

Glossifungites gingrasi n. isp., a probable subaqueous insect domicile from the Cretaceous Ferron Sandstone, Utah

Authors: King, M. Ryan, La Croix, Andrew D., Gates, Terry A.,

Anderson, Paul B., and Zanno, Lindsay E.

Source: Journal of Paleontology, 95(3): 427-439

Published By: The Paleontological Society

URL: https://doi.org/10.1017/jpa.2020.115

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne's Terms of Use, available at www.bioone.org/terms-of-use.

Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.

0022-3360/21/1937-2337 doi: 10.1017/jpa.2020.115

Glossifungites gingrasi n. isp., a probable subaqueous insect domicile from the Cretaceous Ferron Sandstone, Utah

M. Ryan King, 1* Andrew D. La Croix, 2 Terry A. Gates, 3,4 Paul B. Anderson, 5 and Lindsay E. Zanno 3,4

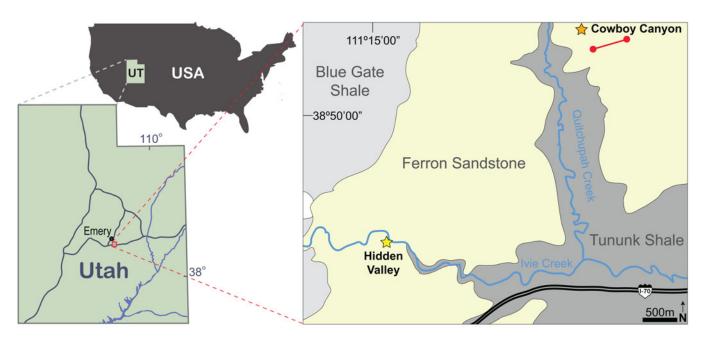
Abstract.—A new ichnospecies, *Glossifungites gingrasi* n. isp., is described from multiple locations in basal sand-filled coastal plain distributary channels of the Turonian (Upper Cretaceous) Ferron Sandstone (central Utah). *Glossifungites gingrasi* n. isp. is attributed to the ichnogenus *Glossifungites* based on the presence of scratch imprints, passive fill, and a tongue-shaped structure, yet the new ichnospecies is distinct because it displays transverse bioglyphs that run perpendicular to the planiform structure, which contrasts to the axis parallel bioglyphs present in the ichnospecies *G. saxicava*. The transverse arrangement of ornamentation exhibited by *G. gingrasi* n. isp. is observed in modern subaqueous insect burrows produced by mayfly and chironomid larvae, and constitutes a way to differentiate insect-generated burrows from structures produced by crustaceans that are known to create other *Glossifungites* ichnospecies. Differentiating insect- from crustacean-generated burrows is significant because it provides a way to distinguish bioturbation by marine-recruited fauna from that produced by freshwater fauna in the rock record, making *G. gingrasi* n. isp. a valuable ichnological tool for paleoenvironmental and stratigraphic interpretation. While *G. gingrasi* n. isp. may represent a burrow created by a variety of filter-feeding subaqueous insects, the large size of *G. gingrasi* n. isp. in the Ferron Sandstone suggests that the largest specimens are probable mayfly burrows and supports the assertion that burrowing mayflies (e.g., Polymitarcyidae and Ephemeridae) adapted to domicile filter-feeding during or prior to the Turonian.

UUID: http://zoobank.org/a033b22f-bf09-481a-975e-3a1b096154cc

Introduction

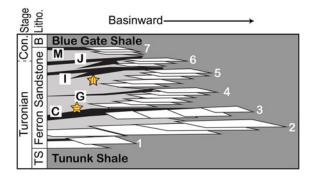
Globally, the ichnology of freshwater settings has received limited attention in comparison with their marine counterparts (Buatois and Mángano, 2004; Hasiotis, 2004; MacEachern et al., 2007; Melchor et al., 2012; Genise, 2017; Savrda, 2019). The Turonian Ferron Sandstone of the "Last Chance" depocenter in central Utah, USA, is a siliciclastic succession composed of fluvial-deltaic sandstone, mudstone, and coal (Ryer et al., 1980; Garrison and van den Bergh, 2004; Ryer, 2004) with extensive outcrops for examining ichnology in continental and marine realms. There have been many reports of the invertebrate ichnology in marginal marine strata within the upper Ferron Sandstone of this area (Ryer, 1981; Anderson and Ryer, 2004; Bhattacharya and Davies, 2004; Corbeanu et al., 2004; Gardner et al., 2004; Garrison and van den Bergh, 2004; Moiola et al., 2004; Ryer and Anderson, 2004; Gani et al., 2007; Bhattacharya and MacEachern, 2009), yet continental traces are seldom described in these studies because of their focus related on nearshore geobodies as potential reservoir analogs. However, King and Anderson (2013) described in situ plant traces and probable insect traces (Haplotichnus [now Treptichnus; Getty and Bush, 2017] and trace fossils with meniscate and pustulose textures) and King et al. (2020) described continental traces attributed to mollusk locomotion (*Archaeonassa*) and potentially mayflies (*Rhizocorallium* exhibiting spreite) from the Ferron Sandstone. This study provides examples of new trace fossil morphologies attributable to filterfeeding subaqueous insects (e.g., mayfly larvae) in freshwater channel deposits. These can be used for paleoenvironmental reconstruction in deposits from the Mesozoic to present. Additionally, these distinctive burrows can be used to evaluate colonization trends over time (e.g., substrate preference, paleoclimate, channel size, river style, flow regimes) that can tell us more about the adaptation and evolution of subaqueous insects as infaunal filter feeders.

Geological setting


The slab containing the holotype and syntypes (NCSM 12618) and the other paratype slabs (NCSM 12619–NCSM 12625) were discovered within coastal plain deposits of the Ferron Sandstone in Hidden Valley, Utah. The "axiotype" (NCSM 12626) (sensu Lucas and Harris, 2020) was collected 4.33 km away, just north of Cowboy Canyon (Figs. 1, 2). Lupton (1916) named the coals of the upper Ferron Sandstone at the Last Chance area in ascending order, using letters that proved instrumental for Ryer (1981), who built the initial

¹Natural and Environmental Sciences, Western Colorado University, 1 Western Way, Gunnison, CO, 81231, USA mrking@western.edu

²Earth Sciences, School of Science, University of Waikato, Hamilton 3200, New Zealand <alacroix@waikato.ac.nz>


³Department of Biological Sciences, 100 Brooks Ave, North Carolina State University, Raleigh, NC, 27695, USA <tagates@ncsu.edu>
⁴Paleontology, North Carolina Museum of Natural Sciences, Raleigh, NC, 27601, USA lindsay.zanno@naturalsciences.org>

⁵Consulting geologist, 187 R Street, Salt Lake City, Utah, 84103 <paul@pbageo.com>

Figure 1. Location map indicating where the type specimens of *Glossifungites gingrasi* n. isp. were collected in Hidden Valley (yellow star), and where the axiotype was collected at the mouth of Cowboy Canyon (orange star) (modified from Anderson et al., 2003; Garrison and van den Bergh, 2004). Surficial units: Blue Gate Shale (light gray), Ferron Sandstone (beige), Tununk Shale (dark gray), Quaternary alluvium (white). Red line indicates a contemporaneous stratigraphic surface to the surface from which the axiotype was collected, which contains numerous additional examples of the ichnofossil.

stratigraphy of the Ferron Sandstone in this area. The Hidden Valley site lies between the "C" and "G" coal zones, and the Cowboy Canyon site is situated between the "G" and "T" coal zones (Figs. 2, 3). The two surfaces where specimens were collected (fallen block in Hidden Valley) or molded (in situ at Cowboy Canyon) are from the bases of small (<6 m thick, <320 m wide) channel sandstones (Fig. 3) overlying platy, blocky gray mudstone/silty mudstones in the respective areas. King et al. (2020b) detailed the sedimentology and stratigraphy of the strata containing these trace fossils in the Cowboy Canyon area showing that the channels are encased in coastal plain sediment, and that the *Glossifungites* colonization surfaces occur at multiple stratigraphic levels, which suggests a link with autogenic processes rather than the allogenic surfaces

Figure 2. Schematic of the Ferron Sandstone stratigraphy in the study area. Stars indicate the stratigraphic levels where *Glossifungites gingrasi* n. isp. type specimens (Hidden Valley; star with horizontal stripes) and axiotype (Cowboy Canyon; star with vertical stripes) were collected (modified from Ryer et al., 1980; Ryer, 1981; Gardner et al., 1992). The numbers represent parasequence sets and letters represent coal zones. Con. = Coniacian, Litho. = Lithostratigraphic Nomenclature.

that *Glossifungites* (i.e., *G. saxicava* Łomnicki, 1886) are normally associated.

