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Abstract— Visual-inertial SLAM is essential for robot navi-
gation in GPS-denied environments, e.g. indoor, underground.
Conventionally, the performance of visual-inertial SLAM is
evaluated with open-loop analysis, with a focus on the drift
level of SLAM systems. In this paper, we raise the question
on the importance of visual estimation latency in closed-loop
navigation tasks, such as accurate trajectory tracking. To
understand the impact of both drift and latency on visual-
inertial SLAM systems, a closed-loop benchmarking simulation
is conducted, where a robot is commanded to follow a desired
trajectory using the feedback from visual-inertial estimation. By
extensively evaluating the trajectory tracking performance of
representative state-of-the-art visual-inertial SLAM systems, we
reveal the importance of latency reduction in visual estimation
module of these systems. The findings suggest directions of
future improvements for visual-inertial SLAM.

I. INTRODUCTION

Vision-based state estimation techniques, such as Visual
Odometry (VO) and Visual Simultaneous Localization and
Mapping (VSLAM), are essential for robots to autonomously
navigate through unmapped scenes. VO often forgets the
sensed world structure, while VSLAM retains a long-term
map of the traversed world. In the absence of absolute po-
sition signals such as from GPS, VO/VSLAM complements
traditional wheel/inertial-based odometry.

Compared with VO/VSLAM that relies on vision sen-
sor only, visual-inertial SLAM (VI-SLAM) uses the two
complementary data streams to achieve better accuracy and
robustness, and higher frequency, of state estimation. The
visual sensor provides accurate, yet sparse and delayed
measurements of absolute landmarks in the environment.
Estimation drift is mitigated by observing and matching
landmarks with a long but potentially intermittent measure-
ment history. The inertial sensor provides high-rate, almost-
instantaneous, yet drifting measurements of robot motion.
Inertial measurements compensate for short duration visual
feature loss (e.g. in texture poor settings). The pose estimates
of a VI-SLAM system can be sent to a controller as a high-
quality feedback signal in support of trajectory tracking as
the mobile robot navigates through an environment.

While the ultimate use case of VI-SLAM in robotics
is closed-loop navigation, traditional benchmarking of VI-
SLAM employs open-loop analysis, i.e., the SLAM output
doesn’t affect actual robot actuation and future sensory input.
Though reflecting the estimation drift level of VI-SLAM,
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Fig. 1. Impact of visual processing latency in VI-SLAM (best viewed
in color). Assuming 100% correct visual estimation and purely-random
IMU noise, the only source of error in visual-inertial state estimation is
accumulated IMU bias (quadratic in time). Top: trend of visual-inertial state
estimation error when visual estimation takes 75% of the visual processing
budget. Bottom: same error trend when visual estimation takes 50% of the
budget. Reduced latency yields a reduced state estimation error.

open-loop evaluation fails to fully address the coupled impact
of navigation and VI-SLAM estimation during closed-loop
operation. For targeted closed-loop navigation, it is hard to
gain insights on VI-SLAM from published open-loop bench-
mark scores. To address this benchmarking gap, we present
an open-source [1], reproducible benchmarking simulation
for closed-loop VI-SLAM evaluation, and the outcomes from
evaluating several VI-SLAM methods using it. Reproducible,
closed-loop benchmarking should serve to guide future VI-
SLAM research for mobile robotics.

Though VI-SLAM drift is a critical factor influencing
closed-loop navigation performance, the latency of visual
estimation may also play an important role when in closed-
loop. As illustrated in Fig. 1, latency-reduction on the
visual processing sub-system could improve the accuracy
of fused visual-inertial state estimate due to the quadratic
(in time) nature of accumulated IMU bias. Therefore, this
paper studies the impact of both drift and visual estima-
tion latency of VI-SLAM with closed-loop benchmarking
simulation, by implementing and testing several published
VI-SLAM systems with different run-time properties. The
closed-loop benchmarking outcomes suggest that VI-SLAM
systems must balance drift and latency.

II. RELATED WORKS

This section first reviews existing works on visual-inertial
state estimation for closed-loop navigation. The term VI-
SLAM will be used to indicate both visual-inertial odometry
(VIO) and visual-inertial SLAM. After, it reviews evaluation
methods for VI-SLAM with a discussion of benchmarking
for closed-loop trajectory tracking.

