
Automatically Selecting Follow-up Questions for

Deficient Bug Reports

Mia Mohammad Imran

Virginia Commonwealth University

Richmond, Virginia, U.S.A.

imranm3@vcu.edu

Agnieszka Ciborowska

Virginia Commonwealth University

Richmond, Virginia, U.S.A.

ciborowskaa@vcu.edu

Kostadin Damevski

Virginia Commonwealth University

Richmond, Virginia, U.S.A.

kdamevski@vcu.edu

Abstract—The availability of quality information in bug re-
ports that are created daily by software users is key to rapidly
fixing software faults. Improving incomplete or deficient bug
reports, which are numerous in many popular and actively
developed open source software projects, can make software
maintenance more effective and improve software quality. In
this paper, we propose a system that addresses the problem
of bug report incompleteness by automatically posing follow-up
questions, intended to elicit answers that add value and provide
missing information to a bug report. Our system is based on
selecting follow-up questions from a large corpus of already
posted follow-up questions on GitHub. To estimate the best
follow-up question for a specific deficient bug report we combine
two metrics based on: 1) the compatibility of a follow-up question
to a specific bug report; and 2) the utility the expected answer
to the follow-up question would provide to the deficient bug
report. Evaluation of our system, based on a manually annotated
held-out data set, indicates improved performance over a set of
simple and ablation baselines. A survey of software developers
confirms the held-out set evaluation result that about half of the
selected follow-up questions are considered valid. The survey also
indicates that the valid follow-up questions are useful and can
provide new information to a bug report most of the time, and
are specific to a bug report some of the time.

Index Terms—follow-up questions, bug reporting, bug triage

I. INTRODUCTION

In many popular software projects, bug reports arrive with

frequency and in bursts that can overwhelm even well-

resourced and well-organized bug triage. At the same time,

a significant proportion of the arriving bug reports lack suffi-

cient actionable information for bug triagers to reproduce the

bug. Researchers have observed this problem of bug report

deficiency (or incompleteness), e.g., reporting that over 60%

of bug reports lack any steps to reproduce and over 40%

lack any description of the expected behavior [1]. Missing

information in bug reports was also a key concern in the

first open letter to GitHub from the maintainers of open

source projects [2] [3], which was partially addressed via a

bug report template mechanism. While nowadays some of

the software projects on GitHub rely on specific templates

or publish bug reporting guidelines that bug reports must

follow, there are many cases where templates are ignored and

guidelines are poorly followed by reporters. Posting a quick

follow-up questions in order to obtain additional information

from bug reporters is one method bug triagers use to augment

Navbar (fixed navbar) dropdown
menu broken on 3.3.3, 3.3.2
Works on 3.3.1, not on 3.3.2 or
3.3.3. Clicking on the drop down
does nothing. Regular menu
items work.

Drop down menu Flicker on Page
Reload
every time i navigate to a new
page the dropdown menu
display. go to this page <url>.
reload the page and you will see
what I mean. Thank you in
advance.

Can you tell me what browser

you're seeing this in?

What OS and browser are you

using?

…

bootstrap-sass #829

foundation-sites #292

Fig. 1: The text for bug report #829 of the bootstrap-sass

project is similar to other bug reports with already posed

follow-up questions. The similarity between a pair of bug

reports is illustrated as the length of the line connecting them.

the bug reports with necessary information. However follow-

up questions are only effective if they are posed quickly, before

the user reporting the bug loses focus on the specifics. In this

paper, we examine how posing such follow-up questions for

bug reports can be performed automatically, designing and

describing a system to reduce bug triage effort, and improving

overall bug report quality by automatically posing follow-up

questions for deficient bug reports.

We base our automatic follow-up question posing system

on the following assumptions and ideas: 1) relevant follow-up

question are common, not overly specific, and have already

been posed in other prior bug reports in the current project

or in others; 2) similar bug reports necessitate similar follow-

up questions; and 3) the utility of the answer provided to a

prior similar follow-up question is indicative of its value to

the current bug report. Based on this, our system performs an

information retrieval task, locating the most relevant and useful

follow-up question for a specific deficient bug report, given a

large corpus of previous bug reports, follow-up questions, and

their answers. For instance, consider the example shown in

were also interested whether the answers to those questions (if

they are present) provide any of the three key parts of a bug

report: Observable Behavior (OB), Expected Behavior (EB) or

Steps to Reproduce (S2R). We found that follow-up questions

were present in 23.6% (118/500) of bug reports and about

73% (86/118) of them were answered with 57% (49/86) of the

answers containing Observable Behavior, Expected Behavior

or Steps to Reproduce. Our analysis of this small randomly-

sampled dataset indicates that, since follow-up questions tend

to be answered by bug reporters at a relatively high rate (73%

in our study) with answers that seem to add value to the

bug report, an automated technique to pose such follow-up

question should be of value.

