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Abstract—The availability of quality information in bug re-
ports that are created daily by software users is key to rapidly
fixing software faults. Improving incomplete or deficient bug
reports, which are numerous in many popular and actively
developed open source software projects, can make software
maintenance more effective and improve software quality. In
this paper, we propose a system that addresses the problem
of bug report incompleteness by automatically posing follow-up
questions, intended to elicit answers that add value and provide
missing information to a bug report. Our system is based on
selecting follow-up questions from a large corpus of already
posted follow-up questions on GitHub. To estimate the best
follow-up question for a specific deficient bug report we combine
two metrics based on: 1) the compatibility of a follow-up question
to a specific bug report; and 2) the utility the expected answer
to the follow-up question would provide to the deficient bug
report. Evaluation of our system, based on a manually annotated
held-out data set, indicates improved performance over a set of
simple and ablation baselines. A survey of software developers
confirms the held-out set evaluation result that about half of the
selected follow-up questions are considered valid. The survey also
indicates that the valid follow-up questions are useful and can
provide new information to a bug report most of the time, and
are specific to a bug report some of the time.

Index Terms—follow-up questions, bug reporting, bug triage

I. INTRODUCTION

In many popular software projects, bug reports arrive with

frequency and in bursts that can overwhelm even well-

resourced and well-organized bug triage. At the same time,

a significant proportion of the arriving bug reports lack suffi-

cient actionable information for bug triagers to reproduce the

bug. Researchers have observed this problem of bug report

deficiency (or incompleteness), e.g., reporting that over 60%

of bug reports lack any steps to reproduce and over 40%

lack any description of the expected behavior [1]. Missing

information in bug reports was also a key concern in the

first open letter to GitHub from the maintainers of open

source projects [2] [3], which was partially addressed via a

bug report template mechanism. While nowadays some of

the software projects on GitHub rely on specific templates

or publish bug reporting guidelines that bug reports must

follow, there are many cases where templates are ignored and

guidelines are poorly followed by reporters. Posting a quick

follow-up questions in order to obtain additional information

from bug reporters is one method bug triagers use to augment
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Fig. 1: The text for bug report #829 of the bootstrap-sass

project is similar to other bug reports with already posed

follow-up questions. The similarity between a pair of bug

reports is illustrated as the length of the line connecting them.

the bug reports with necessary information. However follow-

up questions are only effective if they are posed quickly, before

the user reporting the bug loses focus on the specifics. In this

paper, we examine how posing such follow-up questions for

bug reports can be performed automatically, designing and

describing a system to reduce bug triage effort, and improving

overall bug report quality by automatically posing follow-up

questions for deficient bug reports.

We base our automatic follow-up question posing system

on the following assumptions and ideas: 1) relevant follow-up

question are common, not overly specific, and have already

been posed in other prior bug reports in the current project

or in others; 2) similar bug reports necessitate similar follow-

up questions; and 3) the utility of the answer provided to a

prior similar follow-up question is indicative of its value to

the current bug report. Based on this, our system performs an

information retrieval task, locating the most relevant and useful

follow-up question for a specific deficient bug report, given a

large corpus of previous bug reports, follow-up questions, and

their answers. For instance, consider the example shown in





were also interested whether the answers to those questions (if

they are present) provide any of the three key parts of a bug

report: Observable Behavior (OB), Expected Behavior (EB) or

Steps to Reproduce (S2R). We found that follow-up questions

were present in 23.6% (118/500) of bug reports and about

73% (86/118) of them were answered with 57% (49/86) of the

answers containing Observable Behavior, Expected Behavior

or Steps to Reproduce. Our analysis of this small randomly-

sampled dataset indicates that, since follow-up questions tend

to be answered by bug reporters at a relatively high rate (73%

in our study) with answers that seem to add value to the

bug report, an automated technique to pose such follow-up

question should be of value.

We highlight one of the bug reports we examined (ansi-

ble/ansible #3933) in Figure 3. The follow-up question What

OS/version of Ansible was this on? elicited an answer that

provided key OB to this bug report, leading to its quick subse-

quent fix. Developer surveys have confirmed the importance of

OB, EB and S2R in bug reports, observing that S2R is among

the most valuable aspects of a bug report with OB and EB

closely behind [8], [9]. The availability of existing follow-up

questions on social coding platforms like GitHub provides the

preconditions for the approach described in this paper, which

leverages such existing follow-up questions to automatically

rank and select the most appropriate one to be asked for a

newly written, incomplete bug report. In the remainder of this

paper, we describe the design of this system, which we entitle

Bug-AutoQ – Bug Automated Questioner1.