2020 IEEE International Conference on Robotics and Automation (ICRA)
31 May - 31 August, 2020. Paris, France

978-1-7281-7395-5/20/$31.00 ©2020 IEEE 1105

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 17,2021 at 20:14:16 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2. Distributions of feature matching baselines for 3 commonly used
image processing front-ends as computed for the EuRoC MAV benchmark
[21]: feature descriptors in ORB-SLAM (ORB) [22], KLT in MSCKF [7],
and direct SVO [17]. For each feature/patch, the baseline is assessed by the
length of life: from the first-measured frame to the last-measured frame.
The feature-based front-end (ORB) extracts more long-baseline feature
matchings than the KLT and direct methods.

A. VI-SLAM in Closed-Loop Navigation

There is a long history of using filters in visual-inertial
state estimation for mobile robots (e.g., EKF [2]; MSCKF
[3]; [4]). The combination of sparse optical flow (e.g., KLT
[5]) and MSCKF has been recognized as an efficient VI-
SLAM solution [6]–[8]. A downside of most filter-based
methods is the low mapping quality, which affects long-term
navigation with location revisits.

VI-SLAM running Bundle Adjustment (BA) retains an
explicit map, which promotes higher accuracy and long-term
robustness of state estimation. To bound the cubic computa-
tional cost of BA, BA-based VI-SLAM typically works with
a subset of historical information (keyframes and landmarks)
sub-selected using a sliding window [9] or a covisibility
graph [10]. Representative BA-based VI-SLAM includes
feature-based OKVIS [11], KLT-based VINS-Fusion [12]
and Kimera [13]. Closed-loop navigation with OKVIS has
been demonstrated on both ground [14] and aerial robots
[15]. Full navigation has been demonstrated with VINS-
Fusion on a micro-air vehicle (MAV) [16]. Kimera [13]
estimates 3D mesh on-the-fly, which benefits navigation.

Recently direct VI-SLAM systems have been derived;
they do not require explicit feature extraction and matching.
Direct systems jointly solve data association and state estima-
tion by optimizing an objective functional using raw image
readings. Direct VI-SLAM systems such as SVO [17] and
ROVIO [18] have been integrated into closed-loop navigation
systems [19], [20]. While both KLT and direct VI-SLAM are
computationally cheaper than feature-based VI-SLAM, they
are more sensitive to navigation-based conditions: e.g. they
require accurate pose prediction (from inertial) and minimal
light condition changes. Furthermore, both KLT and direct
methods are mostly characterized by short-baseline feature
matches. Feature descriptor matching, on the other hand, can
find reliable long-baseline feature matches for improved state
estimation (see Fig. 2).

B. Evaluation of Closed-Loop Trajectory Tracking

Open-loop evaluation of different VI-SLAM methods has
been extensively conducted in the literature, e.g. on multiple
datasets [23], [24], on multiple computation devices [25]–
[27], and for multiple synthetic environments [28], [29].
Closed-loop evaluation of different VI-SLAM methods in

navigation tasks, however, is investigated less. On-board
evaluation tends to be reported for individual implementa-
tions [4], [30]. One challenge of closed-loop evaluation is
that closed-loop navigation is not just a software problem;
the performance of the full system is affected by sensor
choice, computational resources, system dynamics, and target
environment. All these factors need to be experimentally
controlled to comprehensively evaluate the performance of
closed-loop navigation using VI-SLAM.

One way to conduct comprehensive and repeatable closed-
loop evaluation is via simulation. Several existing simulators
are commonly used in the robotics community. Gazebo [31]
is one of the most popular simulators, with MAV-specific ex-
tensions such as RotorS [32]. AirSim [33] is another choice,
with photorealistic renderings of visual data via Unreal
Engine. A more recent development incorporates hardware
in the loop [34]. The approach captures the trajectory of
the actual robot on the fly, while rendering virtual visual
data on a remote workstation to collect actual data under
real physics and virtual data from an easy-to-extend renderer.
However, ground truth acquisition relies on a MoCap device,
which is hard to scale beyond room-sized environment. To
properly benchmarking VI-SLAM in closed-loop navigation,
the benchmarking framework needs to be re-configurable to
cover a variety of factors, such as sensor configurations,
computational & robot platforms, and target environments.
Furthermore, ground truth coverage is required over the
entire course of navigation. This work aims to fill a existing
gap by presenting an open-source, closed-loop benchmarking
framework that supports the above requirements, and serves
to provide performance insights on representative VI-SLAM
systems based on the closed-loop evaluation results.