We highlight one of the bug reports we examined (ansi-

ble/ansible #3933) in Figure 3. The follow-up question What

OS/version of Ansible was this on? elicited an answer that

provided key OB to this bug report, leading to its quick subse-

quent fix. Developer surveys have confirmed the importance of

OB, EB and S2R in bug reports, observing that S2R is among

the most valuable aspects of a bug report with OB and EB

closely behind [8], [9]. The availability of existing follow-up

questions on social coding platforms like GitHub provides the

preconditions for the approach described in this paper, which

leverages such existing follow-up questions to automatically

rank and select the most appropriate one to be asked for a

newly written, incomplete bug report. In the remainder of this

paper, we describe the design of this system, which we entitle

Bug-AutoQ – Bug Automated Questioner1.

III. SYSTEM DESCRIPTION

As input, our system for retrieving follow-up questions,

Bug-AutoQ, requires: 1) a bug report of interest; 2) a corpus

of already posed follow-up questions extracted from GitHub

issues, including their corresponding bug reports and answers.

When the bug report is deficient in OB, EB, or S2R (computed

based on the language patterns described in Section III-C2),

Bug-AutoQ poses a single follow-up question (or a small set)

appropriate to the deficient bug report. The overall vision

of Bug-AutoQ is shown in Figure 4. The left side of the

figure shows the online part of Bug-AutoQ that determines

the optimal follow-up questions for a deficient bug report,

while the right side shows the steps necessary for the offline

generation of a corpus of follow-up questions for reuse. In

this section, we describe our system, including how we create

a large corpus of follow-up questions to recommend, how

we select candidate follow-up questions from this corpus for

a specific incomplete bug report, and how we rank these

questions in descending order of their potential utility to the

bug report.

A. Selecting a Corpus of Bug Reports

Our goal in curating a corpus of bug report-related follow-

up questions and their answers is to find a large, representative

1Replication package available at: https://tinyurl.com/y4k43fll

and high-quality corpus. Manually curated corpora are of high

quality but they are difficult to scale-up. Automatic curation

can easily scale but it can be affected by significant noise,

leading to low data quality, unless care is taken to filter and

sample follow-up questions in a way that noise is mitigated.

As corpus size is an important factor in our system, we opt

for an automated approach with numerous filters to ensure

the data is of highest possible quality. With the number of

active repositories available on GitHub providing a very large

input domain, we can afford to err on the side of being overly

restrictive in our filtering. To automatically curate our corpus,

we: 1) select GitHub repositories that have high bug reporting

activity, as measured by the number of issues created by non-

contributors over some fixed period of time; 2) select issues in

those bug repositories that contain rapidly asked and succinct

follow-up questions contained in GitHub issue comments; 3)

locate answers to the follow-up questions encoded as either

comments or as edits to the original bug report.

In more detail, we used the following sequence of steps

to curate the corpus. The highlights of the corpus curation

process are also illustrated on the right part of Figure 4.

1) Using the public GitHub APIs, we scraped a set of public

GitHub repositories with a high rate of non-contributor

created issues, where a non-contributor is a GitHub

user that has never committed any code in the specific

repository. GitHub repositories with these characteristics

form our target population, i.e., projects that are more

likely to be in need our technique. In order to somewhat

constrain the number of GitHub repositories, we focused

on longer-running projects, specifically, with repositories

created between 2008-2014, and recently active with new

issues created after Jan 1, 2019.

2) For each of these repositories, in descending order of

their number of non-contributor created issues per day,

we selected all issues from each repository’s GitHub issue

tracker that are labeled as “bug”, “crash”, “fix”, “defect”

or unlabeled. As an example, the bug report in Figure 3

is labeled as “bsd” and “bug”. Our goal for this step

was to avoid feature requests and focus on bug reports.

We observed that issue labels were not used consistently

enough in projects on GitHub, which is why we opted

to include unlabeled issues. Since we are interested in

deficient bug reports, we selected bug reports that do not

contain any Observable Behavior, Expected Behavior, or

Steps to Reproduce.

3) We further selected only issues that contain follow-up

questions in one of the issue comments. We identified

follow-up questions as comments containing only ques-

tions, identified by both starting with an interrogative

word and ending with a question mark. In order to

ensure we selected follow-up questions and not just any

questions, we constrained our selection based on time

and comment sequence. That is, the comment containing

the follow-up question must have been posted within 60

days of the issue creation date and must have occurred

as the comment immediately following the post. We also

TABLE I: Evaluation results contrasting our system (Bug-AutoQ) relative to several baselines.

MRR
Wilcoxon Effect

P@1
Wilcoxon Effect

P@3
Wilcoxon Effect

P@5
Wilcoxon Effect

p-value size p-value size p-value size p-value size

Bug-AutoQ 0.677 - - 0.486 - - 0.492 - - 0.446 - -

BASELINES:
Random 0.542 p < 0.01 0.229 0.319 p < 0.01 0.167 0.368 p < 0.01 0.216 0.355 p < 0.01 0.214
Lucene 0.534 p < 0.01 0.252 0.347 p < 0.01 0.139 0.318 p < 0.01 0.308 0.317 p < 0.01 0.294
Rao et al. [4] 0.551 p < 0.01 0.218 0.342 p < 0.01 0.144 0.336 p < 0.01 0.279 0.342 p < 0.01 0.245
Utility only 0.646 p = 0.11 0.059 0.468 p = 0.60 0.019 0.443 p = 0.01 0.087 0.412 p = 0.01 0.077
Compatibility only 0.612 p = 0.01 0.115 0.426 p = 0.11 0.060 0.383 p < 0.01 0.196 0.377 p < 0.01 0.152

3) Metrics: We use two popular information retrieval evalu-

ation metrics: Mean Reciprocal Rank (MRR) and Precision@n

(P@n).

