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Abstract—Virtual conversational assistants designed specif-
ically for software engineers could have a huge impact on
the time it takes for software engineers to get help. Research
efforts are focusing on virtual assistants that support specific
software development tasks such as bug repair and pair pro-
gramming. In this paper, we study the use of online chat
platforms as a resource towards collecting developer opinions
that could potentially help in building opinion Q&A systems,
as a specialized instance of virtual assistants and chatbots for
software engineers. Opinion Q&A has a stronger presence in
chats than in other developer communications, thus mining them
can provide a valuable resource for developers in quickly getting
insight about a specific development topic (e.g., What is the best
Java library for parsing JSON?). We address the problem of
opinion Q&A extraction by developing automatic identification of
opinion-asking questions and extraction of participants’ answers
from public online developer chats. We evaluate our automatic
approaches on chats spanning six programming communities
and two platforms. Our results show that a heuristic approach
to opinion-asking questions works well (.87 precision), and a
deep learning approach customized to the software domain
outperforms heuristics-based, machine-learning-based and deep
learning for answer extraction in community question answering.

Index Terms—opinion question-answering system, public
chats, opinion-asking question, answer extraction

I. INTRODUCTION

Recognizing the increasing capabilities of virtual assis-

tants that use conversational artificial intelligence (AI) (e.g.,

chatbots, voice assistants), some researchers in software en-

gineering are working towards the development of virtual

assistants to help programmers. They have conducted studies

to gain insights into the design of a programmer conversational

agent [1], proposed techniques to automatically detect speech

acts in conversations about bug repair to aid the assistant

in mimicking different conversation types [2], and designed

virtual assistants for API usage [3].

While early versions of conversational assistants were fo-

cused on short, task-oriented dialogs (e.g., playing music or

asking for facts), more sophisticated virtual assistants deliver

coherent and engaging interactions by understanding dialog

nuances such as user intent (e.g., asking for opinion vs

knowledge) [4]. They integrate specialized instances dedicated

to a single task, including dialog management, knowledge

retrieval, opinion-mining, and question-answering [5]. To build

virtual assistants for software engineers, we need to provide

similar specialized instances based on the available infor-

mation from software engineers’ daily conversations. Recent

studies indicate that online chat services such as IRC, Slack,

and Gitter are increasingly popular platforms for software

engineering conversations, including both factual and opinion

information sharing and now playing a significant role in

software development activities [6]–[9]. These conversations

potentially provide rich data for building virtual assistants

for software engineers, but little research has explored this

potential.

In this paper, we leverage the availability of opinion-

asking questions in developer chat platforms to explore the

feasibility of building opinion-providing virtual assistants for

software engineers. Opinion question answering (Opinion QA)

systems [10]–[13] aim to find answers to subjective questions

from user-generated content, such as online forums, product

reviews, and discussion groups. One type of virtual assistant

that can benefit from opinions are Conversational Search

Assistants (CSAs) [24]. CSAs support information seekers

who struggle forming good queries for exploratory search, e.g.,

seeking opinions/recommendations on API, tools, or resources,

by eliciting the actual need from the user through conver-

sation. Studies indicate developers conducting web searches

or querying Q&A sites for relevant questions often find it

difficult to formulate good queries [25], [26]. Wizard of Oz

studies have explicitly shown the need for opinions within

CSAs [27]. A key result of our paper is the availability of

opinions on chat platforms, which would enable the creation

of a sizable opinion Q&A corpus that could actually be used

by CSAs. The opinion Q&A corpus generated from chats

by our technique can be used in a few different ways to

build a CSA: 1) matching queries/questions asked to the CSA

with questions from the corpus and retrieving the answers; 2)

summarizing related groups of opinion Q&A to generate (e.g.,

using a GAN) an aggregate response for a specific software

engineering topic.

Opinion extraction efforts in software engineering have

focused on API-related opinions and developer emotions from

Q&A forums [14]–[18], developer sentiments from commit

logs [19], developer intentions from emails and issue reports

[20], [21] and detecting software requirements and feature

requests from app reviews [22], [23]. These studies suggest

that, beyond reducing developers’ effort of manual searches



on the web and facilitating information gathering, mining

of opinions could help in increasing developer productivity,

improving code efficiency [16], and building better recom-

mendation systems [17].

Findings from our previous exploratory study [9] of Slack

conversations suggests that developer chats include opinion

expression during human conversations. Our current study

(in Section II) of 400 developer chat conversations selected

from six programming communities showed that 81 (20%)

of the chat conversations start with a question that asks for

opinions (e.g., “Which one is the best ORM that is efficient

for large datasets?”, “What do you think about the Onyx

platform?”). This finding shows much higher prevalence of

questions asking for opinions in chats than the 1.6% found in

emails [20] and 1.1% found in issue reports [21].

Thus, we investigate the problem of opinion Q&A extraction

from public developer chats in this paper. We decompose the

problem of opinion Q&A extraction into two subproblems: (1)

identifying questions where the questioner asks for opinions

from other chat participants (which we call posing an opinion-

asking question), and (2) extracting answers to those opinion-

asking questions within the containing conversation.

