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Abstract— This work describes a monocular visual odometry
framework, which exploits the best attributes of edge features
for illumination-robust camera tracking, while at the same time
ameliorating the performance degradation of edge mapping. In
the front-end, an ICP-based edge registration provides robust
motion estimation and coarse data association under lighting
changes. In the back-end, a novel edge-guided data association
pipeline searches for the best photometrically matched points
along geometrically possible edges through template matching,
so that the matches can be further refined in later bundle
adjustment. The core of our proposed data association strategy
lies in a point-to-edge geometric uncertainty analysis, which
analytically derives (1) a probabilistic search length formula
that significantly reduces the search space and (2) a geometric
confidence metric for mapping degradation detection based on
the predicted depth uncertainty. Moreover, a match confidence
based patch size adaption strategy is integrated into our pipeline
to reduce matching ambiguity. We present extensive analysis
and evaluation of our proposed system on synthetic and real-
world benchmark datasets under the influence of illumination
changes and large camera motions, where our proposed system
outperforms current state-of-art algorithms.

I. INTRODUCTION

In recent decades, monocular Visual Odometry (VO) sys-
tems have shown their full potential to assist various out-
door robotic applications. Among these algorithms, indirect
methods [1] are de facto standards due to the robustness
of visual features against both photometric noise and lens
distortion, while direct methods present [2] better motion
estimation robustness contributed by its more complete usage
of information contained in the image. Point features, widely
used by both approaches, are known to fail under specific
conditions such as sudden lighting changes, large camera
motions, or texture-less environments, which is attributed to
low feature detections or associations across frames.

Edges are alternatives to point features with improved
robustness to the aforementioned situations. They are ge-
ometric features extracted from raw images with inter-
frame edge registration performed using iterative-closest-
point (ICP) based direct alignment [3] [4] [5]. The first edge
VO [6] aligned edges by searching for the closest counterpart
along the normal direction. Later, efficiency improvements
for 2D-3D registration based on the Distance Transform (DT)
[3] improved the real-time properties of motion estimation.
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Fig. 1: Our proposed Monocular Edge VO (top) is capable
of using edge feature and image gradient to overcome the partial
observability issue of pure Edge Mapping (bottom-left). Pure edge
mapping minimize point-to-tangent error (1) that results in more
erroneous matches (M) under poorly-observable direction (bottom-
right) than observable direction (bottom-middle).

The optimizability of this formula is further improved by
substituting DT with Approximate Nearest Neighbor Fields
(ANNFs) [4] or Oriented Nearest Neighbor Fields (ONNFs)
[5], which have demonstrated strong performances for RGB-
D sensors. For RGB-D sensors these techniques work well.
Meanwhile, image-only monocular edge-based VO remains
challenging since binary edge features lead to partially
observable depth under ICP-based mapping frameworks.
Conventional depth estimation algorithms that search for
best matches along epipolar lines may result in unreliable
correspondences and lead to unstable and error-prone depth
estimates in Fig. 1.

To address the partial observability issue of edge mapping,
more sophisticated group matching strategies can realize
geometrically consistent matches [7], but fail to provide any
theoretical guarantees on correctness. Using optical flow [8]
to find the matches through photometric minimization makes
the depth fully observable in the back-end [9]. However,
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As an alternative, illumination-robust tracking algorithms
based on the Lucas-Kanade method [10] have also been
studied extensively [11]. Analyses suggest that gradient
[12] and census transform [13] approaches show state-of-
the-art tracking accuracy, but considerably compromise the
convergence basin. The reduced convergence radius arises
from a flatter cost functions, which increases the sensitivity
to perception noise and introduces artificial local optima.

One way to have more illumination-robust template match-
ing is to utilize confidence measures [14] to assess the
correctness of hypotheses; a technique used in the field of
stereo vision for error detection [15]. Of the various metrics,
Attainable Maximum Likelihood (AML) [16] shows high
performance for multi-view stereo matching, which is readily
incorporated into our system for match ambiguity detection.

