another example,

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

ASE ’20, September 21-25, 2020, Virtual Event, Australia

(© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6768-4/20/09. ..$15.00
https://doi.org/10.1145/3324884.3416542

Jon Stephens
Department of Computer Science
University Of Texas
Austin, TX 78712, USA
jon@cs.utexas.edu

Saumya Debray
Department of Computer Science
The University Of Arizona
Tucson, AZ 85721, USA
debray@cs.arizona.edu

Frassetto et al. describe how a memory corruption vulnera-
bility can be used to modify the byte code of an interpreted
program such that subsequent JIT compilation results in the
creation of the malicious payload [14]. To reason about such
situations, it would be helpful to be able to start from some
appropriate point in the dynamically generated code and
trace dependencies back, into and through the JIT compiler’s
code, to understand the data and control flows that influ-
enced the JIT compiler’s actions and caused the generation
of the problematic code. E.g., for the CVE-2017-5121 bug
mentioned above, we might want to perform automated anal-
yses to identify which analyses/transformations within the
JIT-compiler led to removal of the program’s initialization
code, and which data flows and control-flow logic influenced
those transformations. Such analyses, which we refer to as
end-to-end analyses, can significantly speed up the process
of identifying and fixing such problems.

Unfortunately, existing approaches to (static or dynamic)
program analysis do not adequately support such reasoning
about dynamic code modification. Traditional program rep-
resentations, such as control flow graphs, cannot handle the
effects of runtime changes to the code, which require accom-
modating the possibility of some memory locations having
different instructions at different times during execution. JIT
compilers [15, 23] and dynamic binary translators [34] main-
tain representations of the code being dynamically modified,
but not together with that of the code that performs code
modification. Whole-system analyses [11, 13, 21, 53, 54] per-
form dynamic taint propagation, taking into account explicit
information flows via data dependencies but not implicit flows
via control dependencies. As we discuss later, they also do not
take into account dependencies that can arise through the
act of dynamic code modification. Thus, existing approaches
to automated reasoning about program behaviors suffer from
the following shortcomings:

(a) They do not provide program representations that let
us answer questions such as “Which code in the dy-
namic code generator affected the generation of the
faulty application code?” or “What data flows influ-
enced the behavior of those components of the dynamic
code generator, and in what ways?”.

(b) They do not support notions of dependence that can
allow us to reason about the computation in ways that
can help answer such questions.

This paper shows how this problem can be addressed via a
program representation that is able to capture the structure
and evolution of code that can change dynamically, together

ASE '20, September 21-25, 2020, Virtual Event, Australia

with a notion of dependency that arises from the process of
dynamic code generation and which is not captured by con-
ventional notions of data and control dependencies. We also
discuss an optimized representation that yields significant
improvements in space requirements. Experimental results
show that our ideas make it possible to reason about dy-
namic code in novel ways, e.g., we can construct backward
dynamic program slices, starting from incorrect dynamically
generated JIT-compiled code, to include the JIT-compiler
logic responsible for the problem; and detect situations where
a dynamic code generator embeds environmental triggers in
dynamically generated code. Such end-to-end analyses are
not possible using current approaches to program analysis.

2 BACKGROUND

This section briefly discusses some key concepts relevant to
our ideas. It may be skipped by readers familiar with this
material.

2.1 Interpreters and JIT Compilers

An interpreter is a software implementation of a virtual ma-
chine (VM). Programs are expressed in the VM’s instruction
set, with each instruction encoded as a data structure that
records relevant information such as the operation, source
and destination operands, etc. The computation for each op-
eration x in the VM’s instruction set is performed by a piece
of code called the handler for x. The interpreter uses a virtual
instruction pointer to access the VM instructions encoding
the input program and a dispatch routine to transfer control
to appropriate handler code.

While interpretation offers a number of benefits such as
portability, it incurs a performance overhead due to the cost
of instruction decoding and dispatch as well as the limited
scope for code optimization resulting from the fact that the
user programs executed by the interpreter are not available
for analysis when the interpreter is compiled to machine
code. Additionally, modern dynamic languages are often
implemented using interpreters, and these incur additional
overheads due to runtime type checking.

To address this problem, just-in-time (JIT) compilers are
widely used alongside interpreters to improve performance
by compiling selected portions of the interpreted program
into (optimized) code at runtime. The general idea is to take
frequently-executed portions of the program (identified via
runtime profiling), apply optimizing transformations, and
generate optimized machine code. These optimizations are
performed at runtime, as the program is being executed, and
results in code that is dynamically created or modified. Some
JIT compilers support multiple levels of runtime optimization,
where the dynamically created code may be subjected to
additional rounds of optimization as execution progresses
[45].

Jesse Bartels, John Stephens, Saumya Debray

2.2 Control Flow Graphs

Program analyses are based on representations of the pro-
gram’s structure; for concreteness, we focus on control flow
graphs (CFGs). CFG construction for static code via static
analysis is well-understood [3]. However, this approach is
inadequate for dynamic code because code created at run-
time is not available for static inspection; instead, we use
dynamic analysis. This has the benefit of being able to handle
dynamic code; its drawback is that the constructed CFG may
not contain all of the program’s code due to incomplete code
coverage. We sketch here how CFGs for static code can be
constructed from an instruction trace obtained via dynamic
analysis. The extension of this approach to dynamic code is
discussed in Section 3.4.

Let G denote the CFG under construction. We process
instructions in the execution trace as they are encountered.
For each instruction I, its properties (e.g., whether or not it
is a control transfer) and its status within G (e.g., whether
or not it is already in G) determine how it is processed; we
refer to this as “processing I in the context of G.” If I has not
been encountered previously, it is added as a new instruction.
If I follows a conditional or unconditional jump, it should
begin a basic block: thus, if I is currently in G and is not the
first instruction of its block, the block has to be split and
control flow edges added appropriately.

Multi-threading introduces additional complexity because
adjacent instructions in the execution trace may be from
different threads and thus may not represent adjacent in-
structions in the code. To handle this, we require that each
instruction in the trace be flagged with a value indicating
the thread that executed it; we refer to this as the thread-id
of the instruction. The CFG construction process separately
maintains a summary of the state of each thread; this sum-
mary contains information such as the call stack, previous
instruction seen, current function being reconstructed, etc.
When constructing the CFG G, each instruction I in the
trace is now processed in the context of the state summary
for its thread, which is obtained from the thread-id for I.
Thus, the last instruction from one thread may be appending
an instruction to a basic block whereas a different thread
could be splitting a different block.

3 REASONING ABOUT DYNAMIC
CODE

This section discusses the concepts underlying our approach
to representing and reasoning about dynamic code.

3.1 Design Goals

In devising program representations that support end-to-end
analysis of dynamic code, we have the following design goals:

(1) It should be a natural and scalable generalization of
existing program representations.

(2) It should provide a basis for extending existing program
analyses to handle dynamic code in a natural way.

Representing and Reasoning about Dynamic Code

(3) It should be precise enough to distinguish between
conceptually distinct dynamic code changes.

The first two goals aim to avoid reinventing the wheel as much
as possible. The third is motivated by the fact that dynamic
code changes can be quite complex. For example, JIT compil-
ers typically use shared code buffers that may be repeatedly
reused to hold different, and possibly unrelated, pieces of
dynamically generated code; different dynamically optimized
code fragments may involve different runtime optimizations;
pieces of dynamically optimized code may sometimes be “de-
optimized” to free up space in the shared code buffer; and
such deoptimized code and may later get dynamically opti-
mized again, possibly with a different set of optimizations
that involve different parts of the JIT compiler. The third
goal aims to obtain program representations that are able
to separate out the effects of such complex runtime code
changes and allow analyses to reason about them.

3.2 Dynamic Code Modification

Dynamic code modification can give rise to different versions
of the program, with different instructions and behaviors, at
different points in its execution. A representation suitable
for end-to-end analysis of dynamic code should keep track
of the different versions of the code resulting from dynamic
modification. There are two issues to consider here: (1) what
constitutes “dynamic code modification”? and (2) how should
such modifications be captured in the program representa-
tion? We address these questions as follows. First, we note
that in general, heuristic approaches, such as categorizing a
memory write as code modification if it targets an executable
section of the program’s memory, may not be sufficiently
precise, e.g., because permissions on memory pages can be
changed during execution, making a non-executable memory
region executable. We therefore consider a write to a memory
location ¢ as “code modification” only if ¢ is part of some
instruction that is subsequently executed. Second, even small
dynamic code modifications can result in arbitrarily large
changes to the program’s representation and behavior. In
the x86 ISA, for example, the arithmetic instruction “bitwise
exclusive or” (opcode: zor; encoding: 0x32) can, by flipping
a single bit, be changed to the control transfer instruction
“jump short if below” (opcode: jb; encoding: 0x72), with po-
tentially large effect on the control flow graph.