The goal of MRR is to evaluate how effective is our

technique, or a baseline, in locating the first valid follow-up

question, as, presumably, this is a proxy for the ease with

which an end-user would locate a follow-up question in the

ranking. It is computed as:

MRR =
1

|B|

|B|∑

i=1

1

ranki

,where B is the set of bug reports in the test set and ranki

is the ranked position of the first valid follow-up question for

the ith bug report.

The goal of Precision@n is to measure the number of valid

results when considering the top n positions in the ranking.

Unlike MRR, it consider all, not only the topmost ranked,

results. It is computed as:

P@n =
1

|B|

|B|∑

i=1

|v|

n

,where, as before, B is the set of bug reports in the test set

and v is the set of valid follow-up questions ranked in the top

n positions. We use values of 1, 3 and 5 for n.

We compute Wilcoxon’s signed rank test for each of the

above metrics to estimate the statistical significance of the dif-

ference between our technique Bug-AutoQ and the baselines.

The effect size of the comparison is calculated using Cliff’s

delta (δ) [12], which ranges from -1 (all values in the first

group are larger than the second group) to +1 (all values in

the second group are larger than the first group). A value of

zero indicates that the two groups are identical. The criteria

for interpreting δ is that |δ| > 0.147 → small effect, |δ| >
0.33 → medium effect, and |δ| > 0.474 → large effect [13].

4) Results: We summarize the results of our technique

(Bug-AutoQ) versus the identified baselines in Table I. Our

results indicate that Bug-AutoQ outperforms all of the base-

lines, with the ablation-type baselines performing better than

the simple baselines. The Lucene ranking does surprisingly

poor, basically in line with the Random baseline. The Utility

only baseline is the ones that comes closest to the performance

of the full system. Perhaps the most intuitive result is P@1,

where Bug-AutoQ scores 0.49, indicating that just about half

of all of the top selected follow-up questions by our system

were valid. The Wilcoxon’s signed rank test and the Cliff’s

delta confirm the observations from the raw metric values,

i.e., that Utility only has a strong similarity to Bug-AutoQ

and could be strong contributing factor to the approach’s

effectiveness. They also confirm that Bug-AutoQ has a strong

advantage over the simple baselines.

We interpret the results to mean that our formulations of

Utility and Compatibility, which are designed to be more

resilent to noisy data than Rao et al. [4] are indeed effective.

We also observe that within the top 10 candidate bug report, as

retrieved by Lucene, there is usually a reasonable number of

good candidates so that a random choice within them (i.e.,

the Random baseline in Table I) is fairly effective with a

reasonable MRR and P@1 of almost one third. However, past

the initial retrieval of the top 10, the Lucene ranking within

them (i.e., the Lucene baseline in Table I) does not seem to

provide much quality as is equivalent to the Random baseline.

B. Developer Survey

While a recommended follow-up question may be valid, it

may not possess other properties that would encourage its use

in practice, i.e., in a system that automatically poses follow-up

questions for incomplete bug reports. For instance, a follow-

up question may be overly generic, lacking detail or context

specific to the bug report (e.g., Can you provide additional

information?). To investigate how Bug-AutoQ performs across

several such dimensions of interest we conducted a survey with

software developers.

Through personal contacts, we e-mailed 10 software de-

velopers about the study, providing the basic context of our

project, brief definitions and examples of the characteristics,

and a link to a Web form containing the survey. None of the

developers were aware about the details of our technique. The

developers were half (5) from academia (graduate students

at institutions in the U.S. and Europe) and half professional

developers from industry. All had programming experience of

4 or more years with popular languages like Java and Python

and all indicated one of their primary responsibilities was

developing software.

We randomly assigned the developers into two groups of

5 and each group was assigned 12 instances of bug report

and follow-up question pairs, where all of the follow-up

questions were the top-1 selected by Bug-AutoQ. Each group

was presented with bug reports from our corpus that belong

to GitHub projects where Java or Python are the primary

technologies. For each of the assigned bug reports, a developer

was presented with a screenshot from GitHub containing the

All Responses

0 10 20 30 40 50 60 70 80 90 100

Percentage

New Information 5 59

No Yes

FQ9

FQ22

FQ14

FQ8

FQ19

FQ10

FQ12

FQ18

FQ17

FQ2

FQ6

FQ3

FQ5

Specificity Usefulness New Information

0 20 40 60 80 100

Percentage

0 20 40 60 80 100

Percentage

0 20 40 60 80 100

Percentage

Strongly disagree Disagree Neutral Agree Strongly agree No Yes

Specificity

Usefulness

6 12 9 25 12

1 3 13 31 16

Fig. 7: Responses to developer survey grouped per category (top) and per follow-up question (bottom). FQn = Follow-Up

Question n.

