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Abstract—Convolutional Neural Networks are compute-
intensive learning models that have demonstrated ability and
effectiveness in solving complex learning problems. However,
developing a high-performance FPGA accelerator for CNN often
demands high programming skills, hardware verification, precise
distribution localization, and long development cycles. Besides,
CNN depth increases by reuse and replication of multiple layers.
This paper proposes a programming flow for CNN on FPGA
to generate high-performance accelerators by assembling CNN
pre-implemented components as a puzzle based on the graph
topology. Using pre-implemented components allows us to use the
minimum of resources necessary, predict the performance, and
gain in productivity since there is no need to synthesize any HDL
code. Furthermore, components can be reused for a different
range of applications. Through prototyping, we demonstrated
the viability and relevance of our approach. Experiments show a
productivity improvement of up to 69 % compared to a traditional
FPGA implementation while achieving over 1.75x higher Fmax
with lower resources and power consumption.

Index Terms—FPGA, CNN, DFG, RapidWright,
implemented flow
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I. INTRODUCTION

The perpetual growth of integration capacity in FPGA
technology has led to the advent of large devices capable of
hosting millions of logic components and thousands of hard
IP blocks. For instance, Xilinx recently released the Alveo
U250 Data Center Accelerator Card powered by the Ultra-
Scale+ architecture for data center and artificial intelligence
acceleration. The U250 gathers four super logic regions each
containing approximately 340000 logic elements, 20MB of
BRAM, 90MB of UltraRAM, and 3000 DSP slices [1]. The
Intel Arria 10 in Microsoft Cloud features about 1.1 million
logic elements, 3036 DSP logics, and 67MB of BRAM [2]
[3]. The innovation in FPGA hardware architecture provides
the basis for unprecedented flexibility and acceleration in
high-performance computing and embedded system appli-
cations. It also requires CAD tools capable of extracting
domain/application-specific features to better leverage the re-
sources available in recent FPGAs. As FPGA architectures’
complexity increases, there is a rising need for improved
productivity and performance in several computing domains
such as image processing, financial analytics, edge computing,
and deep learning. However, vendor tools are mostly general-
purpose. They attempt to provide an acceptable quality of
result (QoR) on a broad set of applications, which may not

exploit application/domain-specific characteristics to deliver
higher QoR.

This paper presents a divide-and-conquer design flow that
enables application/domain-specific optimization on the design
of convolutional neural network (CNN) architectures on Xilinx
FPGAs. The proposed approach follows three fundamental
steps; Step 1: Break the design down into components, Step 2:
Implement these separate components, and Step 3: Efficiently
generate the final design by assembling pre-built components
with minimal QoR lost. Recent research has even demon-
strated that such approaches may provide better QoR than
that of the traditional Vivado flow in some instances [4]—
[6]. By pre-implementing specific components of a design,
higher performance can be achieved locally and maintained
to a certain extent when assembling the final circuit. Two
main observations support this approach [4]: (1) vendor tools
such as Vivado tend to deliver high-performance results on
small modules in a design. (2) Computing applications such
as machine learning designs increase in size by replicating
modules. We leverage Vivado to produce highly optimized
implementations for the principal modules of a design.

As motivation example, Figure 1 summarizes a few results
from the work of Mandebi et al. [5]. It represents an architec-
ture in which a block of 3 x 3 processing elements implement-
ing four different applications have both been pre-implemented
and built with Vivado and RapidWright. Compilation time and
maximum frequency achieved by each design flow are then
recorded. It shows that the pre-implemented design flow could
achieve up to 37% gain in productivity and 33% higher F}, 4
compared to compiling the same designs with Vivado. While
little details are provided on the choice of the granularity
of the pre-built components, the work proved that their pre-
implementing modules could significantly improve the QoR
when exploiting application/domain-specific features.

In the context of this work, we aim to explore the perfor-
mance that can be achieved when utilizing RapidWright in the
design flow of an FPGA accelerator for a CNN. Specifically,
our contribution includes:

« Reviewing the pre-implemented flow: we will discuss
key steps to follow to leverage RapidWright efficiently.

o Describing CNNs architecture: we will explore the
features of state-of-art CNNs that are suitable for im-
provement.
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Fig. 1: Motivation example. (a) Compilation time comparison.
(b) Fipaz comparison. The results from previous research show
that the pre-implemented design flow with RapidWright can
lead to improved productivity and QoR compared to the tra-
ditional design flow with Vivado [5] (MM=Matrix Multiplica-
tion; OP=Outer Product; RC=Robert Cross; SM=Smoothing).

e Proposing a design flow: we will explore different
strategies that could improve the final QoR compared to
the traditional design flow with Vivado.