Repository and institutional abbreviation.—The holotype, syntypes, paratypes, and axiotype examined in this study are deposited at North Carolina Museum of Natural Sciences (NCSM) in Raleigh, North Carolina, USA.

Systematic ichnology

Ichnogenus Glossifungites Łomnicki, 1886

Type ichnospecies.—Glossifungites saxicava Łomnicki, 1886 from the Miocene deposits of the Lviv region, Ukraine.

Emended diagnosis.—Passively filled, horizontal to oblique, unbranched, tongue-shaped burrows with a medial area more depressed or narrower than the lateral area. The distal portion of the trace fossil is usually wider than the apertural portion. The surface of the trace fossil is covered by bioglyphs (adapted from Łomnicki, 1886 and Belaústegui et al., 2016a).

Remarks.—Since the initial definition of the tongue-shaped, scratch-marked trace fossil Glossifungites, there have been several attempts to reassign the ichnogenus as a junior synonym of other forms. The convoluted ichnotaxonomic history of the trace fossil has been detailed by Uchman et al. (2000), who argued ichnotaxonomy should follow Fürsich (1974), placing Glossifungites saxicava as a junior synonym of Rhizocorallium jenense Zenker, 1836. The work of Uchman et al. (2000) was based on the fact that R. jenense showed both scratch-marked and non-scratch-marked specimens within the same stratal layer, demonstrating a

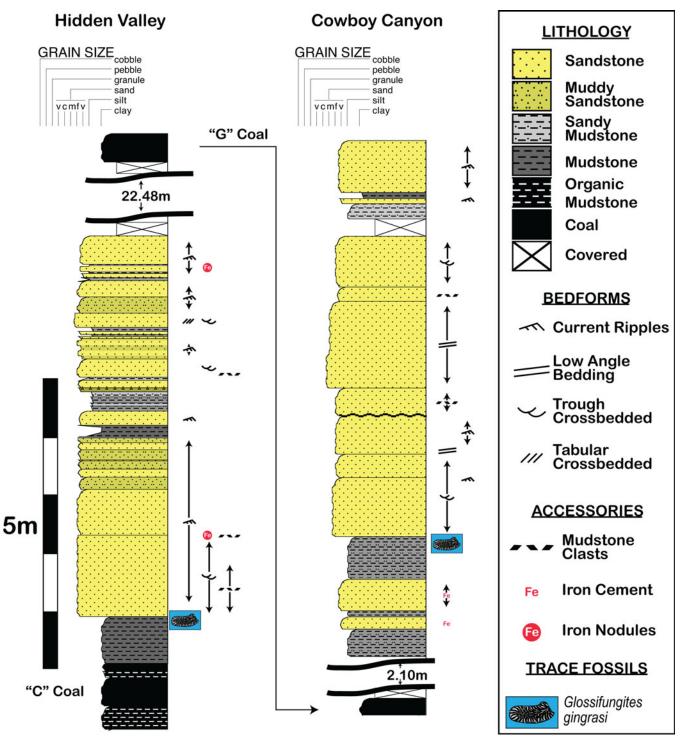
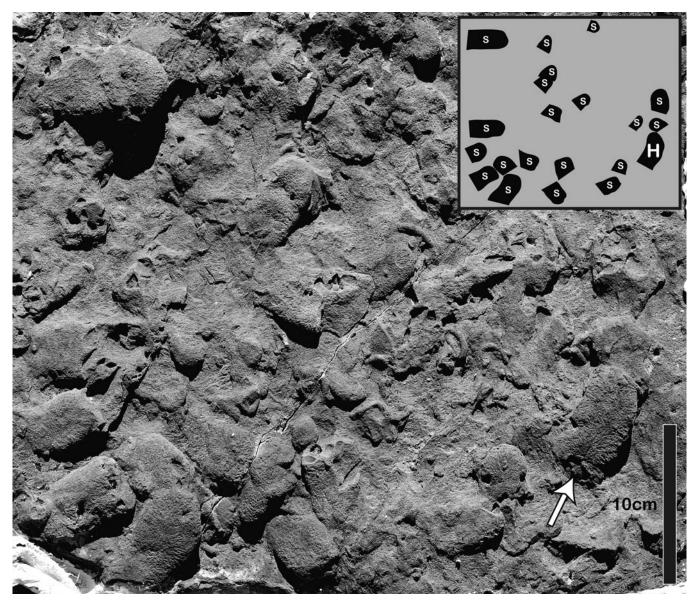



Figure 3. Stratigraphic logs showing the position of *Glossifungites gingrasi* n. isp. in Hidden Valley (over mudstone above the "C" Coal zone), and in Cowboy Canyon (above mudstone of the "G" Coal zone).

continuum of characteristics. Fürsich (1974) differentiated *Rhizocorallium* ichnospecies based on overall length and pattern rather than using differentiation of the fill as an ichnotaxobase, and did not adequately detail why *Glossifungites* was a junior synonym of *Rhizocorallium*. More recently, Knaust (2013) concluded that there are only two valid ichnospecies of *Rhizocorallium* (*R. jenense* and

R. commune Schmid, 1876), and following Fürsich (1974), included Glossifungites under Rhizocorallium, although the two papers are not in complete agreement on the classification with regards to the importance of spreite versus passive fill or ichnotaxobase hierarchy (ichnospecies versus ichnosubspecies and variety). More recently, Belaústegui et al. (2016a) refuted that Glossifungites was a junior synonym of Rhizocorallium,

Figure 4. The holotype (arrow) of *Glossifungites gingrasi* n. isp. exhibiting transverse radiating scratch marks (bioglyphs). Inset (upper right) diagrammatic location of holotype (H) and examples of syntypes (S) on slab specimen (NCSM 12618). Note the weathering of mudstone clasts, indicating a passive fill, which is common in distal portions of specimens. Photo taken in the field after removal.

and reintroduced *Glossifungites saxicava* as a valid ichnospecies using examples from Spain that contained barnacle-colonized interiors to illustrate the importance of differentiating passive versus active fills and the presence/absence of spreite as ichnotaxobases for differentiating ichnogenera. The passive infilling and interior barnacle colonization in Belaústegui et al. (2016a) provided evidence that *Glossifungites* is a distinctive tongue-shaped structure and does not belong in the same ichnogenera as trace fossils resulting from a migrating, tubular, U-shaped structure, which defines *Rhizocorallium*. Here, we follow the most recent nomenclature (Belaústegui et al., 2016a) in referring tongue-shaped, passively filled specimens to the ichnogenus *Glossifungites*.

Glossifungites gingrasi new ichnospecies Figures 4–7, 8.4–8.7 *Holotype.*—North Carolina Museum of Natural Sciences (Raleigh, North Carolina) specimen slab NCSM 12618 (45 x 37 cm) containing the holotype and at least 20 syntypes (Fig. 4). All physical specimens were collected from Hidden Valley using a TS 500i STIHL Cutquick rock saw, with the holotype cradled in plaster and burlap for transportation.