TABLE II: Comparison of the Bug-AutoQ follow-up question and the actually posed (original) follow-up question for three

of the highest rated instances by the survey respondents.

Instance Bug report Bug-AutoQ follow-up question Original follow-up question

FQ22 Title = “Plugin is not working on latest android”

Body = “On app start: [...]

On Button Click: [...]

I am running the example code on Arch Linux with Java 8, latest Android

SDK with target API 22 and default nexus 5 ADM Config. Any ideas why the

SpeechRecognition object is not being initialized?”

[...] Are you waiting for the de-

vice ready to fire before calling the

SpeechRecognition?

[...] Are you waiting for the de-

vice ready to fire before calling the

SpeechRecognition?

FQ14 Title = “Multiple time tests discovering”

Body = “I have strange problem with running xunit tests as part of my build

process. Since yesterday after running all tests my tfs build starts discovering

tests again and after that it runs tests again. And that’s repeated 15 times. Below

I have log from TFS: [...]”

Can you describe your scenario a

little more? One way of doing this

is described in [...]

Can you check if you have multiple

copies of the xUnit adapter under

[...]? Thanks!

FQ8 Title = “32-bit Intel tests for python2 for test fitpack fail with segfault in fpbisp

#8122”

Body = “Environment: Archlinux 32, python-scipy 1.0.0, python-numpy 1.13.3,

python 2.7.14 [...]”

Do you have a more verbose log?

It looks like it’s not picking up the

python library at all judging by the

error.

How did you install or build SciPy?

Compiler versions, build log?

title and text of the bug report, the follow-up question, and a

link to the project the bug report came from for context. Prior

to beginning the survey, we gave instructions to the developers

to read both the bug report and the follow-up question before

answering the provided set of survey questions. A preliminary

survey question, which was posed on an initial screen, asked

Is the follow-up question valid?. A negative response indicated

that the follow-up question was invalid and unusable, therefore

we asked no additional questions for that specific bug report -

follow-up question pair. The remaining survey questions only

appeared for instances deemed valid by a developer.

For a valid follow-up question, we posed a yes/no survey

question asking Does the follow-up question ask for new in-

formation currently not included in the description?, followed

by two Likert score survey questions (5 point; Strongly Dis-

agree, Disagree, Neutral, Agree, Strongly Agree) interrogating

whether The follow-up question is specific to the bug report

and The follow-up question is useful to the bug report. In

the following, we refer to the first (yes/no) survey question as

measuring New Information, the second measuring Specificity,

and the third measuring Usefulness.

The survey results showed that out of the 24 different bug

report - follow-up question pairs, a majority of participants

(at least 3 out of 5) considered 13 follow-up questions as

valid, and 11 as invalid. This ratio is analogous to the results

we observed for Precision@1 in the held-out set evaluation

presented above, confirming our expectations.

The results of the survey, along each dimension, are pre-

sented both at the granularity of an individual response and at

the granularity of a bug report (and follow-up question pair) in

Figure 7. The survey results indicate that among the categories

of Usefulness, Specificity, and New Information, the follow-

up questions selected by Bug-AutoQ provide the most of New

Information, followed by Usefulness and Specificity. However,

all three categories were generally positive with over 50%

of all responses on each either agreeing or strongly agreeing

with the statements on Specificity and Usefulness or affirming

that the follow-up question was asking for New Information.

Considering the data per follow-up question, in the bottom

part of Figure 7, we observe most follow-up questions, which

were deemed as valid, were rated positively. Some follow-

up questions have strongly positive ratings, e.g., follow-up

question 14 (FQ14) was rated by all 5 respondents as valid, 4/5

agreeing or strongly agreeing that the question was specific,

4/5 agreeing or strongly agreeing that the question was useful,

and 5/5 agreeing that the question aimed to provide new

information for the bug report.

To further illustrate Bug-AutoQ’s performance, we contrast

the Bug-AutoQ follow-up questions to the ones posed in

the original bug report for three of the highest rated survey

instances in Table II. While for one of the instances, FQ22, the

recommended follow-up question matches the posed follow-

up question, which is possible since the original follow-up

question is among our candidate set, the follow-up question

in FQ15 is different, asking the question of Can you describe

your scenario a little more? and providing some additional

context on how to do so in the succeeding sentence. In FQ8

both the Bug-AutoQ and original follow-up questions inquire

about a log in order to better investigate a Python library

dependency issue.

C. Threats to Validity

The presented approach is affected by several limitations

that may negatively impact the validity of our findings.

Construct validity. One threat to construct validity is our use of

a manually annotated dataset for the held-out dataset evalua-

tion. We limited this threat by following an annotation process

that required the annotators to get familiar with each project.