Researchers extracting opinions from software-related doc-

uments have focused on identifying sentences containing

opinions, using lexical patterns [20] and sentiment analysis

techniques [16], [17], [28]. However, these techniques are not

directly applicable to identifying opinion-asking questions in

chats for several reasons. Chat communities differ in format,

with no formal structure and informal conversation style. The

natural language text in chats could follow different syntactic

patterns and contain incomplete sentences [9], which could

potentially inhibit automatic mining of opinions.

Outside the software engineering domain, researchers have

addressed the problem of answer extraction from community

question-answering (CQA) forums by using deep neural net-

work models [29]–[31], and syntactic tree structures [32], [33].

Compared to CQA forums, chats contain rapid exchanges of

messages between two or more developers in short bursts

[9]. A question asked at the start of a conversation may be

followed by a series of clarification or follow-up questions

and their answers, before the answers to the original question

are given. Moreover, along with the answers, conversations

sometimes contain noisy and unrelated information. Therefore,

to determine the semantic relation between a question and

answer, understanding the context of discussion is crucial.

We are the first to extract opinion Q&A from developer

chats, which could be used to support SE virtual assistants as

well as chatbots, programmer API recommendation, automatic

FAQ generation, and in understanding developer behavior and

collaboration. Our automatic opinion Q&A extraction takes a

chat conversation as input and automatically identifies whether

the conversation starts with an opinion-asking question, and if

so, extracts one or more opinion answers from the conversa-

tion. The major contributions of this paper are:

• For opinion-asking question identification, we designed

a set of heuristics, learned from the results from our

preliminary chat analysis, to determine if the leading

question in a chat conversation asks for opinions.

• For automatic answer extraction, we built upon related

work on non-SE artifacts to create a deep learning

approach customized to the SE domain. We compare

against heuristics, machine learning combining features,

and a deep learning technique based on the context of

the discussion in community question answering. This

answer extraction model could potentially be leveraged

to extract answers from other types of questions in chats.

• We evaluated our techniques on developer conversations

from six different programming communities on two

different platforms, Slack and IRC. Our evaluation results

show that we can automatically identify opinion-asking

questions and extract their corresponding answers within

a chat conversation with a precision of 0.87 and 0.77,

respectively.

• We publish the dataset and source code 1 to facilitate

the replication of our study and its application in other

contexts.

II. OPINION-ASKING QUESTIONS IN DEVELOPER ONLINE

COMMUNICATIONS

Since developer chats constitute a subclass of developer

online communications, we began by investigating whether

we could gain insights from work by others on analyzing the

opinion-asking questions in other kinds of developer online

discussions (emails, issue reports, Q&A forums).

Emails. The most closely related work, by Di Sorbo et

al. [20], proposed an approach to classify email sentences

according to developers’ intentions (feature request, opin-

ion asking, problem discovery, solution proposal, information

seeking and information giving). Their taxonomy of intentions

and associated linguistic patterns have also been applied to

analyze user feedback in app reviews [34], [35].

In their taxonomy, Di Sorbo et al. define “opinion asking”

as: requiring someone to explicitly express his/her point of

view about something (e.g., What do you think about creating a

single webpage for all the services?. They claim that sentences

belonging to “opinion asking” may emphasize discussion

elements useful for developers’ activities; and thus, make it

reasonable to distinguish them from more general information

requests such as “information seeking”. Of their manually

labelled 1077 sentences from mailing lists of Qt and Ubuntu,

only 17 sentences (1.6%) were classified as “opinion asking”,

suggesting that opinion-asking questions are infrequent in

developer emails.

Issue Reports. To investigate the comprehensiveness and

generalizability of Di Sorbo et al.’s taxonomy, Huang et al.

[21] manually labelled 1000 sentences from issue reports of

four projects (TensorFlow, Docker, Bootstrap, VS Code) in

GitHub. Consistent with Di Sorbo et al.’s findings, Huang et

al. [21] reported that only 11 (1.1%) sentences were classified

as “opinion asking”. Given this low percentage and that

1Replication Package: https://tinyurl.com/y3qth6s3



Table I: Example of Opinion-asking Question And Answers

on Slack #python-dev channel

Ques: hello everyone, I’ve requirement where dataset is large like 10
millions records, i want to use django rest framework in order to provide
that data. Question: which one is the best ORM which is efficient for
large datasets? 1. Django ORM 2. SQL alchemy

Ans 1: SQLalchemy is more performant especially if you’re using Core.

Ans 2: yea, you can mix sqlalchemy and django orm. it’s all just python
at the end of the day. however, if you swap out one for the other you
lose all the benefits of the django orm and how it integrates with the
framework.
Ans 3: If performance is a factor than use SQLAlchemy core to work on
this large data set If deadlines are more of a factor that use Django ORM
since you’re already use DRF. Just make sure to use eager loading on
relationships where you can to optimize queries.

“opinion asking” could be a sub-category of “information

seeking”, they merged these two categories in their study. To

broaden their search of opinions, Huang et al. introduced a

new category “aspect evaluation”, defined as: express opinions

or evaluations on a specific aspect (e.g., “I think BS3’s new

theme looks good, it’s a little flat style.”, “But I think it’s

cleaner than my old test, and I prefer a non-JS solution

personally.?).” They classified 14-20% sentences as “aspect

evaluation”. Comparing the two definitions and their results,

it is evident that although opinions are expressed widely in

issue reports, questions asking for others’ opinions are rare.

Chats. Chatterjee et al.’s [9] results showing potentially more

opinions in Slack developer chats motivated us to perform

a manual study to systematically analyze the occurrence of

opinion-asking questions and their answers in developer chats.

