19
20
21
22
23
24
25
26
27
28
29

31
32
33
34
35
36
37
38
39
40
41
42
43
44

46
47
48
49
50
51

52

Automatically Identifying the Quality of Developer Chats for Post Hoc Use

PREETHA CHATTERJEE, University of Delaware, USA
KOSTADIN DAMEVSKI, Virginia Commonwealth University, USA
NICHOLAS A. KRAFT, UserVoice, USA

LORI POLLOCK, University of Delaware, USA

Software engineers are crowdsourcing answers to their everyday challenges on Q&A forums (e.g., Stack Overflow) and more recently
in public chat communities such as Slack, IRC and Gitter. Many software-related chat conversations contain valuable expert knowledge
that is useful for both mining to improve programming support tools and for readers who did not participate in the original chat
conversations. However, most chat platforms and communities do not contain built-in quality indicators (e.g., accepted answers, vote
counts). Therefore, it is difficult to identify conversations that contain useful information for mining or reading, i.e,. conversations
of post hoc quality. In this paper, we investigate automatically detecting developer conversations of post hoc quality from public
chat channels. We first describe an analysis of 400 developer conversations that indicate potential characteristics of post hoc quality,
followed by a machine learning-based approach for automatically identifying conversations of post hoc quality. Our evaluation of 2000
annotated Slack conversations in four programming communities (python, clojure, elm, and racket) indicates that our approach can
achieve precision of 0.82, recall of 0.90, F-measure of 0.86, and MCC of 0.57. To our knowledge, this is the first automated technique for

detecting developer conversations of post hoc quality.

CCS Concepts: » Software and its engineering — Software libraries and repositories; « Information systems — Collaborative

and social computing systems and tools.

Additional Key Words and Phrases: online software developer chats, quality of social content

ACM Reference Format:

Preetha Chatterjee, Kostadin Damevski, Nicholas A. Kraft, and Lori Pollock. 2020. Automatically Identifying the Quality of Developer
Chats for Post Hoc Use. In Woodstock ’18: ACM Symposium on Neural Gaze Detection, June 03-05, 2018, Woodstock, NY. ACM, New
York, NY, USA, 26 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Studies show that modern software development communities are increasingly social with developers contributing to
and leveraging crowd-sourced knowledge and using new community-based tools, including GitHub, Stack Overflow
and Slack [71]. Public chat communities hosted on services such as Slack, IRC, Gitter, and Microsoft Teams are now
commonly used for developer Question & Answer (Q&A) discussions. Unlike intra-organizational/small group use of
chat services, numerous people participate in public software-related chats to gain knowledge or help others, similar
to Q&A forums like Stack Overflow. Communication in public chats often follows a Q&A format, with information

seekers posting questions and others providing answers, possibly including code snippets or stack traces [18]. Our

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

Manuscript submitted to ACM



53
54

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

104

Woodstock 18, June 03-05, 2018, Woodstock, NY Chatterjee et al.

earlier study indicates that Q&A chats in Slack provide the same information as can be found in Q&A posts on Stack
Overflow [18]. This suggests that chats can also serve as a resource for mining-based software engineering tools.

Q&A content can be leveraged to enhance the result quality of search engines, identify domain experts, and enrich
the knowledge bases of Q&A services, chat bots and discussion forums [41]. Thus, as researchers have shown for
Q&A forums, Q&A chats may also be mineable for information to support IDE recommendation, [9, 56, 60], learning
and recommendation of APIs [20, 59, 76], automatic generation of comments for source code [61, 77], and in building
thesauri and knowledge graphs of software-specific terms and commonly-used terms in software engineering [21, 73].
Furthermore, while Q&A forums such as Stack Overflow explicitly forbid posting of questions that ask for opinions
or recommendations, developers regularly use chat forums to share opinions on best practices, APIs, and tools [18].
Recent research has shown that mined opinions are valuable to software developers [49]. Additionally, developer chats
have already served as a mining source for identifying feature requests [64] and extracting developer rationale [5].
Apart from supporting knowledge gathering, chat conversations could be potentially used in dialog research, such as
curating a training corpus for virtual assistants that support software development tasks. For this purpose, researchers
have released large developer chat datasets [17, 31, 50]. Lowe et al. [50] used several steps to ensure the quality of the
chat corpus, such as discarding long conversations and questions that did not generate a response. Ehsan et al. [31]
corrected misspelled words that could negatively impact the quality of the text analysis in their corpus.

