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Abstract: Community forests have been established worldwide to sustainably manage forest ecosystem
services while maintaining the livelihoods of local residents. The Chitwan National Park in Nepal is a
world-renowned biodiversity hotspot, where community forests were consolidated in the park’s buffer
zone after 1993. These western Chitwan community forests stand as the frontiers of human–environment
interactions, nurturing endangered large mammal species while providing significant natural resources
for local residents. Nevertheless, no systematic forest cover assessment has been conducted for these
forests since their establishment. In this study, we examined the green vegetation dynamics of these
community forests for the years 1988–2018 using Landsat surface reflectance products. Combining an
automatic water extraction index, spectral mixture analysis and the normalized difference fraction
index (NDFI), we developed water masks and quantified the water-adjusted green vegetation fractions
and NDFI values in the forests. Results showed that all forests have been continuously greening
up since their establishment, and the average green vegetation cover of all forests increased from
approximately 30% in 1988 to above 70% in 2018. With possible contributions from the invasion of
exotic understory plant species, we credit community forestry programs for some of the green-up
signals. Monitoring of forest vegetation dynamics is critical for evaluating the effectiveness of
community forestry as well as developing sustainable forest management policies. Our research will
provide positive feedbacks to local community forest committees and users.
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1. Introduction

Community forestry, characterized by incorporating local communities and individuals into
forest management, aims at preserving forest ecosystem services while sustainably maintaining the
livelihood of local residents, especially in countries in the Global South [1]. Community forestry
has a wide spectrum of organizational structures, ranging from private smallholder forestry to
government-designated preservation lands with limited local involvement [1,2]. Community forests
have been extended globally in the past four decades and cover approximately 732 million hectares
of land, or 18.2% of the world’s forest area, playing significant roles in mitigating many serious
environmental and social problems, including climate change and poverty alleviation [1].

Monitoring forest cover is critical in community forest management, and remote sensing techniques
have been applied in assessing vegetation conditions and dynamics [3–5]. One concise and effective method
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is to calculate and examine vegetation indices, including the most widely used index, the normalized
difference vegetation index (NDVI), where higher values are associated with greater vegetation cover
and stature [6–9]. Despite being simple, these indices may sometimes produce controversial results
due to undesirable atmospheric conditions or mixture effects from background substrate [10–13].
An alternative approach is to apply spectral mixture analysis to the selected imagery and analyze the
resultant vegetation fractions and indices developed from these fractions [14–17]. By incorporating both
reference and image spectra in the endmember sets and quantifying the constituent fractions of major
land cover types (e.g., green vegetation, non-photosynthetic vegetation, and soil), spectral mixture
analysis can address mixed pixels, minimize atmospheric effects, and bypass inconsistences in
wavelengths in different sensor types, which are common issues in long-term research utilizing
moderate spatial resolution multispectral imagery (such as Landsat products) [14–17].

The western Chitwan community forests in Nepal were established in the Chitwan National
Park buffer zone following the Community Forestry Act implemented in 1993 [18]. These community
forests stand as frontiers of human–environment interactions between protected national park and
rural residential areas. They are vital to both the survival of endangered large mammals and the
livelihood of local residents [19]. There have been national and local levels of investigation on the
community forests in Chitwan and Nepal from both social and ecological perspectives [20–23], but no
study has systematically examined the historical green vegetation cover changes in the western
Chitwan community forests since their establishment. In this manuscript, we evaluated vegetation
cover dynamics in these community forests for the past three decades utilizing a temporal series of
Landsat imagery. Particularly, we were interested in the changes before and after the implementation
of the 1993 Community Forestry Act, and the potential effects of forest management on vegetation
cover dynamics.