Dataset: To create a representative analysis dataset, we iden-

tified chat groups that primarily discuss software development

topics and have a substantial number of participants. We se-

lected three programming communities with an active presence

on Slack. Within those selected communities, we focused on

public channels that follow a Q&A format, i.e., a conversation

typically starts with a question and is followed by a discussion

potentially containing multiple answers or no answers. Our

analysis dataset of 400 Slack developer conversations consists

of 100 conversations from Slack Pythondev#help channel, 100

from clojurians#clojure, 100 from elmlang#beginners, and 100

from elmlang#general, all chosen randomly from the dataset

released by Chatterjee et al. [36].

Procedure: Using the definition of opinion-asking sentences

proposed by Di Sorbo et al. [20], two annotators (authors

of this paper) independently identified conversations starting

with an opinion-asking question. We also investigated if those

questions were answered by others in a conversation. The

authors annotated a shared set of 400 conversations, which

indicates that the sample size is sufficient to compute the

agreement measure with high confidence [37]. We computed

Cohen’s Kappa inter-rater agreement between the 2 annotators,

and found an agreement of 0.74, which is considered to be

sufficient (> 0.6) [38]. The annotators further discussed their

annotations iteratively until all disagreements were resolved.

Observations: We observed that out of our 400 developer

conversations, 81 conversations (20%) start with an opinion-

asking question. There are a total of 134 answers to those

81 opinion-asking questions, since each conversation could

contain no or multiple answers.

Table I shows an opinion-asking question (Ques) and its

answers (Ans) extracted from a conversation on #python-dev

channel. Each of the answers contain sufficient information

as a standalone response, and thus could be paired with the

question to form separate Q&A pairs. Given that conversations

are composed of a sequence of utterances by each of the people

participating in the conversation in a back and forth manner,

the Q&A pairs are pairs of utterances.

Summary: Compared to other developer communications,

conversations starting with opinion-asking questions in de-

veloper chats are much more frequent. Thus, chats may

serve as a better resource to mine for opinion Q&A systems.

III. AUTOMATICALLY EXTRACTING OPINION Q&A FROM

DEVELOPER CHATS

Figure 1 describes the overview of our approach, ChatEO, to

automatically Extract Opinion Q&A from software developer

Chats. Our approach takes a developer chat history as input

and extracts opinion Q&A pairs using the three major steps:

(1) Individual conversations are extracted from the interleaved

chat history using conversation disentanglement. (2) Conver-

sations starting with an opinion-asking question are identified

by applying textual heuristics. (3) Possibly multiple available

answers to the opinion-asking question within the conversation

are identified using a deep learning-based approach.

A. Conversation Disentanglement

Since utterances in chats form a stream, conversations often

interleave such that a single conversation thread is entangled

with other conversations. Hence, to ease individual conver-

sation analysis, we separate, or disentangle, the conversation

threads in each chat log. The disentanglement problem has

been widely addressed by researchers in the context of IRC

and similar chat platforms [9], [36], [39]–[41]. We used the

best available disentanglement approaches proposed for Slack

and IRC chat logs, respectively, in this paper.

• Slack chat logs: We used a subset of the publicly available

disentangled Slack chat dataset2 released by Chatterjee et

al. [36] since their modified disentanglement algorithm

customized for Slack developer chats achieved a micro-

averaged F-measure of 0.80.

• IRC chat logs: We used Kummerfeld et al.’s [41] tech-

nique, a feed-forward neural network model for conversation

disentanglement, trained on 77K manually annotated IRC

utterances, and achieving 74.9% precision and 79.7% recall.

In the disentangled conversations, each utterance contains a

unique conversation id and metadata including timestamp and

author information.

2https://www.zenodo.org/record/3627124





C. Answer Selection from a Conversation

We build upon work by Zhou et al. [29], who designed

R-CNN, a deep learning architecture, for answer selection

in community question answering (CQA). Since R-CNN was

designed for application in CQA for the non-SE domain4, we

customize for application in chats for software engineering

and then compare to the non-customized R-CNN in our

evaluation. We chose to build on R-CNN because other answer

extraction models [43]–[45] only model the semantic relevance

between questions and answers. In contrast, R-CNN models

the semantic links between successive candidate answers in

a discussion thread, in addition to the semantic relevance

between question and answer. Since developer chats often

contain short and rapid exchanges of messages between partic-

ipants, understanding the context of the discussion is crucial to

determine the semantic relation between question and answer.

Hence, we adapt R-CNN to extract the relevant answer(s) to an

opinion-asking question based on the context of the discussion

in a conversation.

Zhou et al. [29] regarded the problem of answer selec-

tion as an answer sequence labeling task. First, they apply

two convolution neural networks (CNNs) to summarize the

meaning of the question and a candidate answer, and then

generate the joint representation of a Q&A pair. The learned

joint representation is then used as input to long short-term

memory (LSTM) to learn the answer sequence of a question

for labeling the matching quality of each answer.

