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ABSTRACT
The first bright objects to form in the Universe might not have been ‘ordinary’ fusion-powered stars, but ‘dark stars’ (DSs)
powered by the annihilation of dark matter (DM) in the form of weakly interacting massive particles (WIMPs). If discovered,
DSs can provide a unique laboratory to test DM models. DSs are born with a mass of the order of M� and may grow to a few
million solar masses; in this work we investigate the properties of early DSs with masses up to ∼1000 M�, fueled by WIMPS
weighing 100 GeV. We improve the previous implementation of the DM energy source into the stellar evolution code MESA. We
show that the growth of DSs is not limited by astrophysical effects: DSs up to ∼1000 M� exhibit no dynamical instabilities; DSs
are not subject to mass-loss driven by super-Eddington winds. We test the assumption of previous work that the injected energy
per WIMP annihilation is constant throughout the star; relaxing this assumption does not change the properties of the DSs.
Furthermore, we study DS pulsations, for the first time investigating non-adiabatic pulsation modes, using the linear pulsation
code GYRE. We find that acoustic modes in DSs of masses smaller than ∼200 M� are excited by the κ − γ and γ mechanism
in layers where hydrogen or helium is (partially) ionized. Moreover, we show that the mass-loss rates potentially induced by
pulsations are negligible compared to the accretion rates.

Key words: astroparticle physics – stars: evolution – stars: oscillations (including pulsations) – dark ages, reionization, first
stars – dark matter.

1 INTRODUCTION

The formation of the first stars in the Universe marks a turning point in
cosmic history, with implications for reionization, metal enrichment
of the intergalactic medium, and formation of the first galaxies. In
order to understand these processes, it is crucial to investigate the
stellar physics and nature of the first generation of stars. In the
standard cosmological model with a cosmological constant � and
cold dark matter (DM), the formation of the first stars is believed to
take place within minihaloes of masses ∼106–108 M� at redshifts
of z ∼ 10–50. The gravitational potential of these minihaloes is
dominated by DM, contributing ∼ 85 per cent of the total mass.
Baryons – providing the other ∼ 15 per cent of the minihalo mass –
are gravitationally pulled into the centres of the minihaloes, where
they start to dominate the central potential well and this central region
heats up. As a result, baryons radiate away their energy, cool off and
are able to become cool enough to form the first stars in those centres.
However, the details of this overall picture are complicated, and the
subject has branched into so many different aspects over the years,
that we cannot give a proper account of all the relevant literature
here. Instead, we will focus on a particular aspect, namely the impact
of DM particle physics onto the stellar evolution of so-called DSs.
In fact, this paper connects onto previous works that have focused
on the question of how DM impacts the first stars.

� E-mail: tanja.rindler-daller@univie.ac.at

As the first stars form at high redshifts, in the gravitationally
contracted centres of DM minihaloes, the high ambient DM densities,
ρχ , provide the potential for DM particles to significantly alter the
chemistry and physics of the formation and evolution of the first
stars at these redshifts. Among the canonical cold DM candidates
are weakly interacting massive particles (WIMPs) which, in many
particle theories, are their own antiparticles and can therefore annihi-
late with each other. This annihilation process in the early Universe
is able to leave the correct DM relic abundance today, commonly
referred to as the ‘WIMP miracle’. But annihilation becomes also
particularly important in regions with high DM density, ρχ , as the
annihilation rate of the DM particles scales with the density squared
(i.e. �ann ∝ ρ2

χ ). These high-density regions are exactly those sites
where the first stars are forming: at high redshifts (ρχ ∼ (1 + z)3),
in the dense centres of DM minihaloes.

The work of Spolyar, Freese & Gondolo (2008) showed that
WIMP annihilation can drastically alter the formation and evolution
of the first stars. Above a certain baryonic density threshold, DM
annihilation products remain trapped in the star, thermalize and
provide a heat source that dominates over all cooling mechanisms.
Subsequently, the protostellar cloud will continue to contract at a
slower rate until hydrostatic equilibrium is reached and a ‘dark star’
(DS) is born. In this work, we focus on the study of DSs fueled by
WIMPs with mass mχ = 100 GeV. Earlier studies of the effect of
different WIMP masses on the properties of DSs can be found in
Freese et al. (2008, 2010) for masses ranging between mχ = 1 GeV
and mχ = 10 TeV.
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It is important to stress that the first DSs are made primarily
of hydrogen and helium and less than ∼0.1 per cent of the mass
is contributed by DM. Nevertheless, they shine solely due to DM
heating. The term ‘dark’ refers to the power source, and not the
brightness or the primary matter constituent. A detailed review on
DSs can be found in Freese et al. (2016).

DSs are born with masses ∼ (1–10) M� and then can grow by
accreting material from the surrounding halo, as studied by Freese
et al. (2008, 2010). These studies determined that DSs are bright
(>106 L�), of low density (ρ� � 10−6 g cm−3), large (� 10 AU)
and cool (Teff < 10 000 K). Thanks to the low surface temperatures,
early DSs do not suffer feedback mechanisms that could prevent the
accretion of further material onto the star (such feedback processes
were already studied in Tan & McKee 2004), a limitation that
fusion-powered stars usually face. That property is a key to enable
DSs to keep growing until there is no further DM fuel. Therefore,
they can grow to supermassive size. If DSs grow to > O(105M�),
they reach luminosities of the order of (109–1011)L� (Freese et al.
2010; Rindler-Daller et al. 2015, henceforth abbreviated F10 and
RD15, respectively). These high luminosities put them into the
observable limits of next-generation telescopes, such as the James
Webb Space Telescope (JWST; Gardner et al. 2006), as was shown
in F10 and Ilie et al. (2012). In order to sustain the energy support
via DM annihilation over an extended period of time, there are two
mechanisms that can enhance the DM density in the centre of the DS:
(i) gravitational contraction (Spolyar, Freese & Gondolo 2008; Freese
et al. 2009), and (ii) WIMP capture (Freese, Spolyar & Aguirre 2008;
Iocco 2008). These mechanisms can potentially supply DM resources
to provide the necessary fuel for the growth of supermassive DSs.

In the first mechanism, DM is pulled into the centre of the halo,
where the DSs form, by the gravitational attraction of baryons.
This generic process is expected to occur in the haloes in which
the first DSs form.1 To a good approximation, the DM particles
can be assumed to follow the infalling baryons adiabatically
[commonly treated via adiabatic contraction (AC); see Blumenthal
et al. 1986].2 The AC boosts the central DM densities by many
orders of magnitude, resulting in DM densities high enough to
power a DS.3 Studies of the dynamics of cold, collisionless DM
within galactic haloes have shown that the central DM abundance is
replenished due to a continuous infall of DM on centrophilic orbits,
see e.g. Goodman & Schwarzschild (1981); Gerhard & Binney
(1985); Valluri & Merritt (1998); and Valluri et al. (2010, 2012).
Given the self-similarity of DM dynamics on all galactic scales,
one can assume that the same replenishment applies within the
minihaloes where DSs form and reside. As in previous works, Freese
et al. (2008), F10, RD15, we implement AC using the Blumenthal
method. However, to increase numerical stability in the calculations,

1DM is responsible for the formation of haloes, pulling the baryons into the
halo centres. However, later when baryons dominate those centres, they pull in
more DM into the central regions in turn, again due to gravity (‘gravitational
contraction’).
2The goodness of the AC approximation for the formation of DSs was tested
in Freese et al. (2009). They found that the difference in the contracted DM
density profile compared to an exact treatment, using gas profiles from the
first-star simulations of Tan & McKee (2004), stay within a factor of 2.
3While there are still uncertainties about the exact inner density profile of a
DM halo, the formation of a DS was shown to occur regardless of the detailed
assumptions on the initial profiles and orbits (Freese et al. 2009; Natarajan,
Tan & O’Shea 2009). Even in the extreme case of a cored Burkert profile,
DSs were still found to form.

in this paper, we improve the implementation of RD15 by replacing
numerical with analytical derivatives.

At a later stage in the evolution of a DS, once there is no
longer sufficient DM fuel due solely to gravitational effects, the DS
contracts and becomes dense enough that a second effect may become
important: the capture of WIMP particles may serve to replenish the
DM reservoir inside the star. DM particles from the surrounding
environment elastically scatter off of nuclei inside the star and get
trapped (Freese, Spolyar & Aguirre 2008; Iocco 2008). While the
existence of DSs relies on WIMP annihilation, WIMP capture relies
upon a different process, namely the elastic scattering of WIMPs on
nucleons. The details of the process and the value of the scattering
cross-section are currently unknown and are actively searched for in
direct WIMP detection experiments (see e.g. Angloher et al. 2016;
Akerib et al. 2017; Aprile et al. 2017; Cui et al. 2017; Agnese
et al. 2018; Bernabei et al. 2018). The importance of this capture
process for fueling DSs depends upon the scattering cross-section
and ambient WIMP density. If WIMP capture is included into the
analysis, DSs tend to be denser and hotter compared to the cases in
which they formed via AC alone (see e.g. F10). In this paper, we have
decided not to consider capture, which e.g. could be due to a small
WIMP-nucleon cross-section several orders of magnitude lower than
current experimental bounds.