III. CLOSED-LOOP SYSTEM OVERVIEW

The closed-loop trajectory tracking system consists of two
major subsystems, illustrated in Fig. 3 and described as: 1)
a VI-SLAM system taking vision & inertial data to generate
high-rate state estimates and low-rate map updates; and 2)
a controller using high-rate output from the pose track-
ing module of VI-SLAM to generate actuator commands.
Though this paper covers only stereo-inertial sensory inputs,
the system supports other common visual sensors such as
monocular and RGB-D cameras.

While both mapping and loop closing are essential for ac-
curate and robust state estimation, these two modules require
high computation, and typically operate at a much lower
rate than pose tracking (usually by an order of magnitude).
Therefore the high-rate pose estimation required in feedback
control is collected by the pose tracking module. This study
explores the efficiency and accuracy of the pose tracking
module when used for feedback. A variety of VI-SLAM
systems are integrated into the closed-loop system, covering
representative design options such as loosely/tightly-coupled
visual-inertial fusion, direct/feature-based data association,
and filter/BA-based back-end.

The focus of this study is the trajectory tracking perfor-
mance of VI-SLAM systems when used in the closed-loop.
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Fig. 3. Overview of the closed-loop trajectory tracking system. The Gazebo
simulator sends out sensory data to VI-SLAM. The pose-tracking module
of VI-SLAM processes the data, and outputs high-rate pose estimation.
In closed-loop benchmarking (red switch at “C”), the pose estimation is
taken by the controller to generate high-rate actuator command, which is
sent back to the simulated robot in Gazebo. Performance is quantified by
comparing desired and actual trajectories (solid underlined text). In open-
loop benchmarking (red switch at “O”), the controller generates commands
based on the true pose, available from the simulator. Performance is
quantified by comparing true and estimated poses (dashed underlined text).

The tracking performance can be reflected by computing
the pose error between the desired and actual trajectories,
accumulated over the entire course of navigation. Here we
report the root mean square of the translation error between
the desired and actual trajectories, dubbed tracking RMSE,
as the performance metric. Tracking RMSE matches the
formulation of ATE [35], commonly used in open-loop
evaluation, but works with actual robot trajectory. It directly
measures the end performance of the trajectory tracking
system, thereby capturing the joint effect of pose tracking
drift and latency. Additional metrics that capture orientation
error are reported online (see [1]).

The mobile robot used in the simulation is the differential
drive TurtleBot2. Mounted to the robot are a 30fps stereo
camera with an 11cm baseline, and an IMU placed at its
base. Data streams from both the stereo camera and IMU
are input to the VI-SLAM system, which outputs SE(3)
state estimates. The trajectory tracking controller uses the
SE(2) subspace of the SE(3) estimate to track the target
trajectory. The next subsections describe the implemented
VI-SLAM systems, the trajectory tracking controller, and the
simulation setup in Gazebo/ROS.

A. Visual-Inertial SLAM Systems

Several publicly available stereo(-inertial) SLAM imple-
mentations were selected for integration into the closed-loop
benchmarking system. The five implementations are:
1) MSC: MSCKF-VIO [7] + MSF [36]. MSCKF-VIO is

a tightly-coupled VIO system, with KLT-based front-
end and MSCKF back-end. EKF-based sensor fusion,
MSF [36], densifies the low-rate estimation output from
MSCKF-VIO, before sending it to controller. No loop
closing is included.

2) VINS: VINS-Fusion [12] is a tightly-coupled VI-SLAM
with KLT-based front-end and BA-based back-end. VINS
has a large latency due to the BA. It does provide a low-
latency, high-rate IMU propagation signal, which is sent
to controller. VINS comes with loop closing, which is
preferred in long-term revisit scenarios. A circular motion
is executed to initialize VINS prior to starting the SLAM

estimation process.
3) SVO: SVO [17] + MSF. An efficient, loosely-coupled

VIO system that consists of direct SVO and MSF fu-
sion. No loop closing module. SVO has the lowest pose
tracking latency of the methods listed.

4) ORB: ORB-SLAM [22] + MSF. ORB-SLAM has a
feature-based front-end and BA-based back-end. Due to
the computational-costly feature extraction and matching,
ORB-SLAM has a large visual estimation latency. Similar
with MSC and SVO, MSF is integrated into ORB to
generate a high-rate estimation signal.