To design ChatEO, we make the following adaptations

to account for both the SE domain content and specifically

software-related chats. First, we preprocess the text, apply

a software-specific word-embedding model, and use those

embeddings as input to a CNN to learn joint representation

of a Q&A pair. We use TextCNN [46] since text in chat

(utterances) are much shorter compared to CQA (post). The

representations from the CNN are then passed as input to

Bidirectional LSTM (BiLSTM) instead of LSTM to improve

prediction of the answers from a sequence of utterances in a

conversation. We detail ChatEO answer extraction as follows:

1) Preprocessing: To help ChatEO with the semantics of

the chat text, the textual content in the disentangled conversa-

tions is preprocessed. We replace url, user mentions, emojis,

and code with specific tokens ‘url’, ‘username’, ‘emoji’, and

‘code’ respectively. To handle the informal style of commu-

nication in chats, we use a manual set of common phrase

expansions (e.g., “you’ve” to “you have”). We then convert

the text to lowercase.

2) SE-customized Word Embeddings: Text in developer

chats and other software development communication can dif-

fer from regular English text found in Wikipedia, news articles,

etc. in terms of vocabulary and semantics. Hence, we trained

custom GloVe vectors on the most recent Stack Overflow

data dump (as of June, 2020) to more precisely capture word

semantics in the context of developer communications. To

train GloVe vectors, we performed standard tokenization and

4http://alt.qcri.org/semeval2015/task3/

preprocessing on each Stack Overflow post’s title and text

and trimmed extremely rarely occurring words (vocabulary

minimum threshold of 100 posts; window size of 15 words).

Our word embedding model thus consists of 123,995 words,

where each word is represented by a 200-dimensional word

vector. We applied this custom word embedding model to each

word in each utterance of a conversation.

3) Convolutional Neural Networks: In natural language

analysis tasks, a sentence is encoded before it is further pro-

cessed in neural networks. We leverage the sentence encoding

technique from TextCNN [46]. TextCNN, also used for other

dialog analysis tasks [47], is a classical technique for sentence

modeling which uses a shallow Convolution Neural Network

(CNN) that combines n-gram information to model compact

text representation. Since an utterance in a chat is typically

short (<25 words on average), we take each utterance as a

sentence and apply word embedding, multiple convolution,

and max-pooling operations.

The input for TextCNN is the distributed representation

of an utterance, created by mapping each word index into

its pre-trained embeddings. Each utterance is padded to the

same length n with zero vectors. Let zj ∈ R
d denote the

d-dimensional embedding for the jth word in an utterance.

Thus, an utterance of length n can be represented by: z1:n =
z1 ⊕ z2 ⊕ . . . zn, where ⊕ is the concatenation operator. To

gather local information, convolution is achieved by applying

a fixed length sliding window (kernel) wm ∈ R
h×d, on each

word position i such that n− h+1 convolutional units in the

mth layer are generated by: cmi = σ (wm · zi:i+h + bm) , i =
0, 1, . . . , n− h+1, where h is the size of convolution kernel,

σ is the activation function, and bm is the bias factor for the

mth layer. The convolution layer is followed by a max pooling

layer, which can select the most effective information with the

highest value. The flattened output vectors for each kernel after

max-pooling are concatenated as the final output.

4) Bidirectional LSTM: The task of identifying answers in

a conversation requires capturing the context and flow of in-

formation among the utterances inside a conversation. Hence,

we use Bidirectional Long Short Term Memory (BiLSTM)

[48], where the utterances of a conversation are considered as

sequential data. The input to our BiLSTM is a sequence of

utterance representations created by TextCNN. Variations of

LSTM, widely used by researchers for answer extraction tasks

[30], [49], are capable of modeling semantic links between

continuous text to perform answer sequence learning.

LSTM [50] uses a gate mechanism to filter relevant infor-

mation and capture long-term dependencies. An LSTM cell

comprises of input gate (i), forget gate (f), cell state (c), and

output gate (o). The outputs of LSTM at each time step ht

can be computed by the following equations:

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ht = ot � tanh (ct)

where xt is the ith element in the input sequence; W is the

weight matrix of LSTM cells; b is the bias term; σ denotes sig-

moid activation function, and tanh denotes hyperbolic tangent

activation function; � denotes element-wise multiplication.

BiLSTM processes a sequence on two opposite directions

(forward and backward), and generates two independent se-

quences of LSTM output vectors. Hence, the output of a

BiLSTM at each time step is the concatenation of the two

output vectors from both directions, h = [~h ⊕ ~h] , where ~h

and ~h denote the outputs of two LSTM layers respectively,

and ⊕ is the concatenation operator.

IV. EVALUATION STUDY

We designed our evaluation to analyze the effectiveness

of the pattern-based identification of opinion-asking questions

(RQ1) and of our answer extraction technique (RQ2).

A. Metrics

We use measures that are widely used for evaluation in

machine learning and classification. To analyze whether the

automatically identified instances are indeed opinion-asking

questions and their answers, we use precision, the ratio of

true positives over the sum of true and false positives. To

evaluate how often a technique fails to identify an opinion-

asking question or its answer, we use recall, the ratio of true

positives over the sum of true positives and false negatives.

F-measure combines these measures by harmonic mean.

B. Evaluation Datasets

We established several requirements for dataset creation to

reduce bias and threats to validity. To curate a representative

analysis dataset, we identified chat groups that primarily

discuss software development topics and had a substantial

number of participants. To ensure the generalizability of our

techniques, we chose two separate chat platforms, Slack and

IRC, which are currently the most popular chat platforms used

by software developers. We selected six popular programming

communities with an active presence on Slack or IRC. We

believe the communities are representative of public software-

related chats in general; we observed that the structure and

intent of conversations are similar across all 6 communities.