III. SYSTEM DESCRIPTION

As input, our system for retrieving follow-up questions,

Bug-AutoQ, requires: 1) a bug report of interest; 2) a corpus

of already posed follow-up questions extracted from GitHub

issues, including their corresponding bug reports and answers.

When the bug report is deficient in OB, EB, or S2R (computed

based on the language patterns described in Section III-C2),

Bug-AutoQ poses a single follow-up question (or a small set)

appropriate to the deficient bug report. The overall vision

of Bug-AutoQ is shown in Figure 4. The left side of the

figure shows the online part of Bug-AutoQ that determines

the optimal follow-up questions for a deficient bug report,

while the right side shows the steps necessary for the offline

generation of a corpus of follow-up questions for reuse. In

this section, we describe our system, including how we create

a large corpus of follow-up questions to recommend, how

we select candidate follow-up questions from this corpus for

a specific incomplete bug report, and how we rank these

questions in descending order of their potential utility to the

bug report.

A. Selecting a Corpus of Bug Reports

Our goal in curating a corpus of bug report-related follow-

up questions and their answers is to find a large, representative

1Replication package available at: https://tinyurl.com/y4k43fll

and high-quality corpus. Manually curated corpora are of high

quality but they are difficult to scale-up. Automatic curation

can easily scale but it can be affected by significant noise,

leading to low data quality, unless care is taken to filter and

sample follow-up questions in a way that noise is mitigated.

As corpus size is an important factor in our system, we opt

for an automated approach with numerous filters to ensure

the data is of highest possible quality. With the number of

active repositories available on GitHub providing a very large

input domain, we can afford to err on the side of being overly

restrictive in our filtering. To automatically curate our corpus,

we: 1) select GitHub repositories that have high bug reporting

activity, as measured by the number of issues created by non-

contributors over some fixed period of time; 2) select issues in

those bug repositories that contain rapidly asked and succinct

follow-up questions contained in GitHub issue comments; 3)

locate answers to the follow-up questions encoded as either

comments or as edits to the original bug report.

In more detail, we used the following sequence of steps

to curate the corpus. The highlights of the corpus curation

process are also illustrated on the right part of Figure 4.

1) Using the public GitHub APIs, we scraped a set of public

GitHub repositories with a high rate of non-contributor

created issues, where a non-contributor is a GitHub

user that has never committed any code in the specific

repository. GitHub repositories with these characteristics

form our target population, i.e., projects that are more

likely to be in need our technique. In order to somewhat

constrain the number of GitHub repositories, we focused

on longer-running projects, specifically, with repositories

created between 2008-2014, and recently active with new

issues created after Jan 1, 2019.

2) For each of these repositories, in descending order of

their number of non-contributor created issues per day,

we selected all issues from each repository’s GitHub issue

tracker that are labeled as “bug”, “crash”, “fix”, “defect”

or unlabeled. As an example, the bug report in Figure 3

is labeled as “bsd” and “bug”. Our goal for this step

was to avoid feature requests and focus on bug reports.

We observed that issue labels were not used consistently

enough in projects on GitHub, which is why we opted

to include unlabeled issues. Since we are interested in

deficient bug reports, we selected bug reports that do not

contain any Observable Behavior, Expected Behavior, or

Steps to Reproduce.

3) We further selected only issues that contain follow-up

questions in one of the issue comments. We identified

follow-up questions as comments containing only ques-

tions, identified by both starting with an interrogative

word and ending with a question mark. In order to

ensure we selected follow-up questions and not just any

questions, we constrained our selection based on time

and comment sequence. That is, the comment containing

the follow-up question must have been posted within 60

days of the issue creation date and must have occurred

as the comment immediately following the post. We also









TABLE I: Evaluation results contrasting our system (Bug-AutoQ) relative to several baselines.