As opposed to vendor tools that are closed source, we
believe the full access to RapidWright internal features and
design resources makes it suitable for design flow exploration
and the implementation of targeted FPGA solutions.

II. PRE-IMPLEMENTED FLOW WITH RAPIDWRIGHT

Out of Context Flow [7]: this design mode ensures that
the placement of I/O buffers is disabled to facilitate the
design of internal components of an architecture. It has sev-
eral advantages: (1) it allows us to implement and analyze
(resource analysis, timing analysis, power analysis, etc.) a
module independently of the rest of the design. (2) it enables
reusing and preserving the characteristics of placed and routed
modules within a top-level design.

Pre-implementing Components: vendor CAD tools such
as Vivado use heuristics for physical implementation (place-
ment and routing). They consider the number of cells in
a design, their connections, and the target FPGA device’s
physical architecture to generate a circuit according to speci-
fied constraints. Consequently, vendor tools generally achieve
better QoR on smaller designs as the resource allocation
problem addressed in the physical implementation is well-
known to be NP-hard [8]. Focusing the optimization on smaller
modules may therefore lead to overall QoR improvement in
a design. Furthermore, several literature works have shown
that pre-implementing components or macros can significantly
decrease the overall FPGA compilation time with performance
benefits [5], [9]. Therefore, the pre-implemented flow aims to
generate high-performance implementations by reusing multi-
ple contexts and chip locations, high-quality and customized
pre-built circuits.

RapidWright [4]: is an open-source Java framework from
Xilinx Research Labs that provides a bridge to Vivado back-
end at different compilation stages (synthesis, optimization,
placement, routing, etc.) using design checkpoint (DCP) files
as illustrated in Figure 2. Once a DCP is loaded within
RapidWright, the logical/physical netlist data structures and
functions provided in the RapidWright APIs enable custom

netlist manipulations such as cell and net instantiation, edition,
and deletion. The hundreds of APIs in RapidWright make it
possible to directly access/edit logic and routing resources and
run some operations such as timing analysis, placement, and
routing.
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Fig. 2: Vivado and RapidWright interaction

III. OVERVIEW ON CNN FPGA ARCHITECTURES

CNN inference refers to the forward propagation of M
input images through L layers. In recent years. Multiple
CNN architectures on FPGA have been proposed. We classify
these architectures into two main categories that are: Single
Instruction, Multiple Data (SIMD) accelerators and streaming-
based accelerators. This section highlights the potential ben-
efits of designing FPGA-based CNN architectures with the
pre-implemented flow of RapidWright and the challenges
that may arise. We do not discuss any architecture imple-
mentation detail. The general computational flow in SIMD
CNN accelerators [10]-[12] is to fetch feature maps and
weights from external memory to on-chip buffers. These
data are then streamed into computing engines composed
of several processing elements (PE). At the end of the PE
computations, the results are streamed back to on-chip buffers
and, if necessary, to the external memory to be processed
in subsequent CNN layers. Each PE is configurable and has
its own computing resources, mainly using DSP blocks, and
data caching features relying on on-chip registers. Computing
engines are usually composed of hundreds of identical PEs
that are replicated across the chip for accelerating specific
layers of the CNN. This repetition of components within CNN
architectures makes them suitable candidates for RapidWright
implementation. The CNN sub-modules can be optimized for
performance in standalone, and the achieved performance can
be preserved when replicating and relocating the modules
across the FPGA. Accelerators with the streaming architecture
always tailor the hardware regarding the target network [13],
[14]. The topology of such CNN accelerators is transformed
into the specified layer-by-layer execution schedule, following
the structure of the DAG [15]. Shen et al. [16] note that FPGA-
based acceleration used CLE ! to process consecutive CNN
layers one at a time. The intermediate results between layers
can be stored in registers, memory or directly pipelined into the
next layer. However, since the dimension and filter parameters

!Convolutional Layer Engine
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Fig. 3: General overview of the proposed design flow.

from consecutive layers might be different, using a fixed CLE
for all layers leads to poor performance and poor resource
utilization. For an L-layer CNN, they propose using ) CLEs,
where () < L, to maximize BRAM availability for each CLEs.
With () < L, some layers are replicated in the design, making
this architecture suitable for the pre-implemented flow. In the
same line of work, a streamed accelerator [13], [17] consists
of sequential execution of all the layers of a given CNN.
This type of architecture’s main advantage is to minimize the
latency caused by communication with off-chip memory and,
thereby, maximize on-chip memory communication, ensuring
high throughput and avoiding any latency.