2. Materials and Methods

2.1. Study Area

The Chitwan District is situated in the central region of Nepal, bordering India to the south.
It is known mostly for the Chitwan National Park, which is a World Heritage Site designated by
the United Nations Educational, Scientific and Cultural Organization [24]. It is also a significant
biodiversity hotspot, nurturing the Bengal Tiger (Panthera tigris tigris), the Great One-Horned Rhino
(Rhinoceros unicornis) and other endemic species [25]. Since the 1950s, deforestation and urbanization
have converted much of local forests in Chitwan to agricultural and other land-cover types. To protect
the remaining natural resources, mitigate anthropogenic pressures on conservation, and sustain the
livelihoods of local residents, community forests were established following the 1993 Community
Forestry Act [18,26]. These forests are buffer zones between dense human settlements and the protected
national park, and users are granted limited access to the forests to extract livelihood resources such as
firewood and fodder. In this research, we focus on the 21 community forests in the Chitwan National
Park buffer zone (Figure 1).

Most of the community forests in this study were established along the Narayani and Rapti Rivers,
where riverine mixed forests are the dominant vegetation types, supplemented by riparian grasslands.
The most common species in these riverine forests include Acacia catechu, Bombax cieba, Dalbergia sissoo,
Maesa chisia, Melia azedarach and Trewia nudiflor. The four inland forests (BAND, NABA, DASH and
BATU), however, are dominant by Sal trees (Shorea robusta). The study area has a tropical monsoon
climate, with most of the yearly precipitation falling between June and September. According to nearby
meteorological stations, the average daily temperature in the study area ranges from 36 ◦C in the
summer to 18 ◦C in January. Based on their vegetation types and geographical locations, we divided
these 21 forests into five groups (Table 1).
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Figure 1. False-color Landsat 8 three-band composite of the study area. White polygons depict the 

community forest boundaries, with forest codes illustrated. Image acquisition date: Oct. 27, 2014. Red: 

Band 6 (1560–1660 nm); green: Band 5 (845–885 nm); blue: Band 4 (630–680 nm). 
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Figure 1. False-color Landsat 8 three-band composite of the study area. White polygons depict the
community forest boundaries, with forest codes illustrated. Image acquisition date: Oct. 27, 2014. Red:
Band 6 (1560–1660 nm); green: Band 5 (845–885 nm); blue: Band 4 (630–680 nm).

Table 1. Community forests in the study area.

Group Forest Name Code Forest Type Area (km2)

East
Sal

Bandevi BAND
Sal

Forest

1.62
Nabajoty NABA 0.42

Dashinkali DASH 1.05
Batuliphokhari BATU 4.57

South
Central
Rapti

Belshar BELS

Riverine
Mixed

6.40
Birendranagar BIRE 0.40

Ghailaghari GHAI 1.82
Belhatta BELH 1.21
Dovan DOVA 0.23

South
West
Rapti

Sayukta Rapti Doon SAYU

Riverine
Mixed

1.36
Betarihariyali BETA 0.87

Malika MALI 0.11
Radhakrishna RADH 0.82

Sadabahar SADA 2.10

Far
West

Rapptiniyantran RAPP Riverine
Mixed

2.06
Narayani Niyantran NARA 5.01

North
Narayani

Diyalo DIYA

Riverine
Mixed

1.66
Majhuwa MAJH 1.86

Siddhi Ganesh SIDD 1.35
Seti Debi SETI 1.51

Ganeswor GANE 2.27

2.2. Data

Due to the timespan of the research objective (dating back to the 1980s), we utilized Landsat
imagery (Path/Row: 142/41) and searched in USGS EarthExplorer (https://earthexplorer.usgs.gov/)
for potential Landsat surface reflectance products (level 2; TM, ETM+ and OLI). Searching criteria

https://earthexplorer.usgs.gov/
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included that 1) image acquisition dates are within a two-month window after monsoon (approximately
between late September and mid-November) to account for peak-biomass conditions and 2) images are
cloud-free above the study area. If multiple images met the above two criteria, the earliest available
was selected. Consequently, we were able to identify at least one image for most of the years (Table 2).

Table 2. Landsat imagery and their calendar and Julian dates.