Based on these observations, we build our program’s CFG
using dynamic analysis, as described in Section 2.2, until we
encounter an instruction whose memory locations have been
modified. At this point we are confronted with a potentially
arbitrary change to the program’s behavior and representa-
tion. To capture this, we begin construction of a new CFG,
which we link to the previously constructed CFG using a
special type of edge that we call a “dynamic edge.” Each
such linked CFG corresponds to a “phase” of the program’s
execution. We make this notion more precise below.

Terminology. In some situations, it may make sense to
distinguish between code created at runtime prior to being

ASE 20, September 21-25, 2020, Virtual Event, Australia

first instruction first instruction

modified in @, modified in ¢,
| !
Trace C —® N 5
Y Y Y
Phases © (03] ()

Figure 1: Phases

executed (“dynamic code generation”) and code modified
at runtime after it has already been executed (“dynamic
code modification”). The ideas described here apply to both
these situations, and we use the terms “generation” and
“modification” of dynamic code interchangeably.

3.3 Concepts and Definitions
3.3.1 Phases. The idea behind phases is to partition an exe-

cution of a program into a sequence of fragments o, ©1,...,Pi, ...

such that for each ;, none of the locations written by the
instructions in ¢; is part of any instruction executed by ;.
Each ¢; is referred to as a phase. Execution begins in phase
o with the program’s initial code. When the first dynamic
instruction is encountered, we switch to ¢1. Execution con-
tinues in ¢ (including other instructions that may have been
created or modified in o) until an instruction is encountered
that was modified in (1, at which point we switch to ¢z, and
so on. This is illustrated in Figure 1. An execution with no
dynamic code consists of a single phase.

More formally, given a dynamic instance I of an instruction
in a program, let instr_locs(I) denote the set of locations
occupied by I and write_locs(I) the set of locations written
by I. These notions extend in a straightforward way to a
sequence of instructions S:

instr_locs(S) = U, ¢ g instr_locs(I)
write_locs(S) = ;¢ g write_locs(I)

Given an execution trace T for a program, let T'[i] denote
the '™ instruction in T, and T : j] denote the sequence
(subtrace) T[], ..., T[j]. We define the phases of T as follows:

Definition 3.1. Given an execution trace T', the phases of
T, denoted ®(T), is a sequence o, P1,- .., Ps, . . . of subtraces
of T such that the following hold:

e oo =T[0: k], where k = max{j | j > 0 and
write_locs(T[0 : 7]) () instr_locs(T[0 : j]) = 0};
e For i >0, let ¢; =T[k: (m — 1)], then

pir1 = T[m : n], where n = max{j | j > m and
write_locs(T[m : j]) () instr_locs(T[m : j]) = 0}.

3.3.2 Dynamic Control Flow Graphs. We use the notion of
phases to construct control flow graphs for dynamic code: we
construct a CFG for each phase of the execution, as discussed
in Section 2.2, and link them together using special edges,
called dynamic edges, that represent the control flow from
the last instruction of one phase to the first instruction of
the next phase. We refer to such a CFG as a dynamic control
flow graph (DCFG). More formally:

ASE 20, September 21-25, 2020, Virtual Event, Australia

m dynamic edge

: modification
> of XtoY

1)

XY dynamic

(a) Static CFG

(b) Dynamic CFG

Figure 2: DCFG: An example

Definition 3.2. Given an execution trace T for a program,
let ®(T) = ¢o,...,en denote the phases of T, and let G; =
(Vi, E;) denote the CFG constructed from the subtrace ¢;.
Then the dynamic control flow graph for T is given by G =
(V, E), where:

oV = U?:o Vi is the disjoint union of the sets of vertices V;
of the individual phase CFGs G;; and

o E = (4_, Ei) UEqayy is the disjoint union of the sets of
edges E; together with a set of dynamic edges Eqy, defined
as follows:
Eayn = (last(ps), first(pit1)), where last(p;) and first(pi+1)
denote, respectively, the basic blocks corresponding to the
last instruction of ¢; and the first instruction of ;1.

Ezample 3.3. Figure 2 gives a simple example of a DCFG.
The static CFG of the program under consideration is shown
in Figure 2(a). When instruction I is executed, it changes
instruction I; to Ji (indicated by the dashed red arrow),
where J; is a conditional branch with possible successors I3
and I5. The following is an execution trace for this program
along with its phases:

Trace: Io I Io s« J1 Is 14 J1 Is

Phases ©wo o1

The first phase, o, consists of the instruction sequence
Io, I1,12,14. When control returns to the top of the loop
at the end of this sequence, instruction I; is found to have
been changed to Ji. This ends ¢¢ and begins ¢, which
comprises the rest of the trace, Ji, Is, I4, J1, 5. The CFGs
corresponding to phases ¢o and ¢; in Figure 2(b) are Go and
G respectively. Finally, the control transfer from g to 1 is
indicated via a dynamic edge from the basic block of the last
instruction of ¢q to the basic block of the first instruction in
1, i.e., from the block for I4 in Gg to the block for J; in Gi.

The reader may notice, in Example 3.3, that the basic block
containing I4 occurs in both Go and G1. This illustrates a
potential drawback of a naive implementation of DCFGs,
namely, that CFG components may be replicated across
different phases. It is possible to implement DCFGs to avoid
such replication, but in this case it is important to ensure
that algorithms that traverse the DCFG (e.g., for slicing) do

Jesse Bartels, John Stephens, Saumya Debray

not follow unrealizable paths. The details for merging phases
are discussed in Section 4; Section 6.3.3 briefly sketches the
performance improvements we see from implementing sharing
of DCFG components across phases.

3.3.3 Codegen Dependencies. Dynamic code modification
can induce a dependency between the code performing the
modification and the resulting modified code. Consider the
following example:

—— e S
A mov loc := r1T B addi r0,imm

code modifier

modified code

In this example, B is an instruction that adds an immediate
value imm to the register r0; the bytes of B containing imm
are at address loc. Thus, if loc contains the value 5, then B =
‘addi r0,5’. Instruction A writes the contents of register rl to
address loc, thereby modifying B. When B is executed, the
value added to r0 depends on the value written to address
loc by A. Thus, the execution of A affects the behavior of B
through the act of dynamic code modification, independent
of any data or control dependencies that may exist in the
program. We refer to dependencies arising in this way due
to dynamic code modification as codegen dependencies. More
formally:

Definition 3.4. Given an execution trace T, a dynamic
instance of an instruction I = T'[i] is codegen-dependent on
a dynamic instance of an instruction J = T'[j] (§ < ¢) if and
only if, for some loc € instr_locs(I), the following hold:

(1) loc € write_locs(J), i.e., J modifies the location loc;
and

(2) Vk s.t. j < k < i:loc & write_locs(T[k]), i.e., J most
recently modifies loc before I is executed.

While codegen dependencies resemble data dependencies
in some ways, they differ in one fundamental way. If an in-
struction [is data dependent on an instruction J, then J
can change the values used by I, but not the nature of the
computation performed by I. By contrast, if I is codegen
dependent on J, then J can change the nature of the com-
putation performed by I, e.g., from an zor instruction to a
jump-if-below instruction as discussed earlier.

3.4 DCFG Construction

Algorithm 1 shows how we construct a DCFG from an execu-
tion trace. The algorithm is based directly on Definition 3.2
and constructs an unoptimized DCFG. The DCFG consists of
a sequence of CFGs {G, | ¢ = 0,1, ...}, one per phase, linked
together by dynamic edges; we refer to the index ¢ for these
CFGs as their phase index. The algorithm proceeds as follows.
We initialize the phase index ¢ to 0 and the DCFG G to 0.
The set W of memory locations written in the current phase
is initialized to (). The CFG G,, is initialized to the empty
graph and added to G (line 7). We then iterate through the
trace T' processing each instruction T'[¢] in turn. If T[] begins
a new phase, we increment the phase index (line 10), reset

Representing and Reasoning about Dynamic Code

Algorithm 1: DCFG Construction (Unoptimized)

Input: An execution trace T'
Result: A DCFG G for T

1 function

instr_starts_new_phase(Instr, WrittenLocs) :

2 |_ return (instr_locs(Instr) N WrittenLocs # 0)

3 begin

4 G=0

5 p+—10

6 W=90

7 | Gy =(0,0); add G, to G

8 for i =0 to len(T) — 1 do

9 if instr_starts_new_phase(T[i/, W) then

10 p +=1

11 w=90

12 Gy = (0,0); add G, to G

13 process T'[i] in the context of G, (see Sec.
2.2)

14 if instr_starts_new_phase(T[i], W) then
15 add a dynamic edge from last block of
L G -1 to first block of G,

16 W «— W U write_locs(TTi])

W to 0 (since no memory locations have been written in the
new phase that has just begun), initialize the CFG V,, for
the new phase to the empty graph, and add this new V,, to
the DCFG G (lines 10-12). We then process the instruction
T[i] in the context of the CFG G, as discussed in Section
2.2 (line 13). At this point, if T'[¢] is the first instruction of a
phase (line 14), it has been added to G, which means G,
has a basic block for it, so we add a dynamic edge from the
basic block of the last instruction of the previous phase to the
basic block of the first instruction of the current phase (line
15). Finally, we update the set of written memory locations
by adding in the set of locations written by T'[¢] (line 16). We
then continue the process with the next instruction of 7T'.