Inspired by semi-direct methods [17] [18] integrating the
complementary strengths of indirect and direct formulations
for superior performance, we propose a monocular edge VO
framework in Fig. 2 integrating the illumination-robustness
of edge features, the informativeness of photometric match-
ing, and the efficiency of pose-graph optimization to solve
the issues mentioned above. Our proposed framework inher-
ently conforms to a coarse-to-fine data association structure,
which iteratively refines the edge point correspondences by
exploiting geometric and photometric information. The main
contributions of this work ares:

¢ A monocular edge VO framework, comprised of ICP-
based edge alignment, edge-guided data association, and
local BA, which is capable of performing illumination-
robust camera tracking and scene reconstruction without
incurring edge mapping degradation.

« An edge-guided data association pipeline incorporat-
ing probabilistic search length approximation, image-
gradient-based template matching, match-confidence-
based patch size adaption, and depth-confidence-based
match conditioning.

¢ A point-to-edge geometric uncertainty analysis that an-
alytically derives a probabilistic search length formula
and a depth confidence measure that improves the
efficiency and accuracy of our proposed system.

II. SYSTEM OVERVIEW

Fig. 2 illustrates our proposed monocular edge VO frame-
work, which consists of two parallel threads named edge
tracking and mapping. Our proposed edge tracking threads
aim to coarsely estimate the camera motion and edge point
association from the current frame to the latest keyframe,
which is achieved through the minimization of point-to-
tangent error in Eq. (2a) using an ICP pipeline. As soon
as a new keyframe is created, the edge-guided data asso-
ciation module in Sec. IV refines the correspondences by
incorporating illumination-robust photometric information.
Finally, the local BA jointly optimizes the camera poses and
scene structure using resultant matches in Eq. (2b) within a
sliding window of keyframes. We also provide the option to
involve the image-gradient-based costs Eq. (2c) into both
edge tracking and local BA layers. The hybrid option is
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Fig. 2: Our proposed monocular Edge VO framework is a
KeyFrame (KF) based monocular VO framework, which can be
generally divided into edge alignment, edge-guided data associa-
tion, and local BA.

designed for applications that prioritize accuracy over high-
speed operation.

Note that the edge tracking, local BA, and keyframe
selection are well-studied problems, therefore we choose the
state-of-the-art implementations for our system design. Our
edge alignment front-end implements the ANNFs [4] [5] with
a pyramidal coarse-to-fine scheme for point-to-tangent regis-
tration in Eq. (2a), which approximates the nearest neighbors
as temporal correspondences for ICP-based optimization.
Our local bundle adjustment algorithm performs a joint
optimization of camera poses and scene structure altogether
in Eq. (2b), which can be achieved through pose-graph
optimization [19] [20] or a customized solver [2]. Besides,
we implement the distance-based keyframe selection strategy
that has been successfully demonstrated in DSO [2].

III. PROBLEM FORMULATION

Consider an acquired image in the reference frame 7, : Q —
R, where Q C R? is the image domain. A 3D scene point P =
(x,y,z)T is parameterized by its inverse depth d = z~!. Each
pixel p= (u,v)T € Q can be back-projected into the 3D world
using the back-projection function P = 7! (p), and inversely
using projective warp function p = n(P). A 3D rigid body
transformation G € SE(3) consists of a rotation R € SO(3)
and translation t € R3. In the optimization framework, G
is represented as its corresponding Lie Group component
& € s¢(3), where this element can be mapped to G € SE(3)
through the exponential mapping described in [21].