Year Date Julian Sensor Year Date Julian Sensor

1988 10/19 293 TM 2005 11/19 323 TM
1989 11/07 311 TM 2006 10/05 278 TM
1991 11/13 317 TM 2008 10/26 300 TM
1992 11/15 320 TM 2009 10/29 302 TM
1993 10/17 290 TM 2011 10/19 292 TM
1994 10/20 293 TM 2013 11/19 323 OLI
1995 11/08 312 TM 2014 10/27 300 OLI
1996 11/10 315 TM 2015 10/14 287 OLI
2000 09/26 270 ETM+ 2016 11/01 306 OLI
2001 10/31 304 ETM+ 2017 10/19 292 OLI
2003 11/14 318 TM 2018 10/22 295 OLI
2004 10/15 289 TM

2.3. Methods

One of the challenges in quantifying vegetation cover in our study area was the water body
dynamics in the community forests. The Narayani and Rapti Rivers flew sinuously across most riverine
forests (Figure 1). Further, annual monsoon and the consequent rainfall could submerge large portions
of the riverine forests, especially the riparian grasslands, altering water body boundaries frequently.
Before examining vegetation cover, we first examined the water fraction dynamics and developed
water masks for all forests. We then applied spectral mixture analysis to selected Landsat imagery
and analyzed the green vegetation fractions of green vegetation (GV), non-photosynthetic vegetation
and soil. We also calculated the normalized difference fraction index (NDFI; [16]) to evaluate forest
canopy gaps. Both GV fractions and NDFI were adjusted to minimize the effects of water bodies at the
forest level. We compared the GV fractions and NDFI values from different time periods to examine
the green-up signals. Figure 2 illustrates the flow of image processing procedures, whereas detailed
descriptions are presented in the following paragraphs.
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2.3.1. Water Mask

To develop water masks, we utilized the automatic water extraction index (AWEInsh; [27]) to map
surface water in the study area:

AWEInsh = 4(Green − SWIR1) – (0.25NIR + 2.75SWIR2), (1)

where Green, SWIR (short-wave infrared) 1, NIR (near infrared) and SWIR2 are the reflectance values
of corresponding bands (Table 3). Based on visual interpretation, an AWEInsh threshold of 0.1 was used
to generate water masks and dichotomize all images into water and non-water regions, where pixels
with AWEInsh value higher than 0.1 were assigned to water.

Table 3. Landsat bands used in AWEInsh.

Bands TM/ETM+ OLI

Green Band 2 (520–600 nm) Band 3 (525–600 nm)
NIR Band 4 (760–900 nm) Band 5 (845–885 nm)

SWIR1 Band 5 (1550–1750 nm) Band 6 (1560–1660 nm)
SWIR2 Band 7 (2080–2350 nm) Band 7 (2100–2300 nm)

2.3.2. Spectral Mixture Analysis

Spectral mixture analysis (SMA) is a classic method quantifying spectrally mixed pixels, especially
for moderate and coarse spatial resolution imagery. SMA assumes that an image pixel’s spectral
reflectance can be modeled as the weighted addition of the reflectance of pure materials, or endmembers,
within that pixel [14,15]. Developed upon simple SMA, multiple endmember SMA (MESMA) allows
the type and number of endmembers to vary on a per-pixel basis, accounting for potential endmember
varieties [15]. In this study, we applied MESMA to the selected Landsat imagery.

For most vegetated landscapes, the image pixels can usually be modeled as a green vegetation
(GV), non-photosynthetic vegetation (NPV), soil and shade mixture. To apply MESMA, we utilized
and adopted the methodology and MESMA fractions generated in Dai et al. [28]. We first developed
and optimized a spectral library from both reference and image spectra sources. Reference spectra
were collected from both online spectral libraries and field measurements in the study area, and they
were convolved to relative sensor wavelengths (e.g., TM, ETM, and OLI). Image spectra were extracted
from the Landsat imagery to be analyzed. For each sensor type, we developed a spectral library and
optimized endmember sets. We then used the optimized endmember sets to unmix selected Landsat
images. We obtained fine spatial resolution imagery (reference image) to perform fraction validation for
MESMA results. We selected random points (validation pixels; N = 100) from overlapped area between
the study area and the reference image and plotted MESMA fractions against reference fractions. For all
bright endmember types (GV, NPV and soil), the R2 values were above 0.9, which indicated good
MESMA results. We refer to Dai et al. [28] for more technical details.