4 SPACE OPTIMIZATION OF DCFGS

DCFGs constructed using the straightforward approach de-
scribed in Algorithm 1 may contain redundancies. This is
illustrated in Figure 3, which shows the execution of a pro-
gram where a function f is JIT-compiled and the resulting
code is executed, after which a different function g is JIT-
compiled and executed. Suppose that the program’s execution
begins in phase po. The memory writes that create the JIT-
compiled code for f are thus in . The execution of the
JIT-compiled code for f therefore causes a transition to a
new phase 1. Subsequently executed instructions, including
the JIT-compiled code forf and the JIT-compilation of g,
are then a part of ¢1. When the JIT-compiled code for g is
executed, there is a transition to a new phase 2. Thus, the
JIT-compiler code executed when compiling f is part of (o;
while the JIT-compiler code executed when compiling g is

ASE 20, September 21-25, 2020, Virtual Event, Australia

phases Po [7
A A A
execution N N

trace —
interp(f) JIT(f): exec(fyr) interp(g) JIT(g): exec(gyy)
the resulting the resulting
code is fyr code is g;ir

Figure 3: Potential redundancies in DCFGs

part of 1. The control flow graphs constructed from these
two invocations of the JIT-compiler are therefore replicated,
once in o and once in @1, means that there is potential for
a significant amount of redundancy in a naively constructed
DCFG. In general, the situation described arises if the same
code is invoked multiple times from different phases.

A natural approach to addressing the redundancy problem
would be to merge the repeated components of the DCFG. For
example, if the JIT compiler is invoked multiple times in the
course of execution, as in Figure 3, we can coalesce the various
replicated control flow graphs for the JIT compiler into a
single copy and redirect all control flow edges accordingly.
However, a naive approach to such coalescing can lead to a
loss in precision of analysis by propagating information along
unrealizable paths, similar to the issue of context-sensitivity
in interprocedural program analysis [32, 40, 43, 51].

An important difference between the general problem of
context-senstive interprocedural analysis (i.e., k-CFA) and
the issue of merging replicated code in DCFGs is that of
the nature and complexity of the context relationships that
arise. Programs can have arbitrarily complex call graphs, and
increasing the amount of context information maintained
during interprocedural analyses can therefore increase the
precision of analysis, albeit at increased cost [22]. Phases
in a DCFG, on the other hand, have a predictable linear
progression, with phase n transitioning to phase n + 1 on
encountering dynamic code. This predictable structure of
inter-phase relationships means that, given the phase number
of a function or basic block in a DCFG, identifying the phase
number of the previous or next phase is straightforward.
This allows us to implement this optimization efficiently at
all levels of granularity—namely, instructions, basic blocks,
edges, and functions—without incurring the complexity and
cost of general k-CFA.

Our implementation of merged DCFGs associates a set
of phase identifiers with each DCFG component (instruc-
tion, basic block, and edge). In the simple case, there are
N identical blocks, each containing the same sequence of
instructions, that appear in N phases a1, ...,an. We merge
these into a single block, which is then associated with a set
of phase identifiers {a1,...,an}. The resulting merged block
must also account for merging the edges into/out of it. An
edge that occurs in a single phase gets the phase identifier
for that phase. Shared edges, on the other hand, are edges
that connect the same blocks in multiple phases. These are
merged into a single edge whose set of phase identifiers is the
union of the phase identifiers for the phases in which that
edge appears.

ASE 20, September 21-25, 2020, Virtual Event, Australia

Phase: 1)/ \/

0x123 add %rdx, %rcx 0x123 add %rdx, %rcx

0x126 sub %rdx, 0x2 M\ @ = {1
- T—— -

0x129 jmp .+0x16
0x126 nop

e
l »merge 0x126 sub %rdx, Ox2
Phase: 2 ~, ¥ » \\ = {1} 0x127 nop

0x128 nop [NEKVA]

0x123 add %rdx, %rcx S~
gigs :22 0x129 jmp .+0x16
0x128 nop
0x129 jmp +0x16 — - : "ghost edges"” ¢

l : phase identifier sets

Figure 4: Merging sub-parts of a basic block. The
dashed edges internal to the block are “ghost edges”.

Merging basic blocks becomes more complex when sharing
similar but non-identical blocks. We take advantage of the
similar portions of the blocks using a notion of “splitting a
block across a phase.” To split a block across a phase we
introduce a new type of edge which we call a ghost edge.
Conceptually, a ghost edge e is an intra-block connector
and indicates that, for the given phase identifiers associated
with e, the two sub-blocks connected by e should be treated
as a single block. Using ghost edges we can split a block,
merging the shared components across multiple phases while
still keeping unique portions of the block that could not be
shared. Figure 4 shows an example of merging sub-parts of a
block.

When traversing a merged DCFG, a traversal along the
edges and basic blocks of one phase should not take an
edge leading out of a shared basic block associated with a
different phase if the outgoing edge is not shared between the
two phases. We use the sets of phase identifiers associated
with bsic blocks and edges to enforce this requirement and
only allow traversals across components with matching phase
identifiers.

5 APPLICATIONS
This section discusses a few applications of DCFGs and
codegen dependencies to reasoning about dynamic code.

5.1 Program Slicing for Bug Localization
and Exploit Analysis in JIT Compilers

Program slicing refers to identifying instructions that (may)
affect, or be affected by, the value computed by an instruction
in a program [2, 30, 48]. Slicing can be static or dynamic;
and, orthogonally, forward or backward. By eliminating in-
structions that are provably irrelevant to the computation of
interest, slicing reduces the amount of code that has to be ex-
amined in order to reason about it. In the context of dynamic
code modification, DCFGs play a crucial role in providing
control flow information needed to construct backward slices.
Analyses that reason about dynamic code solely through data
dependencies, e.g. using taint propagation [11, 13, 21, 54]
are unable to capture the effects of control dependencies and
therefore are unsound with respect to slicing.

Jesse Bartels, John Stephens, Saumya Debray

We implemented backward dynamic slicing as an appli-
cation for evaluating the efficacy of DCFGs and codegen
dependencies, with the goal of bug localization and exploit
analysis in JIT compilers. Backward dynamic slicing aims
to identify the set of instructions that may have affected
the value of a variable or location at some particular point
in a particular execution of the program. Our implementa-
tion is based on Korel’s algorithm for dynamic slicing of
unstructured programs [30]; however, any slicing algorithm
for unstructured programs would have been adequate.

In Korel’s slicing algorithm [30], an instruction I at posi-
tion p in a trace T' (i.e., I = T'[p]) depends on an instruction
J = Tq] (written I ~»(gorey J) if and only if, for some source
operand a of I, J is the last definition of a at position p. More
formally:

I ~(gorery J iff (3 a source operand a of I):
[a € write_locs(J); and

(Vn:qg<n<p:a¢write_locs(T[n])]

When processing an instruction I, Korel’s algorithm (lines
5 and 16 of Fig. 11 [30]) marks all instructions J such that
I ~(gorery J. To work with dynamic code, we modify this no-
tion to also take codegen dependencies into account, writing
the resulting notion of dependency as I ~ J:

I~ J iff I~ (gorey J or I is codegen-dependent on J.

Our slicing algorithm is identical to Korel’s except for two
generalizations:

(1) Codegen dependencies are taken into account in prop-
agating dependencies. In the marking step of the al-
gorithm (lines 5 and 16 of Fig. 11 [30]) we use the ~
relation rather than the ~(gorer) relation used by Korel
[30].

(2) The structure of the DCFG is taken into account by
treating dynamic edges similarly to jumps (in the ter-
minology used by Korel [30], this corresponds to the
notions of j-entry and j-exit).

5.2 Detecting Environmental Triggers in
Malware

Malware sometimes use environmental triggers to evade de-
tection by performing malicious actions only if the right
environmental conditions are met, e.g., if the date has some
specific value. Current work on detecting such behaviors
is geared towards static code, e.g., identifying conditional
branches with input-tainted operands [6]. The idea is to use
dynamic taint analysis to identify conditional branches of
the form ‘if expr then behavior, else behaviors’ where expr
is tainted from (i.e., influenced by) some input values. Once
such conditionals have been identified, other techniques, e.g.,
using SMT solvers to generate alternate inputs, can be used
to further explore the program’s behavior.