IV. PROPOSED DESIGN FLOW

In this section, we present the design exploration steps
implemented to optimize CNN components to fully exploit the
benefit of our approach. The overview of the pre-implemented
flow is presented in Figure 3. The flow has two major steps
that are: function optimization and architecture optimization.
The function optimization essentially consists of performing
a design space exploration of the performances that can be
achieved on sub-functions. It takes into consideration some
design constraints such as device, timing, floor planning, and
power. If the design space exploration results in satisfiable
performance, the produced netlists are saved into a database
in the form of DCPs. This step is semi-manual as the designer
must choose and pre-compile the sub-functions in a design
using vendor tools. It is performed exactly once, and the
saved netlists may serve in multiple designs. The architecture
optimization is a fully automated process that aims to combine
the pre-built components (the netlists saved in the function
optimization phase) into a CNN architecture as defined by the
users.

A. Function Optimization

This section describes the major steps involved in the design
of optimized sub-functions.

1) Granularity Exploration: The design space exploration
only supports CNNs. A typical CNN is usually composed of:
« Convolution: The convolution layer convolves the input
image with a set of learnable filters, each producing one
feature map in the output image.

« Pooling: Max-pooling splits the input image into a set
of non-overlapping rectangles and, for each of these sub-
regions, outputs the maximum value.

« Rectified-Linear: Given an input value x, the ReL.U is
a simple calculation that returns the value provided as
input directly z if z > 0 and O otherwise. Several ReLU
functions exist and might be employed.

o Fully Connected (FC): Each activation of a FC layer is
the result of a scalar product composed of input values,
weights, and a bias.

By porting these four layers onto the FPGA, the vast
majority of forward processing networks can be implemented.
The modules’ implementations should revolve around this
minimum of granularity. Automated decomposition of user
logic into leaf components is complementary future work.

2) Performance Exploration: We start by manually building
the CNN components Out of Context (OOC). Figure 4 presents
the main circuits of the proposed flow. The OOC flow ensures
that I/O buffers and global clocks resources are not inserted
into the netlists as the pre-built components are still inserted
within the top-level module of the design. While efficiently
designing components OOC requires hardware expertise, it is
done exactly once, and the pre-built netlists may be reused
in several other applications. To achieve high QoR in the
performance exploration phase, a few design considerations
are necessary:

« Strategic floorplanning: utilizing pblock constraints al-
lows carefully selecting the FPGA resources that each
design component will use. It helps to improve the
module-level performance and area. Hence, the designer
can only use necessary resources instead of letting the
CAD tool utilize as many chip tiles as it wants. Given
that Xilinx architectures generally replicate the resource
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Fig. 4: Pre-implemented Design Components

structures (CLBs, DSPs, BRAM, URAM, etc.) over an
entire column of clock regions, the smaller the area of
a pblock is, the more RapidWright will be capable of
relocating the design components across the chip, which
increases the reusability. The automated definition of
pblock range is out of the scope of this work.

o Strategic port planning: the placement of the ports when

pre-implementing modules are one of the most important
steps to ensure high performance and productivity im-
provement. Failure to plan the location of the ports of the
pre-implemented modules may result in long compilation
time, poor performance, and high congestion in the design
in which they are inserted.
To preserve the QoR of the sub-modules in the final de-
sign, we should foresee the length of the nets connecting
the cells at the interface of the sub-modules. However,
the modules are pre-implemented independently. Hence,
the CAD tool is not aware of the context in which the
modules will be inserted into a design and connected to
other components. A pre-implemented component may
then achieve a high maximum frequency in standalone
but perform poorly when inserted into a design because of
very long inter-module nets. We therefore pre-implement
the modules with partition pin constraints (PartPins) [7]
to specify the interconnect tiles that will route the nets
connecting to the other modules of a design.