MESMA generated fractional layers for each bright endmember (GV, NPV and soil) as well as
shade. At the pixel level, we shade normalized the green vegetation fractions:

GVshade = GV / (1 − shade), (2)

where GV and shade are the fractions generated in MESMA. Next, the average green vegetation
fraction of each community forest, GVzonal, was processed through zonal statistics (mean). We applied
the water mask generated in Section 2.3.1 and only non-water pixels were included in the calculation.

2.3.3. Normalized Difference Fraction Index

The normalized difference fraction index (NDFI; [16]) accentuates the degradation signals for it
combines multiple impacts of forest degradation, including an increase in NPV and increase in bare
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soil. In addition to MESMA generated green vegetation fractions, we also calculated NDFI of the
forests to examine and sharpen the signals of canopy damage and gaps:

NDFI = (GVshade – (NPV + soil)) / (GVshade + (NPV + soil)), (3)

where GVshade is the shade normalized GV fraction calculated in Equation (2); NPV and soil are the
fractions generated in MESMA. In the end, forest-level average NDFI values, NDFIzonal, were calculated
through zonal statistics (mean) analyzes. Identical to the processing in Section 2.3.2, we applied the
water masks and only non-water pixels were included in the calculation.

2.3.4. Forest Dynamics

Although we selected Landsat imagery from approximately similar times of the year to account
for peak-biomass vegetation conditions, the Julian dates of image acquisitions still differ considerably
(Table 2), which can lead to fluctuations in vegetation dynamics. Instead of conducting a yearly-based
time series analysis and because of some limited imagery availability, we divided the 1988–2018
timespan into four periods to analyze forest dynamics (Table 4). Period I accounted for forest conditions
before the establishment of community forests in 1993, and Periods II, III and IV were related to
post-establishment conditions. For each period, Landsat images from multiple years were selected so
that the average Julian dates were similar among different periods. To identify potential significant
changes between any two periods, forest-level average GVshade and NDFI values (from Sections 2.3.2
and 2.3.3) of each period were compared through one-tailed two sample unequal variance t-tests
(e.g., Periods I vs. II, II vs. III, III vs. IV, I vs. III, II vs. IV and I vs. IV), where all values in the same
period were treated as a sample. Comparisons between Period I and all later periods (I vs. II–IV) were
also conducted to evaluate the potential effects of the 1993 Community Forestry Act on forest dynamics.

Table 4. Selected Landsat imagery for different periods.

Periods Years Selected

I (Pre 1993) 1988, 1989, 1991, 1992, 1993
II (1994–1999) 1994, 1995, 1996

III (2000s) 2003, 2004, 2005, 2008, 2009
IV (2010s) 2013, 2014, 2016, 2018

3. Results

3.1. MESMA Results

Land cover in the forests changed dramatically in the past three decades, with green vegetation
area increased substantially in most of the forests (Figure 3). Here we select one year’s image from
each period with close to identical Julian dates and present their MESMA results. Red pixels indicate
NPV and were usually related to forest degradation. The quantitative analyses of the green vegetation
fractions and the significance of change will be discussed in the following paragraphs.

The average green vegetation cover across all forests increased from approximately 30% in 1988
to above 70% in 2018 (Figure 4). The four East Sal forests had minimal disturbances from flooding
or river channel changes and had the highest green vegetation fractions among all forests (Figure 4
and Table 5). Especially for recent years, the green vegetation fractions were all approximately or
above 0.95. MALI in the South West Rapti group and GANE in the North Narayani group also had
relatively high average green vegetation fractions for the past three decades (0.74 and 0.68, respectively).
Highly disturbed by the river flows, SAYU from the South West Rapti group and NARA from the
Far West group had the lowest average green vegetation fractions (0.20 and 0.21, respectively) among
all forests.
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As predicted in Section 2.3.4, we detected fluctuations in the curves of green vegetation fractions,
potentially due to the prominent differences in imagery Julian dates. Despite occasional spikes and
valleys largely, the general trends of the green vegetation fraction curves were ascending.
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Table 5. Average green vegetation fraction of each forest from 1988 to 2018.