Paratypes.—Small slab specimens (NCSM 12619–NCSM 12625; Fig. 5) and large (98 x 64 cm) axiotype slab mold (NCSM 12626; Fig. 6) housed at the North Carolina Museum of Natural Sciences (Raleigh, North Carolina). The axiotype was molded using high solids latex (~75%) ingrained with burlap for rigidity.

Diagnosis.—Passively filled, horizontal to oblique, unbranched, tongue-shaped burrows with a medial area more depressed or

narrower than the outer portion. Bioglyphs cover the trace, commonly crisscrossing, with lateral and distal bioglyphs exhibiting roughly transverse orientation. Medial bioglyphs may be oriented roughly parallel to the axis, in places giving the bioglyphs an overall radiating or feather-like appearance.

Occurrence.—All specimens were collected from the Turonian Ferron Sandstone. The holotype and paratype specimens were collected from a displaced sandstone block within Hidden Valley. Specimens were collected from the base of the sandstone block in slabs of various sizes. The occurrence of these trace fossils in Hidden Valley is sparse and localized. Alternatively, the Cowboy Canyon area, where the axiotype (plastotype) was collected, displays more prolific outcrop examples of these trace fossils. However, well-preserved specimens are exposed on the underside of sandstones ranging from 2.5–4.9 m above the ground, which makes acquisition of quality specimens problematic (other than taking molds and photographs).

Description.—Preserved as convex hyporeliefs at the base of sandstone beds, with only the most distal portions ever exhibiting full relief. The trace fossils are passively filled by fine to medium sand grains and by gray mudstone clasts. Mudstone clasts appear to accumulate dominantly in the most distal portions of the trace when present (Figs. 4, 5.12, 5.14, 5.15), and commonly result in incomplete preservation or selective breakage of the trace (Figs. 4, 5.5, 5.8, 5.10). Trace fossils from the type block surface have maximum widths of 2.3-4.3 cm, lengths of 2.7-8 cm, and thicknesses (perpendicular to width) of 0.6–1.3 cm (Appendix). Dimensions of G. gingrasi n. isp. on the type surface (Appendix) are similar to examples of extant mayfly burrows from the Ohře River (Uchman et al., 2017), which have widths of 2.0-4.0 cm, lengths of 4.6-8.0 cm, marginal tunnel diameters of 0.8-1.2 cm, and bioglyphs typically <1.2 cm long. Glossifungites gingrasi n. isp. in the study area are larger widths (>5.9 cm; King et al., 2020b) than extant mayfly burrows. King et al. (2020b) speculated that the larger size of Glossifungites gingrasi n. isp. might be attributed to larger tracemakers or a variant body plan in the Cretaceous, when compared to extant organisms that are affected by anthropogenic stresses.

Longer traces of G. gingrasi n. isp. appeared to have greater variation in width (Figs. 6, 7). When comprising a sharp distinct boundary (external morphology), the causative structure (marginal tunnel) ranges from 0.9 to 1.4 cm in diameter. The medial depression (inward narrowing of the trace) is in places subtle, which makes it difficult to capture photographically in smaller specimens, but it is readily apparent in the most proximal portions of the trace, and in longer forms can manifest as two prominent arms (Figs. 5.14, 5.15, 6, 7). Specimens of Glossifungites gingrasi n. isp. share a similar morphological continuum, from short to long forms, with specimens of Glossifungites saxicava. As noted by Uchman et al. (2000), in the G. saxicava type area, the width of smaller specimens of G. saxicava is rather consistent across the axial length, whereas in larger forms, the trace widens distally. A similar disparity is present in G. saxicava specimens of Belaústegui et al. (2016a). This covariation of size and shape is also observed in specimens of G. gingrasi n. isp. from Hidden Valley (Figs. 4, 5) and Cowboy Canyon (Fig. 6). Both display constant widths in short form versus distally expanded elongate specimens. Locally, length is extended by stacking of burrows, as denoted by a sudden change in bioglyphs and depth (Fig. 5.3, 5.11).

Bioglyphs (sensu Bromley et al., 1984; Bromley, 1996; Ekdale and Gibert, 2010) reach a maximum width of ~1 mm and maximum lengths of 0.6-1.2 cm (Appendix). The lateral areas of the trace have the bioglyphs oriented transverse to the causative marginal tunnel (Figs. 5-7), whereas the medial bioglyphs show a more axial orientation (Figs. 4, 5.5, 5.9, 5.12, 5.13, 6.1). Bioglyphs on the lateral margins are rarely preserved in the study area, but when observed (Fig. 5.16, 5.17) appear to descend distally at an angle close to 45° with respect to the bottom of the trace. Because bioglyphs provide valid ichnotaxonomic characters, Knaust (2013) used bioglyph ornamentation to differentiate R. commune from R. jenense, and the number of bioglyphs in a set has been used to distinguish *Gnathichnus* pentax Bromley, 1975. Although bioglyphs with similar orientations are visible in G. gingrasi n. isp., we cannot identify a consistent number of bioglyphs in sets across the various traces, largely because of the overlap and high density. Bioglyphs appear to become "composite bioglyphs" of two or more bioglyphs that share a similar orientation and lie on approximately the same plane. However, despite the lack of set identification, the transverse orientation of the bioglyphs is a unique and repeatable ichnotaxobase in G. gingrasi n. isp. Glossifungites saxicava has longitudinally orientated bioglyphs in the causative tube area (lateral and distal parts of the trace) and transverse-oriented bioglyphs in the medial depressed area between the two arms of the trace fossil (Fig. 8.1–8.3). In contrast, the distal and lateral portions of G. gingrasi n. isp. are dominated by bioglyphs transverse to the causative tube, and the medial portion of the trace fossil may contain some bioglyphs that are more axially oriented and can have a long sweeping appearance (potentially composite bioglyphs), often initiating from more proximal portions of the trace fossil (Fig. 8.4–8.9). In G. gingrasi n. isp., bioglyphs are dominantly perpendicular to the causative tube, and although they may be crisscrossed, they still maintain this general transverse orientation. Conversely, in similarly shaped, incongruent traces, such as Fuersichnus striatus Buatois, 1995, Rhizocorallium jenense, or R. commune (Knaust, 2013), the rarely crossing bioglyphs parallel causative tube orientation.

Glossifungites gingrasi n. isp. are oriented in respect to horizontal at a <9° angle in the study area, and often are grouped together locally in similar geographic orientations (Fig. 8, Appendix). Even on sloped surfaces, G. gingrasi n. isp. maintains a roughly horizontal axis, although the relationship to the slope is tangential. Conversely, Glossifungites saxicava in the type area is observed at angles approaching horizontal, as well as vertical (Uchman et al., 2000). Glossifungites saxicava is commonly at random orientations in the type area (Uchman et al., 2000), whereas Glossifungites gingrasi n. isp. in high densities often have a roughly unidirectional orientation (Appendix; Fig. 7). Traces may be crosscut by convex hyporeliefs of Palaeophycus <0.5 cm in diameter (Figs. 4, 5.10, 5.12, 5.15); however, that appears to be the extent of ichnodiversity on these surfaces.

Figure 5. Selected *Glossifungites gingrasi* n. isp. from (9) holotype (NCSM 12618), syntypes (NCSM 12618: **3**, **4**, **7**, **13**), and paratypes (NCSM 12619: **14**; NCSM 12620: **12**, **15**; NCSM 12621: **2**; NCSM 12622: **5**, **6**, **8**; NCSM 12623: **11**; NCSM 12624: **1**; NCSM 12625: **10**) showing the underside of the traces with bioglyphs that are perpendicular to the margin distally, but may roughly parallel the axis in the medial proximal area. Scale is 3 cm (bottom left) for **1-15**. In limited side preservation (NCSM 12623: **16**; NCSM 12618: **17**), bioglyphs descend distally. Scale for **16**, **17** is 1 cm.