Dynamic code opens up other ways to implement envi-
ronmental triggers, e.g., by using the environmental input
to directly affect what instruction bytes are generated. This
idea can be illustrated by adapting an example of evasive
behavior, described by Brumley et al. [6], to use dynamic

Representing and Reasoning about Dynamic Code

code instead of a conditional. The code, shown in Figure
5, uses bit-manipulation instead of conditionals to evalu-
ate the trigger expression, thereby rendering inapplicable
techniques that rely on tainted conditionals. The variable
day_bits is set to 1 or 0 depending on whether or not the
most significant bit of the value of the expression day-9 is 0,
i.e., whether or not the predicate day > 9 is true. Similarly,
mth bits is 1 or 0 depending on whether or not month >
7 is true. Thus, the variable trigger is 1 or 0 depending
on whether the environmental trigger—in this example, the
predicate day > 9 && month > 7—is true or not. The as-
signment to *(addInstrPtr+11) writes this value into the
source byte of an assignment to a variable that is used in a
conditional to determine whether the malicious behavior is
manifested.’ Note that the conditional that controls the exe-
cution of the payload() function is neither data-dependent
nor control-dependent on the input; instead there is a code-
gen dependency between this conditional and the patching
instructions, which are data dependent on the input.

Our current implementation generalizes the approach of
Brumley et al. [6] to incorporate codegen dependencies: we
taint the values obtained from any environmental inputs of
interest, then propagate taint in a forward direction. We
determine that an environnmental trigger is present if either
of the following hold:

(1) A conditional jump instruction with one or more tainted
operands is executed; or

(2) There is a codegen dependency where the value written
is tainted (equivalently: one or more memory locations
containing an executed instruction are tainted).

The first condition is that originally used by Brumley et
al. [6], while the second condition incorporates the effects
of dynamic code modification. Analysis of the code shown
in Figure 5 proceeds as follows. The values obtained from
the call localtime() are tainted. This causes the variables
day_bits and mth_bits, and thence the variable trigger, to
become tainted; this tainted value is then written to memory
via the assignment

*(addInstrPtr+11) = trigger

When the function hide() is subsequently executed, the
location written by the above assignment is found to be
a code location, thereby indicating a codegen dependency
where the value written is tainted. This indicates the presence
of an environmental trigger.

6 EVALUATION

6.1 Overview

We built a prototype implementation to evaluate the efficacy
of our ideas and ran our experiments on a machine with 32
cores (@ 3.30 Ghz) and 1 TB of RAM, running Ubuntu 16.04.

L This code relies on the appropriate byte of the modified instruction
being at a specific offset—in this case, 11 bytes—from the beginning
of that function’s code, and therefore is oviously highly compiler- and
system-dependent. This is not atypical of malware, which are usually
launched as system-specific binary executables.

ASE '20, September 21-25, 2020, Virtual Event, Australia

void hide() {
volatile int environmental_trigger = O;

if (environmental_trigger) {
payload(...); // perform malicious action

}

void patch() {
int pg_sz = sysconf (_SC_PAGE_SIZE);
mprotect ((void*) ((((long) &hide) / pg_sz) * pg_sz),
pg_sz * 2, PROT_READ | PROT_WRITE | PROT_EXEC);
time_t rawtime;
struct tm * systime;
time (&rawtime) ;
systime = localtime(&rawtime);

int day = systime->tm_mday;
int day_test = “(day - 9);
int day_bits day_test >> 31; // day_bits == 1 iff day >= 9

int month = systime->tm_mon+1;
int mth_test = “(month - 7);
int mth_bits = mth_test >> 31; // mth_bits == 1 iff month >= 7

// trigger == 1 iff (day >= 9 && month >= 7)
int trigger = day_bits & mth_bits;

unsigned char* addInstrPtr = ((unsigned char*) &hide);
*(addInstrPtr+11) = trigger;
}

int main() {
hide();
patch();
hide(Q);
return 0;

Figure 5: Environmental trigger based on dynamic
code

We used Intel’s Pin software (version 3.7) [31] for program
instrumentation and collecting instruction-level execution
traces; and XED (version 8.20.0) [24] for instruction decoding.
We iterate over the instruction trace to construct a DCFG
for the execution. We identify dynamic code and determine
codegen dependencies using taint analysis: we taint writes
to memory, with each memory write getting a distinct taint
label. For each instruction in the trace we check whether
any of its instruction bytes is tainted, in which case the
instruction is flagged as dynamic.
Our evaluations focused on the following questions:

(1) How capable are existing state-of-the-art dynamic anal-
ysis tools at end-to-end reasoning of dynamic code?
To answer this question we used two small synthetic
benchmarks to evaluate three widely-used modern dy-
namic analysis tools: PinPlay [36], angr [44, 47], and
Triton [42].

(2) How effective are our ideas in reasoning about dynamic

code in scenarios involving problems in real-world soft-
ware?
To evaluate this question, we consider two kinds of
experiments: (1) dynamic slicing for bug reports and
exploits for the JIT compiler in V8, the JavaScript
engine in Google’s Chrome browser; and (2) two bench-
marks that use dynamic code for environmental triggers
in malware.

(3) What is the performance impact of the merging opti-
mizations discussed in Section 4%

The bug/exploit proof-of-concept code used in the slic-
ing experiments mentioned are deliberately constructed

ASE '20, September 21-25, 2020, Virtual Event, Australia

Our ap- | PinPlay angr | Triton
proach
Synth{ Benchmark 1 Y N N N
etic Benchmark 2 Y N N N
V8 OOB to Y X X X
w2 | JIT
3 §a code pages
& 2 [V8 Escape Y X X X
[SAERS .
analysis bug
LuaJIT exploit Y N N N
£ OOB Read Y X X X
< BJIT type Y X X X
S "5: confusion
A T Scoping issue Y X X X
Key:

Y: Picks up dynamic code generator from backwards
slice of dynamic code.

N: Does not pick up dynamic code generator from
backwards slice of dynamic code.

X: Crashes or fails to load.

Table 1: Assessing Existing Dynamic Analysis Tools

to crash the software quickly, and thus do not reflect
typical application behavior. We use the Jetstream
benchmarks (Sec. 6.4) to more accurately evaluate the
impact of our memory optimizations on typical appli-
cation code.

The code for our prototype implementation is available at
https://

github.com/skdebray/ASE-2020/ and https://www2.cs.arizona.edu

/projects/lynx-project/Samples/ASE-2020. Our data samples

Jesse Bartels, John Stephens, Saumya Debray

such simple programs relate directly to shortcomings in the
underlying program representations and analysis algorithms
when applied to dynamic code.

We used the three tools mentioned above, along with our
prototype implementation of slicing (Section 5.1) to carry
out backward dynamic slicing on our synthetic benchmarks.
In each case, we computed a backward dynamic slice with
the slice criterion being the value computed by the func-
tion whose code was dynamically modified. The results of
these experiments are summarized in Table 1. It can be seen
that while all three tools successfully included all of the rele-
vant non-codegen-dependent instructions in the slices they
computed, none of them are able to pick up the code that
performs dynamic modification. Given that soundness for
slicing algorithms is defined as not excluding any statement
that can influence the slicing criterion, this indicates that
the resulting slices were unsound. On further investigation,
we found that the reason for this is a fundamental limitation
of the underlying CFGs constructed by these tools, which
do not represent the different versions of code resulting from
dynamic code modification. By contrast, we found that our
implementation, using DCFGs and codegen dependencies,
computed slices that correctly contained the instructions that
performed dynamic code modification.

Additionally, to assess the applicability of these tools to
real-world software that makes use of dynamic code, we
evaluated them on six bug and exploit reports for the V8
JIT compiler. As shown in Table 1, none of them were able
to successfully analyze these examples: they all crashed with
internal errors when loading V8. All three tools were able

are available at https://www2.cs.arizona.edu/projects/lynx-projecto process the LuaJIT example without crashing, but none

/Samples/ASE-2020/DATA.

6.2 Assessing the Capabilities of Existing
Tools

We evaluated the capabilities of existing state-of-the-art tools
using three widely-used modern dynamic analysis tools that
implement backward dynamic slicing, namely: PinPlay [36]
(revision 1.29), angr [44, 47] (commit bd3c6d8 on github),
and Triton [42] (build no. 1397). We invoked these tools to
incorporate support for self-modifying code as follows: we
set the flags smc_support and smc_strict flags to true for
PinPlay, and loaded our project with auto_load_1libs and
support_selfmodifying code set to true for angr.