MRR
Wilcoxon Effect

P@1
Wilcoxon Effect

P@3
Wilcoxon Effect

P@5
Wilcoxon Effect

p-value size p-value size p-value size p-value size

Bug-AutoQ 0.677 - - 0.486 - - 0.492 - - 0.446 - -

BASELINES:
Random 0.542 p < 0.01 0.229 0.319 p < 0.01 0.167 0.368 p < 0.01 0.216 0.355 p < 0.01 0.214
Lucene 0.534 p < 0.01 0.252 0.347 p < 0.01 0.139 0.318 p < 0.01 0.308 0.317 p < 0.01 0.294
Rao et al. [4] 0.551 p < 0.01 0.218 0.342 p < 0.01 0.144 0.336 p < 0.01 0.279 0.342 p < 0.01 0.245
Utility only 0.646 p = 0.11 0.059 0.468 p = 0.60 0.019 0.443 p = 0.01 0.087 0.412 p = 0.01 0.077
Compatibility only 0.612 p = 0.01 0.115 0.426 p = 0.11 0.060 0.383 p < 0.01 0.196 0.377 p < 0.01 0.152

3) Metrics: We use two popular information retrieval evalu-

ation metrics: Mean Reciprocal Rank (MRR) and Precision@n

(P@n).

The goal of MRR is to evaluate how effective is our

technique, or a baseline, in locating the first valid follow-up

question, as, presumably, this is a proxy for the ease with

which an end-user would locate a follow-up question in the

ranking. It is computed as:

MRR =
1

|B|

|B|∑

i=1

1

ranki

,where B is the set of bug reports in the test set and ranki

is the ranked position of the first valid follow-up question for

the ith bug report.

The goal of Precision@n is to measure the number of valid

results when considering the top n positions in the ranking.

Unlike MRR, it consider all, not only the topmost ranked,

results. It is computed as:

P@n =
1

|B|

|B|∑

i=1

|v|

n

,where, as before, B is the set of bug reports in the test set

and v is the set of valid follow-up questions ranked in the top

n positions. We use values of 1, 3 and 5 for n.

We compute Wilcoxon’s signed rank test for each of the

above metrics to estimate the statistical significance of the dif-

ference between our technique Bug-AutoQ and the baselines.

The effect size of the comparison is calculated using Cliff’s

delta (δ) [12], which ranges from -1 (all values in the first

group are larger than the second group) to +1 (all values in

the second group are larger than the first group). A value of

zero indicates that the two groups are identical. The criteria

for interpreting δ is that |δ| > 0.147 → small effect, |δ| >
0.33 → medium effect, and |δ| > 0.474 → large effect [13].

4) Results: We summarize the results of our technique

(Bug-AutoQ) versus the identified baselines in Table I. Our

results indicate that Bug-AutoQ outperforms all of the base-

lines, with the ablation-type baselines performing better than

the simple baselines. The Lucene ranking does surprisingly

poor, basically in line with the Random baseline. The Utility

only baseline is the ones that comes closest to the performance

of the full system. Perhaps the most intuitive result is P@1,

where Bug-AutoQ scores 0.49, indicating that just about half

of all of the top selected follow-up questions by our system

were valid. The Wilcoxon’s signed rank test and the Cliff’s

delta confirm the observations from the raw metric values,

i.e., that Utility only has a strong similarity to Bug-AutoQ

and could be strong contributing factor to the approach’s

effectiveness. They also confirm that Bug-AutoQ has a strong

advantage over the simple baselines.

We interpret the results to mean that our formulations of

Utility and Compatibility, which are designed to be more

resilent to noisy data than Rao et al. [4] are indeed effective.

We also observe that within the top 10 candidate bug report, as

retrieved by Lucene, there is usually a reasonable number of

good candidates so that a random choice within them (i.e.,

the Random baseline in Table I) is fairly effective with a

reasonable MRR and P@1 of almost one third. However, past

the initial retrieval of the top 10, the Lucene ranking within

them (i.e., the Lucene baseline in Table I) does not seem to

provide much quality as is equivalent to the Random baseline.

B. Developer Survey

While a recommended follow-up question may be valid, it

may not possess other properties that would encourage its use

in practice, i.e., in a system that automatically poses follow-up

questions for incomplete bug reports. For instance, a follow-

up question may be overly generic, lacking detail or context

specific to the bug report (e.g., Can you provide additional

information?). To investigate how Bug-AutoQ performs across

several such dimensions of interest we conducted a survey with

software developers.

Through personal contacts, we e-mailed 10 software de-

velopers about the study, providing the basic context of our

project, brief definitions and examples of the characteristics,

and a link to a Web form containing the survey. None of the

developers were aware about the details of our technique. The

developers were half (5) from academia (graduate students

at institutions in the U.S. and Europe) and half professional

developers from industry. All had programming experience of

4 or more years with popular languages like Java and Python

and all indicated one of their primary responsibilities was

developing software.