We wish to briefly comment on work of other authors on the subject
of DS formation. For example, Smith et al. (2012) followed the
collapse of the protostellar cloud to hydrogen density 1014/cm3, not
high enough for the required density of 1017/cm3 for a DS to form in
hydrostatic and thermal equilibrium in the case of 100 GeV WIMPs.
Further collapse beyond the values reached by Smith et al. (2012) is
required for onset of DSs (and their work does not imply that DSs are
unable to form). In fact, it is argued in Gondolo et al. (2013) that the
work of Smith et al. (2012) supports the existence of DSs (although
the simulation is not refined enough to follow the inner parts where
the DS would form), because heating due to DM annihilation would
actually stabilize the protostellar cloud against fragmentation. Now,
if the assumption of a static, spherically symmetric DM profile is
relaxed and a self-consistent DM distribution is adopted, gas collapse
is not halted by DM annihilation until the protostar is formed. In
Stacy et al. (2014), the collapse is followed down to scales of about
5 AU, without studying whether the collapsed object is a DS or an
ordinary protostar. It is argued there that the DM reservoir available
for annihilation inside a DS lasts for a lifetime of the DS which
is only a few thousand years. However, as mentioned above, DM
particles follow centrophilic orbits, continuously falling into the
central region. This enables a large fraction of DM to come into the
DS from far outside the small region near the halo centre where the
DS resides. The above simulations only considered this innermost
region. Hence, we disagree with the claims made in Stacy et al.
(2014) that DSs should not be long-lived. Recent review papers on
first star formation, such as e.g. Klessen (2019) and Haemmerle
et al. (2020), include some discussion on DSs, cautioning that the
formation process remains unsettled. Surely, studies of DS formation
require more simulations in the future to accurately model the details
of the formation process. Our work follows the stellar evolution of
DSs, once they reach equilibrium.

Early works on the stellar evolution of DSs were based on the
assumption of polytropic stellar interiors (Freese et al. 2008; F10).
In order to study the evolution and structure of DSs beyond this
assumption, the 1D stellar evolution code MESA4 (‘Modules for

4http://mesa.sourceforge.net/
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Experiments in Stellar Astrophysics’; see Paxton et al. 2011, 2013,
2015) was used in RD15. In MESA, the stellar structure equations are
solved self-consistently such that no restrictive assumptions on the
structure of the stellar models or the equations of state have to be
made. To extend the capabilities of MESA to DSs, we implemented in
RD15 an additional module that locally derives and adds the energy
from DM annihilation self-consistently.

The comparison of basic stellar properties between the polytropic
and MESA models in RD155 showed that the results agree qualitatively
very well (deviations of basic parameters being within factors of a
few). All of these studies on the properties of DSs were based on
the assumption that the fraction of energy per WIMP annihilation
deposited into the DS is independent of the density and constant
throughout the whole star.

However, this assumption does not hold in general: as the star
grows larger, the stellar densities in the outer regions decrease. This
also means that the cross-section of WIMP annihilation products with
the baryonic stellar medium decreases. Annihilation products that are
created near the surface might therefore leave the star without any
interaction, or after depositing only a small fraction of their energy
into the star. In this paper, we compare stellar models with different
treatments of the injected energy rate into the low-density surface
regions. Our tests show that the energy injected into these regions is
indeed negligible compared to the energy produced in the dense core.

Besides this test of fundamental assumptions, we also extend the
study of basic properties of DSs in their early evolutionary stages, as
follows.

We show that the growth of DSs is not halted by stellar physical
processes by analysing the stability of our models. Here, we focus
on dynamical instabilities that can potentially disrupt the equilibrium
structure of a star and lead to a core collapse.

Another important effect, which could strongly alter the evolution
of a star, is the so-called Eddington limit. If a star becomes so bright
that this limit is exceeded, the radiation pressure of the outflowing
photons dominates over the gravitational inwards-pull. This can
potentially lead to mass outflows, i.e. super-Eddington winds. Since
these can lead to mass-loss in ordinary, massive stars (see e.g. Langer
1997; Gräfener et al. 2011; Sanyal et al. 2015; Quataert et al. 2016),
we explicitly test whether that is also the case in DSs. In fact, we will
show that neither effect prevents DSs from growing further in mass.

Moreover, we investigate non-adiabatic stellar oscillations. In an
adiabatic calculation, RD15 found that acoustic – or p-modes – can
be present in DSs. The pulsation periods were shown to be in a range
between a few and several thousand days in the star’s rest frame –
depending upon parameters like WIMP and stellar mass. However,
that adiabatic analysis was not sufficient to determine which modes
would be actually excited. We tackle this question here by using
the non-adiabatic module of the pulsation code GYRE (Townsend &
Teitler 2013), which is a numerical code that solves for both the
adiabatic and non-adiabatic modes of stellar pulsations. Indeed, our
results suggest that, below a certain mass limit (∼200 M�), the κ

− γ and γ mechanisms can excite pulsations in DSs. Moreover,
we show that the upper bound on the mass-loss rate induced by
these pulsations stays well below the mass accretion rate. These
results further support the picture that DSs can evolve to become
supermassive and are not limited by instabilities or mass-loss as they
grow. For the case of typical accretion rates of 10−3 M� yr−1 onto
the DS, our analysis indicates that such pulsations are not excited in
DSs of supermassive size.

5Without considering DM capture in both cases.

We want to stress again that our paper does not address the
formation of DSs from their primordial clouds. Instead, we assume
that the DM annihilation in the surface regions of the star does not
affect the formation and evolution of DSs.

This paper is structured as follows: Section 2 presents some basic
equations for the evolution of DSs and their numerical modelling.
This section also includes a description of our test of the energy
injection assumption. In Section 3, we confirm the numerical stability
of our DS models by comparing the results obtained from different
codes and with different implementation details. The dynamical
stability and the Eddington limit are addressed in Section 4. We
focus on non-adiabatic pulsations in Section 5, where we identify
the driving mechanism and the pulsation periods. Furthermore, we
calculate an upper bound on the mass-loss rate driven by the resulting
pulsations. We conclude with a summary and discussion in Section 6.
Appendix A includes the derivation of the newly implemented
analytical derivatives.

2 EQUATIONS AND IMPLEMENTATION

2.1 Energy source in dark stars

The energy production rate due to WIMP annihilation per unit volume
is given by

Q̂DM = 〈σv〉mχn2
χ = 〈σv〉 ρ2

χ

mχ

, (1)

where nχ is the WIMP number density, mχ the WIMP mass, ρχ is
the WIMP mass density, and 〈σv〉 the annihilation cross-section. For
the latter, we use the standard value from DM freeze-out, 〈σv〉 =
3 × 10−26 cm3 s−1. One can see that the energy production scales as
〈σv〉/mχ . Hence, studying a variety of WIMP masses can be traded
off against studying a variety of cross-sections. In previous papers,
we showed that DSs arise regardless of WIMP mass over many orders
of magnitude and therefore for a wide range of annihilation cross-
sections. In this paper, we restrict our work to 100 GeV WIMPs
and the canonical cross-section, but our results could easily be
generalized.

In MESA, we need the production rate per unit mass, which is
obtained by dividing equation (1) by the baryonic density of the
stellar gas, ρ�.

The luminosity arising from WIMP annihilation can be calculated
with the knowledge of the annihilation end products. These are
typically electrons, photons, and neutrinos. While neutrinos escape
the star, the other annihilation products can be trapped inside the DS,
if the conditions for DS formation are met (see Spolyar, Freese &
Gondolo 2008). Trapped products thermalize and heat up the star.
The resulting luminosity can be calculated with

L ∼
∫

fQ(ρ�) Q̂DM dV , (2)

where dV is the volume element and fQ(ρ�) is the fraction of the
annihilation energy deposited into the star. In previous DS studies
(e.g. Freese et al. 2008, F10, and RD15), fQ(ρ�) was taken to be a
constant, fQ = 2/3, throughout the whole star. This factor physically
reflects the rough estimate that 1/3 of the annihilation energy is
converted into neutrinos, which escape the star without any further
interactions, while the remaining fraction of the energy is deposited
into the star by further interactions in the stellar gas. Of course, the
exact fraction deposited depends upon the particular WIMP model.

Now, the assumption that the deposited energy fraction per WIMP
annihilation is constant within the whole star, fQ(ρ�) = const., does
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not hold in general: as the star grows larger, the stellar densities in
the outer regions decrease. This also means that the cross-section
of WIMP annihilation products with the baryonic stellar medium
decreases. Annihilation products that are created near the surface
might therefore leave the star without any interaction, or after
depositing only a small fraction of their energy into the star. This
effect could lead to a feedback onto the proto-stellar cloud (during the
formation), or the accretion disc (during the evolution). For instance,
if a considerable amount of ionizing photons leave the star, they can
cause a fragmentation of the accretion disc, preventing the star from
growing and accreting material (Tan & McKee 2004; McKee & Tan
2008; Stacy, Greif & Bromm 2010; Hosokawa et al. 2011). A detailed
study of these effects during the formation as well as the evolution
would require a fully self-consistent hydrodynamical simulation of
not only the star, but also its environment. In addition, calculating the
amount of ionizing photons from this process would require a careful
study, using e.g. PYTHIA that follows the annihilation cascades for
detailed WIMP particle models. These investigations go beyond the
scope of this paper, so we assume that possible feedback from this
effect is small, i.e. we will assume that those annihilation products
have no impact onto the formation of the star, nor on the further
accretion of material onto the growing star. Nevertheless, we test the
consequences for the stellar properties of the assumption that the
energy injection rate per WIMP annihilation is independent of the
stellar density. To do so, we compare stellar models with different
treatments of the injected energy rate into the low-density regions.