To collect conversations on Slack, we downloaded the

developer chat conversations dataset released by Chatterjee

et al. [36]. To gather conversations on IRC, we scraped

publicly available online chat logs5. After disentanglement, we

discarded single-utterance conversations, and then created two

separate evaluation datasets, one for opinion-asking question

identification and a subset with only chats that start with an

opinion-asking question, for answer extraction. We created

our evaluation datasets by randomly selecting a representative

portion of the conversations from each of the six programming

communities.

5https://echelog.com/

Table III shows the characteristics of the collected chat logs,

and our evaluation datasets, where #OAConv gives the number

of conversations that we identified as starting with an opinion-

asking question using the heuristics described in section III-B,

per community.

The question identification evaluation dataset consists of a

total of 400 conversations, 5153 utterances, and 489 users. Our

question extraction technique is heuristics-based, requiring

conversations that do not start with an opinion-asking question.

Thus, we randomly chose 400 from our 45K chat logs for a

reasonable human-constructed goldset.

The evaluation dataset for answer extraction consists of

a total of 2001 conversations, 23,972 utterances, and 3160

users. Our machine-learning-based answer extraction requires

conversations starting with a question, and a dataset large

enough for training. Thus, 2001 conversations starting with

opinion-asking questions were used.

RQ1. How effective is ChatEO in identifying opinion-

asking questions in developer chats?

Gold Set Creation: We recruited 2 human judges with (3+

years) experience in programming and in using both chat

platforms (Slack and IRC), but no knowledge of our tech-

niques. They were provided a set of conversations where each

utterance includes: the unique conversation id, anonymized

name of the speaker, the utterance timestamp, and the utterance

text. Using Di Sorbo et al.’s [20] definition of opinion-asking

questions i.e., requiring someone to explicitly express his/her

point of view about something (e.g., What do you think about

creating a single webpage for all the services?), the human

judges were asked to annotate only the utterances of the first

speaker of each conversation with value ‘1’ for opinion-asking

question, or otherwise ‘0’.

The judges annotated a shared set of 400 conversations,

of which they identified 69 instances i.e., utterances of the

first speaker of each conversation, containing opinion-asking

questions (AngularJS: 10, C++: 10, OpenGL: 5, Python: 15,

Clojurians: 12, Elm: 17). We computed Cohen’s Kappa inter-

rater agreement between the 2 judges, and found an agreement

of 0.76, which is considered to be sufficient (> 0.6) [38], while

the sample size of 400 conversations is sufficient to compute

the agreement measure with high confidence [37]. The two

judges then iteratively discussed and resolved all conflicts to

create the final gold set.

Comparison Techniques: Researchers have used sentiment

analysis techniques [16], [17] and lexical patterns [20] to

extract opinions from software-related documents. Thus, we

selected two different approaches, i.e., pattern-matching ap-

proaches and sentiment analysis, as comparison techniques to

ChatEO. We evaluated three well-known sentiment analysis

techniques SentiStrength-SE [51], CoreNLP [52], and NLTK

[53] with their default settings. Since opinions could have

positive/negative polarities, for the purpose of evaluation, we

consider a leading question in a conversation identified with

either positive or negative sentiment as opinion-asking. DECA

[20] is a pattern-based technique that uses Natural Language



Table III: Evaluation Dataset
Samples(OA Question Identification) created from Chat Logs(#Conv), Samples(Answer Extraction) created from Chat Logs(#OAConv)

Source Duration
Chat Logs

Samples

OA Question Identification Answer Extraction

#Conversations #OAConv #Conversations #Utterances #Users #Conversations #Utterances #Users

angularjs (IRC) Apr2014-Jun2020 181662 9175 80 1812 90 891 11218 1109

c++ (IRC) Oct2018-Jun2020 95548 841 60 630 62 127 2017 181

opengl (IRC) Jul2005-Jun2020 135536 9198 60 698 54 258 3176 390

pythondev (Slack) Jul2017-Jun2019 8887 707 80 848 93 160 1604 320

clojurians (Slack) Jul2017-Jun2019 7918 562 60 570 81 156 1422 314

elmlang (Slack) Jul2017-Jun2019 22150 1665 60 595 109 409 4535 846

Total 451701 22148 400 5153 489 2001 23972 3160

Table IV: Opinion-Asking Question Identification Results
Technique P R F Example FP Example TP

SentiStrength-SE [51] 0.18 0.31 0.23

...I’m having a weird issue with my ng-cli based angular

app...Is there any potential issue, because my Model is

called ”Class” and/or the method is called ”toClass”?

Anyone know a good cross platform GUI library that

(preferably) supports CMake? I’d rather not use Qt if I

don’t have to because I don’t want to use the qt MOC

CoreNLP [52] 0.19 0.73 0.30
why does ‘(read-string ”07”)‘ return ‘7‘, but ‘(read-string

”08”)‘ throws an exception?

any suggestions for cmake test running strategies? or how

to organize tests expected to succeed or fail?

NLTK [53] 0.18 0.78 0.30
Hi, is there a way to expose a class and a function using

c style declaration : void foo(MyClass bar)

Does anyone know of a good way to ”sandbox” the

loading of namespaces?