Understanding the quality of the information in the mining source is essential for building effective data-driven
software tools. From our preliminary analyses (Section 2 and 3), we found that conversations in public chats vary
significantly in quality. Specific questions and answers may be poorly formed or lacking in important context. In
addition, conversations may be personal and lack any relevant software-related information. So outcomes, in terms of
quality exchange of information, are highly variant on the channel and moment in time. Relative to other developer
communications such as Stack Overflow, where quality feedback is explicitly signaled (in the form of accepted answers,
vote counts, or duplicate questions), in Q&A chats, quality feedback is signaled in the flow of the conversation, mostly
using textual clues or emojis [13]. There is no formal mechanism for voting or accepting an answer. While researchers
have proposed ways to assess the quality of information in Q&A forums beyond built-in mechanisms of the websites,
(e.g., conciseness of answers, containing contextual information, or code readability) [10, 29, 67, 80], to our knowledge,
there are no known techniques to automatically assess the quality of the content in developer chat conversations.

In this research, our goal is to automatically identify information in public chat channels that would be useful
to software engineers beyond the conversation participants, i.e., conversations of post hoc quality, containing useful
information for mining or reading after the conversation has ended. We contribute a suite of techniques for automatically
identifying post hoc quality developer conversations. Our techniques can be applied as a quality filter mechanism to
identify chats that are suitable to serve as a learning or mining source for building task-based software applications
such as API recommendation systems, virtual assistants for programming/debugging help, and FAQ generation. The
mining tools could leverage our techniques to discard lower quality chat conversations, thereby reducing the tool’s
input data overload and producing faster and effective results. Our work could also help readers in efficient information
gathering by saving time and ensuring high-quality information, thus enhancing developer productivity.

Our first step was to understand what contributes to post hoc quality of developer chats. We conducted an analysis
of 400 Slack developer chats covering five different programming channels. We recruited participants to annotate
judgements of the quality of the chats based on the ease of gaining useful software-related knowledge, and then
we manually analyzed the characteristics of chats rated as higher quality. The results indicated that only 251 of 400

conversations were deemed to be of high-quality by a majority of raters. The fact that many conversations were not
2



105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

152
153

155

156

Automatically Identifying the Quality of Developer Chats for Post Hoc Use Woodstock 18, June 03-05, 2018, Woodstock, NY

deemed high-quality further motivated us to investigate automatic techniques to determine conversations of post hoc
quality. We leveraged the observations from our manual analysis to form hypotheses about the characteristics of post
hoc quality conversations that could be used to build automated techniques for quality identification.

We developed what we believe is the first approach to automatically identify conversations of post hoc quality on
developer chat platforms. Our approach uses machine learning-based classifiers based on a set of features closely related
to the hypothesized characteristics of post hoc quality conversations. In this work, we focused on public Slack channels
as Slack has over ten million daily active users, and is currently a popular platform for these public chat communities
that hosts many active public channels on software development technologies [69]. We evaluated our techniques on a
set of 2000 manually annotated Slack developer conversations. Specifically, we focused on answering the following

research questions:

e RQ1: How effective are machine learning-based techniques for automatic identification of post hoc quality
developer chats?
e RQ2: Which classifiers and features result in more effective automatic identification?

e RQ3: What types of conversations are difficult to automatically detect as post hoc quality using our techniques?

We report precision, recall, F-measure, AUC, and MCC and conduct qualitative error analysis. Our results indicate
that post hoc quality conversations can be identified with precision of 0.82, recall of 0.90, F-measure of 0.86, and MCC of
0.57.