Given an arbitrary pixel selector S(-), the group of edge
pixels S, = {p,} are subsequently projected to current frame
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Fig. 3: The Point-to-Edge Uncertainty Analysis for observable
(top: O is small) and poorly-observable (bottom: 6 is large) cases.
The geometric relationship described in Eq. (3b) (left) and the
geometric interpretation of our derived edge search length in Eq.
(3a) (right) are presented.

k as:
“prd) + ) (1)

The point-to-tangent edge alignment error E,fr, reprojection
error E,Zf and generalized photometric error E,Zi from the
reference frame to frame k can be generally written as:

Pir = E(erﬂ

Ekr Z W ||g Pkr — (pkr))HY (23)
presE

EF =Y wilpw—pely (2b)
preSK

Ekr Z Wp ”Fk pkr (pr)”y (2¢)
PrGSP

where wp, is the weight assigned for each selected pixel
from S, in the reference frame, and | - |, is the Huber
norm. Specifically for each formulation, n(-) represents the
nearest neighbor edge pixel in current frame k using the
Euclidean distance metric, g is the abbreviation of g(n(px,))
representing the gradient direction vector of the temporal
match of a given projected pixel pg,, {pr,px} is a pair of
matched points between the reference image and image k,
and F () represents any representation calculated from image
I, such as intensity or gradient.

IV. EDGE-GUIDED DATA ASSOCIATION

This section presents a point-to-edge uncertainty analysis
(Sec. IV-A). The analysis informs our edge-guided data
association pipeline (Sec. IV-B), which further refines the
edge-point correspondences using geometric relationships
and photometric information.

A. Point-to-Edge Uncertainty Analysis

Point-to-edge analysis is carried out to realize the potential
search length, that is, the error variance of the search radius
along the edge direction caused by tracking error on & and
inverse depth error on d. To simplify the analysis, we make
two assumptions: (1) the edge is locally linear so that its
gradient direction is locally constant, and (2) the rotation
error on & plays a minor role in the epipolar line direction

estimation. After such simplifications, the search line along
edge direction S and epipolar line £ are approximated as:

S:={p"+Ag.} L:={p+ul} (3a)
p'+AgL=p+ul (3b)

where p represents the reprojected edge point from the
reference frame to the current frame, and p* denotes its
correspondence lying on the locally linear region of target
edge. g, and 1 are the normalized perpendicular epipolar
line and image gradient directions, while A and y are their
distance factors. 6 represents the angle between g and I,
which describe the angular relationship between S and L.
The described geometric relationship is illustrated in Fig. 3.
1) Probabilistic search length: Here, we derive the for-
mula for the search length factor A and its variance G)% w.I.t.
the u and p. For simplicity, we assume the uncertainties of
U and p are independent, so that the derived search length
function A and its variance G/% can be expressed as:

A(p ) =(p* —p,g1) +ull.g1) = epLngusinG (42)
o5 (p. 1) =JpEp0) + 30,0} =0, +Osin” 6 (4b)

where J, and J, are the Jacobians of Eq. (4a) given the
statistics of p and (. e, ¢ is the reprojection error component
perpendicular to the edge normal direction g. X, and oﬁ
denote the (co-)variances of reprojected point and depth
disparity. For fast calculation, the upper bound of variance

can be estimated using the inequality relationship as:

. 1 .
0y = |02, +02sin’ 0]2 < 6,1, +0plsind] ()

Setting the center of search to be the temporally estimated

edge point correspondence 7 (p), the search radius 4, /, can
be expressed as:

a'1/2:kp(jplg‘}_k,,lo-,u|sine‘ (6)

where k), and k;, denote the gains to compensate the potential
shrinkage of search length due to our approximations.