In reality, fQ(ρ�) is a function of the surrounding density and of
the distance to the stellar surface. In the outer regions of the star, the
baryonic densities might not be high enough to absorb all the energy
of the annihilation products, as the interaction cross-section drops off
with the gas density. Furthermore, the distance of two annihilating
WIMPs to the stellar surface also affects the fraction of energy that
is deposited into the star. Again, we stress that in an exact treatment,
it would be necessary to focus on a particular WIMP particle (e.g.
a neutralino) and trace the cascade of annihilation products in the
environment where the annihilation takes place. On the other hand,
most of the WIMP annihilations happen close to the centre of the
DSs due to the high local DM densities. The baryonic densities and
the distance to the stellar surface in these regions are high enough
to fully absorb the energy from all annihilation products, excluding
neutrinos as shown in Spolyar, Freese & Gondolo (2008). Therefore,
a deviation from fQ(ρ�) = 2/3 (for the case of 1/3 energy loss to
neutrinos) is only expected in the outer envelope regions with their
low densities.

For our purpose, it will be sufficient to get an intuition for the
magnitude of the effect of fQ(ρ�) dropping below 2/3 in the outer
regions of the DS, by comparing the canonical case, fQ = 2/3, with
a treatment in which we set

fQ(ρ�) =
{

2/3 for ρ� > ρcut

0 else.
(3)

For the values of ρcut, we will consider two cases, ρcut = 10−8 g cm−3

and ρcut = 10−9 g cm−3. Especially, the latter value reflects an esti-
mate of the density below which the assumption of constant fQ(ρ�)
is expected to fail (Spolyar, Freese & Gondolo 2008). Notice that in
this treatment, it is the DM heating that is cut off below ρcut, but not
the gas or DM density of the star. The impact of the above choices on
DSs of different masses will be discussed in Section 3. While an exact
treatment of the induced cascades of annihilation products within the
star is subject to future studies, we stress that the above approximation
suffices to determine the order of magnitude of the expected impact.
Indeed, our results show that the precise form of fQ(ρ�) in the outer,

low-density regions is not important for the properties of the star; the
impact of applying the more conservative threshold on luminosity,
radius, effective temperature, and other stellar properties is less than
1 per cent for all considered masses. The details of this comparison
are given in Section 3.

2.2 Numerical method

In order to solve the set of differential equations governing stellar
evolution, we use the stellar evolution code MESA, release 12778
(Paxton et al. 2019). As in RD15, this is accomplished by implement-
ing the additional energy source from DM heating into MESA. The
run star extras module allows to include the extra terms easily
through the other energy implicit option. During each time
step, this extra energy is added self-consistently to the model in
the same way that energy due to nuclear reactions would be. The
extra routine for DSs also calculates the adiabatically contracted DM
profile – according to the Blumenthal method – by using the baryonic
density profile of the star. Once ρχ (r) is known, the DM heating rate
can be calculated (cf. equation 1). These routines have been adapted
from Freese et al. (2008), F10, and RD15. However, to make sure that
we obtain reliable and converged numerical results, we improve upon
the previous implementation: for a fully self-consistent calculation of
an extra energy source in MESA, the partial derivatives of the added
heating rate with respect to density, radius, and temperature have
to be known. We replaced the previous difference expressions with
the actual analytical formulae for the derivatives; the details of this
calculation are given in Appendix A.

In order to compare our findings to the relevant results in F10
and RD15, we make the same assumption here, namely that DM
annihilation does not lead to a depletion of DM, i.e. we do not remove
annihilated DM from the reservoir (see Section 1 for the discussion
of the viability of this assumption). Likewise, we choose the same
accretion model, i.e. ‘cold accretion’. This assumes that the entropy
of the material which is accreted is equal to the entropy of the surface
layers of the star, i.e. accretion does not directly heat the surface.
Physically, this means that the infalling material gradually radiates
away its gravitational energy when passing through the accretion
disc.6

2.3 Initial conditions

The initial conditions for the evolution of a DS are obtained
by creating a so-called pre-main-sequence model in MESA. For a
fixed central temperature, Tc, and given initial composition (zero
metallicity, i.e. Z = 0, in DSs), the total mass depends only on
the central baryonic density, ρc. By assuming a stellar structure
described by an (n = 3/2)-polytrope, a first initial guess for ρc

is obtained. This assumption is a good approximation for a fully
convective star. However, the assumption of convection is relaxed
during the search for a converged ‘pre-main-sequence model’: the
stellar structure equations, the equation of state, and the convection
parameters of the mixing-length-theory (MLT) are solved until a

6An alternative would be to consider ‘spherical accretion’. Here, shock fronts
evolve at the stellar surface, increasing the entropy of the infalling material and
therefore heating up the surface layers. However, Hosokawa, Yorke & Omukai
(2010) and Hosokawa, Omukai & Yorke (2012) concluded that both accretion
modes lead to similar results for massive protostars above � 40 M�. DSs
with similar mass are more extended, hence, the energy release from infalling
material is even smaller. Therefore, we assume that a similar conclusion holds
for DSs.
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value for ρc is found that yields the desired initial mass. Although
this procedure and the initial guess are not optimized for DSs, the
models converge quickly towards an equilibrium sequence. In the
present calculations, we choose an initial stellar mass of 5 M� for
the creation of the ‘pre-main-sequence model’. However, we stress
that this choice does not affect the conclusions in any way; choosing
an initial mass of e.g. 1 M� or 10 M� yields identical results, once
the model has converged.

In this work, we focus on some important, astrophysical aspects
of the early stellar evolution of the first DSs, up to masses of about
1000 M�, although some of our results (e.g. pulsations) have been
studied up to 104 M�. We restrict our attention in this paper to
one halo environment and one WIMP particle mass of 100 GeV.
The dependence of DS evolution on these latter parameters have
been studied in F10 and RD15. We consider models of DSs that are
accreting matter at a constant rate, Ṁ = const, and which formed in
a host minihalo with mass Mhalo at formation redshift zform with the
following choices

Ṁ = 10−3 M�yr−1 ,

Mhalo = 106 M� ,

zform = 20 . (4)

This environment was termed ‘SMH100’ in RD15 and also reflects
the choice of previous studies in Freese et al. (2008) and F10. The halo
consists of 85 per cent DM and 15 per cent baryons with a primordial
metallicity of Z = 0 and a hydrogen mass fraction of X = 0.76. To
be concrete, we assume7 that initially baryons and DM distributions
can be described with an NFW density profile (Navarro, Frenk &
White 1996),

ρi(r) = ρvir c
3

3θ

1

r/rs (1 + r/rs)2
, (5)

with the concentration parameter c, the definition θ ≡ log (1 + c)
− c/(1 + c), the scale radius rs = rvir/c and the virial radius and
density, rvir and ρvir, respectively. The latter quantity gives the mean
density of a sphere enclosed within rvir and can be calculated using
the critical density of the Universe, ρcrit, at a given redshift z:

ρvir =�cρcrit(z)=�c

3H 2

8πG
=�c

3H 2
0

8πG

(
�m(1+z)3+��

)
. (6)

Here, �c = 178 is the standard density contrast at virialization in
the spherical collapse model, H is the Hubble parameter, H0 is the
present value of the Hubble parameter, and �m and �� are the
present energy densities of matter and the cosmological constant,
respectively, in units of the critical energy density.

For the initial NFW profile, we choose a fiducial value of c = 3.5
for minihaloes. However, we note that the properties of DSs stay
roughly the same for concentration parameters c = 2–5 (see Ilie,
Freese & Spolyar 2011). We stress again, that the formation of a
DS does not depend on the exact form of the initial DM profile; see
Section 1.

Since the energy generation rate within DSs depends upon cos-
mological parameters via the DM density (by way of equations 6
and 1), we have to specify a fiducial cosmology. For this paper,
we took the cosmological parameters from Planck Collaboration
XIII (2016), namely a flat �CDM universe with (�m, ��, h) =
(0.308, 0.692, 0.678).