2 MOTIVATIONAL EXAMPLES

Developer public chats are becoming increasingly important corpora for several applications including, understanding
topic trends of developer discussions [7, 31, 32, 48, 66], extracting feature requests [64] and developer rationale [5],
and building virtual assistants for software engineers [50]. In contrast to many other sources of software development-
related communication, the information on chat forums is shared in an unstructured, informal, and asynchronous
manner. Chat communications typically consist of rapid exchanges of messages between two or more developers,
where several clarifying questions and answers are often communicated in short bursts. Hence, developer chats are
context-sensitive. Understanding the context of conversations is crucial towards extraction of relevant information. This
led us to consider the entire conversation instead of single utterances as the granularity for assessing post hoc quality.
This section presents two concrete examples of the varying post hoc quality of chat conversations from our manual
analysis study of Slack conversations (see Section 3), as potential sources for both problem solving and API-related
mining purposes, among others.

Example 1 (Problem-solving conversations): To demonstrate the variance in post hoc quality of developer chats,
we first show a pair of example conversations related to solving programming problems, in Table 1. For readability,
the conversations in Table 1 are shown as already disentangled (more details on disentanglement in Section 4.1). We
observe that conversation (1a), related to solving programming problems, is concise and succinct, contains contextual
details of the problem and the suggested solution, and shows indication of answer acceptance. Thus, conversation (1a) is
easy to read and understand, and indicators of answer acceptance give the readers a sense of validation and confidence
in the correctness of the information. In contrast, conversation (1b) contains too many back and forth questions, lacks
contextual details in the starting question, and includes no indication of answer acceptance. Thus, conversation (1b)’s
characteristics make it difficult to extract specific information for either software engineers or mining tools. While

3



157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

Woodstock *18, June 03-05, 2018, Woodstock, NY

Chatterjee et al.

Table 1. Example Problem-Solving Conversations on pythondev#help (For readability, shown as already disentangled)

(a) Post hoc Quality Conversation

Author

Utterance

Alexia

Hi, I have a file with following contents 1234 alphabet /vag/one/arun > 1454 bigdata /home/two/ogra > 5684 apple
/vinay/three/dire, but i want the output to be like 1234 alphabet one > 1454 bigdata two > 5684 apple three

Elaina

tee hee &/

sed -r 's|(.+)/[*/1+/([*/1+)/ . +|\1\2|g’

Corina

Even though I dont have anything to do with this question, could you explain the logic behind the answer? The
formatting sentence seem so random

Elaina

‘sed -1* is an extended mode, so that + is enabled (matches one or more characters, unlike * that matches zero or
more); s/ //g or s|||g or any symbol instead of | is how a basic replacing expression is constructed. The first field is
what to match, the second is what to replace it with.;

sed —r 's[(.+)/[*/1+/(L*/14)/ .+ \1\2]g!

(.+)/ matches anything from the start until the first / and puts found characters in the first group (\1); [*/]+/ matches
anything that is not a slash, and then a slash (‘'vag/‘ or ‘home/*); ([*/]+)/ matches the same thing, but puts the stuff
found in-between slashes in the second group \2; and then .+ matches whatever comes next to the end of line; and
the second field tells sed to replace the line with \1\2, so our saved groups side-by-side: the first group was
everything before the first slash, and the second group was the stuff between 2nd and 3rd slashes

Corina

Ah ok, thanks a lot for the explanation!

(b) Non Post hoc Quality Conversation

Author

Utterance

Cody

Hello guys I got a huge problem

Holli

Cody: ask away

Cody

We’ve been ask as assignment the implementation of Dijkstra’s and Bellman Ford’s algorithm for calculating the
shortest path in a given graph

Holi

So what’s the issue?; run into a problem?

Cody

I don’t really know how to start and that’s my problem

Holli

Well were you given code to start off with as far as i will give you this input in order to build the graph you have
with the path weights and what not?

Cody

The Input to the algorithms is an oriented graph with weights

Holli

So then you have to build the graph in the code, yes?