We also observed reasonable Cohen’s Kappa values between

the two annotators. Another threat to construct validity is

using Chaparro et al.’s [1] definitions to find OB/EB/S2R in

bug reports. We did not perform an explicit validation of the

pattern accuracy as that would have required us to curate a

non-trivial dataset specifically for this purpose. Instead, we

aimed to control noise introduced in recognizing OB/EB/S2R

by our formulation of EVPI. A threat to construct validity

is also in the preprocessing of bug reports, since we focus

only on the textual content of an issue and ignore other

enclosed types of information, such as images or links. As

a result, for some deficient bug reports, our technique may

miss potentially relevant information to locate the most useful

follow-up questions. This threat is partially mitigated by the

size of the corpus, containing 25K GitHub issues with various

characteristics and content. The notion of utility of a follow-

up question poses another threat to validity, since it is based

only on a subset of information that can be enclosed in a bug

report. To mitigate this threat and select the most useful type

of information, we followed prior studies that reported S2R,

OB and EB among the most helpful categories of information

according to software developers [14].

Internal validity. The limited number of follow-up questions

associated with each bug report poses a threat to internal

validity. Each bug report is assigned 10 candidate question

to rank, instead of processing the whole corpus of available

questions. This may lead to omitting follow-up questions that

are valid and specific in the context of a particular bug. We

partially mitigate this threat by selecting the most similar bug

reports, while also extending the content of each bug report

with the bug’s labels and repository tags in order to provide

Lucene with contextual information that can be leveraged

when locating similar issues.

External validity. In this study, we leveraged a dataset of 25K

GitHub issues, however, during evaluation we use a subset

of 400 manually annotated bug reports. The limited size of

the test set may impact our observations as it covers only

a small subset of population. To mitigate that threat, we

include bug reports from 357 open-source software projects

leveraging different frameworks and technologies. Moreover,

to ensure the quality of the proposed approach, we conducted

a user study with 10 software developers. We observed that

the number of valid follow-up questions in the user study

nearly matched the result obtained in the held-out evaluation,

emphasizing the overall quality of the system and supporting

validity of the results. The scope of the developer survey poses

another threat to external validity due to the low number of

enclosed bug reports and selection of issues only from Python

or Java-related software projects. We partially mitigate bias

caused by limiting the bug reports to only two technologies

by sampling issues with different content characteristics (e.g.,

with or without stack traces) from multiple projects. To ensure

the quality and generalizability of the survey results, each pair

of bug report and follow-up question was assessed by half of

the respondents.

V. RELATED WORK

To our knowledge, the proposed approach is the first effort

towards improving the quality of bug reports by asking follow-

up questions. Prior research related to this area can be broadly

grouped into three main categories including evaluation of bug

reports quality, approaches for improving deficient bug reports,

and techniques automatically posing follow-up questions in

domains external to software engineering field.

Analyzing the quality of bug reports. The quality of user

written bug reports is a topic that several researchers have

been interested in. Linstead et al. applied Latent Dirichlet

Analysis to a large corpus of bug reports to study their

semantic coherence [15], while Huo et al. investigated how

the content of a bug report changes depending on the level

of expertise of its author [16]. Di Sorbo et al. observed that

issues marked as “won’t fix” often contains numerous errors

in their reports [17], while insufficient amount of information

supplied within a bug report can lead to developers not being

able to reproduce as bug, as noted by Joorabchi et al. [18].

Researchers have been extensively investigating the content

of bug reports to determine the most useful information

leading to locating and fixing buggy code efficiently. To

this end, Davies et al. manually analyzed a corpus of bug

reports from four popular open-source projects finding that

observable behavior and expected behavior are among the most

consistently encountered parts of a bug report [19]. Survey of

software developers conducted by Sasso et al. reveled that

steps to reproduce, test cases and stack traces are the most

helpful types of information, however they were also the

hardest for users to supply [20]. These finding were confirmed

and further expanded in the study of Laukkanen et al. who

indicated the importance of application’s configuration [9].

Chaparro et al. developed a technique leveraging language

patterns to automatically extract observable behavior, expected

behavior, and steps to reproduce from a bug report [1]. Liu et

al. proposed to improve Chaparro’s technique by eschewing

predefined patterns, instead relying on pre-trained classifier to

identify steps to reproduce [21]. Recently, Yu et al. developed

a tool, S2RMiner, that extracts steps to reproduce from a bug

report with high accuracy [22].

Improving inadequate bug reports. Researchers have ap-

proached the problem of improving the quality of bug reports

from a few different angels. One line of work, with numerous

proposed techniques, is to detect duplicate bug reports [23]–

[25]. Another research avenue is to classify bug reports into

valid vs. invalid or easy vs. difficult bug reports [26]–[28].

Researchers have also attempted to automatically improve

specific parts of bug reports. Moran et al. provided auto-

completion for the steps to reproduce portion of bug reports

by leveraging image processing of screenshots taken from the

application’s UI [29]. Chaparro et al. explored how bug report

quality can be improved based on unexpected vocabularies

in the steps to reproduce [30]. Recently proposed BEE tool,

implemented as a GitHub plugin, extracts observable behavior,

expected behavior, and steps to reproduce from a bug report

in order to alert bug reporters when this information is not

provided [31].

Automatically posing follow-up questions. Research on au-

tomatic question generation has been applied within a few

different domains and applications. One topic of extensive

prior research is on generating questions from an existing

document, i.e., questions whose answers can be found within

the given text [32]–[37]. For instance, such generated ques-

tions can be used for educational assessment and automation.

