Domain Isolation in FPGA-Accelerated Cloud and Data Center
Applications

Joel Mandebi Mbongue
University of Florida

Gainesville, FL, USA
jmandebimbongue@ufl.edu

ABSTRACT

Cloud and data center applications increasingly leverage FPGAs
because of their performance/watt benefits and flexibility advan-
tages over traditional processing cores such as CPUs and GPUs.
As the rising demand for hardware acceleration gradually leads to
FPGA multi-tenancy in the cloud, there are rising concerns about
the security challenges posed by FPGA virtualization. Exposing
space-shared FPGAs to multiple cloud tenants may compromise
the confidentiality, integrity, and availability of FPGA-accelerated
applications. In this work, we present a hardware/software archi-
tecture for domain isolation in FPGA-accelerated clouds and data
centers with a focus on software-based attacks aiming at unautho-
rized access and information leakage. Our proposed architecture
implements Mandatory Access Control security policies from soft-
ware down to the hardware accelerators on FPGA. Our experiments
demonstrate that the proposed architecture protects against such
attacks with minimal area and communication overhead.

CCS CONCEPTS

« Hardware — Reconfigurable logic applications; « Security
and privacy — Access control; « Computer systems organiza-
tion — Cloud computing.

KEYWORDS

Cloud; Data center; Field-Programmable Gate Array; Isolation

ACM Reference Format:

Joel Mandebi Mbongue, Sujan Kumar Saha, and Christophe Bobda. 2021.
Domain Isolation in FPGA-Accelerated Cloud and Data Center Applications.
In Proceedings of the Great Lakes Symposium on VLSI 2021 (GLSVLSI 21),
June 22-25, 2021, Virtual Event, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3453688.3461527

1 INTRODUCTION

Clouds and data centers are increasingly relying on application
and domain-specific hardware accelerators to meet the perfor-
mance requirements of applications such as machine learning and
data analytics. Among the emerging hardware accelerators, Field-
Programmable Gate Arrays (FPGA) are particularly attracting cloud

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

GLSVLSI 21, June 22-25, 2021, Virtual Event, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8393-6/21/06...$15.00
https://doi.org/10.1145/3453688.3461527

Sujan Kumar Saha
University of Florida
Gainesville, FL, USA

sujansaha@ufl.edu

Christophe Bobda
University of Florida

Gainesville, FL, USA
cbobda@ece.ufl.edu

providers because of their performance/watt, reprogrammability,
and flexibility advantages over other processing fabrics such as
GPUs. It is then no surprise to see major cloud companies and data
centers integrating FPGAs in their pool of computing resources.
For instance, Amazon provisions FPGAs as part of virtual machines
(VM) in the cloud [9]. The Texas Advanced Computing Center in-
vestigates the use of FPGAs as data center accelerators [12]. Though
current clouds and data centers essentially provision single-tenant
FPGAs, adequately implementing virtualization concepts will in-
evitably lead to FPGA multi-tenancy. However, provisioning multi-
tenant FPGAs, that space-share resources between multiple hard-
ware workloads, raises security challenges that put the confiden-
tiality, integrity, and availability of cloud applications at risk. In
fact, malicious co-tenants could attempt accessing resources out
of their domain or tampering with the normal execution of other
accelerators on the shared FPGAs [5].