Group Forest GV

East
Sal

BAND 0.79
NABA 0.70
DASH 0.65
BATU 0.72

South
Central
Rapti

BELS 0.46
BIRE 0.33
GHAI 0.56
BELH 0.29
DOVA 0.43

South
West
Rapti

SAYU 0.20
BETA 0.45
MALI 0.74
RADH 0.57
SADA 0.30

Far
West

RAPP 0.34
NARA 0.21

North
Narayani

DIYA 0.39
MAJH 0.57
SIDD 0.61
SETI 0.60

GANE 0.68

Comparisons among different periods indicate the trends of change in green vegetation fractions
in the forests (Table 6). Only one significant change (BIRE between Periods I and II) showed a decrease
in green vegetation fractions, whereas all other changes showed increases. Five forests (BELH, DOVA,
MALI, RADH and GANE) rapidly greened up after the establishment of the community forests in
the 1990s (Period I vs. Period II). Comparing Period I (before the 1993 Community Forestry Act) with
Period IV (2010s), all forests showed significant increases in green vegetation fractions. Combining all
values after 1993 into a single dataset (Period II~IV) and comparing them with Period I, the null
hypothesis (later period has no higher values than the previous period) could not be rejected for only
two forests (BIRE and SIDD). The green-up signals were highly correlated with the establishment of
the community forests.

Table 6. Comparison of green vegetation fractions among different periods. Only significant p values
(<5 × 10−2) are listed. Italic numbers (BIRE, I vs. II) indicate decreases. All others indicate increases.

Group (4) Forest I vs. II II vs. III III vs. IV I vs. III II vs. IV I vs. IV I vs. II~IV