7As described in the Introduction, our results do not depend on the choice of
an initial NFW profile, but instead hold for any initial profile, even a cored
Burkert profile.
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Figure 1. Stellar density in g cm−3 as a function of stellar radius in
solar radii for a DS without DM heating cutoff. Along its evolutionary
sequence, the DS grows to progressively higher mass. Here and throughout
this paper, we highlight six timesteps (resp. stellar masses): 54 M� (purple
thin solid), 100 M� (green dash), 484 M� (light-blue dot), 644 M� (orange
dash–dotted), 875 M� (red dash-dot-dot), and 1196 M� (blue thick solid).
The two horizontal lines mark the two considered density thresholds for the
heating cutoff at ρcut = 10−8 g cm−3 and 10−9 g cm−3, respectively. (Models
with DM heating cutoff implemented, in which we ignore DM heating from
regions where the gas density is too low, are not shown in this plot, but the
density profiles are essentially the same.) In all models, -with or without DM
heating cutoff-, the stellar density increases close to the stellar surface, as a
result of ‘density inversion’, see Section 4.

3 COMPARISON OF MODEL RESULTS:
POLYTROPES, MESA VERSIONS AND
IMPLEMENTATIONS

We compare the results from different DS implementations and codes
to test the robustness of the numerical predictions for the properties
of DSs. Polytropic models were studied in F10. MESA was first
used by us for DSs in RD15, release 5596. Since then, MESA has
been steadily improved and our first results pertaining to this paper
were obtained using release 9957. In 2020 March, release 12778
came online, with significant improvements e.g. in handling energy
conservation or atmospheric boundary conditions. We thus decided
to re-do our analysis using release 12778. It is encouraging to see that
the global results are very similar between different MESA releases,
but it is also true that important details can differ. This is especially
critical for the study of pulsations, because the latter depend upon
the accuracy of the underlying stellar models.

We consider two cases: (i) the DM heating is calculated using
fQ(ρ�) = 2/3 throughout the whole interior of the star, and (ii) the
DM heating is set to zero, once the baryonic density drops below a
specific density threshold, ρcut (cf. equation 3). Both cases enter in
equations (1) and (2). We will refer to cases with DM heating cutoff
throughout the text as models ‘with heating cutoff’, or simply ‘with
cutoff’, as opposed to models ‘without cutoff’.

As density threshold for the heating cutoff we consider two
different values: ρcut = 10−8 g cm−3 and 10−9 g cm−3. To visualize
which parts of the star are influenced by this choice, the density
profile of a DS without heating cutoff (i.e. the canonical case with
fQ = 2/3 = const.) at different times of its evolution from ∼50 M�
up to ∼1000 M� is shown in Fig. 1. For the case of a ∼ 50 M�
DS, the choice of threshold of ρcut = 10−8 g cm−3 switches off
the DM heating in the outer ≈ 10 per cent of the star in terms of
radius, corresponding to the outer ≈ 5 per cent of the total stellar
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3682 T. Rindler-Daller et al.

Table 1. Comparison of properties of DSs along their evolutionary sequence for fixed mχ = 100 GeV and Ṁ = 10−3 M� yr−1 (‘SMH100’) between different
MESA models and polytropes. We compare global quantities, such as stellar luminosity L�, radius R�, effective temperature Teff, central temperature Tc and total
central density ρc (i.e. gas and DM density) for stars at fixed masses M�. Notice that the differences between models with and without heating cutoff within
the same MESA release are smaller than the results between different MESA releases, or polytrope models. Remark: in MESA 12778, the star contracts between
around 500–1000 M� (see also Fig. 1), resulting in a higher Teff compared to other models in this mass range. More explanations can be found in the text.

Models M� L� R� Teff Tc ρc

(M�) (106 L�) (R�) (103 K) (105 K) (10−6 g cm−3)

MESA 12778 fQ(ρ�) = 2/3 100 0.88 1469 4.6 2.6 0.36
MESA 12778 ρcut = 10−9 g cm−3 100 0.88 1469 4.6 2.6 0.36
MESA 12778 ρcut = 10−8 g cm−3 100 0.88 1469 4.6 2.6 0.36

MESA 9957 fQ(ρ�) = 2/3 100 0.76 1513 4.4 2.5 0.34
MESA 9957 ρcut = 10−9 g cm−3 100 0.76 1513 4.4 2.5 0.34
MESA 9957 ρcut = 10−8 g cm−3 100 0.75 1504 4.4 2.5 0.34

MESA 5596 from RD15 100 0.76 1493 4.4 2.6 0.37

Polytrope from F10 100 1.2 1120 5.7 3.4 0.74

MESA 12778 fQ(ρ�) = 2/3 500 9.7 2291 6.7 7.6 3.3
MESA 12778 ρcut = 10−9 g cm−3 500 9.7 2291 6.7 7.6 3.3
MESA 12778 ρcut = 10−8 g cm−3 500 9.7 2291 6.7 7.6 3.3

MESA 9957 fQ(ρ�) = 2/3 500 10.4 2304 6.8 8.4 4.3
MESA 9957 ρcut = 10−9 g cm−3 500 10.3 2300 6.8 8.4 4.3
MESA 9957 ρcut = 10−8 g cm−3 500 10.2 2282 6.8 8.4 4.3

MESA 5596 from RD15 500 10.4 2257 6.9 8.6 4.6

Polytrope from F10 500 9.7 2000 7.2 8.3 4.3

MESA 12778 fQ(ρ�) = 2/3 103 31.8 2061 9.5 12.3 8.0
MESA 12778 ρcut = 10−9 g cm−3 103 31.8 2061 9.5 12.3 8.0
MESA 12778 ρcut = 10−8 g cm−3 103 31.8 2061 9.5 12.3 8.0

MESA 9957 fQ(ρ�) = 2/3 103 25.9 2851 7.7 12.1 8.5
MESA 9957 ρcut = 10−9 g cm−3 103 25.7 2840 7.7 12.1 8.5
MESA 9957 ρcut = 10−8 g cm−3 103 25.4 2786 7.8 12.1 8.5

MESA 5596 from RD15 103 25.9 2437 8.3 12.4 9.0

Polytrope from F10 103 17 2580 7.5 9.8 4.6

mass. In more massive stars, e.g. considering the ∼ 1000 M� case, a
larger region is affected: the heating cutoff removes the energy input
from the outer 20 per cent of the star (in radial coordinates). Yet,
because of the low densities, this region encloses only ∼ 1 per cent
of the total stellar mass. For the more realistic heating cutoff at
ρcut = 10−9 g cm−3, the stars are even less affected.

Quantitatively, the deviations in stellar properties of models with
heating cutoff do not exceed ∼ 1 per cent, compared to models with
the canonical case fQ = 2/3 = const. This is true during the entire
evolution up to ∼ 1000 M�. This shows that the exact treatment of
the functional shape of fQ(ρ�) in the outer layers of the star is not
of importance for the star as a whole: the largest fraction of energy
is produced in the core, where the DM and baryon densities are
highest. Removing the minor contribution from DM heating in the
outer layers does not give rise to significant changes in the stellar
properties.

This conclusion is confirmed by the comparison shown in Table 1,
where we compare the outcomes from polytropes to different MESA

models, for global stellar quantities, such as luminosity, radius,
effective and central temperature, and central density. For any given
stellar property, the differences between models with and without
heating cutoff within the same MESA release are much smaller than
the differences between results from different MESA releases. The

predictions between MESA 5596 and the newer ones MESA 9957
and now MESA 12778 agree within ≈ 15 per cent for all considered
stellar masses. These deviations arise mostly from the improved
implementation of the derivatives of the DM heating rate. While the
differences between MESA and polytropes are most noticeable, they
are still within factors of a few. For a detailed comparison between the
polytropes and the first MESA models, we refer to section 4 of RD15.

In the left-hand panel of Fig. 2, we show the evolution of stellar
radii R� and effective temperature Teff, respectively, as the DS grows
in mass, for models with heating cutoff at ρcut = 10−9 g cm−3 and
those without cutoff: the respective curves are so similar that they lie
on top of each other. We can see that Teff stays roughly constant at
∼4000 K before it increases sharply at ∼200 M�. Around the same
time, the growth in radius stalls, the DS shrinks a bit, before the
monotonic growth continues past ∼1000 M�. This behaviour can
be also read off in Table 1. This phenomenon will become clearer
when we describe the dynamics in Section 4. The right-hand panel of
the figure shows the evolution of the stellar luminosity L�, again for
models with and without heating cutoff, and their curves lie almost
on top of each other. L� grows roughly linearly with the mass of the
star M�, which is a typical feature for massive stars.

To sum up, the comparison shows that the stellar properties depend
only marginally on the exact value or functional dependence of

MNRAS 503, 3677–3691 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/503/3/3677/6134742 by U
niversity of W

isconsin-M
adison user on 17 August 2021



First dark stars 3683

 100

 1000

 10000

 10  100  1000  10000

R
 [R

O• 
], 

 T
ef

f [
K

]

M  [MO• ]

R  (no cutoff)
R  (with cutoff)
Teff (no cutoff)

Teff (with cutoff)  10000

 100000

 1x106

 1x107

 1x108

 1x109

 10  100  1000  10000

L
 [L

O• 
]

M  [MO• ]

no cutoff
with cutoff

Figure 2. Evolution of global stellar properties: Left-hand panel: stellar radius (lower curves) and effective temperature (upper curves) with increasing DS
mass. DSs with masses above around 500 M� shrink before the monotonic growth in radius continues above 1000 M�. The effective temperature remains
almost constant below about 200 M�, before it starts increasing monotonically. Right-hand panel: Stellar luminosity with increasing DS mass. Notice that the
respective curves for ‘no cutoff’ (dash curves) and ‘with cutoff’ (solid curves) are so similar that they lie basically on top of each other in each panel.

fQ. Therefore, we conclude that the approximation fQ(ρ�) = const.,
which was applied in the previous DS papers is justified, assuming
that the effects of DM annihilation products in the outer regions of
the star do not prevent DSs from growing beyond a certain mass
(see discussion in Section 1). In the rest of this work, we will show
results for the model with DM heating cutoff at ρcut = 10−9 g cm−3.
However, we repeated all steps in the analysis with the other two
considered models (no heating cutoff and ρcut = 10−8 g cm−3) and
did not find any changes between the different treatments that would
affect our conclusions.