DECA [20] 1.00 0.01 0.02 -
..seems lambda with auto argument type provide separate

templated methods per used type; am i right?..

ChatEO 0.87 0.49 0.62 can someone tell me why does this give an error ?
What is the best way in your opinion to convert input

(file, XML, etc.) to PDF with precision to 1 mm?

Parsing to classify the content of development emails accord-

ing to their purpose. We used their tool to investigate the use of

their linguistic patterns to identify opinion-asking questions in

developer chats. We do not compare with Huang et al.’s CNN-

based classifier of intention categories [21], since they merged

“opinion asking” with the “information seeking” category.

Results: Table IV presents precision (P), recall (R), F-measure

(F), and examples of False Positives (FP) and True Positives

(TP) for ChatEO and our comparison techniques for opinion-

asking question identification on our evaluation dataset.

ChatEO achieves a precision, recall, and F-measure of 0.87,

0.49 and 0.62, respectively. Results in Table IV indicate that

ChatEO achieves an overall better precision (except DECA)

and F-measure, compared to all the comparison techniques.

With high precision, when ChatEO identifies an opinion-

asking question, the chance of it being correct is higher

than that identified by other techniques. We aim for higher

precision (with possible lower recall) in identifying opinion-

asking questions, since that could potentially contribute to the

next module of ChatEO i.e., extracting answers to opinion-

asking questions.

Some of the opinion-asking instances that ChatEO wasn’t

able to recognize lacked presence of recurrent linguistic pat-

terns such as “”How does angular fit in with traditional

MVC frameworks like .NET MVC and ruby on rails? Do

people generally still use an MVC framework or just write

a web api?”. Some FNs also resulted from instances where

the opinion-asking questions were continuation of a separate

question such as “Is there a canvas library where I can use

getImageData to work with the typed array data? Or is this

where I should use ports?”.

We observe that the sentiment analysis tools show a high

recall at the expense of low precision, with an exception

of SentiStrengthSE, which exhibits lower values for both

precision and recall. The “Example FP” column in Table

IV indicates that sentiment analysis tools are often unable to

catch the nuances of SE-specific keywords such as ‘expose’,

‘exception’. Another example, “What is the preferred way

to distribute python programs?”, which ChatEO is able to

correctly identify as opinion-asking, is labelled as neutral by

all the sentiment analysis tools. The same happens for the

instance “how do I filter items in a list when displaying them

with ngFor? Should I use a filter/pipe or should I use ngIf in

the template?”. ChatEO is able to recognize that this is asking

for opinions on what path to take among two options, while

the sentiment analysis tools classify this as neutral. Note that

this just indicates that these tools are limited in the context

of identifying opinion-asking questions, but could be indeed

useful for other tasks (e.g., assessing developer emotions).

DECA [20] identified only one instance to be opinion-

asking, which is a true positive, hence the precision is 1.00.

Apart from this, it was not able to classify any other instance

as opinion-asking, hence the low recall (0.01). On analyzing

DECA’s classification results, we observe that, out of 69

instances in the gold set, it could not assign any intention

category to 17 instances. This is possibly due to the informal

communication style in chats, which is considerably different

than emails. Since an utterance could contain more than

one sentence, DECA often assigned multiple categories (e.g.,

information seeking, feature request, problem discovery) to

each instance. The most frequent intention category observed

was information seeking. During the development phase, we

explored additional linguistic patterns, but they yielded more

FPs. This is a limitation of using linguistic patterns, as they are

restrictive when expressing words that have different meaning

in different contexts.

ChatEO opinion-asking question identification significantly

outperforms an existing pattern-based technique that was

designed for emails [20], as well as sentiment analysis tools

[51]–[53] in terms of F-measure.

RQ2. How effective is ChatEO in identifying answer(s) to

opinion-asking questions in a developer conversation?

Gold Set Creation: Similar to RQ1, we recruited 2 human



judges with (3+ years) experience in programming and in

using both chat platforms (Slack and IRC), but no knowledge

of our techniques. The gold set creation for answer annotation

was conducted in two phases, as follows:

• Phase-1 (Annotation): The human judges were provided a

set of conversations with annotation instructions as follows:

Mark each utterance in the conversation that provides

information or advice (good or bad) that contributes to

addressing the opinion-asking question in a way that is

understandable/meaningful/interpretable when read as a

standalone response to the marked opinion-asking ques-

tion (i.e., the answer should provide information that is

understandable without reading the entire conversation).

Such utterances should not represent answer(s) to follow-

up questions in a conversation. An answer to an opinion-

asking question could also be a yes/no response. There could

be more than one answer provided to the opinion-asking

question in a conversation.

• Phase-2 (Validation): The purpose of Phase-2 was two-fold:

(1) measure validity of Phase-1 annotations, and (2) evaluate

if an answer would match an opinion-asking question out

of conversational context, such that the Q&A pair could

be useful as part of a Q&A system. Therefore, for Phase-

2 annotations, we ensured that the annotators read only

the provided question and answers, and not the entire

conversations from which they were extracted. The Phase-1

annotations from the first annotator were used to generate

a set of question and answers, which were used for Phase-

2 annotations by the second annotator, and vice-versa. For

each utterance provided as an answer to an opinion-asking

question, the annotators were asked to indicate (“yes/no”) if

the utterance represents an answer based on the guidelines

in Phase-1. Additionally, if the annotation value was “no”,

the annotators were asked to state the reason.