We randomly assigned the developers into two groups of

5 and each group was assigned 12 instances of bug report

and follow-up question pairs, where all of the follow-up

questions were the top-1 selected by Bug-AutoQ. Each group

was presented with bug reports from our corpus that belong

to GitHub projects where Java or Python are the primary

technologies. For each of the assigned bug reports, a developer

was presented with a screenshot from GitHub containing the
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Fig. 7: Responses to developer survey grouped per category (top) and per follow-up question (bottom). FQn = Follow-Up

Question n.

TABLE II: Comparison of the Bug-AutoQ follow-up question and the actually posed (original) follow-up question for three

of the highest rated instances by the survey respondents.

Instance Bug report Bug-AutoQ follow-up question Original follow-up question

FQ22 Title = “Plugin is not working on latest android”

Body = “On app start: [...]

On Button Click: [...]

I am running the example code on Arch Linux with Java 8, latest Android

SDK with target API 22 and default nexus 5 ADM Config. Any ideas why the

SpeechRecognition object is not being initialized?”

[...] Are you waiting for the de-

vice ready to fire before calling the

SpeechRecognition?

[...] Are you waiting for the de-

vice ready to fire before calling the

SpeechRecognition?

FQ14 Title = “Multiple time tests discovering”

Body = “I have strange problem with running xunit tests as part of my build

process. Since yesterday after running all tests my tfs build starts discovering

tests again and after that it runs tests again. And that’s repeated 15 times. Below

I have log from TFS: [...]”

Can you describe your scenario a

little more? One way of doing this

is described in [...]

Can you check if you have multiple

copies of the xUnit adapter under

[...]? Thanks!

FQ8 Title = “32-bit Intel tests for python2 for test fitpack fail with segfault in fpbisp

#8122”

Body = “Environment: Archlinux 32, python-scipy 1.0.0, python-numpy 1.13.3,

python 2.7.14 [...]”

Do you have a more verbose log?

It looks like it’s not picking up the

python library at all judging by the

error.

How did you install or build SciPy?

Compiler versions, build log?

title and text of the bug report, the follow-up question, and a

link to the project the bug report came from for context. Prior

to beginning the survey, we gave instructions to the developers

to read both the bug report and the follow-up question before

answering the provided set of survey questions. A preliminary

survey question, which was posed on an initial screen, asked

Is the follow-up question valid?. A negative response indicated

that the follow-up question was invalid and unusable, therefore

we asked no additional questions for that specific bug report -

follow-up question pair. The remaining survey questions only

appeared for instances deemed valid by a developer.

For a valid follow-up question, we posed a yes/no survey

question asking Does the follow-up question ask for new in-

formation currently not included in the description?, followed

by two Likert score survey questions (5 point; Strongly Dis-

agree, Disagree, Neutral, Agree, Strongly Agree) interrogating

whether The follow-up question is specific to the bug report

and The follow-up question is useful to the bug report. In

the following, we refer to the first (yes/no) survey question as

measuring New Information, the second measuring Specificity,

and the third measuring Usefulness.

The survey results showed that out of the 24 different bug

report - follow-up question pairs, a majority of participants

(at least 3 out of 5) considered 13 follow-up questions as

valid, and 11 as invalid. This ratio is analogous to the results

we observed for Precision@1 in the held-out set evaluation



presented above, confirming our expectations.

The results of the survey, along each dimension, are pre-

sented both at the granularity of an individual response and at

the granularity of a bug report (and follow-up question pair) in

Figure 7. The survey results indicate that among the categories

of Usefulness, Specificity, and New Information, the follow-

up questions selected by Bug-AutoQ provide the most of New

Information, followed by Usefulness and Specificity. However,

all three categories were generally positive with over 50%

of all responses on each either agreeing or strongly agreeing

with the statements on Specificity and Usefulness or affirming

that the follow-up question was asking for New Information.

Considering the data per follow-up question, in the bottom

part of Figure 7, we observe most follow-up questions, which

were deemed as valid, were rated positively. Some follow-

up questions have strongly positive ratings, e.g., follow-up

question 14 (FQ14) was rated by all 5 respondents as valid, 4/5

agreeing or strongly agreeing that the question was specific,

4/5 agreeing or strongly agreeing that the question was useful,

and 5/5 agreeing that the question aimed to provide new

information for the bug report.