More recently, researchers have envisioned a future where a

user’s information need will be satisfied via dialog with a

virtual assistant, i.e., follow-up questions that are automatically

posed to clarify the user’s intent. To this end, Braslavski et al.

analyzed clarification question patterns on question-answering

(QA) websites in order to understand users behavior, and

the types of clarification questions asked [38]. Trienes et al.

focused on detecting when the original questions in com-

munity QA sites are unclear and clarification questions are

needed [39]. Qu et al. curated and published a large dataset of

question and answers intended to help develop conversational

search systems [40]. In Web search, follow-up questions have

been used for improving document retrieval for low-quality

queries [6], [41], [42]. Targeting information that is missing

from a document, Rao et al. used generative adversarial

neural networks to automatically generate questions that seek

to augment Amazon product reviews [5]. Asking follow-up

questions has been explored in several other contexts such as

chatbots [43], open domain question answering systems [44],

[45], search engines [46], search within a Q&A forum [47],

and image content [48].

VI. CONCLUSIONS AND FUTURE WORK

This paper describes a technique for posing follow-up

questions for incomplete bug reports that lack important in-

formation for triage, e.g., the bug’s observable behavior. Our

technique automatically selects follow-up questions from a

corpus of such questions mined from the development histories

of open source projects on GitHub. We first identify by using

tf*idf a set of candidate follow-up questions whose original

bug reports have high similarity to the deficient bug report of

interest. Next, we use neural estimates of two metrics, com-

patibility and utility, to rank and select the optimal follow-up

question to recommend. To evaluate our technique we curated

a dataset of 25K bug reports from 6452 unique repositories

and implemented four baselines. Our technique outperformed

the baselines across the board, with a reasonable Precision@1

score for our model of 0.49, i.e., nearly half of the top most

recommended follow-up questions were considered valid. We

also performed a survey of software developers which showed

a follow-up question validity rate that aligned to the held-out

dataset evaluation and also indicated that developers, at a high

rate, considered the selected follow-up questions as: useful,

specific, and asking for new information not contained in the

bug report.

There are several avenues of future work. First, follow-

ing Rao et al. [5], we can attempt to automatically gener-

ate follow-up questions using sequence-to-sequence neutral

network models [49]–[51]. Second, following Braslavski et

al. [38], we can work on generating frequently asked question

patterns in bug reports. Third, we can develop a tool and

integrate the Bug-AutoQ model with real world platforms like

GitHub or JIRA in order to assist developers in the field and

gather more developer feedback. Lastly, another line of future

work can be on broadening the evaluation, since it is a vital

challenge to determine the most relevant follow-up question

for different software development contexts and requirements.

ACKNOWLEDGMENT

This material is based upon work supported by the National

Science Foundation under Grant No. 1812968.

REFERENCES

[1] O. Chaparro, J. Lu, F. Zampetti, L. Moreno, M. Di Penta, A. Marcus,
G. Bavota, and V. Ng, “Detecting missing information in bug descrip-
tions,” in Proceedings of the 11th Joint Meeting on Foundations of

Software Engineering, ser. ESEC/FSE 2017. New York, NY, USA:
Association for Computing Machinery, 2017, p. 396–407.

[2] dear-github/dear-github, “https://github.com/dear-github/dear-github,”
2020.

[3] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann, “Information needs
in bug reports: improving cooperation between developers and users,”
in Proceedings of the 2010 ACM Conference on Computer Supported

Cooperative Work, 2010, pp. 301–310.

[4] S. Rao and H. Daumé III, “Learning to ask good questions: Ranking
clarification questions using neural expected value of perfect informa-
tion,” in Proceedings of the 56th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers), jul 2018, pp.
2737–2746.

[5] ——, “Answer-based Adversarial Training for Generating Clarification
Questions,” in Proceedings of the 2019 Conference of the North

American Chapter of the Association for Computational Linguistics:

Human Language Technologies, Volume 1 (Long and Short Papers).
Minneapolis, Minnesota: Association for Computational Linguistics,
Jun. 2019, pp. 143–155. [Online]. Available: https://www.aclweb.org/
anthology/N19-1013

[6] H. Zamani, S. Dumais, N. Craswell, P. Bennett, and G. Lueck, “Gen-
erating clarifying questions for information retrieval,” in Proceedings of

The Web Conference 2020, ser. WWW ’20, 2020, p. 418–428.

[7] J. Zhang, X. Wang, D. Hao, B. Xie, L. Zhang, and H. Mei, “A survey
on bug-report analysis,” Science China Information Sciences, vol. 58,
pp. 1–24, 2014.

[8] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schroter, and
C. Weiss, “What makes a good bug report?” IEEE Transactions on

Software Engineering, vol. 36, no. 5, pp. 618–643, 2010.

[9] E. I. Laukkanen and M. V. Mantyla, “Survey reproduction of defect
reporting in industrial software development,” in Proceedings of the

International Symposium on Empirical Software Engineering and Mea-

surement, 2011, pp. 197–206.