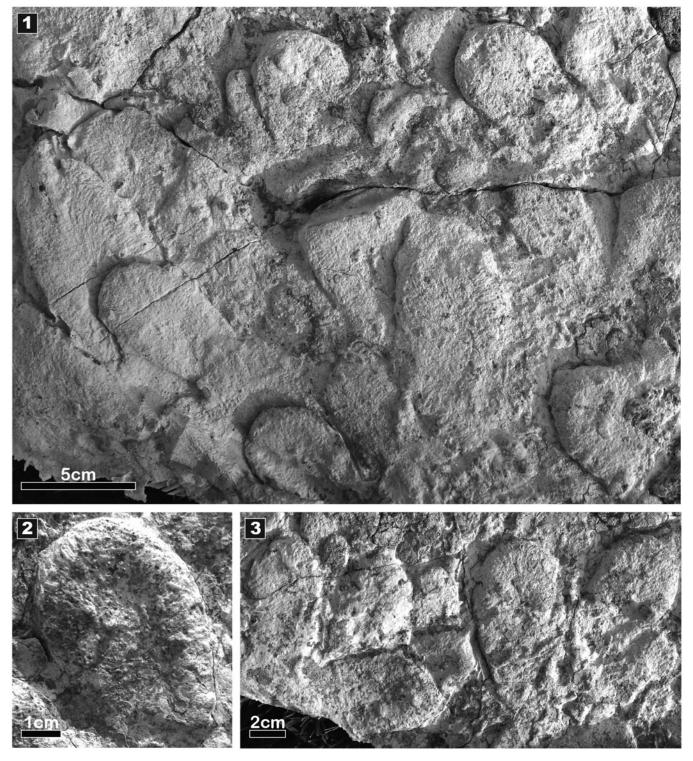


Figure 6. Selected photos of *Glossifungites gingrasi* n. isp. from the axiotype (NCSM 12626) in the Cowboy Canyon Area showing the same features as seen in the Hidden Valley type specimens, such as an overall tongue shape with medial axial bioglyphs (1) and transverse bioglyphs along margins with a radiating appearance and depressed central area more prevalent in longer forms (2, 3).

Figure 7. An outcrop photo on the underside of the sandstone in Cowboy Canyon to the left of where the axiotype was molded, showing the often roughly unidirectional nature of *Glossifungites gingrasi* n. isp., as well as examples of multiple small variations in the trace. These small variations include distal widening (white arrows) that may be associated with growth (ichnogeny). This surface also presents evidence that these traces may be much longer (black arrow) than the type specimens, but the surface is unreachable to discount the specimen being a composite trace.

Etymology.—Named for Professor Murray K. Gingras (University of Alberta, Edmonton, Canada) who has greatly contributed to the ichnological community by unravelling the complexities of burrows in variable substrates and educating a new generation of ichnologists.

Materials.—The slab NCSM 12618 contains the holotype and at least 20 syntypes, and NCSM 12619–12625 slabs have at least 36 individual *G. gingrasi* n. isp. trace fossils (paratypes), whereas the axiotype (NCSM 12626) has >68 individual examples. The outcrop in the Cowboy Canyon area has several hundred individuals in the sandstone overhangs.

Remarks.—In examining the structure of modern mayfly burrows, Uchman et al. (2017) noted that the known mayfly-associated ichnotaxa (i.e., Asthenopodichnium, Arenicolites, Fuersichnus, Rhizocorallium jenense) do not apply to the tongue-shaped, scratch marked morphologies seen in the modern, and that there is room to establish new ichnotaxon. Provided herein is evidence in the form of a bioglyph orientation ichnotaxobase that is more consistent with modern examples than those of any ancient examples described so far. Abel (1935) described similar modern burrows as Ephemerites, but Fürsich and Mayr (1981) argued that Ephemerites was a junior synonym of Rhizocorallium Zenker, 1836, and Knaust (2013) declared Ephemerites as

nomen nudum based on lack of a type specimen. Uchman et al. (2017) agreed with Knaust (2013) and added that modern burrows should not provide the example for fossilized ichnotaxa nomenclature. Furthermore, the trace fossils described herein fit within the description of *Glossifungites*.

Discussion

Potential tracemakers.—Tracemakers for tongue- and U-shaped burrows such as Glossifungites and Rhizocorallium (i.e., R. jenense), respectively, are generally considered to have been made by crustaceans, amphipods, polychaetes, and subaqueous insects that utilize these domiciles for filter-feeding (Seilacher, 1967, 2007; Fürsich, 1974; Fürsich and Mayr, 1981; Knaust, 2013). However, detailed descriptions of burrows constructed by extant subaqueous insects, such as mayflies and chironomids, are sparse (Swammerdam, 1737; Réaumur, 1742; Abel, 1935; Scott et al., 1959; Krasnenkov, 1966; Seilacher, 1967; Illies, 1968; Chamberlain, 1975; Kureck, 1996; Charbonneau and Hare, 1998; De, 2002; Savrda, 2019), probably, in part, due to their disappearance in many modern ecosystems because of sensitivity to water pollution (Uchman et al., 2017). This study finds the features of G. gingrasi n. isp. most consistent with extant mayfly burrows and argues for a subaqueous insect tracemaker for G. gingrasi n. isp. In particular, the

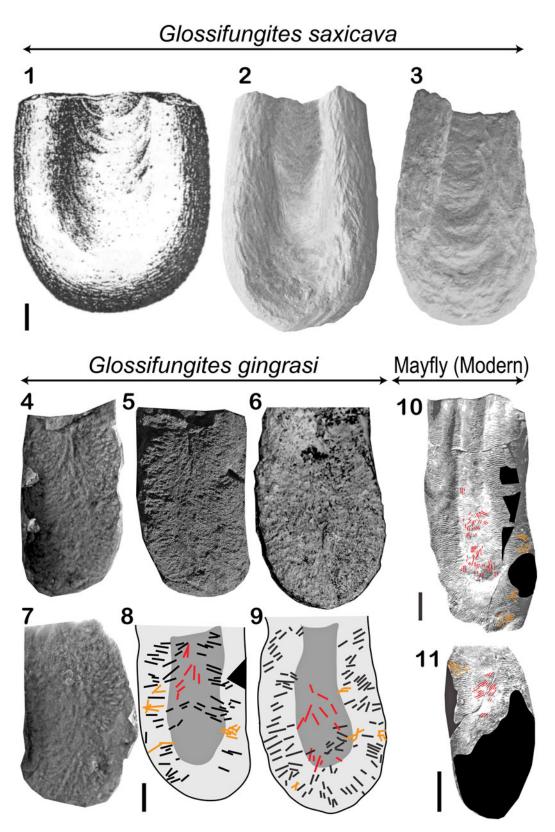


Figure 8. Comparison of Glossifungites saxicava, G. gingrasi n. isp., and modern mayfly burrows. (1) Illustration of type specimen of Glossifungites saxicava (modified from Lomnicki, 1886); (2, 3) examples of G. saxicava (modified from Belaústegui et al., 2016a).; note the bioglyphs in G. saxicava may be in a crisscrossed, net-like pattern, but bioglyphs generally parallel the causative tube, and are typically transverse between the arms of the trace. Conversely, G. gingrasi n. isp. ([4] silicone mold of holotype, [5] holotype, [6] specimen from outcrop in Cowboy Canyon, [7] silicone mold of a syntype, [8] illustration of [5], [9] illustration of [6]) shows roughly transverse bioglyphs to the causative tubes (black lines 8, 9), which can crisscross (orange lines 8, 9) and may exhibit either short transverse or axial (red lines 8, 9) bioglyphs in the medial portion of the trace fossil. These patterns in G. gingrasi n. isp. are similar to modern mayfly burrows (10, 11; modified from Uchman et al., 2017) dominated by transverse bioglyphs (grayscale), some crisscrossing bioglyphs (orange), with some axial parallel scratches in the median (red) that can appear long and sweeping (potential composite bioglyphs). All scales represent 1 cm, with a single scale present for the multiple examples of the two ichnospecies, and blacked-out portions represent missing parts of the burrow or fossil.

transversely arranged bioglyphs exhibited by *G. gingrasi* n. isp. are comparable to those of extant subaqueous insect burrows produced by mayfly and chironomid larvae (Fig. 8).