The point reprojection covariance X, can be readily cal-
culated from edge alignment front-end using conventional
uncertainty propagation, which can be decomposed into a
group of more compact representations, the eigenvalue ¢ and
eigenvector v, through eigenvalue decomposition as follows:

2 T

pin ZJrTJr 1JpT 2 _ = [viva] {O—l 622} [:ﬂ 7
where 67 and J} represent the variance of residual and its
individual Jacobian vector of point p w.r.t. camera pose & in
Eq. (2a), and J’g denotes the Jacobian in Eq. (1). Therefore,
the two components of search length representation can
be upper bounded by enforcing the symmetric structure of
search length as follows:

Oplg = max(01(vi,81),02(v2,81)) (8a)
oy =max (||p(§,d+0y) —p(§,d)l2) (8b)

where p(&,d) denotes the point reprojection function de-
scribed in Eq. (1). The geometric interpretation of the derived
search length centered at temporal correspondence (4) is
illustrated in Fig. 3.
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Fig. 4: Edge-Guided Data Association Pipeline incorpo-
rates probabilistic search length approximation (Sec. IV-B.1),
illumination-robust template matching (Sec. IV-B.2) with match
confidence based patch size adaption (Sec. IV-B.3), and depth
confidence based conditioning (Sec. IV-B.4). Note that the edge
alignment match comes directly from the proposed front-end, which
doesn’t involve any calculation here.

2) Depth uncertainty: Eliminating the search length factor
A from Eq. (3b), the disparity estimate p and its variance

ofl can be expressed as:
u(p)= P P8 _ ol 9a)
(g,1) cosO
2
c
I
Gﬁ = JPZPJ; = Cogzgg’ (9b)

where J, is the Jacobian of Eqn. (9a) given the statistics of
pP- ¢, is the reprojection error component that is parallel
to edge normal direction g. Similar to the derivation in Eq.

(8a), Op|g can be expressed as follows:

Op|g = max (01(v1,g),02(v2,8)) - (10)

B. Edge-Guided Data Association Pipeline

The heart of our solution involves the proposed edge-
guided data association pipeline, whose processing flow is
depicted in Figure 4 with input of edge alignment matches

. The important components include search length ap-
proximation M, illumination-robust template matching ',
match-confidence-based patch size adaption ™, and depth
confidence based match conditioning M.

1) Search length approximation: Given the camera trans-
formation from the edge alignment front-end, all edge points
can be projected onto newly added keyframe. Their nearest
neighbors in a new keyframe then serve as the coarse initial-
ization of edge point correspondence for further refinement
in Fig. 5 (1). Then, the search length A is calculated for each
point of interest using Eq. (6) based on their statistics.

2) Illumination-robust template matching: Given the es-
timated search radius, our proposed probabilistic 1D search
strategy starts with the coarsely estimated edge point cor-
respondence. A standard region growing algorithm is used
to explore the nearby edge points for template matching. To
compensate for the rotation and scale difference between the
matched patches, the patch is pre-transformed in Fig. 5 (2)

Erep Corner 0.04
B)—T

0.035

0.03

0.025

probability of each match
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-15 -10 -5 0 5 10 15
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Fig. 5: Our proposed template matching strategy and the
potential ambiguity is illustrated, where the general steps to realize
the best match are labeled (left), while their match confidence
measures (right), named Attainable Maximization Likelihood, are
plotted to visualize the potential ambiguity for edge cases.

based on estimated parameters R, t, and d by making the
assumption that the transformation is locally constant.

At each iteration, the template-based matching is per-
formed through estimating the image gradient magnitude
difference of a 5x5 patch (S, = 5) between the query and
the target edge points. The search stops at either maximum
growth boundary or discontinuity of edges, where the edge
point generating the smallest error is chosen as the best
match for local bundle adjustment in Fig. 5 (3).

3) Match confidence based patch size adaption: The
major drawback of naive template matching is its ignorance
of the potential ambiguity between locally similar edge
points. Especially for flat edge cases, like in Fig. 5 (right),
where a small pose error may generate large matching
bias. Inspired by the research on confidence measures for
stereo vision, the best-performance metric in [14], named
Attainable Maximum Likelihood (AML), is implemented to
distinguish the ambiguous matches along edges as follows:

1
Yallen—c*I3’

where ¢, denotes the template matching cost within the
search region, and ¢* means the cost of the best match.