¢ Clock routing: to accurately run the timing analysis on
the OOC modules, source clock buffers must be specified
using the constraint HD.CLK_SRC. Though the buffers
are not inserted in the OOC modules, clock signals are
partially routed to the interconnect tiles, and the timing
analysis tool can then run timing estimations.

o Logic locking: the primary goal of the performance ex-
ploration is to achieve high QoR locally. Once a module
attains a desirable performance (F, .., area, power, etc),
we lock the placement and routing to prevent Vivado from
altering the design later and preserve design performance.
The other advantage of locking the design is that the
final inter-module routing with Vivado will only consider
non-routed nets. This decreases compilation times and
improves productivity.

¢ Checkpoint file generation: pre-implemented modules
are stored in the form of DCPs. The top-level design will
then implement synthesis black-boxes that the optimized
pre-built modules will fill.

The implementation here is done using vendor tools and
considers several constraints such as timing and floor planning.
The p-block partitioning is performed for each component
according to its needs in terms of hardware resources and the
physical structure of the FPGA. However, when synthesizing
components OOC, there is no control over how the I/O ports
are placed. With p-blocks and timing constraints, I/O ports
might be contained anywhere in the p-block resulting in
routing congestion and timing issues around I/O interfaces
when generating the whole design as described in Sec. IV-B.

B. Architecture Optimization

In this section, we discuss the generation of a CNN accel-
erator based on user definition. The architecture optimization
follows four major stages: component extraction, component
matching, architecture composition, and inter-component rout-
ing. The following paragraphs will elaborate on each of these
phases.

1) Component Extraction: From the library of pre-built
components, users compose the CNNs hardware accelerator’s
resources on FPGA. This implies providing information about
the topology and the type of layers that compose the CNN
in a form that we call: "CNN architecture definition”. In the
following stage, a CNN hardware generator that we design
with the RapidWright C API automatically produces the
corresponding CNN accelerator. The major function of the
Component Extraction is to parse the CNN architecture defini-
tion from the DFG specification and identify the components.
It then creates a data flow graph (DFG) structure in which the
nodes represent the components, and the edges account for
the connections between them. Each node of the graph can
be a component candidate. Nevertheless, consecutive nodes
in the graph can be pre-implemented as one component if
the data movement between them does not require a memory
controller. In that case, a simple handshake protocol is enough
to provide node-to-node communication with simply single-
source, single-sink FIFO queues with unbounded length. For



instance, the first convolution of LeNet outputs 6@28 x 28
features maps, and pooling outputs 6@14 x 14 feature maps
from a 2 x 2 sliding windows. This architecture requires
a memory controller to compose the addresses to read/store
the data from/to the memory and feed the FIFOs, as shown
in Figure 5. That constraint is no required for the following
ReLu, and the operation can be directly applied to intermediate
results of the pooling layers.
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Fig. 5: Communication Interface between Components

2) Component Matching: The RapidWright application first
parses the DFG using a breath-first search (BFS) approach
(Algorithm 1 line 1-10). This enables efficiently discovering
the components to load into the CNN architecture as well
as their connectivity. We choose the BFS traversal as the
DFGs representing CNN architectures are generally deeper
than wider. Each node is described with a set of characteristics.
For instance, a convolution is identified with information such
as kernel size, the padding, and the strike for a convolution
(see Figure ??). The hardware generator that we implement
with the RapidWright API loads the DCPs corresponding to
the components defined in the CNN architecture definition
from the pre-built checkpoint’s database to compose the final
architecture.

3) Architecture Composition: To achieve physical hardware
reusability, some requirements must be fulfilled: each compo-
nent must implement a specific interface to communicate with
the other design modules. Components are pre-implemented
with two interfaces. The first interface, called ’source”, is
a dedicated memory controller that reads data from memory
and feeds their computing units. The second interface, called
”sink” controls the writing of feature maps in on-chip memory.
Finally, since all the components implement a well-known in-
terface, we use the Rapidwright API to create interconnections.
It is done by inserting specific nets in the design’s netlist to
implement logic routing between the different components that
communicate in the design (Algorithm 1 line 11-18). After

stitching, the blocks are placed, a DCP file is generated, then
read into Vivado to complete the inter-component routing.