The dominance of transverse bioglyphs along the walls of the causative tubes has been demonstrated by extant mayfly larvae burrows (Abel, 1935; Seilacher, 1967, 2007; Uchman et al., 2017; Fig. 8.10, 8.11) and in extant chironomid larvae burrows (Savrda, 2019). This transverse bioglyph feature of U- to tongue-shaped burrows appears unique to insects and thus they are considered "fingerprints" (Seilacher, 2007) or "bioprints" (Rindsberg and Kopaska-Merkel, 2005), meaning that such ichnomorphological characters (bioglyphs) can be reliably used to identify a producer. As we have noted, Glossifungites gingrasi n. isp. (Fig. 8.4–8.9) shares similar medial and lateral bioglyph orientations with extant mayfly burrows (Fig. 8.10, 8.11). Support for a mayfly tracemaker for G. gingrasi n. isp. in the Ferron Sandstone over a chironomid can be found in the size, orientation, and proportions of the burrow. Extant chironomid burrows are much smaller (maximum of 0.7 cm wide) than the G. gingrasi n. isp. herein, typically are vertically oriented unless emplaced on a vertical bank, and one aperture is noticeably larger than the other (Savrda, 2019). Among the taxa of extant mayfly larvae that produce subaqueous U- to tongue-shaped burrows with their specialized mandibles and front limbs are species from the families Polymitarcyidae and Ephemeridae (Edmunds and McCafferty, 1996; Uchman et al., 2017), and it appears most likely that G. gingrasi n. isp. is associated with a tracemaker from one of these two clades. Although other mayflies, such as Euthyplociidae, Ichthybotidae, Palingeniidae, Potamanthidae and Behningiidae (Miller et al., 2018), are known for burrowing, they appear to be responsible for different structural emplacement or occupy different substrates.

Body fossils of mayflies, including non-fossorial forms, date back likely to the Carboniferous (McCafferty, 1990) and definitively to the Permian (Sinitshenkova and Vassilenko, 2012), with fossil-calibrated molecular phylogenies suggesting an origin as far back as the Devonian (Montagna et al., 2019). McCafferty (1990) identified larval forms living in flowing water (the derived ecological condition) strata from the Early Cretaceous Santana Formation, but also pointed out a lack of evidence for mayfly burrowing behavior. Polymitarcyidae body fossils are preserved in Turonian amber in New Jersey within subtropical to tropical river paleoenvironments, but extant clades have adapted more recently to inhabit temperate climates (Sinitshenkova, 2000). The Late Cretaceous fluvial environment from which the hypodigm of G. gingrasi n. isp. derives suggests that mayflies evolved into burrowers that exploited filter-feeding from their domiciles by, at least, the Turonian. U-shaped burrows with parallel arms (Arenicolites and spreiten-bearing *Rhizocorallium*) have been attributed to mayfly larvae from the Triassic (Sinitshenkova et al., 2005), Cretaceous (King et al., 2020a), and Miocene (Fürsich and Mayr, 1981; Lange and Suhr, 1996; Bolliger, 1999), but none of these bears evidence of diagnostic bioglyphs that would distinguish them from other tracemakers. King et al. (2020b) has suggested that the orientation in these trace fossils (G. gingrasi n. isp.) from the study area (Cowboy Canyon) is a result of an environmental preference (e.g., competition for space along the sediment-water interface, ethological alignment to maximize hydrodynamic variables for food resource, or stability).

Ichnogeny.—The distal widening in larger/longer specimens of Glossifungites gingrasi n. isp. is proposed to be a result of domicile enlargement associated with organism growth. Similar size-related morphological changes attributed to organism growth are noted in many trace fossils attributed to filter-feeding organisms: Rhizocorallium (Fürsich and Mayr, 1981; Seilacher, 2007), Glossifungites (Uchman et al., 2000), and Diplocraterion (Bromley and Hanken, 1991), as well as in modern organism burrows, such as those made by mayflies (Scott et al., 1959). The concept of ontogenetic changes in trace morphology has been long noted in vertebrate trace fossils that are formed at least in part by molding of a body part (Lockley, 1994; Olsen et al., 1998; Matsukawa et al., 1999). More recently, the term "ichnogeny" (Belaústegui et al., 2016b) has been used to make reference to the origin and development over time of modern burrows or trace fossils in relation with ontogeny and/or causative behavior of the tracemaker. Morphological changes, as seen in composite forms of G. gingrasi n. isp. along the same plane (Fig. 5.3), might indicate change of angle of the burrow over time in response to some environmental variable, secondary excavation of the burrow with growth, or reoccupation (smaller scale domicile excavation) at a later time by a smaller organism.

excavation behavior ofSubaqueous insects versus crustaceans.—The ichnotaxonomic distinction of G. gingrasi n. isp. from that of G. saxicava, coupled with knowledge that these likely represent a difference between subaqueous insect excavation versus that of crustacean burrowing, provides a means to discern paleo-salinity conditions, since insects such as mayflies have low tolerance to persistently saline environments (Chadwick et al., 2002; Cañedo-Argüelles et al., 2013). Mayfly larvae are particularly vulnerable to many stresses, including changes in temperature (Haidekker and Hering, 2008; Chacón et al., 2016), sedimentation (Extence et al., 2013), and anthropogenic stressors (Zedková et al., 2015), and are abundant in subaqueous, well-oxygenated, low-salinity streams (Uchman et al., 2017), making them good freshwater indicators. Therefore, differentiating insect-produced burrows, such as G. gingrasi n. isp., from G. saxicava allows fluvial reaches of ancient systems to be reliably identified. Distinguishing between the two Glossifungites ichnospecies will refine interpretations of the fluvial-to-marine transition within coastal plain to nearshore systems in the rock record, potentially from the Triassic (when mayflies are first thought to have started burrowing) until recent. This realization has a direct implication on how the Glossifungites Ichnofacies is viewed with similar R-strategist filter-feeding exploitation in both the marine and fluvial systems (King et al., 2020b). Furthermore, the occurrence of these large tongue-shaped traces complicates the size-diversity index (sensu Hauck et al., 2009), which generally has complex forms decreasing in diameter landward up estuaries into the freshwater realm. Fluvial systems are dynamic and considerable variation in the zone of salinity intrusion is observed in some cases. However, identification of G. gingrasi n. isp. in future studies would allow researchers to tease out complex colonization

patterns in nearshore settings. These include seasonality-related fluctuations between freshwater-dominated runoff base flow conditions, when the salt wedge intrudes further into low gradient systems (La Croix et al., 2015). Alternatively, *G. gingrasi* n. isp. colonization surfaces might illuminate patterns associated with increased salinity up section in nearshore fluvial channels due to channel abandonment or backing up of the system associated with transgression (Corbeanu et al., 2004; Richards and Bhattacharya, 2018).

Conclusions

A new ichnospecies, Glossifungites gingrasi, is named from the Ferron Sandstone in central Utah for passively filled, horizontal to oblique, unbranched, tongue-shaped trace fossils with a medial depressed area commonly exhibiting bioglyphs with a roughly axial orientation and lateral/distal areas being dominated by bioglyphs transverse to the causative tube. The bioglyph orientation easily distinguishes G. gingrasi n. isp. from G. saxicava, with the latter having bioglyphs with a longitudinal relationship to the marginal tube. The bioglyphs are similar to the transverse ornamentation observed in the modern U- to tongued shaped burrows of subaqueous insect larvae (e.g., mayflies and chironomids). The large size of these ancient burrows in the study area suggests mayflies were the most probable producer of these specimens and that they exploited domiciles for subaqueous filter-feeding at least during, and likely prior to, the Turonian. The differentiation of freshwater insect-produced burrows G. gingrasi n. isp. from G. saxicava, the latter of which is most often associated with marginal marine producers, may provide a high-resolution tool for assessing salinity conditions in channels in the rock record globally over a large temporal period.