To avoid potentially confounding factors such as code size
or complexity, we considered two small synthetic benchmarks
of 15 and 55 x86 instructions respectively. Both programs
are simple in structure: one adds a constant to the target
operand of a jump instruction; the other adds a constant to
the immediate operand of an add instruction. The fixed and
unconditional nature of these code modifications means that
there is nothing tricky, e.g., no data or control dependen-
cies, between the instructions being dynamically modified
and the instructions performing dynamic modification. This
allows us to focus entirely on questions of representation
and analysis of dynamic code: any problems in analyzing

of the slices they computed contained the JIT-compiler or
exploit code that created the dynamic code.

6.3 Analysis Efficacy on Real-World
Examples

To evaluate our approach on real world software that uses
dynamic code, we consider three applications: (1) analysis
of exploits involving JIT code; (2) bug localization in JIT
compilers; and (3) detection of trigger-based evasive behaviors
that use dynamic code. Our goal was to perform end-to-end
analyses on these examples, i.e., start from the problematic
dynamic code and compute a backward dynamic slice that
includes the culprit portions of the dynamic code generator
where the bug/security exploit originates. The results are
shown in Table 1.

6.3.1 Exploit Analysis. We consider three examples of ex-
ploits, two of them involving dynamic code in Google’s V8
JavaScript engine:

(1) malicious shellcode originating from an out-of-bounds
(OOB) write to the JIT code pages in V8 [9];

(2) escape analysis bug in V&8s JIT compiler (CVE-2017-
5121) [38]; and

(3) malicious bytecode used to escape a LuaJIT sandbox
8].

Representing and Reasoning about Dynamic Code

ASE '20, September 21-25, 2020, Virtual Event, Australia

TRACING DCFG CONSTRUCTION SLICING
Test program Nirace Tread Ninstrs Nyiocks Nedgcs Nphascs Tpcra Niice Tstice Aslice
'§ §J V8 OOB to JIT Code 11,134,237 | 10.68 | 191,613 | 41,302 | 117,158 4 146.88 81,986 433.25 57 %
= %’ Pages
& §[V8 Escape analysis bug | 135,205,168 | 130.76] 245,935 | 52,020 | 153,022 | 3 1,793.23] 120,885 | 10,193.08| 50 %
LuaJIT Exploit 464,743 0.60 18,248 4584 12,606 2 7.47 5,139 7.76 71 %
OOB Read 14,720,437 | 14.25 | 150,115 | 31,469 92,254 2 196.29 61,511 579.78 59 %
o < [SIT Type Confusion 9,663,365 | 0.49 | 158,849 | 32,536 | 93,132 9 130.26 | 67,765 | 146.47 | 57 %
Cg 8 'SSCOping issue 7,882,295 7.56 | 99,378 | 22,394 | 62,204 4 102.31 47,023 970.95 52 %
Key:
. . . . Nphases No. of ph.
Nirace No. of instructions in execution trace phases 0. Of phases = .
. Tocora DCFG construction time (seconds)
Tread Time to read trace (seconds)
. . . Nsiice No. of instructions in slice
Ninstrs No. of instructions in DCFG . . .
. . Tstice Slice construction time (seconds)
Niiocks No. of basic blocks in DCFG . .
. . Aglice Fraction of DCFG removed from slice
Nedges No. of basic blocks in DCFG
= (Ninstrs - slice)/Nmstrs-
Table 2: Slicing: Performance

For each of these exploits, we used the proof-of-concept code
to compute a DCFG /backward dynamic slice starting from
the dynamically generated exploit code. Separately, we used
the write-up for each exploit to determine the bugs respon-
sible for each exploit, identifying the buggy code generator
portions in the execution traces recorded for each exploit.
We then checked the slice to determine whether the buggy
generator code is present in the slice.

The first security exploit we consider entails an OOB write
to the JIT code pages within Google’s V8 JavaScript engine
[9]. The exploit is a result of array type ambiguity that allows
the attacker to write and execute arbitrary shellcode. We
constructed a DCFG from an execution trace of the buggy V8
code and computed a backward dynamic slice from the first
nop shellcode instruction in the nop sled in the attack code.
Our backward slice correctly included both the buggy code
within V8 that led to the array type ambiguity along with
the exploit code that generated the shellcode at runtime.

The second exploit we examined is discussed in detail by
Rabet [38]. It arises out of a bug in V8&’s escape analysis
and causes some variable initializations in the JIT-optimized
code to be incorrectly optimized away when performing load
reduction. The proof-of-concept code provided causes V8 to
crash while executing the optimized dynamic code due to an
OOB read. The write up provided by Rabet proceeds to use
this OOB read as a stepping stone towards demonstrating
arbitrary code execution. For our analysis of this example,
we built our DCFG from the execution trace recorded by Pin
and then we computed a backward dynamic slice from the
dynamic instruction prior to the exception that is thrown due
to the OOB read. We found that the resulting slice correctly
included the buggy portions of the load reducer in the escape
analysis phase of V8’s JIT compiler, whose optimizations
cause the OOB read.

Our final example in this category was with malicious Lua
bytecode being used to escape a sandbox in LuaJIT [8]. The
proof of concept malicious program corrupts bytecode with

the goal of writing shellcode which prints a message. We
followed an approach similar to the one we used to slice the
V8 OOB write, starting our slice at the beginning of the
NOP sled used in the attack. We found that the backward
slice computed by our tool correctly picks up the Lua code
that generates the shellcode.

The role of codegen dependencies. For each exploit example
discussed, we computed slices starting at a NOP instruction
in the NOP sled generated as part of the shellcode. To assess
the role of codegen dependencies, we recomputed these slices
ignoring codegen dependencies. We found that, in each case,
the resulting slice consisted of just the NOP instruction and
nothing else. By contrast, when codegen dependencies were
considered, the relevant JIT-compiler code was included in
the slice. This demonstrates that codegen dependencies are
fundamental to reasoning about the relationship between
dynamically generated code and the dynamic code generator
that created that code.

6.3.2 Bug Localization. We consider three JIT compiler bugs
from Google’s V8 JavaScript engine that were posted to
bugs.chromium. org and classified as “Type: Bug-Security.”

(1) Empty jump tables generated by the bytecode gen-
erator leading to out-of-bound reads that crash the
generated JIT-compiled code [17].

(2) A type confusion bug that leads to a crash after the
dynamic code has been generated [18].

(3) Arrow function scope fixing bug, where certain con-
structs involving a single line arrow function cause a
crash [19].

For each of these bugs we proceeded as follows. To identify
the problematic code in the JIT compiler, we examined the
corresponding GitHub commits, together with any relevant
information in the bug report, to determine the code that
was changed to fix the bug. We delineated the problem code
so identified using small “marker code snippets”—i.e., small

ASE '20, September 21-25, 2020, Virtual Event, Australia

Jesse Bartels, John Stephens, Saumya Debray

ORIGINAL DicING IMPROVEMENT (%)
Test program DCFGorig | sliceorig | DCFGyy | slicemy, | Apcre | Astice | Amk
-*g i V8 OOB to JIT Code Pages 191,613 81,986 90,736 42,317 52.6 48.4 53.4
2.3 | V8 Escape analysis bug 245,935 120,885 157,847 89,307 35.8 26.1 43.4
LS § LuaJIT Exploit 18,248 5,139 10,354 1,808 43.2 64.8 82.5
OB Read 150,115 | 61,511 35,261 | 10,460 | 59.0 83.0 | 70.3
. Né §]IT Type Confusion 158,849 67,765 188 103 99.9 99.8 45.2
& 8 [Bcoping issue 99,378 47,023 14,896 7721 5.0 836 | 482
Key:
DCFG orig No. of instructions in original DCFG Apcra Improvement in DCFG size due to dicing
slice orig No. of DCFG instructions in original slice = (DCFGorig — DCFG i)/ DCFG orig
DCFG No. of instructions in DCFG with marker Aglice Improvement in slice size due to dicing
slice i No. of DCFG instructions in slice with marker = (sliceorig — Slicemr)/ sliceorig
Ak Fraction of DCFG .., removed due to dicing

= (DCFG i, — slicemi)/ DCFG i

Table 3: Dicing: Performance

easily identifiable code snippets that do not affect the opera-
tion of the JIT compiler—and confirmed that the behavior
of the buggy JIT compiler was unaffected. We then used the
example code submitted with the bug report to obtain an
execution trace demonstrating the bug, and used this trace,
together with the DCFG constructed from it, to compute a
backward dynamic slice starting from the instruction that
crashed. Finally, we analyzed the resulting slice to deter-
mine whether the problematic code, as identified above, was
included in the slice.