Cody

More precisely compute the shortest path from a given source to all the other nodes

Holli

Tunderstand that, I am just asking if you have anything to build off of like code given to you to complete the task or
if you have to start from scratch and build the graph in code then calculate it.

Cody

You need to code the algorithm from scratch and supply it with a graph in a text file and it’ll calculate the shortest
path in it

Holli

can you give an example input

Darrin

Cody: how much experience do you have writing code?; for example, there are quite a number of existing examples
of the algorithms you’re talking about

Cody

basic i’'m just starting

Darrin

ok; can you describe the steps on how you execute the algorithm?; and do you understand why those steps are
necessary?; if so, then the next step you take is translating your written description of the process into pseudocode;
once you have a reasonable sequence of actions, you then implement the pseudocode in your language of choice;
frankly, the first two items are always the most difficult; because it requires you to understand the problem domain;
once you understand it, making it work is usually much less effort

Rachel

Cody: oof graph theory for a beginner. do you understand how those algorithms work, ?

Cody

Yes I understand how those work

Darrin

just having trouble translating described steps to code?

conversation (1b) could be useful for researchers studying developer communications (e.g., confusion detection [30]), it

might not be suitable for task-based tools such as question and answer (Q&A) extraction.

Example 2 (API-related conversations): Our previous exploratory study shows prevalence of API-related infor-

mation in developer chats [18]. Conversations containing API mentions (e.g., API X has better design or usability than

APIY) or API caveats, could be useful for developers (beyond the original participants in the conversation) reading and

learning about APIs. It is also possible to build API recommendation systems by leveraging the information in such

conversations. Before building applications that extract API-related information, ensuring completeness and credibility

of information in the source is crucial. Table 2 shows a pair of conversations that contain discussions pertaining to APIs.

We observe that conversation (2a) contains explanations and examples related to usage of round() in different versions

of the programming language. Two potential solutions are offered through the conversation, and their credibility,

4



209
210
211
212
213

214

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

260

Automatically Identifying the Quality of Developer Chats for Post Hoc Use Woodstock 18, June 03-05, 2018, Woodstock, NY

Table 2. Example APl-related Conversations on pythondev#help (For readability, shown as already disentangled)

(a) Post hoc Quality Conversation

Author Utterance

Carylon Hi, guys is there one option to use round function and rounding the value for example 2.59 - show 2.60

Darrin https://docs.python.org/2/library/functions.html#round
On documents there is a note about that: note The behavior of round() for floats can be surprising: for example,

Carylon round(2.675, 2) gives 2.67 instead of the expected 2.68. This is not a bug: it’s a result of the fact that most decimal
fractions can’t be represented exactly as a float. See Floating Point arithmetic: Issues and Limitations for more
information.

Darrin yup. what’s the question?

Carylon look this function: gtd_lata = round(120/(18 * 3), 2); returns: 2.0; But if i don’t use round function

Darrin are you using python 2 or 3?

Velva Related: Division changed in python: https://www.python.org/dev/peps/pep-0238/; You can just make any of those
numbers a float

Carylon Python 2.7.9

Darrin TIn[5] : 120/ (18 * 3)Out[5] :>>> 120/ (18 » 3)2.222.. %

Velva “120.0/(18 * 3)°

Rachael or ‘from_future_ import division’

Carylon >>> from_future__ import division >>> 140/(18 * 3)2.59259...; in this case i need 3; understood; If i use
round; its show 2.0

Rachael if you dont want to switch versions of python, use ‘from _‘future_ import division® or change one value to a float;
what happens when you called ‘round’ after using ‘from_future_ import division‘?