East
Sal

BAND 3.77 × 10−2 4.22 × 10−3 1.07 × 10−3 3.19 × 10−3

NABA 1.77 × 10−2 3.17 × 10−3 2.20 × 10−2

DASH 4.19 × 10−2 4.41 × 10−3 2.26 × 10−3 2.80 × 10−2

BATU 3.08 × 10−2 1.07 × 10−3 6.47 × 10−5 4.98 × 10−4

South
Central
Rapti

BELS 5.50 × 10−3 4.70 × 10−2 3.89 × 10−6 3.86 × 10−6 1.83 × 10−3

BIRE 4.83 × 10−2 5.14 × 10−3 7.51 × 10−3 6.75 × 10−3

GHAI 4.02 × 10−2 4.18 × 10−4 4.79 × 10−5 6.01 × 10−3

BELH 7.12 × 10−3 1.05 × 10−2 1.22 × 10−5 5.17 × 10−6 1.19 × 10−3

DOVA 8.18 × 10−5 1.35 × 10−2 6.28 × 10−3 7.45 × 10−6 3.30 × 10−7 1.11 × 10−5

South
West
Rapti

SAYU 1.18 × 10−3 7.32 × 10−4 7.58 × 10−7 4.65 × 10−3

BETA 1.70 × 10−2 4.37 × 10−2 3.99 × 10−3 2.92 × 10−3 5.64 × 10−7 6.65 × 10−5

MALI 3.91 × 10−2 1.18 × 10−2 1.73 × 10−3 1.46 × 10−3

RADH 1.97 × 10−2 1.38 × 10−2 4.48 × 10−2 7.38 × 10−3 1.24 × 10−3 2.86 × 10−6 2.86 × 10−6

SADA 4.45 × 10−2 5.09 × 10−3 3.84 × 10−2 3.77 × 10−8 8.05 × 10−10 1.63 × 10−3

Far
West

RAPP 1.69 × 10−2 2.77 × 10−2 1.53 × 10−2 9.23 × 10−7 8.05 × 10−7 6.22 × 10−4

NARA 4.42 × 10−2 6.99 × 10−4 4.03 × 10−4 7.41 × 10−3

North
Narayani

DIYA 1.24 × 10−2 1.35 × 10−2 2.37 × 10−5 8.10 × 10−6 5.44 × 10−4

MAJH 1.91 × 10−2 1.09 × 10−4 1.16 × 10−2

SIDD 2.91 × 10−2

SETI 3.78 × 10−2 2.11 × 10−4 1.73 × 10−4 1.72 × 10−2

GANE 3.70 × 10−2 2.53 × 10−4 1.60 × 10−4 7.50 × 10−3
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3.2. Normalized Difference Fraction Index

In the community forests, the general patterns of NDFI were similar to those of green vegetation
fractions (Figure 5 and Table 7). The four East Sal forests, plus MALI and GANE, had relatively high
average NDFI values (0.43~0.67). The NDFI values of NARA and SAYU (-0.54 and -0.43, respectively)
were lower than other forests. Similar to green vegetation fractions, spikes and valleys in NDFI curves
may be introduced by imagery capture dates. Nevertheless, the general trends of NDFI curves are
generally ascending.Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 16 
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Table 7. Average NDFI of each forest from 1988 to 2018.

Group Forest NDFI

East
Sal

BAND 0.67
NABA 0.52
DASH 0.44
BATU 0.56

South
Central
Rapti

BELS 0.11
BIRE −0.09
GHAI 0.32
BELH −0.21
DOVA 0.06

South
West
Rapti

SAYU −0.43
BETA 0.05
MALI 0.59
RADH 0.27
SADA −0.21

Far
West

RAPP −0.12
NARA −0.54

North
Narayani

DIYA −0.13
MAJH 0.19
SIDD 0.29
SETI 0.25

GANE 0.43
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The change patterns of NDFI for all community forests were similar to those of green vegetation
fractions (Table 8), only no significant decreases were detected. Three forests (BELH, DOVA and
RADH) showed rapid greening up after the establishment of community forests (Period I vs. Period II).
All comparisons between Periods I and IV indicated significant increases. Except for SIDD, all other
comparisons between Period I and Periods II~IV showed prominent green-up signals.

Table 8. Comparison of NDFI among different periods. Only significant p values (<5 × 10−2) are shown.
All values indicate increase in NDFI.

Group Forest I vs. II II vs. III III vs. IV I vs. III II vs. IV I vs. IV I vs. II~IV