The results of our experiments are summarized in Table
1. Our end-to-end analysis was able to successfully pick up
the buggy code for each of the bugs mentioned above in the
slice, allowing one to narrow down the functions involved in
V8 that lead to the crash.

6.3.3 Performance. Table 2 shows the performance of our
prototype DCFG-based slicing implementation on our real-
world test inputs (the environmental trigger example is omit-
ted because it does not use backward slicing). These input
programs all involve computations of substantial size: the
smallest, LuaJIT exploit, has a trace of 464K instructions,
while the remaining execution traces range from almost 7.9M
instructions (V8 scoping issue bug) to 135M instructions (V8
escape analysis bug). The time taken to read the traces (and
do nothing else) is roughly 1M instructions/sec.?

The DCFGs constructed typically range in size from about
22K basic blocks and 62K edges (V8 scoping issue bug) to
about 41K blocks and 117K edges (V8 OOB exploit), with
a low of 4.6K blocks and 12K edges for the LuaJIT exploit
and a high of about 53K blocks and 154K edges for the V8
escape analysis bug. Most of our test programs have 2 — 4
phases, with the V8 JIT type confusion example an outlier
with 9 phases. DCFG construction incurs an overhead of
roughly 15X over simply reading a trace: most of the test

20ur implementation uses Pin to collect an instruction trace that is
written to a file on disk. The numbers reported here refer to the time
required to read such instruction trace files; the time taken to record
the traces and write the trace files, which depends on the tracing tool
used and is independent of the ideas described here, is not included.

10

inputs take roughly 2 — 3 minutes, with the lowest time
being 7.5 seconds for the LuaJIT exploit and the highest
being about 30 minutes for the V8 escape analysis bug. Since
DCFG construction involves processing each instruction in
the execution trace, the time taken depends on the sizes of
both the instruction trace and the DCFG.

The overhead incurred by slicing relative to the time taken
for DCFG construction ranges from 1.04x for the LuaJIT
exploit to 9.5x for the V8 scoping issue bug, with most of the
test programs ranging from 3x to 6x. In absolute terms, most
of the programs take about 2 — 10 minutes for slicing, with
a low of about 8 secs for the LuaJIT example and a high of
about about 2.8 hours for the V8 escape analysis bug. Slicing
is able to remove about 50%-60% of the instructions in the
DCFG, with a high of 71% of the instructions removed for
the LuaJIT exploit. These results indicate that our approach
is both practical (in terms of time) and useful (in terms of
the amount of code removed from the DCFG). Since our
approach does not fundamentally alter the slicing algorithm,
but rather augments it to work over DCFGs and use codegen
dependencies, it is not difficult to adapt our approach to other
slicing algorithms with different cost-precision characteristics.

6.3.4 Focusing the analysis: markers and dicing. Given our
objective of localizing problems in the JIT-compiler code,
it is useful to examine the extent to which our approach is
able to reduce the amount of actual JIT-compiler code that
has to be considered. To do this, we placed markers—i.e.,
small code snippets that are unambiguously identifiable and
semantically neutral—in the code as close as we were able
to the invocation of the JIT compiler. During analysis, we
excluded the portion of the execution trace before the marker.
This effectively computed a program dice that excluded the
front-end parser, byte-code generator, and interpreter.
Table 3 gives the results of these experiments. The two
columns labeled ‘ORIGINAL’ refer to the size of the DCFG and
the backward slice computed without markers, i.e., as shown
in Table 2; the columns labeled ‘DICING’ refer to the size
of the DCFG and slice when markers are used; the columns

Representing and Reasoning about Dynamic Code

ASE '20, September 21-25, 2020, Virtual Event, Australia

No. OoF INSTRUCTIONS No. or Basic BLOCKS No. or EDGES
Test program Orig Opt A(%) Orig Opt A(%) Orig Opt A(%)
base64 781,404 308,748 60.5 167,925 | 64,095 61.8 308,748 | 197,042 36.2
Qg a crypto-shal 1,158,366 | 319,098 72.5 245,758 | 65,634 73.3 719,114 | 202,096 71.9
§ 5 | date-format 453,177 324,279 28.4 94,417 | 67,611 28.4 278,666 | 101,902 63.4
5 E nbody 394,264 284,973 27.7 81,617 | 58,054 28.9 239,080 | 174,498 27.0
TS [poker 505,320 | 366,571 | 384 | 125,700 | 78,485 | 37.6 | 365,078 | 236,562 | 35.4
A, 8 [strunpack 372,862 | 251,121 | 32.7 | 75,164 | 50,899 | 32.3 | 215,716 | 151,980 | 29.5
V8 OOB to JIT Code Pages 193,339 152,723 21.0 41,302 | 32,205 22.0 117,158 | 94,568 19.3
2 [V8 Escape analysis bug 247,264 | 212,800 | 13.9 | 52,929 | 46,201 | 12.7 | 153,922 | 137,974 | 10.4
> S [TualIT Exploit 21,389 19,436 9.1 4,584 4,153 9.4 12,606 11,624 7.8
’é § OOB Read 151,773 | 133,134 | 12.3 | 31,469 | 27,268 | 13.3 | 92,254 | 82,046 | 11.1
8 g JIT Type Confusion 160,526 128,188 20.1 32,5636 | 25,441 21.8 93,132 76,110 18.3
“ - ["Scoping issue 101,193 | 89,675 | 11.4 | 22,394 | 19,910 | 1L.1 | 62,204 | 56,382 0.4
Key:
Orig Value in original-representation DCFG
Opt Value in optimized-representation DCFG
A Improvement = (Orig — Opt)/Orig

Table 4: Impact of representation optimization on DCFG size

labeled ‘IMPROVEMENT’ show the percentage improvement
due to dicing. The columns labeled Apcra and Agjice show,
respectively, the reductions in the size of the DCFG and the
slice when irrelevant code is excluded. These are in the range
35%-85% for DCFG size and 26%-84% for slice size. The
JIT Type Confusion bug sample is an outlier, with almost all
of the original DCFG and slice eliminated. The final column,
labeled A,,.;, shows the effects of slicing focusing only on the
DCFG resulting from dicing: these range from about 43% to
about 82%. Overall, these results show that (1) our approach
is effective in focusing on the relevant portions of the JIT
compiler; and (2) the use of code markers to identify entry
into the JIT compiler can be helpful in zeroing in on the
relevant portions of the code being analyzed.

6.4 Detecting Environmental Triggers

We use two test programs to evaluate the detection of envi-
ronmental triggers based on dynamic code: one is shown in
Figure 5, the other is a variant of this program that uses im-
plicit flows to further disguise the influence of environmental
values on the trigger code.

We built two detectors to demonstrate the utility of DCFGs
and codegen dependencies for this purpose. In the first case,
we taint the input source and propagate the taint forward
in the execution trace. If there is a codegen dependency
from an instruction with tainted operands to an instruction
that is later executed, an input-dependent value may be
influencing the instruction bytes of some dynamic instruction,
and we report that there is dynamic input-dependent program
behavior. In the second case, we compute a backward dynamic
slice with the slicing criterion being the dynamically modified
code location at the point where it is executed.

Our implementations correctly detect that environmental
values influence dynamic program behavior for our bench-
marks. To assess the state of the art, we tested these programs

11

using two widely used analysis tools: S2E, a widely used sym-
bolic execution engine [10], and angr. In each case, we found
that the input values used to patch the function hide () in
Figure 5 are silently concretized and only the false path is
explored. As a result, these tools are unable to identify the
environment-dependent aspect of the program’s behavior.

6.5 Space Optimization: The Impact of
Merging

To evaluate the effect of the space optimization discussed
in Section 4, we used a collection of benchmarks from the
Jetstream 2 suite of Javascript workloads [5]: base64 [37],
crypto-shal [26], date-format [49], nbody [16], poker [1], and
str-unpack [25]. The results are shown in Table 4. These
benchmarks have significantly larger DCFGs than the security
benchmarks described earlier. This is not surprising, since
the security benchmarks were submitted as demo code for
bug reports and thus aimed to quickly manifest the bug and
crash or exit the program. The performance benchmarks
yielded significantly higher performance improvements than
the security benchmarks, with improvements ranging from
27% to 72%.

We also found that the amount of improvement increases
with the size of the unoptimized DCFG. This is shown in
Figure 6. This indicates that there is a significant amount of
overlap in the code executed by different phases (e.g., library
code, the interpreter and JIT compiler), and also that our
merged DCFG representation is effective in optimizing away
the resulting redundancies.

We did not see a significant difference in execution speed be-
tween the DCFG implementations with and without this op-
timization. The version using space-optimization was slightly
faster on average, possibly due to fewer calls to allocate/free
routines and improved memory locality.