FPGA-accelerated cloud and data center applications typically
rely on a combination of software and hardware components. The
software layer executes on the CPU and the hardware components
are deployed on FPGA for acceleration. These types of heteroge-
neous architectures open an attack surface that exploit the hard-
ware/software interface to breach the application domains. Unfor-
tunately, recent research essentially focuses either on hardware
exploits such as side-channels, denial-of-service (DoS), information
leakage, fault injection, fingerprinting FPGAs by user etc [5, 13]; or
software-level attacks such as attacks on virtual machine monitors
(VMM), port scanning, service injection, etc [11]. For instance, Luo
and Xu [6] propose to mitigate long wire crosstalk on FPGA. Their
approach separates on-chip components and reduces side-channel
leakage with long wire obfuscation. It does not consider attacks
launched from software. Oyama et al. [8] present a scheme for mal-
ware detection in VMMs. Yet, it is not necessarily applicable to the
security challenges posed by FPGA virtualization. Some research
proposed methods to mitigate software attacks on FPGA virtualiza-
tion stacks. Festus et al. [4] proposed a hardware/software archi-
tecture that inherits software-level security policies in hardware.
However, it does not implement secured communication between
hardware and software. Also, the hardware/software architecture
does not enable the FPGA to authenticate the host. As a result, a
malicious application can act as the host and access VM data. Other
research work investigated domain isolation in multi-tenant het-
erogeneous systems combining FPGAs to CPUs [3, 10]. However,
the approaches present similar limitations to [4].

In the rest of the paper, we consider multi-tenant FPGAs that
can host workloads from multiple users at a time. In such systems,
an attacker could gain unauthorized access to the registers and
memory space of the FPGA accelerators from another user session

v v v v v
VM, VM, VM, VM,
Security A
pp1 App2 App3 App4
Server

e
1 —
VM session ‘—ﬁ VM M_‘-'ﬁq—‘ l
Identification
2 ~| = v
Enforcement
Monitoring HMAC| | [HMAC]| || [HmAC] | |{HmAC]
3 1 A
Access Rules

Acci Acc2 Acc3 Acc4
- _ VR) VR VR; J VR4
Security Policy PR Region
Database ~
FPGA,

Figure 1: Overview on the cloud infrastructure and the
threat model

or VM if the middleware/VMM is successfully breached. This could
result in information leakage. Task hiding is another security threat.
The attacker could potentially redirect user requests and submit its
own jobs, exposing to risks of DoS. The entire infrastructure could
also be at risk if the attacker utilizes resources beyond the limits of
the service-level agreement.

In this work, we propose a hardware/software architecture that
aims isolation between the user domains in cloud and data center
applications. Since the user domain spans from software down to
FPGA accelerators, the proposed isolation architecture implements
a multi-layer security approach. The major contributions of this
work are:

e We propose a security formalism that defines rules to ensure
domain isolation between the FPGA-accelerated applications
running in a cloud and data center infrastructure.

e We describe a hardware/software architecture that imple-
ment the isolation guidelines defined in the security formal-
ism.

o A case study showing that the proposed isolation architec-
ture preserves domain confidentiality, integrity, and avail-
ability with low overhead.

The rest of the paper is organized as follows: section 2 discusses
the properties and implementation of the isolation architecture.
Next, section 3 presents experimental results, and section 4 con-
cludes the paper.

2 ISOLATION MECHANISM

In this section, we present the threat model and system assump-
tions. Next, we describe a set of rules designed to ensure domain
isolation between co-tenants. Finally, we detail an architecture that
implements the described isolation guidelines.

2.1 Threat Model

We consider the overall architecture described in Figure 1. It rep-
resents an FPGA-accelerated cloud infrastructure in which VMs

access FPGA accelerators. We label each VM with an unique identi-
fier (VM[p). For instance, in Figure 1 we have VM; through VM.
The "shell" area correspond to pre-defined hardware components
that cannot be modified by the cloud users. On the other hand, "PR
Region" comprises the FPGA resources that can be programmed by
the users using partial reconfiguration. The FPGA is then divided
into "virtual regions" (VR) that are assigned to VMs at run-time.
Each VR combines static components that are pre-defined by the
cloud provider, and a hardware accelerator designed by the cloud
user. Similarly to VMs, VRs (.resp FPGAs) are labeled with unique
identifiers VRyp (.resp FPGA|p). For instance, Figure 1 shows an
FPGA labeled FPGA; that is divided into four VRs (VR; through
VRy). Therefore, we consider the hardware domain of a VM as the
set VRs, on the available FPGAs, that are allocated to the VM at run-
time. As example, VR; on FPGA; represents the hardware domain
of VM. In the context of this work, we consider FPGAs that are
space-shared between VM applications. As an illustration, in Figure
1, Appi running in VM; access the accelerators Acci hosted in
FPGA; (with i€{1,..4}). We assume the each VR is memory-mapped
in the FPGA addressing space. As a result, read and write requests
with an adequate base address and offset can result in domain
breach. Therefore, we consider malicious software that can submit
access requests (read or write operations) to the FPGA cloud inter-
face as a potential threat. This work considers the following attack
scenarios:

e Scenario I: An application running in a VM uncovers the ad-
dress space of an FPGA accelerator in the hardware domain
of a co-tenant. This poses a serious threat to the confidential-
ity, integrity, and availability of user services as an attacker
can steal a secret, tamper data, or comprise the execution of
applications in another VM domain. An illustration is shown
in Figure 1. App2 running in VM3 directly interacts with
Acc1 that is part of VM;’s hardware domain.

e Scenario 2: In this attack scenario, we consider a breached
VMM as a potential threat. An attacker can run a malicious
software with superuser privileges and access the entire ad-
dress space of the hosted FPGAs. Therefore, private user
data could be exposed or tampered. Moreover, denial-of-
service and task hiding are rising concerns. The attacker
could block user traffic and run unauthorized workloads.
Figure 1 shows a malicious software launched in the VMM
host that performs read/write operations from/to VM4 regis-
ters, and blocks the traffic from VM3 to execute unauthorized
jobs in Acc3. These types of attacks directly put at risk the
confidentiality, integrity, and availability of user data and
services.

Hardware-based attacks such as as side-channel, cover-channel,
DoS, fault injection, snooping with a physical probe, etc, that are
launched from the FPGA, are out of the scope of this work.

2.2 Security Formalism

In an FPGA-accelerated cloud infrastructure both software and
hardware components contribute to the execution of an applica-
tion. The software provides the data to process, and the hardware
accelerates computation. To ensure domain separation between

the applications sharing FPGA devices, we propose the following
security formalism S:

where S :={Vm, A, F,Vg,D,M}

o Var ={Vm1, Vmas Vs, -..., Vmin } is the set of Virtual Machines
in the cloud platform.

o A={A1,A As, ..., Ap} is the set of application sets where

each virtual machine i has its corresponding application set,

A; ={ai1, ai2, ai3, ..., im }

F = {f1. f2. 3, ..., fp} is the set of FPGA devices.

VR = {VR1, VR2, VR3, .- VRp} is the set of Virtual Regions

allocated in the FPGA devices. Here, each Virtual Region set

J, associated with the corresponding FPGA device is the set

of multiple VRs, such as:

Vrj = {VRj1, VRj2> VRj3s -+ VRjq} -

e D ={1,0} is the set of decisions. "1" indicates access is per-
mitted and "0" indicates access not permitted.

o M={M, My, M3,, Myxp} is the set of access matrices. This
set has n X p elements where each element is a matrix of
dimension mxq. Each entry of M; is a 2-bit value, d1dz which
represents the corresponding read and write permission of
the application to the hardware accelerator.

To ensure domain separation, we propose the following rules
that aim at preserving confidentiality, integrity, and availability of
the VM domains.

Rule 1. For each Vjy; € Vy, there is a function Uy, : Vyy—A which
must be a one to one function. Also, for each f € F, Ur: F>Vg is
a one to one function.

Rule 2. An access request is a 4-tuple 7 := (Vgy, aij, f, Vrii), where
VMi € VM, aij € A;, f € F and Vg € Vgy.

Rule 3 (Confidentiality). For a legal access request 7 (By obeying
rule 2), if the corresponding read decision d; is made by the lookup
function I'(M, 7) and d; € D, the confidentiality is preserved in the
system domain.

Rule 4 (Integrity). For a legal access request 7 (By obeying rule
2), if the corresponding write decision dz is made by the lookup
function T'(M, 7) and d2 € D, the integrity is preserved in the
system domain.