As long as the C,, is smaller than a pre-defined threshold
T, the patch size S, is increased until the patch size limit g
is met. Adaptive patch size allows the algorithm to involve
more information for template matching, which improves not
only the noise resistance of patch matching [2] but also the
accuracy of confidence measure [22].

Noted that we won’t perform any match confidence check
for points with very small search lengths, where a search
length threshold 7; is pre-defined. A small search radius
implies an accurate pose estimate, so that the best match
within this region is also most likely to be the global optima.
As a result, we decide to trust the naive matching approach
to save computational resources.

4) Depth confidence conditioning: After the patch size
adaption process, the matches that still present high ambigu-
ity (C, < T,,,) Will be discarded. Instead of best photometric
matches, the edge alignment matches will be passed into
the later optimization framework and the depth confidence

(1)

Cn=CamL =
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measure Cy is proposed to predict the their observability at
later depth estimation as follows:

Ou  Oplg

A small C; indicates a large potential depth estimation error,
which means this particular match is unsuitable for depth
estimation, and vice verse. Matches with low match and
depth confidences, C,,, and C;, will pass to the local BA layer
with a fixed depth at each iteration of joint optimization.

| cos0

Ci= 12)

C. Data Association Updates

Inter-frame poses and scene structure may change signif-
icantly during local BA optimization so that the matches
need to be updated during optimization. To capture the
potential erroneous matches, we monitor the reprojection
error component e, ¢, calculated from the local BA residuals
r. The update conditions can be expressed as follows:

€plg = <r7gi> > kmzvmax; (13)

where k;, is the ratio for match update that is typically set
to be 0.5 -1.0. It means if the match distance on the edge
direction is larger than a certain ratio of maximum search
length, the match is most likely to be invalid and needs to
be re-associated for estimation accuracy.

V. EVALUATION

In this section, we evaluate our proposed monocular edge
VO system quantitatively on publicly available datasets [23]
[24] [25] using real-time capable edge detectors [26] [27]
[28]. Compared to other edge VO systems concentrating on
indoor navigation, our evaluation mainly focuses on chal-
lenging outdoor environments, where the sun-glare and pixel
over-exposure are the main factors of tracking failure. Our
experiments are conducted using a regular laptop featuring
an Intel 17 core for our proposed VO pipeline, where the
edge detection is calculated on an Nvidia K20 GPU.

A. Evaluation on Edge-Guided Data Association

First, we evaluate the accuracy and efficiency of our
proposed edge-guided data association strategy against (1)
search length, (2) patch size, and (3) inter-frame distance.
The optical flow methods, e.g. the conventional Py-LK [10]
and illumination-robust FSDEF [29], serve as the baseline
approaches for comparison. Intensity, census, and gradient
approaches to template matching are plugged into our frame-
work for evaluation, where the mean translational drift and
average processing time are set as metrics for quantitative
analysis. A photo-realistic VKITTI [23] dataset with and
without simulated illumination changes is used to evaluate
our proposed data association approach, where the white
Gaussian noise with 1.0 standard variance is added to ground
truth inverse depth. We uses 800 points uniformly sampled
from edges in the image for evaluations.

The selection of translational drift as the evaluation metric,
instead of the more direct average end-point error, is because
of the difficulty to generate ground-truth matches for general
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Fig. 6: Our Proposed Edge-Guided Data Association is eval-
uated under regular (left) and illumination-changing (right) se-
quences. The camera tracking accuracy and run-time performance
are evaluated against (1) search length ratio k; = {k,,ks} in Eq.
(3a) (top), (2) patch size S), (middle), and (3) inter-frame distances
(bottom). It worth noting that the cases that ky =0 and k; = max
are equivalent to the direct use of edge alignment tracking results
and search with a fixed length, respectively.

edge points with sub-pixel precision and the lack of datasets
with multi-view dense ground-truth pixel correspondences.
Besides, our proposed system is designed to improve the
camera tracking accuracy with real-time constraints, which
motivates us to carry out end-to-end evaluation.
Summarizing observations from Fig. 6: (1) The gra-
dient approach shows the best overall performance, in
terms of tracking accuracy and efficiency, for regular and
illumination-challenging environments. (2) Our proposed
search radius formula with k = 1 works well on the tests,
which were previously considered as underestimated due to
the independence assumptions and multiple approximations.
(3) Our proposed adaptive patch size strategy takes less time
to realize better correspondences compared with fix-length
search strategies. (4) Our proposed edge-guided data asso-
ciation strategy holds the better capability of dealing with
large camera motions compared with optical flow methods.