East
Sal

BAND 4.78 × 10−4 1.16 × 10−3 3.50 × 10−3 1.22 × 10−3 1.54 × 10−3

NABA 1.18 × 10−2 5.15 × 10−3 1.66 × 10−2 3.60 × 10−3 1.17 × 10−2

DASH 1.20 × 10−3 4.81 × 10−2 3.29 × 10−3 4.63 × 10−3 2.61 × 10−3 1.10 × 10−2

BATU 3.48 × 10−5 6.43 × 10−6 1.38 × 10−3 6.64 × 10−5 2.13 × 10−5

South
Central
Rapti

BELS 7.75 × 10−3 5.53 × 10−3 5.07 × 10−3 9.64 × 10−6 1.34 × 10−6 5.44 × 10−4

BIRE 6.86 × 10−3 2.14 × 10−6 9.27 × 10−8 1.46 × 10−2

GHAI 2.00 × 10−2 2.98 × 10−2 9.71 × 10−3 4.22 × 10−4 2.39 × 10−5 4.50 × 10−4

BELH 9.17 × 10−3 7.68 × 10−3 1.11 × 10−3 8.87 × 10−4 1.70 × 10−3

DOVA 1.22 × 10−4 5.23 × 10−3 5.07 × 10−3 4.65 × 10−4 8.29 × 10−7 7.73 × 10−9 1.11 × 10−5

South
West
Rapti

SAYU 2.12 × 10−4 4.22 × 10−4 3.26 × 10−4 6.17 × 10−3

BETA 3.21 × 10−3 2.30 × 10−2 9.69 × 10−4 1.77 × 10−3 3.66 × 10−6 4.56 × 10−5

MALI 2.17 × 10−3 2.12 × 10−3 1.73 × 10−3

RADH 2.50 × 10−2 1.56 × 10−5 3.28 × 10−6 1.17 × 10−3 2.83 × 10−6 8.13 × 10−6

SADA 1.78 × 10−2 2.46 × 10−3 1.67 × 10−2 1.89 × 10−6 1.82 × 10−7 1.38 × 10−3

Far
West

RAPP 6.39 × 10−3 2.84 × 10−2 6.34 × 10−3 3.00 × 10−7 3.16 × 10−7 3.78 × 10−4

NARA 3.18 × 10−2 4.25 × 10−2 3.25 × 10−4 2.29 × 10−4 3.86 × 10−3

North
Narayani

DIYA 3.20 × 10−3 3.77 × 10−3 1.64 × 10−5 1.31 × 10−6 2.69 × 10−4

MAJH 2.10 × 10−2 1.65 × 10−2 1.44 × 10−2 8.58 × 10−5 3.50 × 10−3

SIDD 1.57 × 10−2

SETI 2.01 × 10−2 3.98 × 10−4 5.97 × 10−5 5.01 × 10−3

GANE 2.96 × 10−2 2.22 × 10−2 1.40 × 10−3 1.20 × 10−4 4.96 × 10−4

4. Discussion

Situated in the frontier of human–environment interactions, the western Chitwan community
forests provide desirable opportunities to study how human and endangered large carnivores and
ungulates can coexist at fine spatial scales [29]. The vegetation conditions of these forests are vital to both
the survival of the endangered species and the livelihoods of local residents. To date, however, there have
been no systematic assessments of these forests for the past three decades. In our research, we adopted
two indicators (green vegetation fraction from MESMA and NDFI) to evaluate the vegetation dynamics
in these forests. The average green vegetation cover of these forests has been increasing since their
establishment, from approximately 30% in 1988 to above 70% in 2018. This green-up trend was also
discovered for community forests both locally in Nepal [30,31], and in other regions of the world [32,33].

Although the green vegetation fractions and NDFI values have been increasing during the 30 years,
and the values for post-1993 imagery were significantly higher than that of the pre-1993 imagery, factors
other than the community forest management may also have affected the green-up signals in the study
area. Since the late 1990s, a notorious exotic plant, Mikania micrantha, nicknamed “mile-a-minute-vine”,
has been invading the Chitwan National Park and its buffer zone [28]. The invasion was most prominent
in the riparian habitats, affecting all riverine community forests in this study [28]. As an understory
creeping vine, M. micrantha tends to fill the gaps between forest canopies and increase green vegetation
fractions in the forest image pixels. In other words, in addition to reforestation, the invasion may also
have contributed to the green-up signals we quantified in this research.

It should be noted that it is not the ultimate objective of this research to articulate the relative
contributions to the green-up signals. Nevertheless, from the most conservative perspective, we can at
least be sure that in the East Sal forests where invasion has been minimal [28], community forestry
management and reforestation has been the prime cause for green up. Further, in the five forests
(BELH, DOVA, MALI, RADH and GANE) where green vegetation fractions significantly increased in
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the years right after 1993, the contribution of reforestation appears to be the main reason for green up,
since the invasion of M. micrantha was minimal back then [19].

5. Conclusions

We evaluated the green vegetation dynamics in western Chitwan community forests, Nepal from
1988 to 2018. With the potential influences from water minimized, the comparison of forest-level green
vegetation fractions from spectral mixture analysis and a forest degradation index (NDFI), based on
two-sample unequal variance t-tests showed that the forests have been continually greened up during
those thirty years. Although the invasion of an understory vine may have partially contributed to
the changes in some forests in recent years, the establishment of community forests and the resultant
forest management should be credited for some of the green-up signals, especially in the inland Sal
forests. Future work may be conducted to quantify and separate the relative contributions of exotic
plant invasion and community forest management practices, especially in the riverine forests where
invasion has been most prominent.
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