The judges annotated a total of 2001 conversations, of which

they identified a total of 2292 answers to opinion-asking

questions (AngularJS: 1001, C++: 133, OpenGL: 263, Python:

165, Clojurians: 197, Elm: 533). We found that the first

annotator considered 94.6% of annotations of the second an-

notator as valid, while the second annotator considered 96.2%

annotations of the first annotator as valid. We also noticed

that the majority of disagreements were due to the answer

utterances containing incomplete or inadequate information

to answer the marked opinion-asking question when removed

from conversational context (e.g., “and then you can replace

your calls to ‘f‘ with ‘logArgs2 f‘ without touching the

function...”), and human annotation errors such as marking an

utterance as an answer when it just points to other channels.

Comparison Techniques: Since we believe this is the first effort

to automatically extract answers to opinion-asking questions

from developer chats, we chose to evaluate against heuristic-

based and feature-based machine learning classification as

well as the original R-CNN deep learning-based technique on

which we built ChatEO.

Heuristic-based (HE): Intuitively, the answer to an opinion-

asking question might be found based on its location in the

conversation, the relation between its content and the question,

or the presence of sentiment in the answer. We investigated

each of these possibilities separately and in combination.

• Location: Based on the intuition that a question might be

answered immediately after it is asked during a conversa-

tion, we compare against the naive approach of identifying

the next utterance after the leading opinion-asking question

as an answer.

• Content: Traditional Q&A systems have often aimed to

extract answers based on semantic matching between ques-

tion and answers [43], [54]. Thus, to model content-based

semantic relation between question and answer, we compare

the average word embedding of the question and answer

texts. Using our word embedding model described in III-C2,

we extract utterances with considerable similarity (≥ 0.5) to

the opinion-asking question as answers.

• Sentiment: Previous researchers have leveraged sentiment

analysis to extract relevant answers in non-factoid Q&A

systems [55]–[58]. Thus, based on the intuition that the

answer to an opinion-asking question might exhibit senti-

ment, we use CoreNLP [52] to extract utterances bearing

sentiment (positive or negative) as answers. We explored

other sentiment analysis tools (e.g., SentiStrength-SE [51],

NLTK [53]); however, we do not discuss them, since they

yielded inferior results.

Machine Learning-based (ML): We combine location, con-

tent, sentiment attributes as features of a machine learning

(ML)-based classifier. We explored several popular ML algo-

rithms (e.g., Support Vector Machines (SVM), Random Forest)

using the Weka toolkit [59], and observed that they yielded

nearly similar results. We report the results for SVM.

Deep Learning-based (DL): We present the results for both

R-CNN and ChatEO implemented as follows.

• RCNN: We implemented R-CNN [29] for developer chats

using open-source neural-network library Keras [60]. R-

CNN used word embeddings pre-trained on their corpus.

Similarly, we trained custom GloVe vectors on our chat

corpus for our comparison.

• ChatEO: We also implemented ChatEO using Keras [60].

We used grid-search [61] to perform hyper-parameter tun-

ing. First, to obtain sufficient semantic information at the

utterance level, we use three convolution filters of size 2,

3, and 4, with 50 (twice the average length of an utterance)

feature maps for each filter. The pool sizes of convolution

are (2,1), (2,1), (3,1), respectively. Then, a BiLSTM layer

with 400 units (200 for each direction) is used to capture

the contextual information in a conversation. Finally, we use

a linear layer with sigmoid activation function to predict

the probability scores of binary classes (answer and non-

answer). We use binary-cross-entropy as the loss function,

and Adam optimization algorithm for gradient descent.

To avoid over-fitting, we apply a dropout [62] of 0.5 on

the TextCNN embeddings, i.e., 50% units will be randomly

omitted to prevent complex co-adaptations on the training





ChatEO answer extraction shows improvement over

heuristics-based, ML-based, and existing deep learning-

based [29] techniques in terms of precision, recall, and F-

measure.

V. THREATS TO VALIDITY

Construct Validity: A threat to construct validity might arise

from the manual annotations for creating the gold sets. To limit

this threat, we ensured that our annotators have considerable

experience in programming and in using both chat platforms

and that they followed a consistent annotation procedure

piloted in advance. We also observed high values of Cohen’s

Kappa coefficient, which measures the inter-rater agreement

for opinion-asking questions. For answer annotations, we

conducted a two-phase annotation procedure to ensure the

validity of the selected answers.

Internal Validity: Errors in the automatically disentangled

conversations could pose a threat to internal validity affecting

misclassification. We mitigated this threat by humans, without

knowledge of our techniques, manually discarding poorly

disentangled conversations from our dataset. In all stages of

the pipeline of ChatEO, we aimed for higher precision over

recall as the quality of information is more important than

missing instances; chat datasets are large with many opinions

so our achieved recall is sufficient to extract a significant

number of opinion Q&A. Other potential threats could be

related to evaluation bias or errors in our scripts. To reduce

these threats, we ensured that the instances in our development

set do not overlap with our train or test sets. We also wrote

unit tests and performed code reviews.

External Validity: To ensure generalizability of our approach,

we selected the subjects of our study from the two most

popular software developer chat communities, Slack and IRC.