5) GF: Lazy-GF-ORB-SLAM [24] + MSF. A loosely-
coupled modified version of ORB with two efficiency
modifications: good feature and lazy stereo. Good fea-
ture matching performs targeted map-to-frame matching
under an upper bounded matching budget. The lazy stereo
modification partitions the stereo ORB-SLAM computa-
tions into those necessary for immediate pose estimation
versus those that assist future pose estimation compu-
tations. The former is prioritized to run first, therefore
enabling more rapidly output of pose estimation. These
two modifications lower the latency without significant
impact on the accuracy of pose estimation.

If no initialization approach is described, then the default
is to keep the robot static for 10 seconds before starting a
closed-loop/open-loop run.

B. Feedback Control
The desired trajectory d∗(t) ∈ R2 is constructed from

a series of specified waypoints using splines. An exponen-
tially stabilizing trajectory tracking controller for Hilare-style
robots [37] generates a kinematically feasible trajectory for
the robot to follow. In the following discussion, constraints
on accelerations and velocities are omitted for clarity, though
they exist within the actual implementation.

The robot pose as a function of time g(t) ∈ SE(2) obeys
follows the control equations:

ġ = g ·

ν0
ω

 and
ν̇ = u1

ω̇ = u2
(1)

where ν is the forward velocity and ω is the angular velocity,
both in the body frame. The signal u = (u1, u2)T coordinates
are the forward and angular acceleration (in body frame).

The controller used relies on the differential flatness of the
robot motion to achieve exponential stabilization of a virtual
point in front of the robot (by a distance λ) [37]. Define the
λ-adjusted rotation matrix and angular velocity matrix,

Rλ = R · diag(1, λ) and ω̂(λ, λ̇) =

[
0 −λω
1
λω

λ̇
λ

]
, (2)

where R is the rotation matrix given by the orientation in
g. For e1 the unit body x̂-vector in the world frame, the
trajectory tracking control law is

u = cpR
−1
λ (d∗ − d− λ ∗Re1) + cd

(
R−1
λ ḋ∗ − V

)
− cdλ̇e1 − ω̂(λ, λ̇)V − (ω̂(λ, λ̇)− cλI)λ̇e1, (3)
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Fig. 4. The virtual office world. Left: Top-down view. The robot starts
at the top-left corner, facing the long corridor. Right: Example images
captured by on-board stereo camera (left camera).

where cp, cd, cλ are feedback gains and V =
[
ν |ω

]T
. The

additional offset dynamics are

λ̇ = −cλ(λ− ε), where λ(0) > ε > 0, cλ > 0. (4)

The dynamical system represented by Eqs 1-4 yields a
reference trajectory of robot poses g∗(t) and body velocity
components V ∗(t) for tracking the desired trajectory d∗(t).
The offset variable λ∗(t) can be ignored.

The real time trajectory controller drives the robot to
track the reference trajectory based on feedback of the
robot’s estimated state (an SE(2) substate of the SE(3) state
estimate). These control commands are:

νcmd = kx ∗ x̃+ ν∗

wcmd = kθ ∗ θ̃ + ky ∗ ỹ + ω∗ (5)

where [x̃, ỹ, θ̃]T ' g̃ = g−1g∗ is the relative pose error
between the current state g and the desired state g∗ in body
frame. In the absence of error, the control signal is V ∗(t).

C. Simulation Setup
This section describes the Gazebo-simulated environment

for testing closed-loop trajectory tracking with VI-SLAM
systems. The scene created for robot navigation is a virtual
office world (Fig. 4). The world is based on the floor-
plan of an actual office, with texture-mapped surfaces. The
walls are placed 1m above the ground plane since collision
checking and path planning is outside the scope of this paper.
Introducing collision avoidance would add another coupling
factor to the closed-loop system, which would introduce
unneeded difficulty in identifying the source of tracking error
(i.e., was it to avoid a collision or due to poor estimation?).

Six test trajectories were created for the closed-loop
navigation experiments, each with different characteristics
(Fig. 5). The first two are relatively short (∼50m), with
few to no revisits. The 3rd and 4th trajectories are both
of medium length (∼120m). The 3rd has many revisits
as it retraces the trajectory once, whereas the 4th crosses
earlier trajectory segments facing the opposite direction or
transverse to them. The last 2 trajectories are long (∼240m).
The 5th retraces trajectory segments, while the 6th does
so facing in the opposite direction. All trajectories have
the same start point for the robot, the origin of the world.
Three desired linear velocities are tested: 0.5m/s, 1.0m/s, and
1.5m/s. Based on these velocities, the navigation course in
simulation lasted from 30 seconds up to 480 seconds.