Algorithm 1: DCP generation Algorithm with Rapid-
wright

Input : Design d, Graph G, Node root
Output: DCP file

1 let Q be a queue ;

2 mark root as discovered ;
3 Q.enqueue(root) ;

4 while Q.size() /= 0 do

5 Node v = Q.dequeue() if v is the goal then

6 | return v ;

7 end

8 Nodes w = G.adjacentEdges(v) ;

9 foreach edges from v to w do

10 if w is not marked then

11 pblock p = define pblock range for w;
12 addNodeToDesign(p);

13 Ports ports_v = selectPortOfInterest(v);
14 Ports ports_w = selectPortOflnterest(w);
15 foreach (ports_v, ports_w) do

16 \ create nets to connect the two ports;
17 end

18 mark w as discovered ;

19 w.parent = V ;

20 Q.enqueue(w) ;

21 end

22 end
23 end
24 +

4) Component Placement: The placement algorithm is
based on Xilinx Ultrascale architecture, which is an array of
programmable logic blocks consisting of configurable logic
blocks (CLB), Embedded Memory (BRAM), and multiplier
(DSP) blocks. The array is surrounded by I/O Blocks allowing
off-chip connections. DSP blocks and BRAMs are arranged
columnar-wise and spread across the device. In this work,
we aim to find a congestion-aware timing-driven placement
for components of the input graph. As each component is
already placed and routed, it must be replicated on the device
to compose the overall architecture. Since components are pre-
implemented within pblocks, the type and amount of resources
used are reported. The algorithm works as follows: we recur-
sively parse the input graph and place the first component.
For each adjacent component, we assign a location on the
FPGA grid. We define timing and congestion cost functions
to evaluate the cost of the assigned location.

a) The timing cost: is defined by the wire length between
two components.

n—1
timing_cost = Z HPWL(W,; ;)

i=1,i<j

o))

Where W; ; is the wire length between component ¢ and j.
b) Congestion Estimation:: for optimal routing, a place-

ment algorithm must consider the number of resources used

by each inter-component net and the interaction between them.



For instance, if all nets are limited to a relatively small portion
of the chip area, the routing path request will probably be
very high. A weighted sum of the number of components
overlapping is used to measure congestion to take this into
account.

CGteoef ficient = Fcomponents overlaps within tile; (2)

n—1 PL"J
_ 2ui=1,i<j HXW
cgt_cost = —— P 3

i=1,i<j HxW

Where W; ; is the wire length between component ¢ and j.

The component placement is validated if the costs are lower
than a defined threshold. Otherwise, we unplaced them for
each previously placed component, find another location until
the costs are satisfied.

5) Inter-component Routing: After the architecture com-
position, the design contains all the necessary CNN modules.
Each of the design modules still has the logic and the internal
routing locked. However, the RapidWright hardware generator
that we implement only enables the logic routing between
the components. While recent updates in the RapidWright
API provide some functions to route the designs, the routing
heuristics are still a work in progress and are not as mature
as Vivado. Therefore, we utilize Vivado for the final routing,
which essentially consists of finding FPGA interconnects to
implement the logic routes created within RapidWright in a
way that minimizes timing delays.

V. EXPERIMENTAL RESULTS
A. Evaluation Platform and Setup

For evaluation purposes, designs are implemented on a
Xilinx Kintex UltraScale+ FPGA (xckuSp-ffvd900-2-i). The
hardware is generated using Vivado v2019.2 and RapidWright
v2019.1. The hardware generation is conducted on a computer
equipped with an Intel Corei7-9700K CPU@3.60GHz x4 pro-
cessor and 32GB of RAM.

B. Benchmarks

We study two CNN architectures: LeNet [18] and VGG
[19]. We run applications individually to assess achievable
performances, in particular: (1) global latency, (2) Fmax and
productivity, and (3) resource utilization when comparing pre-
implemented components to fully implemented CNNs. For
both networks, we use a valid Padding and strike of 1. Figure
I presents the different characteristics of the two networks. For
performance comparison, we use a stream-like architecture for
both networks.