Rule 5 (Availability). The availability of the system resources (Vir-
tual resources (Vg) in FPGA devices (F)) is ensured by the secured
communication protocol (described in 2.3.3).

Rule 6. Only the trusted cloud service provider has the ability to
modify the elements of access matrix M.

2.3 Security Architecture

To enable domain isolation, we propose an hardware/software ar-
chitecture that implements the features of the security formalism
discussed in section 2.2. Figure 1 presents a high-level view of the
security components added to typical cloud architectures: the Secu-
rity Server and the Hardware Mandatory Access Controller
(HMAC). We assume that these two components are trusted. Be-
cause the major goal is to preserve confidentiality, integrity, and
availability of VM domain, the security architecture focuses on
three objectives: (1) make VM data unusable if intercepted (confiden-
tiality), (2) prevent unauthorized access to hardware accelerators
(integrity), and (3) identify breach attempts to respond accordingly

To/From Cloud Applications

Cloud Interface
2
Application Controller

Header Header
Extraction Insertion

Decision
Module

SessionKey_reg

Controller

XOR-tree

Mnt Interface

To/From Security Server

Interface

To/From Hardware Accelerator

Figure 2: Architecture of the Hardware Mandatory Access
Controller

(availability). The confidentiality is addressed by encryption means.
The integrity is implemented through mandatory access control.
The availability is ensured by a notification module embedded in
each VR on FPGA.

2.3.1 Security Server. The security server uniquely identifies the
communications sessions between VMs and FPGAs, implements
security policies defining the access rules, and monitors the en-
forcement of the security policies. The communication sessions
implement the Rule 2 of the security formalism as they allow enable
requests between application in VM and VR on FPGA.

Communication Session Generation: The communication
sessions between VMs and FPGAs are identified by generated ran-
dom numbers. A generated random number serves as sessionID
and is shared with both the VM and the hardware accelerator
through secured communication channels. To generate session-
IDs with satisfactory entropy, the Security Server implements a
cryptographically-secure pseudo-random number generator using
linux kernel random number interfaces [7]. It relies on device dri-
vers and other environmental noise such as timing variance on
processor operations in the Security Server to seed the random
number generation. After reaching a certain entropy threshold
based on the random events recorded, the random numbers can be
requested through system calls.

Security Policy Implementation: The Security Server imple-
ments and persists the guidelines defined in the security formalism
(see Section 2.2). It uniquely identifies each component of the sys-
tem (VMs, applications, FPGAs, and VRs) with specific identifiers,
implementing Rule 1 of the security formalism. It also stores access
matrices that are used to bind hardware resources to VM domains
at run-time. The access matrices trace the VM applications running
within the VRs. Each VR is distinguished based on the FPGA it is
provisioned from. The security policies expressed as access rules
are stored in the "Security Policy Database".

Enforcement Monitoring: The monitoring of the security pol-
icy enforcement is achieved through hardware interrupts. Any
unauthorized attempt to access the hardware accelerators within a
VM domain is reported to the Security Server by the HMAC. The

Security
Server

VMM | | HMAC | | Accelerator |

FPGA_access_req(Appj)| | User_req(App;)

<VR|p , FPGAp>

AIIocate_FPGA(A‘ppi,Acci)

VM session ID :J Gen_rand_sessionID()

Request_key()

Program_FPGA(Acc;) ﬂ

Response

i ,|session_key

VM session Key

VM session ID

]Gen_rand_session}(ey()

[En_HW_access(App;)

Memory address of FPGA accelerator

Send(mem_addresstGA;acc , eNncryptsession_key(Msg,VMsessioniD))

[DecrvPticsson rotpacken

]Check_sessionln() :

alt

[seTsionID not matching] D

Notify_secﬁrity_attack()

D ing]

Send_data(encrypted_response)

Forward_data(msg)

rocess_

]Encry .Lkey‘"‘ p ionlD)

Figure 3: Secured communication protocol

cloud provider is responsible from defining the actions that follow
a breach attempt.