B. Evaluation on Illumination and Motion Robustness

The overall system performance of our proposed edge
VO algorithm is evaluated using Symphony Lake [24]
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SUMMER

Fig. 7: Evaluation on Symphony Lake Dataset. The reconstructed pointclouds and example images of a human-made structure (top)
and a natural scene (middle) are presented based on their seasons so that the structural and appearance changes across seasons can be
observed. Although we merely present one sun-glare image at SPRING b, sun-glares exists in the most test sequences.

TABLE I: System Evaluation against Illumination Changes and Fast Camera Motion.

Symphony Lake Dataset Down-Sampled Symphony Lake Dataset time
spring summer autumn winter spring summer autumn winter

rate err rate err rate err rate err rate err rate err rate err rate  error | track map

DSO[2] 142 174 93 147 25 7.7 159 217 | 199 210 127 178 72 11.1 194 257 58 93

ORB[1] 235 263 164 193 88 133 192 246 | 241 266 160 221 89 135 196 248 - -
Prev[30] 4.7 9.7 4.4 9.2 2.2 6.4 8.0 124 | 102 147 7.6 115 73 114  14.1 18.5 105 173
Ours(Canny[26]) 35 8.5 5.0 9.4 24 6.6 3.1 7.3 42 9.7 6.3 11,5 43 9.4 35 8.9 63 129
Ours(SE[27]) 1.9 7.1 32 8.5 23 6.5 24 6.2 24 74 52 10.6 2.4 6.9 2.5 6.5 75 103
Ours(HED[28]) 1.9 7.0 3.3 8.4 2.2 6.4 2.5 6.4 2.5 7.6 5.2 10.7 25 6.7 2.4 6.4 79 106
Hybrid(Canny[26]) 33 8.1 4.9 9.6 2.2 6.4 24 6.3 3.6 8.9 5.1 108 34 8.2 2.5 6.4 71 201
Hybrid(SE[27]) 1.8 6.8 33 8.4 2.2 6.4 24 6.1 2.1 7.0 4.9 101 23 6.6 23 6.2 89 193
Hybrid(HEDI[28]) 1.9 6.9 3.1 8.2 2.2 6.3 24 6.1 22 7.1 4.8 101 2.2 6.4 24 6.2 92 194

Rates are failure rate per sequence, averaged over 10 trials. Err is a drift rate in [cm/m]. Processing time in [ms] per frame.

TABLE II: System Evaluation on Normal Sequences.

KITTI DSO ORB  Ours(Canny)  Ours(SE)  Ours(HED)
[25] [2] [1] [26] [27] [28]
00 16.83  16.14 18.36 16.06 16.11
01 36.32 - 32.59 22.31 21.55
02 17.08  15.58 17.72 16.77 16.52
03 371 3.4 4.31 3.64 3.63
04 3.01 3.05 293 241 2.33
05 13.64  12.96 13.49 13.05 13.02
06 14.13  13.35 13.44 12.54 12.57
07 9.55 9.63 11.36 8.15 8.20
08 18.31 1543 19.35 16.24 16.21
09 13.05 12.88 12.73 12.61 12.47

Avg.(*) | 12.15 11.50 12.63 11.52 11.44

(*) excludes KITTI 01 sequence.