Carylon ‘;rg run this:; from _future_ import division round(140 / (18 * 3), 2); the result is 2.59; i need in this case rounding to

Rachael the second argument to ‘round’ is how many significant digits to give, you're asking it for 2; hence it being 2.59;
remove the second argument to the round function to get a whole number

Carylon perfect

Rachael “ from _future_ import division round(140 / (18 * 3)) “; should equal 3.0

Carylon very good man; so easy; ahauuaa

(b) Non Post hoc Quality Conversation

Author Utterance
T have something seemingly complex and puzzling. I'm trying to add dynamic localization to my library which also
powers a REST aPL I was able to add the gettext() function by running this at my root before importing the other
modules < code_segment > That works great. However, I want to add dynamic localization for certain
functions. Ex: “* #using system foo() #using given locale foo(lang="es’) # Goes back to system foo(). 'm trying to do

Herbert this by running within a context switcher: < code_segment > But I'm getting this opaque error and can’t figure
out how to isolate it < error_trace >. The interesting part is that it works on the first call to foo but not the
second. My guess is that something is going on after the ‘yield’ which screws the system up, but I'm not sure where,
why, or how to ask the right question; OH MY GOD. I've been testing this in the REPL. I have a function which
returns a boolean that gets ‘thrown away’, but the REPL assigns it to *_* which overwrites the global *_* set by
‘gettext.install()’; Thoughts on how to make gettext REPL-safe?

Desiree Herbert: don’t use ‘install?

relatedness and completeness can be understood through the flow of the discussion. API-related information from this
conversation could be potentially extracted or summarized to augment existing API documentations. In conversation
(2b), although the question contains sufficient details on the problem at hand, no concrete solution with explanation
is offered by the other participant. Therefore, conversation (2b) is not a suitable source of information gathering, i.e.,
demonstrates non post hoc quality.

Both of the above pairs of problem-solving (Table 1) and API-related (Table 2) conversations exhibit the need of a
mechanism for assessing quality of content in developer chats. Thus, based on previous research in determining quality
of other kinds of developer communications, we investigate a more systematic and software engineering (SE)-specific

quality assessment approach for automatically determining post hoc quality developer chat conversations.

3 TOWARDS DISCERNING POST HOC QUALITY CONVERSATIONS

This section describes the details of our data-driven approach to determining the characteristics inherent of post hoc

quality chat conversations. As mentioned earlier, we conducted an analysis of 400 Slack conversations with conversation

non-participants judging the informational value of conversations. This analysis helped guide us to answer: What
5



261
262
263
264
265
266
267
268
269
270
271
272
273

274

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

312

Woodstock 18, June 03-05, 2018, Woodstock, NY Chatterjee et al.

characteristics are inherent in software-related conversations that software engineers beyond the participants find useful
(i.e., post hoc quality conversations)? What are the primary characteristics of non post hoc quality conversations?
Dataset: We established several requirements for dataset creation to reduce bias and threats to validity. To curate an
analysis dataset that is representative of the quality of chats that are both public and software-related, we identified
chat groups that primarily discussed software development topics and had a substantial number of participants. We
chose chat groups that had at least one new participant per week, and had at least 100 participants to avoid analyzing
conversations with only a few participants which would have potential to not be representative. Since we chose public
software-related chats as the subjects of our study, we avoided channels that focus on personal conversations within a
small group. We selected five channels from four programming communities (two channels from elmlang, and one
from each of pythondev, clojurians, and racket) with an active presence on Slack, and were willing to provide us
API tokens for downloading chats for research purposes. Within those selected communities, we focused on public
channels that follow a Q&A format, i.e. a conversation typically starts with a question and is followed by a discussion
potentially containing multiple answers or no answers. While the Q&A format is not strictly enforced by a moderator
in the selected channels, each channel on Slack is intended for a particular purpose. For example, the pythondev Slack
community has a channel ‘announcements’ intended for users to share information about events (and thus does not
follow a Q&A format), while the channel ‘help’ is used to ask and answer questions. The channels are advertised on
the Web and allow anyone to join, with a joining process only requiring the participant to create a username and
a password. Once joined, on these channels, participants can ask or answer any question, as long as it pertains to
the main topic (e.g., programming in Python). In order to obtain statistical significance with confidence of 95% + 5%,
we sampled 400 conversations from Slack. We used a sample size of 400 corresponding with the statistical measure -
confidence level of 95% and margin of error of 5%, since our dataset is sampled from 40k public software-related chat
conversations on Slack [17]. We specifically extract a subset of 400 randomly chosen developer conversations ! from our
previously released dataset [17]. Our analysis dataset of 400 developer conversations consists of an equal distribution of
conversations across all channels, for generalizing our observations across all conversations in the channels used in the
study, i.e., 80 conversations from pythondev#help channel, 80 from clojurians#clojure, 80 from racket#general, 80 from
elmlang#beginners, and 80 from elmlang#general.