Acknowledgments

Thanks to Bronco Utah Operations, B. Parrish, and P. Braun for their assistance in getting access to private land for specimen collection, as well as R. Gaston for help with advice on molding and casting the axiotype and L. Herzog at the North Carolina Museum of Natural Sciences for help with specimen accession. The axiotype was molded under Bureau of Land Management permit number UT15-001S. We thank G. McDonald, R. Anderson, and the staff of the Bureau of Land Management for permitting support. Thanks to M. Ranger for the use of Applecore. Thank you to reviewers C. Savrda, P. Getty, and Z. Belaústegui, as well as Associate Editor G. Mángano, whose feedback greatly improved the quality of this manuscript. This material is based upon work supported by the National Science Foundation under Grant No. FRES 1925973. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

References

Abel, O., 1935, Vorzeitliche Lebensspuren: Jena, Gustav Fischer, 644 p. Anderson, P.B., and Ryer, T.A., 2004, Regional stratigraphy of the Ferron Sandstone, *in* Chidsey, T.C., Jr., Adams, R.D., and Morris, T.H., eds., Regional to

- Wellbore Analog for Fluvial-Deltaic Reservoir Modeling: The Ferron Sandstone of Utah: American Association of Petroleum Geologists Studies in Geology No. 50, p. 211–224.
- Anderson, P.B., McClure, K.P., Chidsey, T.C., Ryer, T.A., and Morris, T.H., 2003, Interpreted Regional Photomosaics and Cross Section, Cretaceous Ferron Sandstone East-Central Utah: Utah Geological Survey Open File Report 412, 29 p.
- Belaústegui, Z., Ekdale, A.A., Domènech, R., and Martinell, J., 2016a, Paleobiology of firmground burrowers and cryptobionts at a Miocene omission surface, Alcoi, SE Spain: Journal of Paleontology, v. 90, p. 721–733.
- Belaústegui, Z., Muñiz, F., Mángano, M.G., Buatois, L.A., Domènech, R., and Martinell, J., 2016b, *Lepeichnus giberti* igen. nov. isp. nov. from the upper Miocene of Lepe (Huelva, SW Spain): evidence for its origin and development with proposal of a new concept, ichnogeny: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 452, p. 80–89.
- Bhattacharya, J.P., and Davies, R.K., 2004, Sedimentology and structure of growth faults at the base of the Ferron Sandstone Member along Muddy Creek, Utah, in Chidsey, T.C., Jr., Adams, R.D., and Morris, T.H., eds., Regional to Wellbore Analog for Fluvial-Deltaic Reservoir Modeling: The Ferron Sandstone of Utah: American Association of Petroleum Geologists Studies in Geology No. 50, p. 279–304.
- Bhattacharya, J.P., and MacEachern, J.A., 2009, Hyperpycnal rivers and prodeltaic shelves in the Cretaceous Seaway of North America: Journal of Sedimentary Research, v. 79, p. 184–209.
- Bolliger, T., 1999, Trace fossils and trackways in the Upper Freshwater Molasse of Central and Eastern Switzerland: Neues Jahrbuch für Geologie und Paläontologie—Abhandlungen, p. 519–536.
- Bromley, R.G., 1975, Comparative analysis of fossil and recent echinoid bioerosion: Palaeontology, v. 18, p. 725–739.
- Bromley, R.G., 1996, Trace Fossils: Biology, Taxonomy and Applications: London, Chapman and Hall, 378 p.
- Bromley, R.G., and Hanken, N.-M., 1991, The growth vector in trace fossils: examples from the lower Cambrian of Norway: Ichnos, v. 1, p. 261–276.
- Bromley, R.G., Pemberton, S.G., and Rahmani, R.A., 1984, A Cretaceous woodground: the *Teredolites* ichnofacies: Journal of Paleontology, v. 58, p. 488–498.
- Buatois, L.A., 1995, A new ichnospecies of *Fuersichnus* from the Cretaceous of Antarctica and its paleoecologic and stratigraphic implications: Ichnos, v. 3, p. 259–263.
- Buatois, L.A., and Mángano, M.G., 2004, Animal-substrate interactions in freshwater environments: applications of ichnology in facies and sequence stratigraphic analysis of fluvio-lacustrine successions, in McIlroy, D., ed., The Application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis: Geological Society, London, Special Publications, v. 228, p. 311–333.
- Cañedo-Argüelles, M., Kefford, B.J., Piscart, C., Prat, N., Schäfer, R.B., and Schulz, C.-J., 2013, Salinisation of rivers: an urgent ecological issue: Environmental Pollution, v. 173, p. 157–167.
- Chacón, M.M., Segnini, S., and Briceño, D., 2016, Temperature and daily emergence of seven genera of Ephemeroptera (Insecta) in a cloud forest stream of tropical Andes: Revista de Biología Tropical, v. 64, p. 117–130.
- Chadwick, M.A., Hunter, H., Feminella, J.W., and Henry, R.P., 2002, Salt and water balance in *Hexagenia limbata* (Ephemeroptera: Ephemeridae) when exposed to brackish water: Florida Entomologist, v. 85, p. 650–651.
- Chamberlain, C.K., 1975, Recent lebensspuren in nonmarine aquatic environments, *in* Frey, R.W., ed., The Study of Trace Fossils: A Synthesis of Principles, Problems, and Procedures in Ichnology: Berlin, Heidelberg, Springer, p. 431–458.
- Charbonneau, P., and Hare, L., 1998, Burrowing behavior and biogenic structures of mud-dwelling insects: Journal of the North American Benthological Society, v. 17, p. 239–249.
- Corbeanu, R.M., Wizevich, M.C., Bhattacharya, J.P., Zeng, X., and McMechan, G.A., 2004, Three-dimensional architecture of ancient lower delta-plain point bars using Ground-Penetrating Radar, Cretaceous Ferron Sandstone, Utah, in Chidsey, T.C., Jr., Adams, R.D., and Morris, T.H., eds., Regional to Wellbore Analog for Fluvial-Deltaic Reservoir Modeling: The Ferron Sandstone of Utah: American Association of Petroleum Geologists Studies in Geology No. 50, p. 427–450.
- De, C., 2002, Continental mayfly burrows within relict-ground in inter-tidal beach profile of Bay of Bengal coast: a new ichnological evidence of Holocene marine transgression: Current Science, v. 83, p. 64–67.
- Edmunds, G.F., and McCafferty, W.P., 1996, New field observations on burrowing in Ephemeroptera from around the world: Entomological News, v. 107, p. 68–76.
- Ekdale, A.A., and Gibert, J.M. de, 2010, Paleoethologic significance of bioglyphs: fingerprints of the subterraneans: Palaios, v. 25, p. 540–545.
- Extence, C.A., Chadd, R.P., England, J., Dunbar, M.J., Wood, P.J., and Taylor, E.D., 2013, The assessment of fine sediment accumulation in rivers using macro-invertebrate community response: River Research and Applications, v. 29, p. 17–55.