dataset, which consists of millions of natural lakeshore
images heavily contaminated by (1) smooth (auto-exposure)
and (2) sudden (sun-glares) lighting changes, as well as
(3) the tree-sky boundary pixel over-exposure. Unlike sun-
glares that randomly occurs in sunny days of a year, the
over-exposure induced appearance changes show significant
variations across seasons. In general, the denser the leaves
in Summer, the fewer boundary pixels are ’eaten’ by lights
the VO system is, therefore, less affected by over-exposure,
and the opposite holds in Winter. Based on these observa-
tions, we choose 12 surveys (3 surveys per season) heavily
contaminated with sun-glare and categorize results based on
seasons. For motion robustness evaluation, we down-sample
the selected sequences at a sample rate of 3 for fast camera

motion simulation. For quantitative analysis, the ground truth
pose is calculated through Laser-GPS-based global pose
graph optimization described in [31]. The scale of trajectory
from monocular VO are corrected using ground truth poses
at every 200 frames, while the loop-closure functionality is
disabled for ORBSLAM?2 for a fair comparison.

In Fig. 7, the point clouds show that our proposed ap-
proach reconstructs high-quality human-made structures as
well as natural scenes under illumination contamination.
Comparing reconstruction results across seasons, we can
observe the structural changes of trees between different
times of the year. A more detailed quantitative evaluation
concerning relative pose errors (RPEs), failure rate, and
runtime performance using complete and down-sampled se-
quences are presented in Table. I. The camera pose error
within tracking failure locations is calculated using pre-
defined maximum tracking error (30.0 c¢m/m). Large errors
indicate both low tracking accuracy and low completion rate.

In general, our proposed approach, both with and without
hybrid costs, outperforms all other state-of-the-art methods,
with the Winter sequences showing better performance than
the Summer ones. Such variation can be attributed to the
fact that the Winter images generally hold more clear and
uniformly distributed edges compared with those of Summer.
Among different edge detectors, the learned edges (SE [27],
HED [28]) present better tracking accuracy and robustness
over conventional Canny edge detector, most likely due to
its low repeatability for outdoor image sequences [32].
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For the evaluation on the influence of high-speed cam-
era motions, both the failure rates and tracking error of
state-of-art methods increase significantly after frame sub-
sampling in comparison of our proposed approach. Similar
to our previous analysis, the Winter sequences using learned
edges shows the least performance degradation compared
with other approaches. It suggests that well-distributed high-
repeatability edges are essential for our proposed edge VO
framework, which guarantees both the robustness against
illumination changes as well as high-speed camera motions.

Compared with our previous work [30] that incorporated
the gradient similarity metric into an optimization frame-
work, this work proposed a probabilistic edge data associa-
tion strategy to realize a better edge candidate conditioning,
resulting in tracking accuracy and robustness boosts without
compromising real-time performance. Besides, the hybrid
cost optimization further boosts the tracking accuracy for
state-of-the-art performance.

C. Evaluation on Regular Sequences

Besides challenging illumination- and motion-challenging
dataset, we also evaluate our proposed system on regular
sequences for completeness. Table. II shows the absolute
trajectory errors (ATEs) after scale correction using ground
truth poses on KITTI [25] dataset. Our proposed edge VO
approach shows consistent improvements over direct DSO
and comparable performance with indirect ORBSLAM?2.

VI. CONCLUSIONS

In this work, we propose a monocular edge visual
odometry framework, which is a real-time capable algo-
rithm exploiting the edge features and image gradient for
illumination-robust camera motion estimation and scene re-
construction. These are obtained by an edge alignment front-
end, a finer point correspondence refinement strategy through
a fast probabilistic 1D search strategy, and joint optimization
in local bundle adjustment. The proposed system successfully
overcomes the partial observability issue of monocular edge
mapping as well as improving the robustness of outdoor
motion estimation. The experimental results indicate that our
proposed system outperforms current state-of-art algorithms
in terms of illumination- and motion-robustness and shows
comparable performance in regular sequences.
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