Procedure: We recruited human judges (students from graduate courses) with prior experience (2+ years) in program-
ming and in using Slack, but no knowledge of our research focus. We designed instructions for the human judges and

conducted a pilot study to test the annotation procedure while noting their annotation time. The judges were asked:

(1) How would you rate the quality of this conversation, based on the ease that you found it to gain useful software-related
knowledge? a) Poor b) Average c) Good.
(2) Why do you think this conversation is ‘Poor’ or ‘Average’ or ‘Good’? Justify your rating.

To account for potential subjectivity, each conversation was analyzed by three judges independently. Each judge
took approximately one hour to annotate 20 conversations. Based on the timing results and the need for 1200 (400
x 3) annotations, 60 judges were each assigned 20 randomly selected conversations, with 4 conversations from each
programming channel in our dataset. We used specific ratings instead of a Likert scale (e.g., how likely is the conversation
to be of post hoc quality), and understand that different users may have different thresholds for what is considered
post hoc quality. Therefore, to capture the overall consensus on quality, we used majority voting instead of inter-rater

agreement to determine the annotation for each conversation.

Uhttps://bit.ly/3dkgA9g



313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364

Automatically Identifying the Quality of Developer Chats for Post Hoc Use Woodstock *18, June 03-05, 2018, Woodstock, NY

® answer lacks details

@ question lacks details
contains irrelevant messages
answer not present

back and forth discussion

non SE focused discussion

contains announcements/statements

contains personal information

Fig. 1. Study Responses Suggesting Characteristics of Poor Quality Conversations

We followed a quantitative and qualitative analysis procedure [63] to analyze the ratings of the Slack conversations.
The analysis procedure consisted of the following steps: (1) First, we used majority voting to segregate good, average,
and poor quality conversations. We used percentage occurrence to measure the distribution of conversations in each
category. (2) Following a qualitative content analysis procedure, two authors of this paper independently studied the
responses to the second question of the survey. More specifically, we used the technique of Explanation Building [63],
where patterns were identified based on cause-effect relationships between the ratings and the underlying explanations
from the judges’ responses. For instance, let us consider two judge’s responses to a good-quality conversation in the
study: “Good because a solution has been suggested.”, “solution was given with instructions on how to do it”. From
these responses, we deduced that the presence of an answer (or solution) to the initial question in the conversation
contributes to post hoc quality information. We wrote memos for our findings from each response to the second question
of the survey to facilitate the process of analysis, such as recording observations on characteristics of good and poor
content, researcher reflections, and additional information (if applicable). We thematically categorized responses by
structure (question and answers) and content (e.g., code, topic of discussion) characteristics. We also manually analyzed
the participants’ disagreements and conversations to identify the primary characteristics of conversations in each
category. The two authors then met to discuss and group common observed characteristics of good and poor quality
conversations. The analysis was performed in an iterative approach comprised of multiple sessions, which helped
in generalizing both of the annotators’ observations from previous sessions to the characteristics of good and poor
quality conversations. (3) Next, we examined the conversations in our dataset to study the occurrence of structure and
content-related characteristics in the good and poor quality conversations. Specifically, we quantitatively analyzed the
presence of (a) question i.e., if the conversation starts with a software-related question, (b) answers i.e., if the conversation
contains an answer that is found useful by the questioner, often denoted with phrases such as “thanks”, “that worked’,
etc. [18], (c) code snippets i.e., if the conversation contains embedded code, and (d) code descriptions i.e., if the conversation
contains descriptions related to the embedded code.