1) Lenet Architecture: 1t is built by replication of four
main modules: (1) The convolution: this module performs the
convolution computing using a systolic array architecture. The
fully connecting layers are also implemented as convolution,
with the kernel size equal to input data size. (2) The max pool
layers, (3) The ReLU layers, (4) The memory_managment
unit, jogging around the input data, and feed the computing

LeNet-5 | VGG-16

[ # CONV Layer | 2 16
# weights 26 K 147 M
# MACs 19M 153G

[ #FC Layers [ 2 [3 |
# weights 406 K 124 M
# MACs 405 K 124 M
Total Weights 431 K 138 M
Total MACs 23 M 155G

TABLE I: Computational hardware resources for state-of-art
DNNEs.

units. The weights and biases are hardcoded in ROM. This
choice has been decided out of simplicity.

2) VGG-16 Architecture: VGG consists of 16 convolutional
layers and is very appealing for the pre-implemented flow
because of its uniform architecture. Input images are passed
through a stack of convolutional layers with a fixed filter size
of 3x3 and a stride of 1. There are five max-pooling filters
built-in between convolutional layers. Three fully connected
layers follow the stack of convolutional layers. The replica-
bility of layers within VGG suits the pre-implemented flow.
We use off-chip memory to store the coefficient data and data
layout configuration files. The off-chip memory allocation is
based on a Best-Fit with Coalescing algorithm. The goal of
this allocator is to support defragmentation via coalescing. The
principle behind this algorithm is to divide the memory into a
series of memory blocks, each of which is managed by a block
data structure. From the block structure, information such as
the base address of the memory block, the state of use of the
memory block, the block’s size, the pointer on the previous
block and the following can be obtained. All memory can be
represented by a block structure with a double-link list.

C. Resource Utilization

Pre-implementing basic components have the potentiality
of reducing resource utilization as shown in Table II. The
classic implementation Lenet and VGG use respectively 9.65%
and 78.79% of LUTs, 0.99%, and 32.53% of registers. The
pre-implemented version of Lenet and VGG use respectively
8.89% and 0.99% of LUTs, with 78.79% and 27.25% of
registers. Overall, the pre-implement networks use fewer re-
sources than the baseline implementation. When the design is
small, vivado can provide better optimization of the resources.
Furthermore, when pre-implementing components, we define
p-blocks, limiting the number of resources that vivado can use,
forcing some area optimizations. When the design is bigger,
vivado tends to maximize adaptation capacity and becomes
difficult to capture all its specificities.

Lenet uses 21.44% of the BRAM available on the chip.
This is simply because the weights and biases are hardcoded
in ROM and use more resources. The pre-implemented Lenet
(resp pre-implemented VGG) uses 0.28% less BRAM (resp.
2.56%). Vivado can optimize individual component IR without
BRAM insertion while adding such resources when com-
piling a bigger design, which translates into higher power



CLB LUTs CLB Registers BRAMs DSPs
Lenet 32021 (9.65%) | 8538 (1.29%) |463 (21.44%)| 144 (5.21%)
Pre-implemented 29491 8442 457
Lenet (8.89%) | (1.26%) 1 (21.16%) |
VGG-16 282870 (85.28%) (215763 (32.53%)|854 (38.54%)[2116 (76.66)
Pre-implemented 261321 180754 786 2123
VGG-16 (78.79%) | (27.25%) .. (36.39%)]. | (16.92%) t

TABLE II: FPGA Resource Utilization

consumption. The amount of DPS is the same for LeNet im-
plementation. However, a notice an increase of 0.26% the pre-
implemented VGG. By defining p-block for each component,
we sometimes provide more DSPs than needed to have enough
resources to place the design. This is due to the topology of
Xilinx FPGA, which are organized column-wise.

D. Productivity

When the size of the design increases, the productivity is af-
fected. This section shows how the proposed flow can leverage
component reuse to reduce both compile-time and implemen-
tation cycles. Figure 6 presents the time in seconds to generate
the design checkpoint with both rapidwright and vivado. This
time measure the implementation and the generation of DCP.
For the Baseline Lenet and VGG, implementation time is the
sum of Vivado’s opt_design, place_design, phys_opt_design
and route_design functions. Since components have already
been implemented off-line for the pre-implemented networks,
we only measure DCP generation with rapidwright and inter-
component routing with vivado. The pre-implemented flow
takes 16.54 min (resp. 52.87 min) to generate Lenet (resp.
VGG). There is a productivity improvement of 69% for Lenet
and 61% for VGG when using the pre-implemented flow. For
Lenet (resp VGG), the stitching with RapiWright represents
only 5% (resp. 9%) of the total time. RapidWright has minimal
impact on productivity. The biggest portion of the time is used
to route the nets between the p-blocks.
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Fig. 6: Design Generation Time for implementation of LeNet
and VGG with vivado and the pre-implemented flow in
minutes