Fig. 5. All 6 desired trajectories used in closed-loop navigation experi-
ments. Each desired trajectory is color-coded to show the direction of travel.

IV. EXPERIMENTAL RESULTS

This section describes the outcomes of two main experi-
ments. The first involves open-loop evaluation of the stereo
VI-SLAM methods, where the controller takes true poses in-
stead of VI-SLAM estimations (red “O” in Fig. 3). The open-
loop evaluation serves two purposes: 1) it demonstrates that
the relative ranking of the methods in the simulated world is
roughly preserved when compared to video-recorded open-
loop benchmarks such as EuRoC [21], and 2) it characterizes
the functional domain of the simulation environment relative
to the benchmarks. The second experiment performs closed-
loop trajectory tracking tests, where the controller is fed
with VI-SLAM estimation (red “C” in Fig. 3). The objective
of closed-loop benchmarking is to identify the VI-SLAM
properties (i.e., drift, latency) that have impact on trajectory
tracking performance.

All 5 VI-SLAM systems parameter configurations were
found via parameter sweep. For each test configuration (de-
sired trajectory, desired linear velocity, VI-SLAM method,
and IMU), the benchmarking run is repeated five times,
so that random factors such as multi-threading and random
sensory noise are properly reflected. Two commonly-used
IMUs are simulated: a high-end ADIS16448 and a low-
end MPU6000. Open-loop benchmarking was performed on
an i7-4770 (single thread Passmark score: 2228). Closed-
loop benchmarking was performed on a dual Intel Xeon E5-
2680 workstation (single thread Passmark score: 1661). For
reference, most published closed-loop navigation systems
[4], [7], [8], [15], [16], [20], [38] employ an Intel NUC
whose CPUs score between 1900-2300 (single thread). The
full stack, including the simulator, integrated VI-SLAM
systems and trajectory tracking controller, are released [1].

A. Open-Loop Outcomes and Analysis

Given that simulation and recorded open-loop benchmark
data may not align, this section conducts a comparison for
verification of the domain of applicability for the simulation.
The comparison shows that simulated scenes have some
overlap with existing benchmarks though they do not span
the entire domain. Based on the similarity, closed-loop im-
plementations should have predictive power when the closed-
loop system is deployed in equivalent real-world settings.
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TABLE I
CHARACTERIZATION OF BENCHMARKS

Seq. Duration Motion Revisit Feats.
MH 03 med medium medium high 235
MH 04 diff short high high 235
VR1 01 easy medium medium high 227
VR2 02 med short medium high 246
MH 05 diff short high high 240

s1 short low-high low 131
s2 short low-high low 126
m1 short low-high high 122
m2 medium low-high low 115
l1 medium low-high high 121
l2 medium low-high med 114

A subset of the EuRoC sequences and the simulated
open-loop sequences are characterized in Table I, using the
benchmark properties evaluated in [39]. The duration profile
is defined with medium describing an interval of [2, 10]
minutes. The motion profile is categorized from low (0.5 m/s)
to medium (1.0 m/s) to high (1.5 m/s). The revisit frequency
is a function of the trajectory followed and how often there
is co-visibility of features across trajectory segments that are
temporally distant. One additional statistic captured is the
average number of features tracked per frame using ORB
(last column). Simulation sequences exhibit less texture than
EuRoC ones. There is sufficient overlap in the characteris-
tics of the two benchmarks, with the simulation reflecting
slightly more diverse scenarios. Qualitatively, the simulation
sequences are comparable or harder benchmarking cases
relative to the EuRoC sequences.

To compare further, we ran open-loop benchmarking
against ground truth to get a sense for the pose estimation
properties of the VI-SLAM algorithms and whether the two
benchmark sets agree in terms of relative ordering. The
results averaged from 5-run repeats of the medium motion
profile are summarized in Tables II and III, where the track
loss cases are omitted (dashes). According to the tables,
the ATE between VI-SLAM estimation and ground truth is
usually lower for EuRoC sequences. Both SVO and VINS
exhibit outliers in EuRoC relative to the prevailing values
across all methods, with SVO having one and VINS having
three. They occur for the MH sequences, suggesting that
these might be more problematic in general for VINS and
SVO. However, SVO and VINS also have one track failure
for the simulated cases. Overall, the outcomes align with the
previous claim that the simulation sequences are comparable
to or harder than EuRoC. If track failure is added as a
penalty to the simulation performance outcomes, then the
rank ordering of the algorithms agree between EuRoC and
simulation. GF typically has the lowest ATE, while VINS
has the highest ATE. Furthermore, the relative orders of
latencies for different VI-SLAM agree: SVO is lowest, and
VINS is highest (MSC is unique in that is has mismatch).
The comparisons support using simulation to benchmark VI-
SLAM, with validity for specific deployment conditions.