[10] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic, “An information
retrieval approach to concept location in source code,” in Proceedings

of the 11th Working Conference on Reverse Engineering. IEEE, 2004,
pp. 214–223.

[11] D. Shepherd, K. Damevski, B. Ropski, and T. Fritz, “Sando: an
extensible local code search framework,” in Proceedings of the 20th

International Symposium on the Foundations of Software Engineering,
2012, pp. 1–2.

[12] N. Cliff, “Dominance statistics: Ordinal analyses to answer ordinal
questions.” Psychological bulletin, vol. 114, no. 3, p. 494, 1993.

[13] J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek, “Appropriate
statistics for ordinal level data: Should we really be using t-test and
cohen’sd for evaluating group differences on the nsse and other surveys,”
in annual meeting of the Florida Association of Institutional Research,
2006, pp. 1–33.

[14] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schröter, and
C. Weiss, “What makes a good bug report?” IEEE Transactions on

Software Engineering, vol. 36, pp. 618–643, 2010.

[15] E. Linstead and P. Baldi, “Mining the coherence of gnome bug reports
with statistical topic models,” in Proceedings of the 6th IEEE Interna-

tional Working Conference on Mining Software Repositories, 2009, pp.
99–102.

[16] D. Huo, T. Ding, C. McMillan, and M. Gethers, “An empirical study
of the effects of expert knowledge on bug reports,” Proceedings of the

International Conference on Software Maintenance and Evolution, pp.
1–10, 2014.

[17] A. D. Sorbo, J. Spillner, G. Canfora, and S. Panichella, ““Won’t we fix
this issue?” qualitative characterization and automated identification of
wontfix issues on github,” ArXiv, vol. abs/1904.02414, 2019.

[18] M. Erfani Joorabchi, M. Mirzaaghaei, and A. Mesbah, “Works for me!
characterizing non-reproducible bug reports,” in Proceedings of the 11th

Working Conference on Mining Software Repositories, 2014, pp. 62–71.

[19] S. Davies and M. Roper, “What’s in a bug report?” in Proceedings

of the 8th ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement, ser. ESEM ’14, 2014.

[20] T. Dal Sasso, A. Mocci, and M. Lanza, “What makes a satisficing bug
report?” in 2016 IEEE International Conference on Software Quality,

Reliability and Security (QRS), 2016, pp. 164–174.

[21] H. Liu, M. Shen, J. Jin, and Y. Jiang, “Automated classification of
actions in bug reports of mobile apps,” in Proceedings of the 29th ACM

SIGSOFT International Symposium on Software Testing and Analysis,
2020, pp. 128–140.

[22] Y. Zhao, K. Miller, T. Yu, W. Zheng, and M. Pu, “Automatically
extracting bug reproducing steps from android bug reports,” in Reuse

in the Big Data Era, X. Peng, A. Ampatzoglou, and T. Bhowmik, Eds.
Springer International Publishing, 2019, pp. 100–111.

[23] C. Sun, D. Lo, S.-C. Khoo, and J. Jiang, “Towards more accurate
retrieval of duplicate bug reports,” in 2011 26th IEEE/ACM International

Conference on Automated Software Engineering (ASE 2011). IEEE,
2011, pp. 253–262.

[24] A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, D. Lo, and C. Sun,
“Duplicate bug report detection with a combination of information re-
trieval and topic modeling,” in 2012 Proceedings of the 27th IEEE/ACM

International Conference on Automated Software Engineering. IEEE,
2012, pp. 70–79.

[25] O. Chaparro, J. M. Florez, U. Singh, and A. Marcus, “Reformulating
queries for duplicate bug report detection,” in Proceedings of the

26th International Conference on Software Analysis, Evolution and

Reengineering (SANER), 2019, pp. 218–229.

[26] Y. Fan, X. Xia, D. Lo, and A. E. Hassan, “Chaff from the wheat:
Characterizing and determining valid bug reports,” IEEE Transactions

on Software Engineering, vol. 46, no. 5, pp. 495–525, 2020.

[27] Y. Zhou, Y. Tong, R. Gu, and H. Gall, “Combining text mining and data
mining for bug report classification,” Journal of Software: Evolution and

Process, vol. 28, no. 3, pp. 150–176, 2016.

[28] P. Hooimeijer and W. Weimer, “Modeling bug report quality,” in Pro-

ceedings of the 22nd IEEE/ACM International Conference on Automated

Software Engineering, ser. ASE ’07. New York, NY, USA: Association
for Computing Machinery, 2007, p. 34–43.

[29] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, and D. Poshy-
vanyk, “Auto-completing bug reports for android applications,” in
Proceedings of the 10th Joint Meeting on Foundations of Software

Engineering, ser. ESEC/FSE 2015. New York, NY, USA: Association
for Computing Machinery, 2015, p. 673–686.

[30] O. R. Chaparro, C. Bernal-Cárdenas, J. Lu, K. Moran, A. Marcus, M. D.
Penta, D. Poshyvanyk, and V. Ng, “Assessing the quality of the steps to
reproduce in bug reports,” Proceedings of the 27th ACM Joint Meeting

on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, 2019.