Observations: We observed that 349 out of 400 (87.25%) conversations received majority agreement among human
judges. Out of 349 conversations, 251 conversations were marked as good quality, and 98 conversations were marked

as poor. The rest of the conversations either did not receive a majority voting (e.g. {Poor, Good, Average}), or were
7



366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383

384

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

416

Woodstock 18, June 03-05, 2018, Woodstock, NY Chatterjee et al.

marked average (neither good nor poor) by majority voting (e.g. {Average, Average, Average}); and thus not considered
for our analyses since we focused on binary quality labels (good or poor) for this study because they provide stronger
signals. The high percentage of good conversations in our dataset indicates that developer conversations can be useful
to software engineers beyond the participants.

Our manual analysis of the judges’ responses from the second question in the study suggests characteristics inherent
in post hoc quality (good) and non post hoc quality (poor) conversations, respectively. From the conversations that were
marked ‘poor’, we observed that a conversation is not considered to be post hoc quality if it has any of the following
characteristics, supported by example responses from the study: 1) the conversation-initiating question lacks details
and context, e.g., “The question is not clear, it contains a block of code but the issue with the code is not stated”, 2) the
conversation contains announcements or statements not relevant to future readers, e.g., “There is no relevant information
about django or python learnt from this conversation.”, 3) the answer to the question is not present, or is delivered in a
way that reflects reservations or low confidence, e.g., “The responder does not answer the question.”, 4) the answer is too
short and lacks relevant details thus providing little to no value to the questioner, e.g., “Convoluted usage scenario; no
explanation for a basic case usage is provided and why actually it is valid to do so.”, 5) the conversation contains too much
back and forth discussion, misspellings and poor grammar, thus making it hard to identify useful information, e.g.,
“The conversation jumps from one question to another...”, 6) the conversation contains irrelevant messages, thus making
it difficult to read and understand, e.g., “The conversation is not easy to read and complex in nature...”, 7) the topic of
discussion contains personal information that does not have value to readers, e.g., “discussed her/his current level of
understanding of a language(python) ... doesn’t pertain to all programmers...”, 8) the discussion is not on a technical topic,
e.g., ‘It doesn’t follow any specific software related topic nor provide any insights.”. Figure 1 shows the distribution of the
observed characteristics of poor quality conversations in the study responses. We summarize the characteristics of both
post hoc and non post hoc quality conversations at the end of this section.

Analysis of the conversations that received majority agreement showed that:

® 200/251 (80%) good-quality conversations vs. 65/98 (66%) poor-quality conversations contain a question in the
first utterance.

® 204/251 (81%) good-quality conversations vs. 48/98 (49%) poor-quality conversations contain any accepted answer.

® 89/251 (35%) good-quality conversations vs. 17/98 (17%) poor-quality conversations contain code.

e 71/251 (28%) good-quality conversations vs. 11/99 (11%) poor-quality conversations contain descriptions of
embedded code.

Summary: Observations from the post-conversation analysis led us to describe a post hoc quality conversation as
follows: A conversation that contains information that could be useful to other users, whether in the chat channel or
elsewhere. A conversation is considered post hoc quality based on the availability and ease of identifying information that
could help a person to gain useful software-related knowledge.

Post hoc quality characteristics include containing: (PH1) discussion related to software and programming topics, (PH2)
specific questions with relevant details and context, (PH3) one or more answers to questions (as text/code/references to
other resources), (PH4) explanation of technical concept or suggested code or proposed solution.

Non post hoc quality characteristics include containing: (NPH1) discussion unrelated to software and programming
topics, (NPH2) a question lacking relevant details and context, or no question or problem to be addressed, (NPH3) no

answer or explanation of proposed solution, (NPH4) personal information.

8



417
418
419
420
421
422
423

424

426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450

452
453

455
456

458
459
460
461
462
463
464
465
466
467

468

Automatically Identifying the Quality of Developer Chats for Post Hoc Use Woodstock 18, June 03-05, 2018, Woodstock, NY

4 AUTOMATICALLY IDENTIFYING POST HOC QUALITY CONVERSATIONS

Based on our studies of Slack software-related chats, we developed a suite of techniques for automatically identifying
post hoc quality developer conversations. Automatic identification takes as input a segment of a software-related
chat channel collected over some time period, executes a conversation disentanglement process to extract individual

conversations from the interleaved chats, and classifies each conversation as post hoc quality or non post hoc quality.