B. Closed-Loop Outcomes and Analysis

Trajectory tracking performance is quantified in Tables IV
and V. The tracking RMSE between the desired and actual

trajectories reflects an average of the 5-run repeats. Cases
with average RMSE over 10m are considered navigation
failures and omitted (dashes). The average latency of visual
estimation in each VI-SLAM is reported in the bottom row
of each table (algorithms sorted to be in ascending order).

According to Tables IV and V, both VINS and ORB
fail under multiple configurations. Compared to ORB, the
success rate and RMS of GF are significantly improved.
The reduction of visual estimation latency contributes to the
improvement, since the open-loop outcomes of ORB and GF
are similar in terms of drift, but are quite different in terms of
latency. The outcomes suggest that meeting standard frame-
rate latency levels (∼30ms) is best, and quite possibly es-
sential for good closed-loop trajectory tracking performance.
The filter-based MSC is significantly affected by the IMU
data quality, as it fails to navigate for multiple low-end IMU
cases and higher velocity. The outcomes suggest an over-
reliance on the IMU for pose estimation, which is supported
by Fig. 2 where MSC has poor long-term data association
for detected features. Being able to re-associate to lost tracks
improves performance by linking against a known static
point in the world and improving absolute position estimates.
Otherwise, systems such as MSC rely on integrated estimates
which have poor observability properties.

The last two approaches to review are SV O and GF ,
which both successfully track the camera pose for all but
one sequence, each. These are the two strongest performing
methods. Interestingly they have different run-time proper-
ties. For both the open-loop and closed-loop evaluations,
SVO has the lowest latency but the highest drift, while GF is
the opposite. Their relative performance remained the same
from open-loop to closed-loop, modulo a small fraction of
sequences. It appears that low latencies are tolerant to higher
drift, whereas lower drift permits higher latency. Overall,
however, it appears that once the latency is low enough,
it is better to target accuracy enhancements over latency
enhancements for closed-loop trajectory tracking (for ground
vehicles in mostly static, feature sufficient, environments).
Comparing SVO and GF across the two IMU types indicates
that high-end IMUs provide the best error scaling to ground
speed, with GF being more consistent as the speed increased.

These quantitative outcomes can be seen qualitatively in
Fig. 6 and 7, which trace the closed-loop robot trajectories
for the different VI-SLAM methods. VINS goes out of
bounds for many runs. Focusing on the traces of SVO and
GF, it is clear that SVO has a higher estimation variance
across the runs for a given sequence, while GF trajectories
are more closely clustered. The properties hold irrespective
of the IMU type. Overall, GF appears to be the strongst
performer. As a modification of ORB, it seeks to reduce pose
estimation latency while preserving the beneficial properties
of ORB. The findings of this paper imply that prioritizing
accuracy while striving to achieve sufficiently small latencies
is an effective means to identifying a high performing VI-
SLAM for autonomous, mobile robot applications. Some
work is still needed to resolve the outlier cases for GF.
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TABLE II
OPEN-LOOP OUTCOMES ON EUROC (ATE IN M; LATENCY IN MS)

Seq. SVO MSC GF ORB VINS
MH 03 med 0.31 0.24 0.07 0.05 1.50
MH 04 diff 2.78 0.28 0.10 0.15 2.24
VR1 01 easy 0.05 0.12 0.10 0.04 0.35
VR2 02 med 0.19 0.22 0.04 0.09 0.35
MH 05 diff 0.47 0.28 0.04 0.20 2.32

Avg. ATE 0.76 0.23 0.07 0.11 1.35
Avg. Latency 16.4 28.3 20.7 38.5 93.5

TABLE III
OPEN-LOOP SIMULATION OUTCOMES (ATE IN M; LATENCY IN MS)