4 DYNAMICAL STABILITY, EDDINGTON
LIMIT, AND MASS-LOSS

Previous studies have shown that DSs become more and more
radiation pressure-dominated as they grow in mass (F10 and RD15),
and it was shown that lower-mass stars are well approximated by (n=
3/2)-polytropes, while higher-mass stars are well approximated by
(n = 3)-polytropes. Supermassive DSs acquire extended, extremely
diluted, weakly convective envelopes, causing the typical features
of ‘superadiabaticity’. We confirm this trend for the most massive
models investigated here.

Fig. 3 (top left) shows the ratio of gas pressure to total pressure,
in the literature known as β = Pgas/P. Small values of β indicate
radiation pressure-dominated interiors. In fact, this is the case above
several hundred solar masses, although β increases always close
to the stellar surface, even for stars of smaller mass. The top right
of Fig. 3 shows the corresponding run of specific entropy within
the DSs. Regions of efficient convection are indicated by layers of
constant entropy. All of our stellar models have convective cores,
which we also checked by looking at the sign of the Brunt–Väisälä
frequency squared. Layers whose entropy declines with radius are
convectively unstable; this is true close to the stellar surface, where
the convective heat transport is particularly inefficient. We can see
that low-mass DSs are almost entirely convective, except close to the
stellar surface. As the mass of the DS grows, layers develop within
which the entropy increases. This indicates that a radiative region
develops between the convective core and the surface layers.

The development of such radiation pressure-dominated, weakly
convective envelopes in growing DSs presents a potential problem,
if those envelopes cause the whole star to become dynamically

unstable. In this section, we therefore investigate the effects that could
prevent DSs from growing supermassive: dynamical instabilities and
mass-loss possibly caused by super-Eddington winds.

A star is dynamically unstable, if it collapses upon a small, initial
compression. This is the case if the weight increase arising from
the compression is larger than the increase of the pressure. The
criterion for dynamical instability can be derived with the adiabatic
exponent, �1, which quantifies how the gas reacts to compressions.
The condition for global instability is given by∫ (

�1 − 4

3

)
P

ρ�

d m < 0, (7)

where the integral runs over the whole volume of the star. The

adiabatic exponent is given by �1 ≡
(

d lnP
d lnρ�

)
ad

, P is the pressure and

ρ� is the stellar density. This means that even though the adiabatic
exponent �1 can locally drop below the critical value of 4/3, the
overall stability of the star is assured as long as the integral in equation
(7) is positive.

The adiabatic exponent �1 usually falls below the value of 4/3 at
the surface layers of DSs. Since the densities in these regions are
particularly low, this could enhance the factor of P/ρ� in the outer
regions and lead to an instability. We check for the global stability
of the star by calculating the integral in equation (7) numerically,
for all evolutionary stages of each DS model we considered. We find
that the condition for global dynamical instability is never met, that
is, the integral is always positive. This holds for all models, i.e. with
and without DM heating cutoff.

Next, we study the so-called Eddington limit. This limit refers to a
condition in the star where the outward acceleration due to radiation
pressure balances the inward force due to gravity, in hydrostatic
equilibrium. If this limit is surpassed at the surface, it is believed that
mass outflows should arise. The classical Eddington factor is defined
as

L

LEdd
= grad

g
= κeL

4πc GM
, (8)

where L, M, and κe are the (total) luminosity, mass and electron-
scattering opacity, respectively. g = GM/r2 is the gravitational
acceleration and grad = κeL/4πr2 is the radiative acceleration due
to electron-scattering opacity. Hence, exceeding the Eddington limit
is usually referred to L/LEdd > 1. While this condition provides a
sufficient instability criterion to stars, it is not a necessary one. When
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Figure 3. Top left: Ratio of gas pressure to total pressure β as a function of relative stellar radius, r/R�, for DSs of different masses as indicated in the legend
(the labels for the stellar masses are the same as in the caption of Fig. 1). Top right: Specific entropy as a function of stellar radius, same labels as in Fig. 1.
Middle left: Eddington factor, Lrad/LEdd as a function of relative stellar radius, r/R�; same labels as in Fig. 1. Notice that Lrad/LEdd > 1 at 484 M�. Middle right:
Maximum values of the Eddington factor, max(Lrad/LEdd), throughout the entire evolution of the DS. The factor slightly exceeds 1 at stellar masses between
∼200 and 600 M�; the maximum value is always attained close to the surface of the respective models. For comparison, this plot shows the result with (solid)
and without (dash) DM heating cutoff; the curves lie almost on top of each other. Bottom left: Opacities as a function of temperature for our stellar models; same
labels as in Fig. 1. Bottom right: Plot of the run of neutral fraction of H (solid curves) and He (dashed curves), respectively, each for our depicted stellar models.

equation (8) is applied inside the star, as we will discuss shortly, we
must replace L on the left-hand side with the radiative luminosity
Lrad. The true opacity can significantly exceed κe: when the opacity
is large, convection kicks in and Lrad is reduced. As a result, the
Eddington limit is not reached, and the star is safe again against
instability. In fact, even an excess of >1 of the localEddington factor,
which varies within the stellar interior, does not by itself necessarily
indicate an instability, as already shown in Joss, Salpeter & Ostriker
(1973). We follow recent literature, especially Sanyal et al. (2015),

and thus consider a more plausible definition of the local Eddington
factor, according to

Lrad(r)

LEdd(r)
= κ(r)(L(r) − Lconv(r))

4πc GM(r)
. (9)

In the rest of this paper, we refer to this definition for the Eddington
factor, and the Eddington limit is reached, once Lrad(rl)/LEdd(rl) = 1
for some radial coordinate rl ≤ R�. Now, the analysis in Sanyal
et al. (2015) has proved as a useful comparison to our results,
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because (i) it is a recent study, (ii) it considers models for very
massive main-sequence stars up to 500 M� (i.e. similar to our mass
range), and (iii) we find the interpretation of the physical effects
described there (e.g. density inversion close to the surface) very
plausible in explaining our own results, regarding super-Eddington
layers. A super-Eddington layer can form, especially very close
to the stellar surface where convective energy transport is highly
inefficient, pushing Lrad(r)/LEdd(r) close to, or above one. However,
it turns out that such a super-Eddington layer inside a star does
not necessarily lead to a departure from hydrostatic equilibrium
or to any mass outflow, even if the maximum of equation (9) –
max(Lrad(r)/LEdd(r))r≤R�

– is often attained very close to the stellar
surface. The local Eddington factor equation (9) is shown for our
models in Fig. 3 (middle left). For instance, Sanyal et al. (2015)
find that their models remain stable, even if max (Lrad/LEdd) ∼ 7.
Our models exemplify smaller maximum values, max (Lrad/LEdd) <

1.8, i.e. only slightly overshoot the limit for some range in stellar
mass during the evolution, as can be seen in Fig. 3 (middle right).
Nevertheless, our MESA runs do not exhibit difficulties across this
stellar mass range, where the overshooting happens. Instead, we
observe a similar behaviour than reported in Sanyal et al. (2015):
the star counteracts a super-Eddington luminosity by developing a
positive density gradient in a thin shell very close to the stellar
surface, i.e. a ‘density inversion’ (compare to Fig. 1).

This discussion on Eddington limits naturally leads up to the
discussion of opacity. The opacity curves, along with the run of
the neutral fraction of H and He, are shown in Fig. 3 (bottom left
and right panels, respectively): for low values of T � 104 K, the
opacity is given by the absorption of H−. The peak at T � 104 K is
due to the bound-free absorption of H and H− (‘hydrogen bump’).
For higher values of the temperature, the opacity follows Kramer’s
law, with the smaller peaks at higher temperature being due to the
first and second ionization of He, respectively (‘helium bumps’). At
even higher temperatures, the opacity reaches a constant value due to
Thomson e−-scattering, which is temperature-independent once the
stellar material is fully ionized, as can be also seen in Fig. 3 (bottom
right), where the transition from neutral to ionized layers of H (at
lower T) and He (at higher T) is shown. As DSs grow and become
hotter, the opacity bumps become less pronounced. Moreover, the
hydrogen bump moves closer to the surface for higher mass DSs,
which, in turn, results in an increase in the Eddington factor equation
(9), see middle left in Fig. 3. In fact, the maximum Eddington factors
along the evolutionary sequence, which we show in Fig. 3 (middle
right), occur close to the stellar surface of our models, and they can be
connected to the opacity peak of H. In general, whenever one of such
opacity peaks is situated sufficiently close to the stellar photosphere,
the densities in these layers are so small that convective energy
transport becomes inefficient; super-Eddington layers develop that
are stabilized by a positive (i.e. inward-directed) gradient in density
and gas pressure.