We selected statistically representative samples from six active

communities which represent a broad set of topics related to

each programming language. However, our study’s results may

not transfer to other chat platforms or developer communica-

tions. Scaling to larger datasets might also lead to different

evaluation results. Our technique of identifying opinion-asking

questions could be made more generalizable by augmenting

the set of identified patterns and vocabulary terms.

VI. RELATED WORK

Mining Opinions in SE. In addition to the related work

discussed in Section II, significant work has focused on mining

opinions from developer forums. Uddin and Khomh [16]

designed Opiner, which uses keyword-matching along with

a customized Sentiment Orientation algorithm to summarize

API reviews. Lin et al. [17] used patterns to identify and

classify opinions on APIs from Stack Overflow. Zhang et

al. [64] identifies negative opinions about APIs from forums.

Huang et al. [65] proposed an automatic approach to distill and

aggregate comparative opinions of comparable technologies

from Q&A websites. Ren et al. [66] discovered and sum-

marized controversial (criticized) answers in Stack Overflow,

based on judgment, sentiment and opinion. Novielli et al. [18],

[67] investigated the role of affective lexicon on the questions

posted in Stack Overflow.

Researchers have also analyzed opinions in developer

emails, commit logs, and app reviews. Xiong et al. [68] studied

assumptions in OSS development mailing lists. Sinha et al.

[19] analyzed developer sentiment in Github commit logs.

Opinions in app reviews [22], [23], [34], [69] have been

mined to help app developers gather information about user

requirements, ideas for improvements, and user sentiments

about specific features. To the best of our knowledge, our work

is the first to extract opinion Q&A from developer chats.

Extracting Q&A from Online Communications. Outside the

SE domain, researchers have proposed techniques to identify

Q&A pairs in online communications (e.g., Yahoo Answers).

Shrestha et al. [70] used machine learning approaches to auto-

matically detect Q&A pairs in emails. Cong et al. [71] detected

Q&A pairs from forum threads by using Sequential Pattern

Mining to detect questions, and a graph-based propagation

method to detect answers in the same thread.

Recently, researchers have focused on answer selection, a

major subtask of Q&A extraction, which aims to select the

most relevant answers from a candidate answer set. Typical

approaches for answer selection model the semantic matching

between question and answers [31], [43]–[45]. These ap-

proaches have the advantage of sharing parameters, thus mak-

ing the model smaller and easier to train. However, they often

fail to capture the semantic correlations embedded in the re-

sponse sequence of a question. To overcome such drawbacks,

Zhou et al. [29] designed a recurrent architecture that models

the semantic relations between successive responses, as well

as the question and answer. Xiang et al. [49] investigated an

attention mechanism and context modeling to aid the learning

of deterministic information for answer selection. Wang et al.

[30] proposed a bilateral multi-perspective matching model in

which Q&A pairs are matched on multiple levels of granularity

at each time-step. Our model belongs to the same framework

which captures the contextual information of conversations in

extracting answers from developer chats.

Most of the these techniques for Q&A extraction were de-

signed for general online communications and not specifically

for software forums. Gottipati et al. [72] used Hidden Markov

Models to infer semantic tags (e.g., question, answer, clari-

fying question) of posts in the software forum threads. Henß

et al. [73] used topic modeling and text similarity measures

to automatically extract FAQs from software development

discussions (mailing lists, online forums).

Analyzing Developer Chats. Wood et al. [2] created a

supervised classifier to automatically detect speech acts in

developer Q&A bug repair conversations. Shi et al. [47] use

deep Siamese network to identify feature-request from chat

conversations. Alkadhi et al. [74], [75] showed that machine

learning can be leveraged to detect rationale in IRC messages.

Chowdhury and Hindle [76] exploit Stack Overflow discus-

sions and YouTube video comments to automatically filter off-



topic discussions in IRC chats. Romero et al. [8] developed

a chatbot that detects a troubleshooting question asked on

Gitter and provides possible answers retrieved from querying

similar Stack Overflow posts. Compared to their work, we are

automatically identifying opinion-asking questions and their

answers provided by developers in chat forums.

Chatterjee et al.’s [9] exploratory study on Slack developer

chats suggested that developers share opinions and interest-

ing insights on APIs, programming tools and best practices,

via conversations. Other studies have focused on learning

developer behaviors and how chat communities are used by

development teams across the globe [6], [7], [77]–[81].

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we present and evaluate ChatEO, which auto-

matically identifies opinion-asking questions from chats using

a pattern-based technique, and extracts participants’ answers

using a deep learning-based architecture. This research pro-

vides a significant contribution to using software developers’

public chat forums for building opinion Q&A systems, a

specialized instance of virtual assistants and chatbots for soft-

ware engineers. ChatEO opinion-asking question identification

significantly outperforms existing sentiment analysis tools and

a pattern-based technique that was designed for emails [20].

ChatEO answer extraction shows improvement over heuristics-

based, ML-based, and an existing deep learning-based tech-

nique designed for CQA [29]. Our replication package can be

used to verify our results [url].

Our immediate next steps focus on investigating machine

learning-based techniques for opinion-asking question identi-

fication, and attention-based LSTM network for answer ex-

traction. We will also expand to a larger and more diverse

developer chat communication dataset. The Q&A pairs ex-

tracted using ChatEO could also be leveraged to generate

FAQs, provide tool support for recommendation systems, and

in understanding developer behavior and collaboration (asking

and sharing opinions).
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