2.3.2 Hardware Mandatory Access Controller. It works with the
Security Server to enforce the access control over FPGA accelera-
tors. Figure 2 shows the internal architecture of the HMAC. The
major components of the HMAC are the maintenance controller,
the true-random number generator (TRNG), the crypto module, and
the decision module. It also has sessionID register (SessionID_reg),
Session Key register (SessionKey_reg), header extraction and in-
sertion modules. The HMAC has three interfaces: a Management
Interface for secured communication with the Security Server, an
Accelerator Interface to stream data in and out of the hardware
accelerators, and a Cloud Interface enabling exchanges between the
hardware and software services running within VMs. For security
purposes, the Management Interface is not connected to physical
ports managed by the VMM.

Maintenance Controller: It implements the logic that is used
by the Security Server to access configuration resources such as
sessionID and Session Key registers. It also provides interfaces to
request the generation of random numbers.

True-Random Number Generator: The TRNG generates ran-
dom keys that are stored in the Session Key registers. The keys are
used by the crypto module to encrypt and decrypt the messages.
Encrypting communications ensures confidentiality (Rule 3 of the
security formalism). We implement Ring Oscillators (RO) as source
of entropy. The output of the XOR-tree is sampled in a synchronous
D flip-flop driven by the system clock to convert RO jitter into a
random digital sequence. Jitter, in this case, represents the deviation
caused by random process variation and temporal variations such
as random physical noise, environmental variations, and the aging
of the chip.

Crypto Module: The crypto module decrypts incoming traffic
and encrypts outgoing packets. Though other types of ciphers can

be used, we utilize the Advanced Encryption Standard (AES) with
128-bit keys and 10 rounds.

Decision Module: It decides whether an incoming packet is
forwarded to the accelerator or discarded. Figure 4 shows the struc-
ture of communication packets. The header stores the sessionID

<« Header 5 ¢————— Payload >
(SessionID | Operation Data)
<«— 16bits —»<— 1bit —»>€———128bits ———— >

Figure 4: Structure of communication packets

and the payload defines the operation (read or write) and data to
transfer. The sessionlID of incoming data are first checked against
the content of the sessionID register. The access to the accelerator is
granted when both values match (Rule 4 of the security formalism).
An interrupt is generated to the Security Server if the two values
do not match (to support Rule 5 of the security formalism).

2.3.3 Secured Communication Protocol. We propose the secured
communication protocol between hardware and software illustrated
in Figure 3.

It essentially involves five components that are: a VM applica-
tion, the Security Server, the VMM, the HMAC, and the Accelerator
on FPGA. The protocol provides hardware-level access controls
to ensure that only a designated VM can use an accelerator in a
VR. Initially, a VM application submits an FPGA access request to
the Security Server with the netlist of the hardware function to
program as a parameter. The Security Server then forwards the
request to the VMM that allocates FPGA resources. While the VMM
programs user design into FPGA, the Security Server records the
VM-FPGA region binding and generates a random sessionID num-
ber that is shared with the VM. Next, the Security Server requests
a Session Key from the HMAC of the FPGA region hosting the

Table 1: Area overhead of the VR on FPGA

ALMs [ALUTs | Registers | M20Ks

Total 185000 | 185000 740000 2100
Used 2830.1 3145 2152 4
Utilization 1.53% 1.7% 0.29% 0.19%
Other Controls | 2664 44 667 0
HMAC 2563.7 3101 1485 4
— TRNG 261 300 275 0
— Decrypt 1213.2 1496 632 4
— Encrypt 1089.5 | 1305 578 0