ASE '20, September 21-25, 2020, Virtual Event, Australia

DCFG size: no. of basic blocks (x1000)

0 50 100 150 200 250
80 L ! | | |
X +
o’\; 60 X +
€
£
E 40+ N
3 x
S X X¥ o+ Key: +: basic blocks
£ 24 xx + €Y* x :instructions
+ X 4
e XX
e - I
0 500 1000 1500

DCFG size: no. of instructions (x 1000)

Figure 6: Space optimization
DCFG size

7 SUMMARY AND DISCUSSION

Our design goals, in Section 3.1, were to devise a program rep-
resentation that naturally and scalably generalizes existing
representations; allows existing analyses to be extended to dy-
namic code in a simple and natural way; and is precise enough
to distinguish between conceptually distinct dynamic code
modifications. DCFGs provide a natural generalization of the
well-known notion of control flow graphs to dynamic code and
thus satisfy the first goal. Section 5.1 shows how we extend
slicing to dynamic code in a straightforward way, thereby
satisfying the second goal. For the third goal, DCFGs allow us
to distinguish the code structure of individual JIT-compiled
functions by separating out the different code modifications
in different DCFG phases, with the space optimizations of
Section 4 ensuring scalability; codegen dependencies then
make it possible to identify and reason about the code compo-
nents and value flows in the dynamic code generator relevant
to the code modifications in each such phase. As far as we
know, no other existing system can do this.

improvements vs.

8 RELATED WORK

Anckaert et al. describe a program representation for dynamic
code that is capable of representing multiple versions of the
code as it is modified during execution [4]. However, this
work does not have a notion of codegen dependencies and
as a result is of limited utility for applications that involve
reasoning about causal relationships between the dynamic
code generator and the dynamic code.

Debray and Yadegari discuss reasoning about control de-
pendencies in interpreted and JIT-compiled code [52]. While
the goals of this work are similar to ours, its technical details
are quite different. In particular, it does not aim to provide
a program representation capable of supporting arbitrary
dynamic code, but instead is narrowly focused on control
dependency analysis in interpretive systems. It also makes
assumptions, such as the ability to map each dynamically
generated instruction to a unique byte-code instruction it
originated from, that render it inapplicable to contexts not

12

Jesse Bartels, John Stephens, Saumya Debray

involving interpreters, such as the dynamic-code-based envi-
ronmental triggers discussed in Sections 5.2 and 6.4.

Korczynski and Yin discuss identifying code reuse/injections
using whole-system dynamic taint analysis [29]. While this
work captures codegen dependencies, it does not propose a
program representation that can capture the code structure
for the different phases that arise during execution. As a
result, this approach is not suitable for analyses, such as
program slicing, that require information about the control
flow structure of the code. Dalla Preda et al. describe a no-
tion of phases to characterize the semantics of self-modifying
code [12], however this work was never implemented and the
technical details are very different from ours.

There is a large body of literature on program slicing
(e.g., see [30, 39, 46, 50, 55]), but all of this work focuses
on static code. There is a lot of work on dependence and
information flow analyses (e.g., see [20, 27, 35]), but these
typically do not consider end-to-end analysis of dynamic
code. Several authors have discussed taint propagation in
JIT-compiled code, but focusing on taint propagation in
just the application code rather than on end-to-end analyses
[13, 28, 41]. Whole-system analyses [11, 13, 21, 53, 54] focus
on issues relating to dynamic taint propagation through
the entire computer system. Such systems provide end-to-
end analyses but typically consider only explicit information
flows (~ data dependencies), not implicit flows (=~ control
dependencies); they are thus of limited use for reasoning about
behaviors, such as conditional dynamic code modification (i.e.,
where the dynamic code generated may depend conditionally
on input and/or environmental values), which are common
in applications such as JIT compilers.

There are a number of systems that reason about program
behavior using dynamic analysis, and therefore are able to
perform some kinds of analysis on dynamic code [36, 42, 44,
47]. Our experiments indicate that these systems do not keep
track of multiple versions of code resulting from dynamic code
modification, and so cannot fully capture the dependencies
arising from runtime code changes.

Cai et al. [7] and Myreen [33] discuss reasoning about
dynamic code for the purposes of program verification using
Hoare logic. We have not seen any implementations to apply
their work towards modern software that utilizes dynamic
code (i.e. a javascript engine). Furthermore, our work is more
specific in that we seek to provide a program representation
capable of representing dynamic code.

9 CONCLUSIONS

Dynamic code is ubiquitous in today’s world. Unfortuntely,
existing approaches to program analysis are not adequate
for reasoning about the behavior of dynamic code. This
paper discusses how this problem can be addressed via a
program representation suitable for dynamic code as well as
a new notion of dependencies that can capture dependencies
between the dynamic code and the code that generated it.
Experiments with a prototype implementation of backwards
dynamic slicing based on these ideas show, on a number of

Representing and Reasoning about Dynamic Code

real-world examples, that these ideas make it possible to work
back from the faulty code to the JIT compiler logic that led
to the generation of the faulty code.

ACKNOWLEDGMENTS

This research was supported in part by the National Science
Foundation under grant no. 1908313.

REFERENCES

(12]

(13

(14]

(15

(16

[17

(18

(19]

[20

[21

[n.d.]. Uni-poker Javascript source code. https://browserbench.
org/JetStream/RexBench/UniPoker/poker.js

Hiralal Agrawal and Joseph R Horgan. 1990. Dynamic program
slicing. In ACM SIGPlan Notices, Vol. 25. ACM, 246-256.

A. V. Aho, R. Sethi, and J. D. Ullman. 1985. Compilers — Prin-
ciples, Techniques, and Tools. Addison-Wesley, Reading, Mass.
B. Anckaert, M. Madou, and K. De Bosschere. 2006. A Model for
Self-Modifying Code. LNCS 4437, 232-248.

Saam Barati. 2019. Introducing the JetStream 2 Benchmark
Suite. https://webkit.org/blog/8685/introducing-the-jetstream-
2-benchmark-suite/

David Brumley, Cody Hartwig, Zhenkai Liang, James Newsome,
Dawn Song, and Heng Yin. 2008. Automatically identifying
trigger-based behavior in malware. In Botnet Detection. Springer,
65—-88.

Hongxu Cai, Zhong Shao, and Alexander Vaynberg. 2007. Certified
self-modifying code. In ACM SIGPLAN Notices, Vol. 42. ACM,
66-77.

Peter Cawley. 2015. Malicious LuaJIT bytecode.
corsix.org/content/malicious-luajit-bytecode
Oliver Chang. 2017. Ezxploiting a V8 OOB write.
halbecaf.com/2017/05/24 /exploiting-a-v8-oob-write/
Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea.
2011. S2E: A platform for in-vivo multi-path analysis of soft-
ware systems. In ACM SIGARCH Computer Architecture News,
Vol. 39. ACM, 265-278.

Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin Christopher, and
Mendel Rosenblum. 2004. Understanding data lifetime via whole
system simulation. In USENIX Security Symposium. 321-336.
M. Dalla Preda, R. Giacobazzi, and S. Debray. 2015. Unveil-
ing metamorphism by abstract interpretation of code properties.
Theoretical Computer Science 577 (April 2015), 74-97.

William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar,
Byung-Gon Chun, Landon P Cox, Jaeyeon Jung, Patrick Mc-
Daniel, and Anmol Sheth. 2014. TaintDroid: an information-flow
tracking system for realtime privacy monitoring on smartphones.
ACM TOCS 32, 2 (2014).

Tommaso Frassetto, David Gens, Christopher Liebchen, and
Ahmad-Reza Sadeghi. 2017. JITGuard: Hardening Just-in-time
Compilers with SGX. In Proc. 2017 ACM Conference on Com-
puter and Communications Security. 2405—2419.

Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David
Mandelin, Mohammad R. Haghighat, Blake Kaplan, Graydon
Hoare, Boris Zbarsky, Jason Orendorff, Jesse Ruderman, Edwin W.
Smith, Rick Reitmaier, Michael Bebenita, Mason Chang, and
Michael Franz. 2009. Trace-based Just-in-time Type Specialization
for Dynamic Languages. In Proc. PLDI 2009. 465-478.
Isaac Gouy. [n.d.]. nbody Javascript source code.
browserbench.org/JetStream/SunSpider/n-body.js

Loki Hardt. 2015. Issue 794825: Security: V8: Empty Bytecode-
Jump Table may lead to OOB read. https://bugs.chromium.org/
p/chromium/issues/detail?id=794825

Loki Hardt. 2017. Issue 794822: Security: V8: JIT: Type confu-
ston in GetSpecializationContext. https://bugs.chromium.org/
p/chromium/issues/detail?id=794822

Loki Hardt. 2018. Issue 807096: Security: Arrow function
scope fizing bug. https://bugs.chromium.org/p/chromium/issues/
detail?7id=807096

Christophe Hauser, Frederic Tronel, Ludovic Mé, and Colin J.
Fidge. 2013. Intrusion detection in distributed systems, an ap-
proach based on taint marking. In Proc. 2013 IEEE International
Conference on Communications (ICC). 1962-1967.