[31] Y. Song and O. Chaparro, “Bee: A tool for structuring and analyzing
bug reports,” in Proceedings of the 28th ACM Joint Meeting on the

Foundations of Software Engineering (ESEC/FSE’20), Tool Demo Track,
2020, to appear.

[32] L. Vanderwende, “The importance of being important: Question gener-
ation,” in Proceedings of the 1st Workshop on the Question Generation

Shared Task Evaluation Challenge, Arlington, VA, 2008.

[33] V. Rus, B. Wyse, P. Piwek, M. Lintean, S. Stoyanchev, and C. Moldovan,
“Question generation shared task and evaluation challenge–status re-
port,” in Proceedings of the 13th European Workshop on Natural

Language Generation, 2011, pp. 318–320.

[34] Q. Zhou, N. Yang, F. Wei, C. Tan, H. Bao, and M. Zhou, “Neural
question generation from text: A preliminary study,” in National CCF

Conference on Natural Language Processing and Chinese Computing.
Springer, 2017, pp. 662–671.

[35] M. Heilman and N. A. Smith, “Good question! statistical ranking
for question generation,” in Human Language Technologies: The 2010

Annual Conference of the North American Chapter of the Association

for Computational Linguistics, 2010, pp. 609–617.

[36] N. Duan, D. Tang, P. Chen, and M. Zhou, “Question generation
for question answering,” in Proceedings of the 2017 Conference on

Empirical Methods in Natural Language Processing, 2017, pp. 866–
874.

[37] X. Du, J. Shao, and C. Cardie, “Learning to ask: Neural question gen-
eration for reading comprehension,” arXiv preprint arXiv:1705.00106,
2017.

[38] P. Braslavski, D. Savenkov, E. Agichtein, and A. Dubatovka, “What
do you mean exactly? analyzing clarification questions in CQA,” in
Proceedings of the 2017 Conference on Conference Human Information

Interaction and Retrieval, ser. CHIIR ’17. New York, NY, USA:

Association for Computing Machinery, 2017, p. 345–348. [Online].
Available: https://doi.org/10.1145/3020165.3022149

[39] J. Trienes and K. Balog, “Identifying unclear questions in community
question answering websites,” in Proceedings of the European Confer-

ence on Information Retrieval. Springer, 2019, pp. 276–289.
[40] C. Qu, L. Yang, W. B. Croft, J. R. Trippas, Y. Zhang, and

M. Qiu, “Analyzing and characterizing user intent in information-
seeking conversations,” in Proceedings of the 41st International ACM

SIGIR Conference on Research and Development in Information

Retrieval, ser. SIGIR ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 989–992. [Online]. Available:
https://doi.org/10.1145/3209978.3210124

[41] M. Aliannejadi, H. Zamani, F. Crestani, and W. B. Croft, “Asking
clarifying questions in open-domain information-seeking conversations,”
in Proceedings of the 42nd International ACM SIGIR Conference on

Research and Development in Information Retrieval, ser. SIGIR’19,
2019, p. 475–484.

[42] S. Stoyanchev, A. Liu, and J. Hirschberg, “Towards natural clarification
questions in dialogue systems,” in AISB symposium on questions,

discourse and dialogue, vol. 20, 2014.
[43] B. Hancock, A. Bordes, P.-E. Mazaré, and J. Weston, “Learning from

dialogue after deployment: Feed yourself, chatbot!” in ACL, 2019.
[44] M. De Boni and S. Manandhar, “Implementing clarification dialogues

in open domain question answering,” Natural Language Engineering,
vol. 11, no. 4, pp. 343–362, 2005.

[45] ——, “An analysis of clarification dialogue for question answering,”
in Proceedings of the 2003 Human Language Technology Conference

of the North American Chapter of the Association for Computational

Linguistics, 2003, pp. 48–55.
[46] P. Ren, Z. Chen, Z. Ren, E. Kanoulas, C. Monz, and M. de Rijke,

“Conversations with search engines,” ArXiv, vol. abs/2004.14162, 2020.
[47] N. Zhang, Q. Huang, X. Xia, Y. Zou, D. Lo, and Z. Xing, “Chatbot4qr:

Interactive query refinement for technical question retrieval,” IEEE

Transactions on Software Engineering, 2020.
[48] N. Mostafazadeh, I. Misra, J. Devlin, M. Mitchell, X. He, and

L. Vanderwende, “Generating natural questions about an image,”
Proceedings of the 54th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), 2016. [Online].
Available: http://dx.doi.org/10.18653/v1/P16-1170

[49] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in neural information processing

systems, 2014, pp. 3104–3112.
[50] J. Yin, X. Jiang, Z. Lu, L. Shang, H. Li, and X. Li, “Neural generative

question answering,” arXiv preprint arXiv:1512.01337, 2015.
[51] I. V. Serban, A. Sordoni, Y. Bengio, A. Courville, and J. Pineau,

“Building end-to-end dialogue systems using generative hierarchical
neural network models,” arXiv preprint arXiv:1507.04808, 2015.