Seq. SVO MSC GF ORB VINS
s1 0.15 0.21 0.12 0.14 0.14
s2 0.12 0.14 0.11 0.38 0.13
m1 0.33 0.32 0.19 0.16 –
m2 0.45 0.29 0.19 0.20 0.33
l1 0.42 0.57 0.25 0.09 0.57
l2 - 0.51 0.29 0.38 0.47

Avg. ATE 0.29 0.34 0.19 0.23 0.32
Avg. Latency 9.3 14.2 26.2 47.5 62.0

TABLE IV
CLOSED-LOOP OUTCOMES WITH HIGH-END IMU ADIS16448 (TRACKING RMSE IN M; LATENCY IN MS)

0.5m/s 1.0m/s 1.5m/s
Seq. SVO MSC GF ORB VINS SVO MSC GF ORB VINS SVO MSC GF ORB VINS

s1 0.23 0.65 0.11 0.24 – 0.56 0.26 0.12 0.28 1.36 0.49 0.22 0.14 0.23 0.37
s2 0.18 0.46 0.09 0.43 – 1.13 0.38 0.08 – – 1.21 0.33 0.09 3.26 –
m1 0.92 1.54 0.12 0.31 – – 1.01 0.10 0.23 – 1.26 0.81 0.11 2.10 –
m2 0.36 2.23 0.14 – – 0.86 1.53 0.12 – – 1.87 0.68 0.14 – –
l1 2.12 2.73 – – – 1.79 6.67 0.15 – – 1.22 2.13 0.22 – –
l2 0.87 2.62 0.36 0.24 – 1.27 3.25 0.35 0.31 – 2.78 2.66 0.35 0.37 –

Avg. RMS 0.78 1.70 0.16 0.30 – 1.12 2.18 0.15 0.27 1.36 1.47 1.14 0.18 1.49 0.37
Avg. Latency 8.9 17.7 32.8 52.4 55.0 8.9 16.9 32.4 51.7 73.9 8.9 16.7 32.0 50.6 64.1

TABLE V
CLOSED-LOOP OUTCOMES WITH LOW-END IMU MPU6000 (TRACKING RMSE IN M; LATENCY IN MS)

0.5m/s 1.0m/s 1.5m/s
Seq. SVO MSC GF ORB VINS SVO MSC GF ORB VINS SVO MSC GF ORB VINS

s1 0.68 0.29 0.13 0.05 0.52 1.21 0.35 0.16 0.25 0.89 2.30 – 0.41 0.46 –
s2 0.62 0.40 5.00 0.96 – 0.96 0.35 0.10 – – 2.68 – 0.21 – –
m1 1.53 0.68 0.26 0.19 8.24 3.21 – 0.28 1.21 – 3.95 – 0.36 – –
m2 2.13 1.60 0.43 – – 2.33 – 0.53 – – 4.21 – 0.39 – –
l1 0.18 4.60 3.24 1.62 – 2.19 – 0.37 – – 2.46 1.87 3.41 – –
l2 0.21 3.74 0.36 – – 2.46 5.67 0.35 – – 1.86 1.92 0.32 – –

Avg. RMS 0.89 1.88 1.57 0.71 4.38 2.06 2.12 0.30 0.73 0.89 2.91 1.90 0.85 0.46 –
Avg. Latency 10.1 17.4 28.9 53.2 62.3 10.0 16.9 31.5 53.0 65.4 10.0 16.5 31.8 52.8 58.8

Fig. 6. Actual trajectories the robot traveled for each desired trajectory,
color-coded by method. Desired velocity is 1.0m/s and IMU is high-end.

Fig. 7. Actual trajectories the robot traveled for each desired trajectory,
color-coded by method. Desired velocity is 1.0m/s and IMU is low-end.

V. CONCLUSION

This paper investigated several stereo VI-SLAM methods
to understand their closed-loop trajectory tracking proper-
ties. The study was supported with a simulated Gazebo
environment shown to be representative of a specific set
of benchmark conditions. Analysis of the outcomes showed
that both latency and drift play important roles in achieving
accurate trajectory tracking. A VI-SLAM system built upon
ORB-SLAM, denoted by GF, provides the most accurate

trajectory tracking outcomes, which is consistent with its
open-loop performance. Other methods were less consistent;
SVO has high performance in closed-loop but poor per-
formance in open-loop, and ORB vice-versa. Future work
will extend the benchmarking environments with additional
mobile robots, rendering options, and visual environments
or settings. Importantly, integration with actual collision-
avoidance systems and the impact of environmental obstacles
on SLAM will improve the task-realism of the benchmark.
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