user design. The Security Server also shares the sessionID with the
HMAC to enable hardware-level authentication. Once these initial
configurations are completed, the Security Server asserts the VMM
to assign the memory space of the FPGA accelerator to the VM.
Then, communication between VM and hardware can start. The
VM also decrypts the response from the hardware to ensure that the
received sessionID matches the value previously sent by the Secu-
rity Server. Overall, the secured communication protocol relies on
a two-step authentication between VM and FPGA accelerator that
uses a 128-bit session key, and a 16-bit sessionID, or o144 possible
combinations at a time. The session keys and sessionIDs are both
generated at hardware level on the FPGA and Security Server to
ensure randomness. Though we use 128-bit session keys and 16-bit
sessionIDs in our implementation, the architecture can accommo-
date wider data widths. After a time window defined by the cloud
provider, the Security Server initiates the generation of new session
keys and sessionIDs to reduce the risk of security breach.The system
configuration are only performed by an authorized administrator
(Rule 6 of the security formalism).

3 EXPERIMENTAL EVALUATION

In this section, we evaluate the proposed security architecture.
We start by discussing the overhead in FPGA resource and con-
figuration time of the security architecture. Next, we study the
randomness observed after prototyping the proposed architecture.
Finally, we conduct a case study to show that the proposed ap-
proach maintains confidentiality, integrity, and availability against
malicious VMs and VMMs.

3.1 Evaluation Infrastructure

We prototype the described isolation architecture in a cloud config-
uration with a node that runs VMs. The cloud is set up on a Dell
R74151 EMC server with a 2.09GHz AMD Epyc 7251 CPU and 64GB
of memory. The node runs CentOS-7 with a kernel of version 3.10.0.
We use an Intel Stratix V FPGA (5SGXMB5R1F40C1) as testing de-
vice and Intel Quartus Prime 18.1.0 Standard Edition to synthesize,
place and route hardware designs. The FPGA is connected to the
server through a PCle Gen3x8 interface. QEMU 2.11.50 emulates
the VMs, each VM running on Ubuntu 16.04.01 with 4GB of RAM.

3.2 Observations

3.2.1 FPGA Resource Overhead. We start by evaluating the re-
source overhead of implementing the security components on

5stage M 9stage @13 stage D17 stage

o o

Hamming Distance
N & O ©®©
o o

o

1 5 9 13 17 21 25

Figure 5: Hamming distance between the random numbers
generated by the HMAC for 128-bit keys

FPGA. We specifically focus on the VRs without considering hosted
hardware accelerators. Table 1 shows that the VR and HMAC use
2830.1 ALMs, 3145 ALUTs, 2152 registers and 4 M20Ks memory
units (~1% of the FPGA area). Therefore, integrating the HMAC
within VRs does not result in significant resource overhead.

3.2.2 Configuration and Communication Overhead. To evaluate the
configuration overhead introduced by the proposed architecture,
we assess the time needed to generate sessionIDs and session keys.
We do not measure the time needed to program hardware accelera-
tors on FPGA as it is not influenced by our proposed approach. In
average, the generation of sessionID in the Security Server takes
about 10ms. On the other hand, at the hardware level, HMAC gen-
erates a new session key in 1.84ns. Finally, a roundtrip between
Security Server and HMAC (such as requesting a session key and
collecting the result) takes in average ~34ps. Overall, the different
configuration steps illustrated in Figure 3 only introduce configura-
tion overhead in the order of milliseconds. After prototyping the
FPGA architecture on the Stratix V device, the HMAC achieves a
maximum frequency of 542MHz. The encryption and decryption
steps consume 12 clock cyles (10 clock cycles for the 10 rounds,
1cycle for loading the key, and 1 cycle for returning the result). At
the level of the HMAC, incoming packets take 14 cycles to reach
the accelerator or be discarded (12 cycles to decrypt, 1 cycle to
extract the header, and 1 cycle to decide whether the packet will be
accepted or not). Each outgoing traffic requires 13 cycles (1 cycle
to insert the header, 12 cycles to encrypt) to be forwarded to VMs
through the Cloud Interface. Festus et al. [4] proposed an isolation
approach that incurred 3 clock cycles of latency on FPGA. However,
their architecture does not ensure confidentiality as data is not
encrypted.