To further illustrate Bug-AutoQ’s performance, we contrast

the Bug-AutoQ follow-up questions to the ones posed in

the original bug report for three of the highest rated survey

instances in Table II. While for one of the instances, FQ22, the

recommended follow-up question matches the posed follow-

up question, which is possible since the original follow-up

question is among our candidate set, the follow-up question

in FQ15 is different, asking the question of Can you describe

your scenario a little more? and providing some additional

context on how to do so in the succeeding sentence. In FQ8

both the Bug-AutoQ and original follow-up questions inquire

about a log in order to better investigate a Python library

dependency issue.

C. Threats to Validity

The presented approach is affected by several limitations

that may negatively impact the validity of our findings.

Construct validity. One threat to construct validity is our use of

a manually annotated dataset for the held-out dataset evalua-

tion. We limited this threat by following an annotation process

that required the annotators to get familiar with each project.

We also observed reasonable Cohen’s Kappa values between

the two annotators. Another threat to construct validity is

using Chaparro et al.’s [1] definitions to find OB/EB/S2R in

bug reports. We did not perform an explicit validation of the

pattern accuracy as that would have required us to curate a

non-trivial dataset specifically for this purpose. Instead, we

aimed to control noise introduced in recognizing OB/EB/S2R

by our formulation of EVPI. A threat to construct validity

is also in the preprocessing of bug reports, since we focus

only on the textual content of an issue and ignore other

enclosed types of information, such as images or links. As

a result, for some deficient bug reports, our technique may

miss potentially relevant information to locate the most useful

follow-up questions. This threat is partially mitigated by the

size of the corpus, containing 25K GitHub issues with various

characteristics and content. The notion of utility of a follow-

up question poses another threat to validity, since it is based

only on a subset of information that can be enclosed in a bug

report. To mitigate this threat and select the most useful type

of information, we followed prior studies that reported S2R,

OB and EB among the most helpful categories of information

according to software developers [14].

Internal validity. The limited number of follow-up questions

associated with each bug report poses a threat to internal

validity. Each bug report is assigned 10 candidate question

to rank, instead of processing the whole corpus of available

questions. This may lead to omitting follow-up questions that

are valid and specific in the context of a particular bug. We

partially mitigate this threat by selecting the most similar bug

reports, while also extending the content of each bug report

with the bug’s labels and repository tags in order to provide

Lucene with contextual information that can be leveraged

when locating similar issues.

External validity. In this study, we leveraged a dataset of 25K

GitHub issues, however, during evaluation we use a subset

of 400 manually annotated bug reports. The limited size of

the test set may impact our observations as it covers only

a small subset of population. To mitigate that threat, we

include bug reports from 357 open-source software projects

leveraging different frameworks and technologies. Moreover,

to ensure the quality of the proposed approach, we conducted

a user study with 10 software developers. We observed that

the number of valid follow-up questions in the user study

nearly matched the result obtained in the held-out evaluation,

emphasizing the overall quality of the system and supporting

validity of the results. The scope of the developer survey poses

another threat to external validity due to the low number of

enclosed bug reports and selection of issues only from Python

or Java-related software projects. We partially mitigate bias

caused by limiting the bug reports to only two technologies

by sampling issues with different content characteristics (e.g.,

with or without stack traces) from multiple projects. To ensure

the quality and generalizability of the survey results, each pair

of bug report and follow-up question was assessed by half of

the respondents.

V. RELATED WORK

To our knowledge, the proposed approach is the first effort

towards improving the quality of bug reports by asking follow-

up questions. Prior research related to this area can be broadly

grouped into three main categories including evaluation of bug

reports quality, approaches for improving deficient bug reports,

and techniques automatically posing follow-up questions in

domains external to software engineering field.

Analyzing the quality of bug reports. The quality of user

written bug reports is a topic that several researchers have

been interested in. Linstead et al. applied Latent Dirichlet

Analysis to a large corpus of bug reports to study their

semantic coherence [15], while Huo et al. investigated how

the content of a bug report changes depending on the level



of expertise of its author [16]. Di Sorbo et al. observed that

issues marked as “won’t fix” often contains numerous errors

in their reports [17], while insufficient amount of information

supplied within a bug report can lead to developers not being

able to reproduce as bug, as noted by Joorabchi et al. [18].

Researchers have been extensively investigating the content

of bug reports to determine the most useful information

leading to locating and fixing buggy code efficiently. To

this end, Davies et al. manually analyzed a corpus of bug

reports from four popular open-source projects finding that

observable behavior and expected behavior are among the most

consistently encountered parts of a bug report [19]. Survey of

software developers conducted by Sasso et al. reveled that

steps to reproduce, test cases and stack traces are the most

helpful types of information, however they were also the

hardest for users to supply [20]. These finding were confirmed

and further expanded in the study of Laukkanen et al. who

indicated the importance of application’s configuration [9].