We note that we found no difference between models with or
without DM heating cutoff with respect to the development of
convective zones, the shape of the opacity curve, or the values for
the Eddington factors.

5 NON-ADIABATIC PULSATIONS

Pulsations in supermassive DSs would provide a key mechanism for
distinguishing them from early galaxies in observations. However,
if they reach an amplitude sufficient to trigger mass-loss, they could
also potentially halt the mass growth of DSs via accretion. With
these two motivations in mind, we turn in this section to the question

of whether pulsations are expected to self-excite in DSs. We stress
that uncertainties in the stellar models translate into uncertainties in
our pulsation calculations. Therefore, a further understanding of the
former will be required in order to settle definitely the question of
whether or which pulsation excitation mechanisms might be at play
in DSs.

In RD15, the periods of radial (i.e. l = 0) pulsation modes with
different overtone number n, where n = 1 is the fundamental mode,
and higher overtone modes with n > 1, were modelled using the
ADIPLS stellar oscillation code of Christensen-Dalsgaard (2008),
built into MESA. It adopts the adiabatic approximation whereby the
transfer of heat between neighbouring fluid elements is neglected.
While this approximation allows considerable simplification of the
analysis, it has the drawback that information about wave excitation
and damping is lost; as a result the global stability or instability of
modes cannot be determined. In this paper, we address this limitation
by using the GYRE stellar oscillation code (Townsend & Teitler 2013;
Townsend, Goldstein & Zweibel 2018) to calculate non-adiabatic
eigenfrequencies, eigenfunctions and accompanying properties of
our DS models. To ensure that no modes are missed, we employ
the contour method (Goldstein & Townsend 2020) implemented in
release 6.0 of GYRE.

5.1 Stability calculations

For the sequence of DS models spanning the mass range 10 M� ≤
M∗ ≤ 104 M�, we use GYRE’s contour method to find non-adiabatic
eigenfrequencies σ of radial (l = 0) modes. These are complex
quantities; with an assumed time dependence ∝ exp (− iσ t) for
perturbations, the real part of the eigenfrequency σ R determines
the linear frequency νosc = σ R/(2π ) of a mode. The corresponding
imaginary part indicates whether the mode is globally unstable (σ I

> 0) or stable (σ I < 0). Unstable modes grow exponentially with
time from an initial infinitesimal perturbation, with an e-folding
time τ osc = 1/σ I. This growth tapers off when their amplitude is
sufficiently large that non-linear effects become important. Because
GYRE is a linear code, we cannot model this non-linear saturation,
nor predict the final amplitude of unstable modes.

Fig. 4 displays the results from our calculations in the form of a
modal diagram, showing how the eigenfrequencies evolve as the DS
mass increases. The upper panel plots the mode periods P ≡ 2π /σ R,
and the lower panel the modulus of the growth/damping e-folding
time-scale |τ osc|, both as a function of M∗. Modes that are unstable
(stable) are indicated using orange (blue) markers. Note that periods
and time-scales in the observer’s rest frame are a factor of 21 larger,
because they are redshifted by a factor (1 + z∗) ∼ 21, where z∗ is
the redshift of the star.8

In the upper panel, the longest-period mode is the fundamental
mode; higher overtones occur towards progressively shorter periods,
down to a limit set by the acoustic cutoff frequency of the stellar
atmosphere. At frequencies above this cutoff, outward-propagating
waves cannot be reflected at the atmosphere, and no standing waves
can form in the star.

As the mass increases, the mode periods remain approximately
constant up to M ≈ 200 M�, and then decrease steadily with further
growth. Broadly, this behaviour is a consequence of the radius

8The most massive and oldest star considered here is at a redshift of z∗ =
19.84; since the error of an exact treatment is less than 1 per cent, we can
safely ignore the change of the redshift of the star in the mass range that we
consider and approximate z∗ ∼ 20.
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Figure 4. Modal diagram for our DS models, plotting the mode period P
in days (upper panel) and growth/damping time-scale |τ osc| in days (lower
panel), both as a function of stellar mass M∗. Unstable (stable) modes are
indicated using orange (blue) markers. Notice that the periods and time-scales
are in the rest frame of the star.

evolution shown in the left-hand panel of Fig. 2. At lower masses,
the radius grows approximately as R∗ ∼ M1/3

∗ . Because radial-
mode periods scale proportionally with a star’s dynamical time-scale
(R3

∗/GM∗)1/2, the mass and radius changes balance and the period
evolution remains flat. At higher masses, however, the radius plateaus
and so the shortening dynamical time-scale drives mode periods
down. Similar behaviour can be seen in RD15 (cf. the mid-left panel
of their fig. 7).

The figure reveals that all modes apart from the fundamental are
unstable at the low-mass limit. Towards higher stellar masses, this
instability gradually morphs into stability, with the highest-overtone
(shortest-period) modes transitioning first. Before the overtone insta-
bility completely vanishes, the fundamental mode enters a phase of
instability, spanning the mass range 130 M� � M∗ � 210 M�. Once
that phase is over, all modes remain stable through to the upper mass
limit.

5.2 Excitation mechanism

To explore the excitation mechanism at work in the unstable modes
plotted in Fig. 4, we focus on a DS model with mass M∗ = 100 M�,
in which the fundamental mode (n = 1) is stable, but the first- and
second-overtone modes (n = 2 and n = 3, respectively) are unstable.

0.0 0.2 0.4 0.6 0.8 1.0
r [R∗]

−2

0

2

4

6

δr
[R

∗]

n = 1

n = 2

n = 3

Figure 5. Radial displacement perturbations δr for the fundamental (F),
first-overtone (1O), and second-overtone (2O) modes (in orange, blue,
green, resp.), plotted against relative stellar radius r for the DS model with
M∗ = 100 M�. Because GYRE is a linear code, the normalization of these
eigenfunctions is arbitrary; by convention, GYRE scales them so that the
mode inertia (see Aerts, Christensen-Dalsgaard & Kurtz 2010, their equation
3.139) equals M∗R2∗ .

Fig. 5 plots the radial displacement perturbation δr as a function of
relative stellar radius r for these three modes.9 The morphologies seen
in the figure are typical to radial modes: the fundamental mode has
one node (one zero) only at the stellar centre, while the first-overtone
mode has two nodes, and the second-overtone mode three.

For the same model and the same three modes, the upper panel
of Fig. 6 plots the differential work dW/dlog T as a function of log T
(we chose temperature as the abscissa to better display the driving
and damping). The differential work quantifies the change in mode
energy over one cycle, per unit decade in temperature within the star;
it is one of the standard outputs of GYRE. Regions of the star where
the differential work is positive (negative) correspond to locations
where the mode is driven (damped). Integrating the differential work
over the entire star leads to the total work

W =
∫ log Tc

log Ts

dW

d log T
d log T , (10)

where Ts and Tc are the surface and central temperature, respectively,
of the star. If W> 0, then the mode is globally unstable and will grow
over time; conversely, W < 0 indicates a globally damped mode.

The data plotted in the upper panel of Fig. 6 reveal strong driving
of the second-overtone mode at three distinct locations in the stellar
envelope, corresponding to peaks in the differential work at logT ≈
4.6, logT ≈ 4.3, and logT ≈ 3.95. For the first-overtone mode, only
the two inner (hotter) locations are active, and for the fundamental
mode only the innermost. In the latter case, the driving is not able to
overcome damping elsewhere in the star, and the mode is globally
stable.

To explore the origins of these driving regions, we consider the
quantity

K = κT + κρ

�3 − 1
, (11)

where

9Strictly speaking, δr is a complex quantity, and we plot only the real
part in the figure; however, the corresponding imaginary parts remain small
throughout the star for the three modes shown.
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Figure 6. Differential work functions for the fundamental (F), first-overtone
(1O), and second-overtone (2O) modes (upper panel), and the quantity K
defined in equation (11) (lower panel), plotted against log T for the M∗ =
100 M� DS model. Notice that in the upper panel, the results for F and 1O
have been multiplied by factors 5 and 2, respectively, for better visualization.

κT ≡
(

∂ ln κ

∂ ln T

)
ρ

, κρ ≡
(

∂ ln κ

∂ ln ρ

)
T

, (12)

�3 − 1 ≡
(

∂ ln T

∂ ln ρ

)
S

. (13)

As discussed by Unno et al. (1989, their section 28), regions in
a stellar envelope where K increases outward contribute towards
a positive differential work (i.e. driving). If the outward increase
of K comes from a corresponding increase in the opacity partial
derivatives, κT and κρ , then the driving is known as the κ or opacity
mechanism; conversely, if it is due to an outward decrease of the �3

adiabatic exponent, for instance arising in an ionization zone, then
it is known as the γ mechanism. The lower panel of Fig. 6 plots K
as a function of logT for the 100 M� DS model. Regions where K
is outward-increasing (i.e. dK/d log T < 0) can be seen in the log T
intervals [4.70,4.55], [4.30,4.25], and [4.15,3.90]. Generally, there is
good agreement between these regions and the positive peaks in the
differential work seen in the upper panel of the figure.