3.2.3 Quality of Randomness. We evaluate the randomness of the
generated sessionIDs and session keys using the Hamming distance
[2]. It quantifies the extent to which two bitstrings differ. We gen-
erate 50 sessionIDs and 50 session keys and measure the Hamming
distance between the 25 pairs of generated numbers. Figure 5 sum-
marizes the results from implementing 5-stage through 17-stage
RO-based TRNGs with 30 ROs. We observe that the number of
stages does not significantly influence the difference between con-
secutive session keys. On average, the Hamming distance between
the 128-bit session keys generated is 63.45, which means that be-
tween successive keys, there may be up to ~ 263 possible numbers,
making it hard to predict. Similarly, Figure 6 show that successive
16-bits sessionIDs generated by the Security Server varies by 8.64
bits on average, corresponding to more than 256 possibilities. Fur-
ther, we use the NIST Statistical Test Suite [1] to study each of the

[y
(%)

=
o

Hamming Distance

o (5.}
= R
L)
SRR

5 9 13 17 21 25

Figure 6: Hamming distance between the random numbers
generated by the Security Server for 16-bit session IDs

50 strings of 144 bits (16-bit sessionID + 128-bit session key). While
we could only run 11 test scenarios (the 4 other tests required wider
data with) out of the possible 15, we observed P-values ranging
from 0.110904 to 0.990904, indicating that the generated number
are sufficiently random. Overall, distributing the generation of the
sessionIDs and session keys across two different entities (FPGA
and Security Server), that rely on unpredictable hardware variation,
form the root of trust in the proposed domain isolation architecture.
In addition, the communication protocol also relies on recurrent
update of sessionIDs and session keys at run-time.

Table 2: Resource overhead of the JPEG accelerator with se-
cured communication protocol

[[ALM [ALUT [Registers [M20K [DSP |
Available 185000 185000 740000 2100 399
No HMAC | 18202 (9.8%) | 17777 (9.6%) | 32765 (4.4%) | 8 (0.4%) | 399 (100%)
With HMAC | 20550 (11.1%) | 21032 (11.4%) | 33864 (4.5%) | 12 (0.6%) | 399 (100%)
Overhead 12.9% 18.31% 3.35% 50% 0%

3.3 Case Study

This experiment shows how the proposed architecture preserves
the confidentiality, integrity, and availability of a VM domain. We
program a VR with a JPEG encoder. It takes as input 32-bit values (8
bits for red, 8 bits for green, and 8bits for blue signals) and returns 32-
bit JPEG streams. Table 2 compares the resource utilization of the VR
with and without the HMAC. It indicates that inserting the HMAC in
the virtualization stack for FP-
GAs does not incur significant VM1 Gop VMg G
A

resource overhead. The LUT uti-

[Session Key | [_Sessionkey |
lization went from 9.6% to 11.4% -
when using a HMAC. We con- ’ KVM | @op
:
sider two VMs: VM; and VM,. 3
The VR running the JPEG en- ’ HMAC r;:‘fxq ‘

coder is assigned to VM;. We - -
simulate a scenario in which
a malicious VM and compro-
mised VMM are used to attempt

breaching VM;’s domains. Fig- JPEG EncoderAccelerator
ure 7 illustrates the test scenario. FP\Q,QA
While VM, and a malicious ap-
plication in the VMM can ac-
cess VM;’s FPGA address space,
they do not have the correct ses-
sionID and session key. As a result, we observe that only the read

Encoder

Input
Memory
utput
emory

o=

Figure 7: Illustration of
the domain isolation

and write requests from VM; are accepted by the HMAC. The re-
quests from VM, and the VMM are discarded, and the Security
Server is notified. The cloud provider or cloud administrator is then
responsible to decide the actions that follow any breach attempt.
In summary the proposed security architecture preserves confi-
dentiality by encrypting data before any transfer; integrity as VR
data is protected by the HMAC from unauthorized changes ; and
availability as the hardware notification mechanism in the HMAC
allows to engage actions pre-defined by the cloud provider.