E. Performance

This section presents a comparison with FPGA designs that
utilize a batch size of 1, and we report latency and frequency

simultaneously. In Table IIl, we present each component’s
performance as well as the pre-implemented Lenet. Overall,
Lenet achieves up to 1.75X higher frequency than the classic
stream-like architecture, which is an improvement of over
75%. The first convolution reaches 562 MHz. However, with
a higher number of parameters (from 156 in convl to 2416 in
conv2), the number of multiplications increases from 117600
to 240000, negatively impacting the frequency. We observe
the same tendency on FC1 and FC2. The frequency of the
pre-built design is upper bounded by the slowest component
in the design.

The pre-implementing VGG has 1.31 x higher frequency
than the baseline VGG implementation, with a 0.53 ms higher
latency (Table 7). In contrary to LeNet, VGG has more and
dense layers to place and route on the chip. When several
design components must be spread around the chip, a rising
issue is how to deal with fabric discontinuities such as erratic
tile patterns and I/O columns. Those discontinuities increase
the datapath and have a negative effect on the performance.
Hence, inserting pipeline elements such as FFs on the critical
path improves the timing performance while increasing the
overall latency.
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3x3 Conv, 64
co[ o]
I;;:Iquency %at;:ncy C3 | 3x3 Conv, 128
z ms
VGG 200 MHz | 55.13 2x3 Conv, 128
Component 1 | 367 MHz | 1.54 ca[_Poal ]
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Fig. 8: VGG ar-
chitecture with la-
belled components

To show our approach’s performance, we compare our
implementation of VGG-16 with state-of-the-art accelerators,
as shown in Table IV. Due to differences in technology,
hardware resources, and system setup, it is hard to make an



LeNet
Layers Full Network | Convl | Pooll+ReLUl | Conv2 | Pool2+ReLU | FC1 | FC 2 | Our work
Frequency (Mhz) | 375 562 633 475 588 497 543 437 (1.75X) 1
Latency (ns) 249.7 37.33 12.93 63.46 22.51 49.32 | 25.05 | 219.10
TABLE III: Performance Exploration of LeNet

apple to apple comparison between different implementations.
However, we will list some recent works for qualitative
reference in Table IV. McDanel et al. [13] have the lowest
latency. They can achieve such performance because they use
a Selector-Accumulator (SAC) for Multiplication-free Systolic
Array. It reduces the number of operations by which 92x for
VGG-16. We want to highly that the SAC implementation
for a systolic array can also be used to pre-implement the
components to achieve competitive results. Those results also
show us that the pre-implemented flow does not significantly
improve the overall latency if each component is not latency-
optimized individually. In fact, the pre-implemented flow can
even worsen the latency if additional FF are added on critical
paths to meet timing. Nonetheless, in terms of frequency, our
implementation has the highest frequency among all other
implementations.

\ [ [20] [ 21] [ O3] [ Our work |
FPGA chip XC7Z045 | KU460 VC707 Kintex KU060
Max. Frequency | 200 MHz | 200 MHz | 170 MHz | 263 MHz
Precision fixed 16 fixed 16 fixed 16 fixed 16
DSP Utilization 96.2% 38% 4% 76%

Latency (ms) - - 2.28 42.68

TABLE IV: VGG-16 Performance Comparison with state-of-
art approaches

VI. CONCLUSION

This paper proposes a pre-implemented flow based on a
divide and conquers approach to accelerate model inference n
FPGA. The flow takes as input an abstract representation of the
CNN model inference to perform model mapping and design
checkpoint generating, by assembling pre-implemented CNN
components with rapidwright. With the pre-implemented flow,
each component is implemented to reach maximum perfor-
mance. Experiments and results show that our approach shows
improvements in terms of latency and maximum frequency,
with little to no impact on the number of resources used.
There are several aspects that we can investigate to improve
the current work. Particularly an optimized and automated
floor planning to achieve higher performance. Furthermore,
the frequency of the pre-implemented network is bounded by
the slowest component of the design. We are planning to in-
vestigate optimization approaches to improve the performance
of components during the function optimization stage.
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