Andrew Henderson, Aravind Prakash, Lok Kwong Yan, Xunchao
Hu, Xujiewen Wang, Rundong Zhou, and Heng Yin. 2014. Make
it work, make it right, make it fast: building a platform-neutral

https://www.

https://

https://

13

[22]

(23]
[24]
[25]
[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

34]

(35]

[36]

[37]

38]

(39]

[40]

[41]

[42]

[43]

ASE '20, September 21-25, 2020, Virtual Event, Australia

whole-system dynamic binary analysis platform. In Proceedings
of the 2014 International Symposium on Software Testing and
Analysis. 248-258.

David Van Horn and Harry G. Mairson. 2007. Relating complexity
and precision in control flow analysis. In Proc. 12th ACM SIG-
PLAN International Conference on Functional Programming
(ICFP). 85-96.

Hiroshi Inoue, Hiroshige Hayashizaki, Peng Wu, and Toshio
Nakatani. 2012. Adaptive Multi-level Compilation in a Trace-
based Java JIT Compiler. In Proc OOPSLA 2012. 179-194.
Intel Corp. [n.d.]. Intel XED. https://intelxed.github.io.

Bob Ippolito. [n.d.]. str-unpack Javascript source code. https://
browserbench.org/JetStream/SunSpider/string-unpack-code.js
Paul Johnston. [n.d.]. crypto-shal Javascript source code. https:
/ /browserbench.org/JetStream/SunSpider/crypto-shal.js

Min Gyung Kang, Stephen McCamant, Pongsin Poosankam, and
Dawn Song. 2011. DTA++: Dynamic Taint Analysis with Tar-
geted Control-Flow Propagation. In NDSS.

Christoph Kerschbaumer, Eric Hennigan, Per Larsen, Stefan Brun-
thaler, and Michael Franz. 2013. Information flow tracking meets
just-in-time compilation. ACM Transactions on Architecture
and Code Optimization (TACO) 10, 4 (2013), 38.

David Korczynski and Heng Yin. 2017. Capturing malware prop-
agations with code injections and code-reuse attacks. In Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 1691-1708.

Bogdan Korel. 1997. Computation of dynamic program slices
for unstructured programs. IEEE Transactions on Software
Engineering 23, 1 (1997), 17-34.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. 2005. Pin: Building
Customized Program Analysis Tools with Dynamic Instrumen-
tation. In Proc. ACM Conference on Programming Language
Design and Implementation (PLDI). Chicago, IL, 190-200.
Florian Martin. 1999. Experimental comparison of call string
and functional approaches to interprocedural analysis. In Interna-
tional Conference on Compiler Construction. Springer, 63-75.
Magnus O Myreen. 2010. Verified just-in-time compiler on x86.
In ACM Sigplan Notices, Vol. 45. ACM, 107-118.

N. Nethercote and J. Seward. 2007. Valgrind: A Framework for
Heavyweight Dynamic Binary Instrumentation. In Proc. ACM
Conference on Programming Language Design and Implementa-
tion (PLDI). 89-100.

James Newsome and Dawn Song. 2005. Dynamic Taint Analysis
for Automatic Detection, Analysis, and Signature Generation of
Exploits on Commodity Software. In NDSS.

Harish Patil, Cristiano Pereira, Mack Stallcup, Gregory Lueck, and
James Cownie. 2010. PinPlay: a framework for deterministic replay
and reproducible analysis of parallel programs. In Proceedings of
the 8th annual IEEE/ACM international symposium on Code
generation and optimization. ACM, 2—-11.

Martijn Pieters and Samuel Sieb. [n.d.]. base64 Javascript source
code. https://browserbench.org/JetStream/SunSpider/base64.js
Jordan Rabet. 2017. Browser security beyond sand-
boxing. Microsoft Windows Defender Research.
https:cloudblogs.microsoft.com/microsoftsecure/
2017/10/18/browser-security-beyond-sandboxing.

Venkatesh Prasad Ranganath, Torben Amtoft, Anindya Banerjee,
John Hatcliff, and Matthew B Dwyer. 2007. A new foundation
for control dependence and slicing for modern program structures.
ACM Transactions on Programming Languages and Systems
(TOPLAS) 29, 5 (2007), 27.

Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise
interprocedural dataflow analysis via graph reachability. In Pro-
ceedings of the 22nd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. ACM, 49-61.

Tiark Rompf, Arvind K Sujeeth, Kevin J Brown, HyoukJoong
Lee, Hassan Chafi, and Kunle Olukotun. 2014. Surgical precision
JIT compilers. In Acm Sigplan Notices, Vol. 49. ACM, 41-52.
Florent Saudel and Jonathan Salwan. 2015. Triton: A Dynamic
Symbolic Execution Framework. In Symposium sur la sécurité
des technologies de l'information et des communications, SSTIC,
France, Rennes, June 3-5 2015. SSTIC, 31-54.

M. Sharir and A. Pnueli. 1981. Two Approaches to Interprocedural
Data Flow Analysis. In Program Flow Analysis: Theory and
Applications, S. S. Muchnick and N. D. Jones (Eds.). Prentice-
Hall, 189-233.

ASE '20, September 21-25, 2020, Virtual Event, Australia

[44]

45

46]

(47

48

(49

(50]

Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick
Stephens, Mario Polino, Audrey Dutcher, John Grosen, Siji Feng,
Christophe Hauser, Christopher Kruegel, and Giovanni Vigna.
2016. SoK: (State of) The Art of War: Offensive Techniques in
Binary Analysis. (2016).

Jim Smith and Ravi Nair. 2005. Virtual machines: versatile
platforms for systems and processes. Elsevier.

Manu Sridharan, Stephen J. Fink, and Rastislav Bodik. 2007.

Thin slicing. In Proc. ACM SIGPLAN 2007 Conference on
Programming Language Design and Implementation. 112—122.
Nick Stephens, John Grosen, Christopher Salls, Audrey Dutcher,
Ruoyu Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christopher
Kruegel, and Giovanni Vigna. 2016. Driller: Augmenting Fuzzing
Through Selective Symbolic Execution. (2016).

F. Tip. 1995. A survey of program slicing techniques. Journal of
Programming Languages 3 (1995), 121-189.

Svend Tofte. [n.d.]. date-format Javascript source code. https:
//browserbench.org/JetStream/SunSpider/date-format-tofte.js
Mark Weiser. 1984. Program slicing. IEEE Transactions on
Software Engineering 10, 4 (July 1984), 352—-357.

14

[51]

(52]

(53]

(54]

[55]

Jesse Bartels, John Stephens, Saumya Debray

Robert P. Wilson and Monica S. Lam. 1995. Efficient Context-
sensitive Pointer Analysis for C Programs. In Proc. SIGPLAN
1995 Conference on Programming Language Design and Imple-
mentation (PLDI ’95). 1-12.

Babak Yadegari and Saumya Debray. 2017. Control Dependencies
in Interpretive Systems. In International Conference on Runtime
Verification. Springer, 312—-329.

Heng Yin and Dawn Song. 2010. Temu: Binary code analysis via
whole-system layered annotative execution. EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-
2010-3 (2010).

Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and
Engin Kirda. 2007. Panorama: capturing system-wide information
flow for malware detection and analysis. In Proceedings of the 14th
ACM conference on Computer and communications security.
ACM, 116-127.

Xiangyu Zhang, Rajiv Gupta, and Youtao Zhang. 2004. Effi-
cient Forward Computation of Dynamic Slices Using Reduced
Ordered Binary Decision Diagrams. In Proc. 26th International
Conference on Software Engineering. 502—511.

	Abstract
	1 Introduction
	2 Background
	2.1 Interpreters and JIT Compilers
	2.2 Control Flow Graphs

	3 Reasoning about Dynamic Code
	3.1 Design Goals
	3.2 Dynamic Code Modification
	3.3 Concepts and Definitions
	3.4 DCFG Construction

	4 Space Optimization of DCFGs
	5 Applications
	5.1 Program Slicing for Bug Localization and Exploit Analysis in JIT Compilers
	5.2 Detecting Environmental Triggers in Malware

	6 Evaluation
	6.1 Overview
	6.2 Assessing the Capabilities of Existing Tools
	6.3 Analysis Efficacy on Real-World Examples
	6.4 Detecting Environmental Triggers
	6.5 Space Optimization: The Impact of Merging

	7 Summary and Discussion
	8 Related Work
	9 Conclusions
	Acknowledgments
	References