Chaparro et al. developed a technique leveraging language

patterns to automatically extract observable behavior, expected

behavior, and steps to reproduce from a bug report [1]. Liu et

al. proposed to improve Chaparro’s technique by eschewing

predefined patterns, instead relying on pre-trained classifier to

identify steps to reproduce [21]. Recently, Yu et al. developed

a tool, S2RMiner, that extracts steps to reproduce from a bug

report with high accuracy [22].

Improving inadequate bug reports. Researchers have ap-

proached the problem of improving the quality of bug reports

from a few different angels. One line of work, with numerous

proposed techniques, is to detect duplicate bug reports [23]–

[25]. Another research avenue is to classify bug reports into

valid vs. invalid or easy vs. difficult bug reports [26]–[28].

Researchers have also attempted to automatically improve

specific parts of bug reports. Moran et al. provided auto-

completion for the steps to reproduce portion of bug reports

by leveraging image processing of screenshots taken from the

application’s UI [29]. Chaparro et al. explored how bug report

quality can be improved based on unexpected vocabularies

in the steps to reproduce [30]. Recently proposed BEE tool,

implemented as a GitHub plugin, extracts observable behavior,

expected behavior, and steps to reproduce from a bug report

in order to alert bug reporters when this information is not

provided [31].

Automatically posing follow-up questions. Research on au-

tomatic question generation has been applied within a few

different domains and applications. One topic of extensive

prior research is on generating questions from an existing

document, i.e., questions whose answers can be found within

the given text [32]–[37]. For instance, such generated ques-

tions can be used for educational assessment and automation.

More recently, researchers have envisioned a future where a

user’s information need will be satisfied via dialog with a

virtual assistant, i.e., follow-up questions that are automatically

posed to clarify the user’s intent. To this end, Braslavski et al.

analyzed clarification question patterns on question-answering

(QA) websites in order to understand users behavior, and

the types of clarification questions asked [38]. Trienes et al.

focused on detecting when the original questions in com-

munity QA sites are unclear and clarification questions are

needed [39]. Qu et al. curated and published a large dataset of

question and answers intended to help develop conversational

search systems [40]. In Web search, follow-up questions have

been used for improving document retrieval for low-quality

queries [6], [41], [42]. Targeting information that is missing

from a document, Rao et al. used generative adversarial

neural networks to automatically generate questions that seek

to augment Amazon product reviews [5]. Asking follow-up

questions has been explored in several other contexts such as

chatbots [43], open domain question answering systems [44],

[45], search engines [46], search within a Q&A forum [47],

and image content [48].

VI. CONCLUSIONS AND FUTURE WORK

This paper describes a technique for posing follow-up

questions for incomplete bug reports that lack important in-

formation for triage, e.g., the bug’s observable behavior. Our

technique automatically selects follow-up questions from a

corpus of such questions mined from the development histories

of open source projects on GitHub. We first identify by using

tf*idf a set of candidate follow-up questions whose original

bug reports have high similarity to the deficient bug report of

interest. Next, we use neural estimates of two metrics, com-

patibility and utility, to rank and select the optimal follow-up

question to recommend. To evaluate our technique we curated

a dataset of 25K bug reports from 6452 unique repositories

and implemented four baselines. Our technique outperformed

the baselines across the board, with a reasonable Precision@1

score for our model of 0.49, i.e., nearly half of the top most

recommended follow-up questions were considered valid. We

also performed a survey of software developers which showed

a follow-up question validity rate that aligned to the held-out

dataset evaluation and also indicated that developers, at a high

rate, considered the selected follow-up questions as: useful,

specific, and asking for new information not contained in the

bug report.

There are several avenues of future work. First, follow-

ing Rao et al. [5], we can attempt to automatically gener-

ate follow-up questions using sequence-to-sequence neutral

network models [49]–[51]. Second, following Braslavski et

al. [38], we can work on generating frequently asked question

patterns in bug reports. Third, we can develop a tool and

integrate the Bug-AutoQ model with real world platforms like

GitHub or JIRA in order to assist developers in the field and

gather more developer feedback. Lastly, another line of future

work can be on broadening the evaluation, since it is a vital

challenge to determine the most relevant follow-up question

for different software development contexts and requirements.
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