Further investigation reveals these regions correspond to the star’s
ionization zones: the innermost is the He II zone, the middle is the
He I zone, and the outermost the H zone. In the He II and H zones, the
outward-increasing K comes from the behaviour of both κT and �3;
hence, the driving in these zones is via a hybrid κ − γ mechanism. For

the He I zone, there is almost no contribution towards an outward-
increasing K from either κT or κρ ; the driving is solely via the γ

mechanism.
Similar results follow from examination of models at other masses.

The reason why the pulsational instability disappears above M∗ ≈
210 M� is that the higher stellar effective temperatures position the
three κ − γ driving regions so close to the stellar photosphere that the
local thermal time-scale is shorter than the pulsation period. Then,
these regions remain in thermal equilibrium over a pulsation cycle,
and are unable to contribute towards driving or damping.

All in all, we do not expect that supermassive DSs with masses far
exceeding several hundred solar masses to pulsate by means of the
κ − γ and γ mechanisms for the accretion rate and WIMP masses
chosen in this paper. In the conclusion section, we briefly discuss
how our results may be affected by other parameter choices.

5.3 Mass-loss induced by pulsations

As pulsations are excited in DSs, they provide – besides dynamical
instabilities and super-Eddington winds, another potential harm that
could prevent DSs from growing more massive: if the energies
confined in the eigenstates of the pulsations become too high, mass
outflows driven by these pulsations might occur.

We follow the analyses of Baraffe, Heger & Woosley (2001) and
Inayoshi, Hosokawa & Omukai (2013) to obtain an estimate for this
mass-loss. Making the conservative assumption that the pulsational
energy is entirely transferred into the kinetic energy of the mass
outflows, the mass-loss rate, Ṁpulse, can be obtained with

Ṁpulse

2
v2

esc = σR

2π
W (M�) = 2σIEp , (14)

with the real and imaginary part of the pulsation frequency, σ R

and σ I, respectively, the escape velocity vesc = √
2GM�/R� and the

pulsational energy of the p-mode Ep. The latter quantity is given by

Ep = σ 2
R

2

∫ M�

0
|δr|2 dMr , (15)

where δr denotes again the radial displacement perturbation of a fluid
element at radius r.

As mentioned before, the linear analysis with GYRE prevents us
from computing the final amplitude of unstable modes; rather we
can only obtain the radial profile of the relative amplitude ξ r =
δr/δrsurf. If we had observations of the pulsational velocities at the
DS surface, we could normalize it via δrsurf = v/σ R. However, the
lack of DS observations prohibits us from obtaining an absolute
value for Ep. Nevertheless, the primary goal here is to determine
an order of magnitude estimate of the mass-loss rate that could
potentially be induced by pulsations. Therefore, we use the approach
of Appenzeller (1970a, b) who showed that pulsational driven mass
outflows set in, once the pulsational velocity at the surface reaches
the speed of sound at the surface, cs, i.e. once

δrsurf = cs

σR

(16)

is fulfilled. Using this condition, the linear result for Ep can be
rescaled to obtain a prediction for the mass-loss rate induced by
pulsations.

We calculated this upper limit for the mass-loss rate according
to equation (14) for DS models with pulsations, i.e. those from
∼50 to 200 M�. In each case, the mass-loss rate stays at least one
order of magnitude below the accretion rate of 10−3 M� yr−1. In our
previous work RD15, we considered also higher accretion rates, in
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which case the mass-loss would be even less significant. Therefore,
we conclude that mass outflows driven by pulsations will not prevent
DSs in the considered mass range from growing even more massive.

6 CONCLUSIONS

DSs might have been the first luminous objects to form in the
Universe and provide – through their distinctive properties compared
to ordinary stars – a laboratory to test fundamental physics. We
investigated stellar physical aspects of the first DSs to assess, whether
they can be prevented from growing supermassive by potentially
destabilizing astrophysical effects.

The formation process can only take place in the early Universe (z
∼ 10–50), where the DM density inside protostellar clouds and within
the resulting stars is high enough. While ordinary stars from that era
are usually too dim to be observed, DSs may grow massive and bright
enough to be detected by JWST (Freese et al. 2010; Freese, Ruiz &
Valluri 2010; Ilie et al. 2012). This crucial difference to normal stars
arises from the fact that DSs are fueled by WIMP annihilation, rather
than by nuclear fusion. Therefore, their effective temperatures are
much lower which allows them to keep accreting material from their
primordial surroundings at a high rate over a long period of time,
without suffering feedback effects.

A detection of very bright point sources with relatively low surface
temperatures at redshift z > 10 with upcoming space-based and next-
generation ground-based observatories could indicate the presence of
DSs. We investigated the basic stellar properties of early DSs whose
stability is crucial for the formation of even more supermassive DSs
which might be detectable soon. Even though DSs are able to grow
for a long time, supermassive DSs will at some point run out of DM
fuel and collapse. In the process, black holes with masses of the
order of 105–106 M� might be forming, providing the seeds for the
supermassive black holes seen in galaxies at high and low redshift.

In this paper, we focused on early DSs of masses � 1000 M� and
found the following main results:

(i) The fundamental properties of DSs are not sensitive to the
exact treatment of the fraction of the energy injection per WIMP
annihilation, fQ(ρ�), into the surface layers of the star.

(ii) The growth of DSs up to ∼1000 M� is not limited by
dynamical instabilities.

(iii) DSs of 10–1000 M� are not subject to mass-loss driven by
super-Eddington winds.

(iv) DSs with masses �200 M� can pulsate with periods of ∼60–
600 d in their rest frame, excited by the κ − γ and γ mechanisms in
(partially) ionized layers of H and He, respectively.

(v) The growth of DSs with pulsations is not affected by mass
outflows arising from the excited radial pulsation modes. Even under
conservative assumptions, the mass-loss rate stays at least one order
of magnitude below the accretion rate.

In this work, we have not investigated whether products from
WIMP annihilations in the surface layers of the collapsing baryon
cloud or of the star, which cannot deposit all of their energy before
leaving the object, would prevent DSs from either forming, or
growing. To address this question, fully self-consistent hydrodynam-
ical simulations of the formation and evolution of DSs, including
the calculation of WIMP annihilation energy cascades, would be
necessary. Such a study is beyond the scope of this work.

However, we studied the consequences of a functional dependence
of the fraction of injected energy per WIMP annihilation in the low-
density layers of the stars. We applied several density thresholds
ρcut, below which we abruptly set the luminosity infused by DM

annihilation heating (equation 2) to zero. This is motivated by the
fact that below a certain baryon density the interaction cross-sections
between annihilation products and baryons become too small for
an efficient equilibration to take place within the star. While our
approach may appear a crude approximation, the results show that
the exact form of fQ(ρ�) is not a crucial factor in the evolution of DSs:
DS models with different cutoff thresholds ρcut differ by less than
∼1 per cent in their stellar properties, like luminosity, temperature,
and radius.

Furthermore, we showed that in DSs of masses � 200 M� pulsa-
tion modes are excited, likely driven by the κ − γ and γ mechanisms
in (partially) ionized hydrogen and helium layers. The pulsation
periods of the considered models are a few hundred to a few thousand
days in the observers’ rest frame. Our findings are in very good
agreement with the study of adiabatic pulsation periods of DSs from
RD15, where it was shown that the pulsation periods of DSs decrease
with increasing mass. We confirmed this trend here.

However, our non-adiabatic pulsation analysis carried out in this
paper implies that, for the parameter choices made here, super-
massive DSs (�103 M�) do not pulsate. However, this statement
depends upon critical free parameters, namely WIMP mass and
halo environment, notably accretion rate. For the parameters we
chose here (100 GeV WIMP mass and 10−3 M� yr−1 accretion
rate), pulsations cannot be expected in order to distinguish such
DSs observationally from other sources, contrary to our initial
hope expressed in RD15. By the same token, we might argue that
supermassive DSs seem to be safe against the potentially disruptive
power of pulsations, because standard theory expects that pulsations –
if present – can turn non-linear and violent at very high stellar masses.

In the future, we plan to expand our studies of DS pulsations
to a wider variety of parameter choices – specifically WIMP mass
and stellar accretion rate – to examine whether or not supermassive
DSs with different parameters than the ones chosen in this paper
pulsate. If the WIMP mass is reduced, the DM heating is enhanced
(see equation 1), resulting in more pressure support, which in turn
leads to DSs with larger radii and lower effective temperatures (see
e.g. RD15). This implies that, for lower WIMP mass, a DS could
be more massive at around the same ‘critical’ Teff for which driving
is still efficient enough. For example, ‘extrapolating’ our findings to
the results of RD15 for a WIMP mass of 10 GeV, it appears that
DSs might pulsate up to many thousands of solar masses, which is
still below the stellar masses observable with upcoming telescopes.
Even smaller WIMP masses might lead to pulsations in very massive
DSs (possibly millions of solar masses); then JWST could have
the sensitivity to observe these DSs and their pulsations. This case
deserves further investigation.