4 CONCLUSION

In this work, we presented a hardware/software architecture aim-
ing at domain isolation in FPGA-accelerated cloud and data center
applications. We proposed a set of security rules that enforce confi-
dentiality, integrity, and availability. Next, we presented a security
architecture implementing the features of the proposed security for-
malism. Experiments showed that the proposed hardware/software
architecture enables domain isolation between cloud co-tenants
while maintaining a low hardware footprint and reduced commu-
nication overhead.

ACKNOWLEDGEMENT

This work was funded by the National Science Foundation (NSF)
under Grant CNS 2007320.

REFERENCES

[1] Lawrence E Bassham IIl, Andrew L Rukhin, Juan Soto, James R Nechvatal, Miles E
Smid, Elaine B Barker, Stefan D Leigh, Mark Levenson, Mark Vangel, David L
Banks, et al. 2010. Sp 800-22 rev. 1a. a statistical test suite for random and pseudo-
random number generators for cryptographic applications. National Institute of
Standards & Technology.

[2] Abraham Bookstein, Vladimir A Kulyukin, and Timo Raita. 2002. Generalized
hamming distance. Information Retrieval 5, 4 (2002), 353-375.

[3] Festus Hategekimana, Joel Mandebi Mbongue, Md Jubaer Hossain Pantho, and
Christophe Bobda. 2018. Inheriting software security policies within hardware
ip components. In 2018 IEEE 26th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM). IEEE, 53-56.

[4] Festus Hategekimana, Joel Mandebi Mbongue, Md Jubaer Hossain Pantho, and
Christophe Bobda. 2018. Secure Hardware Kernels Execution in CPU+ FPGA
Heterogeneous Cloud. In 2018 International Conference on Field-Programmable
Technology (FPT). IEEE, 182-189.

[5] Chenglu Jin, Vasudev Gohil, Ramesh Karri, and Jeyavijayan Rajendran. 2020.
Security of cloud FPGAs: A survey. arXiv preprint arXiv:2005.04867 (2020).

[6] Yukui Luo and Xiaolin Xu. 2019. Hill: A hardware isolation framework against
information leakage on multi-tenant fpga long-wires. In 2019 International Con-
ference on Field-Programmable Technology (ICFPT). IEEE, 331-334.

[7] Nikos Mavrogiannopoulos. 2019. Understanding the Red Hat Enter-
prise Linux random number generator interface. retrieved February 11,
2021 https://www.redhat.com/en/blog/understanding-red-hat-enterprise-linux-
random-number-generator-interface.

[8] Yoshihiro Oyama, Tran Truong Duc Giang, Yosuke Chubachi, Takahiro Shina-
gawa, and Kazuhiko Kato. 2012. Detecting malware signatures in a thin hypervi-
sor. In Proceedings of the 27th Annual ACM Symposium on Applied Computing.
1807-1814.

[9] David Pellerin. 2016. Amazon EC2 F1 Instances. retrieved July 14, 2020 from
https://aws.amazon.com/ec2/instance-types/f1/.

[10] Sujan Kumar Saha and Christophe Bobda. 2020. FPGA Accelerated Embedded
System Security Through Hardware Isolation. In 2020 Asian Hardware Oriented
Security and Trust Symposium (AsianHOST). IEEE, 1-6.

Ashish Singh and Kakali Chatterjee. 2017. Cloud security issues and challenges:
A survey. Journal of Network and Computer Applications 79 (2017), 88-115.
TACC. 2019. A Reconfigurable Architecture for Large Scale Machine Learning.
retrieved February 17, 2021 from https://www.tacc.utexas.edu/systems/catapult.
Shanquan Tian, Wenjie Xiong, Ilias Giechaskiel, Kasper Rasmussen, and Jakub
Szefer. 2020. Fingerprinting cloud FPGA infrastructures. In Proceedings of the
2020 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays.
58-64.

[11

[12

[13