- Fürsich, F.T., 1974, Ichnogenus Rhizocorallium: Paläontologische Zeitschrift, v. 48, p. 16–28.
- Fürsich, F.T., and Mayr, H., 1981, Non-marine *Rhizocorallium* (trace fossil) from the Upper Freshwater Molasse (Upper Miocene) of southern Germany: Neues Jahrbuch Für Geologie Und Paläontologie, Monatshefte, v. 6, p. 321–333.
- Gani, M.R., Bhattacharya, J.P., and MacEachern, J.A., 2007, Using ichnology to determine the relative influence of waves, storms, tides, and rivers in deltaic deposits: examples from Cretaceous Western Interior Seaway, U.S.A., in MacEachern, J.A., Bann, K.L., Gingras, M.K., and Pemberton, S.G., eds., Applied Ichnology: SEPM (Society for Sedimentary Geology) Short Course Notes No. 52, p. 209–226.
- Gardner, M.H., Barton, M.D., Tyler, N., and Fisher, R.S., 1992, Architecture and permeability structure of fluvial-deltaic sandstones, Ferron Sandstone, east-central Utah *in* Flores, R.M., ed., Mesozoic of the Western Interior: SEPM (Society for Sedimentary Geology) Rocky Mountain Section Field Guide, p. 5–19.
- Gardner, M.H., Cross, T.A., and Levorsen, M., 2004, Stacking patterns, sediment volume partitioning, and facies differentiation in shallow-marine and coastal-plain strata of the Cretaceous Ferron Sandstone, Utah, in Chidsey, T.C., Jr., Adams, R.D., and Morris, T.H., eds., Regional to Wellbore Analog for Fluvial-Deltaic Reservoir Modeling: The Ferron Sandstone of Utah: American Association of Petroleum Geologists Studies in Geology No. 50, p. 95–124.
- Garrison, J.R., Jr., and van den Bergh, T.C.V., 2004, High-resolution depositional sequence stratigraphy of the Upper Ferron Sandstone Last Chance Delta: an application of coal-zone stratigraphy, in Chidsey, T.C., Jr., Adams, R.D., and Morris, T.H., eds., Regional to Wellbore Analog for Fluvial-Deltaic Reservoir Modeling: The Ferron Sandstone of Utah: American Association of Petroleum Geologists Studies in Geology No. 50, p. 125–192.
- Genise, J.F., 2017, Ichnoentomology: Insect Traces in Soils and Paleosols: Topics in Geobiology No. 37, Cham, Switzerland, Springer, 723 p.
- Getty, P.R., and Bush, A.M., 2017, On the ichnotaxonomic status of *Haplotichnus indianensis* (Miller, 1889): Ichnos, v. 24, p. 234–238.
- Haidekker, A., and Hering, D., 2008, Relationship between benthic insects (Ephemeroptera, Plecoptera, Coleoptera, Trichoptera) and temperature in small and medium-sized streams in Germany: a multivariate study: Aquatic Ecology, v. 42, p. 463–481.
- Hasiotis, S.T., 2004, Reconnaissance of Upper Jurassic Morrison Formation ichnofossils, Rocky Mountain Region, USA: paleoenvironmental, stratigraphic, and paleoclimatic significance of terrestrial and freshwater ichnocoenoses: Sedimentary Geology, v. 167, p. 177–268.
- Hauck, T.E., Dashtgard, S.E., Pemberton, S.G., and Gingras, M.K., 2009, Brackish-water ichnological trends in a microtidal barrier island-embayment system, Kouchibouguac National Park, New Brunswick, Canada: Palaios, v. 24, p. 478–496.
- Illies, J., 1968, Ephemeroptera (Eintagsfliegen), in Helmcke, J.G., Starck, D., and Wermuth, H., eds., Handbuch Der Zoologie: Berlin, de Gruyter, v. 4, no. 2, p. 1–63.
- King, M.R., and Anderson, P.B., 2013, Over-thickened nearshore sand body near its landward pinchout and the relation to transgression, Ferron Sandstone, central Utah, *in* Morris, T.H., and Ressetar, R., eds., The San Rafael Swell and Henry Mountains Basin: Geologic Centerpiece of Utah: Utah Geological Association Publication No. 42, p. 319–340.
- King, M.R., Botterill, S.E., Gingras, M.K., and Pemberton, S.G., 2020a, *Rhizocorallium* and turtle tracks: a late Cretaceous proximal distributary channel trace-fossil assemblage, central Utah: Ichnos, v. 27, p. 406–427. https://doi.org/10.1080/10420940.2020.1763337.
- King, M.R., Botterill, S.E., Gingras, M.K., and MacEachern, J.A., 2020b, Freshwater to low salinity expression of Cretaceous Glossifungitesdemarcated autogenic stratigraphic surfaces, central Utah: Ichnos. https:// doi.org/10.1080/10420940.2020.1843456.
- Knaust, D., 2013, The ichnogenus *Rhizocorallium*: classification, trace makers, palaeoenvironments and evolution: Earth-Science Reviews, v. 126, p. 1–47.
- Krasnenkov, R.V., 1966, Nori lichinok pliocenovikh i sovremiennikh podenok iz voronezhskoy oblasti, in Hecker, R.F., ed., Organism i Sreda v Geologicheskom Proshlom: Moscow, Nauka, p. 214–221.
- Kureck, A., 1996, Eintagsfliegen am Rhein: zur biologie von Ephoron virgo (Olivier, 1791): Decheniana-Beihefte, v. 35, p. 17–24.
- La Croix, A.D., Dashtgard, S.E., Gingras, M.K., Hauck, T.E., and MacEachern, J.A., 2015, Bioturbation trends across the freshwater to brackish-water transition in rivers: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 440, p. 66–77.
- Lange, J.-M., and Suhr, P., 1996, Erste funde von lebensspuren in den jungtertiären Elbeschottern von Ottendorf-Okrilla: Zeitschrift der Deutschen Geologischen Gesellschaft, p. 475–479.
- Lockley, M.G., 1994, Dinosaur ontogeny and population structure: interpretations and speculation based on footprints, in Carpenter, K., Hirsch, K., and Horner, J., eds., Dinosaur Eggs and Babies: New York, Cambridge University Press, p. 347–365.