In addition, another effect that may alter our conclusion about DS
pulsations includes the halo environment, in particular the accretion
rate which in this paper we chose to be 10−3 M� yr−1. Implications
for pulsations and whether they may be excited, or not, due to
the accretion rate have been found for supermassive ‘protostars’ in
Inayoshi, Hosokawa & Omukai (2013), who found that stars of mass
M� � 600 M� are pulsationally unstable due to the κ mechanism, if
they grow at very high accretion rates � 1.0 M� yr−1, and that their
pulsations are excited in layers of singly ionized helium. Similarly,
rapidly accreting supermassive protostars with masses up to 105 M�
have been found to exhibit pulsational instabilities in Hosokawa
et al. (2013). In fact, we know that, for a given WIMP mass, the
sharp increase in Teff mentioned above happens later - i.e. at a higher
stellar mass, if the accretion rate is increased (compare to figs 2, 8, 9
in RD15). The difference which results is more pronounced for high
WIMP mass, but seems of less relevance for smaller WIMP mass.
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Hence, there is a multitude of parameters (WIMP mass, halo envi-
ronment) that could conspire to produce pulsational instabilities for
supermassive DSs, after all. However, in order to settle this question,
we would need to re-do our analysis for different values of WIMP
mass and accretion rate, a project which we defer to future work.

On the other hand, we considered the κ and γ mechanisms as
the only mechanisms to drive pulsations. The ε-mechanism, where
modulations in the core temperature lead to perturbations in the
nuclear fusion rates, is not present in DSs solely powered by the
heating of DM annihilations. However, perturbations in the energy
injection rate in DSs could arise from variations in the DM density,
affecting the luminosity, equation (2), through a modulation of
Q̂DM. This ‘χ -mechanism’ driven by DM may possibly also excite
pulsations in DSs. We leave an analysis of this effect and a study of
supermassive DSs to future work.
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APPENDIX A: EQUATIONS FOR ADIABATIC
CONTRACTION

We present the equations used to calculate the adiabatically con-
tracted DM density profile after baryonic cooling and infall via the
Blumenthal method (Blumenthal et al. 1986). This part is crucial,
since the energy source of DSs directly depends on this quantity
(see equations 1 and 2). The implementation of the DS heating
routine into MESA requires not only the formula for the heating
rate per unit mass, but also its partial derivatives with respect to
the stellar density ρ�, radius r, and temperature T. Notice that the
temperature derivative is irrelevant and can be set to zero in DSs,
because the heating rate only depends upon the DM and baryonic
densities and is independent of the temperature, see equations
(1 and 2).

In the previous implementation of RD15, the derivatives with
respect to radius and stellar density were implemented as numerical
difference equations. In this work, in order to improve numerical
stability, we replaced these numerical derivatives with analytical
expressions. We first review the calculation of the AC with the
Blumenthal method and then give the expressions for the heating
rate and its derivatives.

Let us assume that the mass profile of contracted baryons is given
by Mb(r), where r < ri is the final radius of the particles initially
located at ri before contraction. According to the assumption of
adiabatic infall in a spherical potential, the baryon profile satisfies
(see equation 1 in Blumenthal et al. 1986)

ri Mi(ri) = [(1 − f ) Mi(ri) + Mb(r)] r , (A1)

where f = Mb(rvir)/Mvir is the fraction of baryons contributing to the
total mass at the virial radius, rvir. The DM mass at radius r is then
Mχ (r) = (1 − f ) Mi(ri). To solve equation (A1), we follow Gnedin
et al. (2004) and assume that the contracted baryon profile scales as
Mb(r) ∝ r2 for r � rvir, as in the exponential disc model describing
spiral galaxies (Freeman 1970). Then, Mb(r) = Mb(ri)/y2, where
y = ri/r. For the DM, we take an initial NFW profile, see equation
(5).

Dividing equation (A1) by Mi(ri) r gives

y = (1 − f ) + Mb(ri)

y2Mi(ri)
≡ (1 − f ) + B

y2
, (A2)

where the parameter B can be considered as a constant here since
in both profiles, NFW and exponential disc, the masses scale with
r2 for r � rvir. The only real solution to the cubic equation (A2)
reads

ri = 1

3

[
c1 + c3

21/3
+ 21/3 c2

1

c3

]
with

c1 = r(1 − f ),

c2 = r3 B = Mb(r) r

2π ρ0 rs

,

c3 =
(

27c2 + 2c3
1 + 3

√
3e3

)1/3
,

e3 = 4c3
1c2 + 27c2

2 . (A3)

With this expression for ri, the DM mass enclosed within ri can be
approximated by Mi(r) ≈ Mvir

r2

2θ r2
s

for r� rs. The DM mass profile
is then given by

Mχ (r) = (1 − f ) Mi(ri) = (1 − f ) (2π ρ0 rs) r2
i , (A4)

where

ρ0 = ρvir c
3

3θ
= �c ρcrit(z) c3

3θ
(A5)

denotes the characteristic density (compare to equation 5). Now, the
DM density can be expressed as

ρχ = drMχ

4π r2
= (1 − f ) ρ0 rs

2r2
dr (r2

i ) = (1 − f ) ρ0 rs

r2
ri dr ri , (A6)

where dYX ≡ dX/dY and we omitted the radius r as an argument
of ρχ . Notice that ρχ depends explicitly on both, the stellar radius
and density, r and ρ�. The dependence on ρ� comes from taking the
derivative

dr c2 = Mb(r) + 4π r3 ρ�

2π ρ0 rs
, (A7)

so that the derivative of equation (A3) reads

dr ri = 1

3

[
(1 − f )

(
1 + 24/3 c1

c3

)
+

(
1

21/3
− 21/3c2

1

c2
3

)
dr c3

]
,

(A8)

with

dr c3 = 4c2
1(1 − f ) + 18 dr c2

√
3/e3 dr e3

2c2
3

,

dr e3 = 12c2
1c2(1 − f ) + (4c3

1 + 54c2) dr c2 . (A9)

Now, with the expressions for ri and drri, ρχ and therefore the
heating rate per unit mass,

Qm = 〈σ v〉 ρ2
χ

mχ ρ�

(A10)

are fully specified. The partial derivatives of the latter, needed to
consistently include the calculation of the extra energy source in
MESA, read

∂ln rQm = 2Qm

ρ�

ρχ

∂rρχ = 2Qm

ρ�

ρχ

(1 − f )ρ0rs

r2
×

×
[
−2

ri

r
dr ri + ∂rridr ri + ri∂r (dr ri)

]
, (A11)

∂ln ρ�
Qm = Qm

[
2 r

ρχ

∂ρ�
ρχ − 1

]

= Qm

[
2 r

ρχ

(1 − f )ρ0r0

r2

(
∂ρ�

ri dr ri + ri ∂ρ�
(dr ri)

) − 1

]
, (A12)

where ∂YX ≡ ∂X/∂Y. Calculating these expressions requires the
partial derivatives of ri and drri with respect to r and ρ�. The
expression for ∂ rri can be obtained by simply replacing dr →
∂ r in equations (A8–A9) for drri, while the partial derivative of
c2 reads

∂rc2 = Mb(r)

2π ρ0 rs
= c2/r . (A13)

The partial derivative of drri with respect to r amounts to

∂r (dr ri) = 1

3c2
3

[
24/3(1 − f )2

(
c3 − c1 ∂rc3

1 − f

)
+

+ 24/3c1 dr c3
c1 ∂rc3 − c3(1 − f )

c3
+ ∂r (dr c3)

21/3

(
c2

3 − 22/3c2
1

) ]
,

(A14)

with

∂r (dr c2) = 6
ρ�r

2

ρ0rs
,

∂r (dr c3) = 1

2c2
3

[
8c1(1 − f )2 + 18 ∂r (dr c2)+

+
√

3/d3

(
∂r (dr e3) − dr er ∂re3

2e3

)]
− 2

dr c3 ∂rc3

c3
,
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∂r (dr e3) = 12c1(1 − f )
[
2(1 − f )c2 + c1∂rc2

]+
+ [

12(1 − f )c2
1 + 54∂rc2

]
dr c2 + (

4c3
1 + 54c2

)
∂r (dr c2) .

The partial derivative of ri with respect to ρ� is zero, because ri
has no explicit density dependence, see equation (A3). However,
∂ρ�

(dr ri) does not vanish, because the density dependence of drri
enters through the total derivative of c2, see equation (A7). The
expression for ∂ρ�

(dr ri) can be obtained by replacing ∂r → ∂ρ�
in

equation (A14) and by using

∂ρ�
(dr c2) = 2

r3

ρ0rs
,

∂ρ�
(dr c3) = 18 ∂ρ�

(dr c2) + √
3/e3 ∂ρ�

(dr e3)

2c2
3

,

∂ρ�
(dr e3) = (4c1 + 54c2) ∂ρ�

(dr c2) . (A15)

Using these equations, the partial derivatives of the heating rate,
equation (A11) and equation (A12), are fully specified.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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