- Łomnicki, A.M., 1886, Słodkowodny utwór trzeciorzędny na Podolu galicyjskiém: Akademii Umiejętności w Krakowie, Sprawozdanie Komisyi Fizyjograficznej, v. 20, p. 48–119.
- Lucas, S.G., and Harris, J.D., 2020, The "Plastotype Problem" in ichnological taxonomy: Ichnos, v. 27, p. 107–110.
- Lupton, C.T., 1916, Geology and coal resources of Castle Valley in Carbon, Emery, and Sevier counties, Utah: U.S. Geological Survey Bulletin, v. 628, p. 1–88.
- MacEachern, J.A., Bann, K.L., Pemberton, S.G., and Gingras, M.K., 2007, The ichnofacies paradigm: high-resolution paleoenvironmental interpretation of the rock record, in MacEachern, J.A., Bann, K.L., Gingras, M.K., and Pemberton, S.G., eds., Applied Ichnology: SEPM (Society for Sedimentary Geology) Short Course Notes No. 52, p. 27–64.
- Matsukawa, M., Lockley, M.G., and Hunt, A.P., 1999, Three age groups of ornithopods inferred from footprints in the mid-Cretaceous Dakota Group, eastern Colorado, North America: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 147, p. 39–51.
- McCafferty, W.P., 1990, Chapter 2. Ephemeroptera, *in* Grimaldi, D., ed., Insects from the Santana Formation, Lower Cretaceous, of Brazil: Bulletin of the American Museum of Natural History No. 195, p. 20–50.
- Melchor, R.N., Genise, J.F., Buatois, L.A., and Umazano, A.M., 2012, Chapter 12—Fluvial environments, in Knaust, D., and Bromley, R.G., eds., Trace Fossils as Indicators of Sedimentary Environments: Developments in Sedimentology v. 64, p. 329–378.
- Miller, D.B., Bartlett, S., Sartori, M., Breinholt, J.W., and Ogden, T.H., 2018, Anchored phylogenomics of burrowing mayflies (Ephemeroptera) and the evolution of tusks: Systematic Entomology, v. 43, p. 692–701.
- Moiola, R.J., Welton, J.E., Wagner, J.B., Fearn, L.B., Farrell, M.E., Enrico, R.J., and Echols, R.J., 2004, Integrated analysis of the Upper Ferron Deltaic Complex, Southern Castle Valley, Utah, in Chidsey, T.C., Jr., Adams, R.D., and Morris, T.H., eds., Regional to Wellbore Analog for Fluvial-Deltaic Reservoir Modeling: The Ferron Sandstone of Utah: American Association of Petroleum Geologists Studies in Geology No. 50, p. 79–91.
- Montagna, M., Tong, K.J., Magoga, G., Strada, L., Tintori, A., Ho, S.Y.W., and Lo, N., 2019, Recalibration of the insect evolutionary time scale using Monte San Giorgio fossils suggests survival of key lineages through the End-Permian Extinction: Proceedings of the Royal Society B: Biological Sciences, v. 286: 20191854, p. 1–9. https://doi.org/10.1098/rspb.2019.1854.
- Olsen, P.E., Smith, J.B., and McDonald, N.G., 1998, Type material of the type species of the classic theropod footprint genera *Eubrontes*, *Anchisauripus*, and *Grallator* (Early Jurassic, Hartford and Deerfield basins, Connecticut and Massachusetts, U.S.A.): Journal of Vertebrate Paleontology, v. 18, p. 586–601.
- Réaumur, R.-A.F. de, 1742, Des mouches appelée Éphémères: Memoires Pour Servir a L'histoire des Insectes: Paris, Imprimerie Royale, v. 6, p. 457–522.
- Richards, B.H., and Bhattacharya, J.P., 2018, Stratigraphy of the fluvial-to-marine transition zone associated with a forced-regressive compound incised-valley system in the Turonian Ferron Notom Delta, Utah, U.S.A.: Journal of Sedimentary Research, v. 88, p. 311–326.
- Rindsberg, A.K., and Kopaska-Merkel, D.C., 2005, *Treptichnus* and *Arenicolites* from the Steven C. Minkin Paleozoic Footprint Site (Langsettian, Alabama, USA), *in* Buta, R.J., Rindsberg, A.K., and Kopaska-Merkel, D.C., eds., Pennsylvanian Footprints in the Black Warrior Basin of Alabama: Alabama Paleontological Society Monograph No. 1, p. 121–141.
- Ryer, T.A., 1981, Deltaic coals of Ferron Sandstone Member of Mancos Shale: predictive model for Cretaceous coal-bearing strata of Western Interior: AAPG Bulletin, v. 65, p. 2440–2440.
- Ryer, T.A., 2004, Previous studies of the Ferron Sandstone, in Chidsey, T.C., Jr., Adams, R.D., and Morris, T.H., eds., Regional to Wellbore Analog for Fluvial-Deltaic Reservoir Modeling: The Ferron Sandstone of Utah: American Association of Petroleum Geologists Studies in Geology No. 50, p. 3–38.
- Ryer, T.A., and Anderson, P.B., 2004, Facies of the Ferron Sandstone, East-Central Utah, *in* Chidsey, T.C., Jr., Adams, R.D., and Morris, T.H., eds.,
 Regional to Wellbore Analog for Fluvial-Deltaic Reservoir Modeling:
 The Ferron Sandstone of Utah: American Association of Petroleum Geologists Studies in Geology No. 50, p. 59–78.
- Ryer, T.A., Phillips, R.E., Bohor, B.F., and Pollastro, R.M., 1980, Use of altered volcanic ash falls in stratigraphic studies of coal-bearing sequences: an example from the Upper Cretaceous Ferron Sandstone Member of the Mancos Shale in central Utah: GSA Bulletin, v. 91, p. 579–586.
- Savrda, C.E., 2019, Bioerosion of a modern bedrock stream bed by insect larvae (Conecuh River, Alabama): implications for ichnotaxonomy, continental ichnofacies, and biogeomorphology: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 513, p. 3–13.
- Schmid, E.E., 1876, Der Muschelkalk des östlichen Thüringen: Jena, Fromann, 20 p.
- Scott, D.C., Berner, L., and Hirsch, A., 1959, The nymph of the mayfly Genus *Tortopus* (Ephemeroptera: Polymitarcidae): Annals of the Entomological Society of America, v. 52, p. 205–213.

Seilacher, A., 1967, Bathymetry of trace fossils: Marine Geology, v. 5, p. 413–428.Seilacher, A., 2007, Trace Fossil Analysis: Heidelberg, Springer-Verlag, 226 p.

Sinitshenkova, N.D., 2000, New Jersey amber mayflies: the first North American Mesozoic members of the order (Insecta; Ephemeroptera), in Grimaldi, D., ed., Studies on Fossils in Amber with Particular Reference to the Cretaceous of New Jersey: Leiden, Backhuys Publishers, p. 111–125.

Sinitshenkova, N.D., and Vassilenko, D.V., 2012, The latest record of mayflies of the family Protereismatidae sellards (Ephemerida = Ephemeroptera) and a new species of the family Misthodotidae in the upper Permian of Europe: Paleontological Journal, v. 46, p. 61–65.

Sinitshenkova, N.D., Marchal-Papier, F., Grauvogel-Stamm, L., and Gall, J.-C., 2005, The Ephemeridea (Insecta) from the Grès à Voltzia (early Middle Triassic) of the Vosges (NE France): Paläontologische Zeitschrift, v. 79, p. 377–397. Swammerdam, J., 1737, Biblia Natuare, Sive Historia Insectorum: Leydae, Isaak Severinus, 362 p.

Uchman, A., Bubniak, I., and Bubniak, A., 2000, The *Glossifungites* Ichnofacies in the area of its nomenclatural archetype, Lviv, Ukraine: Ichnos, v. 7, p. 183–193.

Uchman, A., Mikuláš, R., and Stachacz, M., 2017, Mayfly burrows in firmground of recent rivers from the Czech Republic and Poland, with some comments on Ephemeropteran burrows in general: Ichnos, v. 24, p. 191–203.

Zedková, B., Rádková, V., Bojková, J., Soldán, T., and Zahrádková, S., 2015, Mayflies (Ephemeroptera) as indicators of environmental changes in the past five decades: a case study from the Morava and Odra River Basins (Czech Republic): Aquatic Conservation: Marine and Freshwater Ecosystems, v. 25, p. 622–638.

Zenker, J.C., 1836, Historisch-Topographisches Taschenbuch von Jena Und Seiner Umgebung: Jena, Friedrich Frommann, 338 p.

Accepted: 13 December 2020

Appendix

Burrow Number	Thickness	Width	Length	Orientation*	Scratch Mark Maximum Length
1	0.9	4.3	8	190	1.2
2	0.7	4	5.6	304	0.9
3	0.6	3.1	3.2	301	NA
4	0.6	2.3	3.1	306	NA
5	0.6	3.3	3.8	303	0.9
6	0.8	4	6.2	211	0.9
7	1	3.9	6.3	281	1.2
8	1.3	4.3	8	356	0.8
9	0.6	2.9	3	341	NA
10	0.6	3	3.3	196	0.8
11	0.9	3.6	5.5	321	0.9
12	1	3.2	4.6 (2.7)**	298	1.1
13	0.6	2.3	3.2	312	NA
14	1	3.8	6.1	288	NA
15	0.8	3	3.6	281	0.7
16	0.9	3.8	6.2	290	1
17	0.9	3.3	4	314	0.6
18	0.7	4.3	4.2	192	1.1
19	0.8	4.2	4.3	221	1
20	1	4.1	5	154	1.1
21	0.9	3.3	2.7	164	0.7
22	1	3.6	4.8	124	0.8
23	0.6	2.6	2.8	346	0.6
24	0.8	3.6	4.9	131	NA
25	0.9	4	7.8	134	1
26	0.9	4	6.3	155	1.1

In situ measurements (in cm, from mechanical caliper) of *Glossifungites gingrasi* n. isp. from the holotype surface in Hidden Valley. Accurate tube diameters were rare, but measured 0.9, 1.1, 1.4 cm; scratch mark width was consistently ~1 mm. *Orientations (in degrees) are not geographically related because they were obtained from a fallen block, but are relevant among specimens on the shared surface. **Indicates double burrowed specimen.