4.1 Conversation Disentanglement

Since messages in chats form a stream, with conversations often interleaving such that a single conversation thread
is entangled with other conversations, preprocessing is required to separate, or disentangle, the conversations for
analysis. The disentanglement problem has been addressed by researchers in the context of IRC and similar chat
platforms [33, 75]. In earlier work [17, 18], we modified Elsner and Charniak’s algorithm [33] to customize it for modern
developer chats by: 1) using a significantly larger window of messages, 2) computing the disentanglement graph on the
last five messages regardless of elapsed time, and 3) introducing new features specific to Slack, for instance, the use of
emoji or code blocks in a message. For disentangling an IRC chat transcript, Elsner and Charniak [33] used a certain
number of messages (i.e., the window of messages) as candidates to form a separate conversation. We observed that
some Slack channels can become dormant for a few hours at a time and that participants can respond to each other
with considerable delay. Hence, we expanded the window of messages by using a union of 1) messages within a time
threshold (1477 seconds), and 2) the prior 5 messages. Our approach to chat disentanglement can achieve relatively
better performance than the off-the-shelf Elsner and Charniak algorithm, with a micro-averaged F-measure of 0.80.
In this paper, we use a subset of our previously released disentangled chat dataset, more details about the disen-
tanglement algorithm can be found in our previous work [17]. Each utterance of a conversation contains metadata
such as timestamp and author information. Additionally, for each conversation in our dataset, we rerun the released
disentanglement code to generate a disentanglement graph, which represents relationships between pairs of utterances,

and we use the graph when computing post hoc quality features.

4.2 Machine Learning-based Classification

We investigated several supervised machine learning-based approaches to automatically identify post hoc quality
conversations. We describe the conversation features followed by the suite of machine learning algorithms investigated

for this classification task.

4.2.1 Features and Feature Extraction. We present five sets of features by theme, that map to our definition of post hoc
quality: Knowledge Seeking/Sharing (PH2, PH3, NPH2, NPH3), Contextual (PH3, PH4, NPH2, NPH4), Succinct (PH4,
NPH2), Well-written (NPH2), and Participant Experience (PH1, PH4, NPH1). Table 3 lists the features in each set with

their value range; descriptions of why and how we extract each feature follow.

Knowledge Seeking/Sharing: Software-related chats can vary widely in their content based on their intent, such as
for personal, team-wide or community-wide communication [48]. A proposed knowledge source built from chats for
mining-based software engineering tools and human information-seeking readers would be most useful if it contains
conversations where developers share their knowledge (typically in response to an information-seeking question). We
discern such a conversation type by analyzing its form using the following features:

Primary Question: This feature captures the Q&A conversation style by identifying a primary, or leading question.
Cong et al. [26] used 5W1H words and question mark to extract question-answer pairs from online forums, while others

9



469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498

499

501
502

504
505

507
508

510

511

513
514

516
517

519

520

Woodstock ’18, June 03-05, 2018, Woodstock, NY Chatterjee et al.

Table 3. Features to ldentify Post Hoc Quality Conversations

Feature Set Quality - Features Value
Characteristics

1. Primary Question? Binary (1/0)
gefle(i(‘;ﬁ:/igsiaring PH2, PH3, NPH2, 2. Knowledge-seeking Question? Binary (1/0)
(KS) NPH3 3. Accepted Answers? Binary (1/0)

4. #Authors Numeric count

1. #API Mentions Numeric count

2. #URLs Numeric count

; 3. Contains Code? Binary (1/0)

Contextual (CX) IIiII[-’IiﬂPHA}, NPH2, 4. Contains Code Description? Binary (1/0)

5. Amount of Code Numeric count

6. Contains Error Message? Binary (1/0)

7. #Software-specific Terms Numeric count

1. #Utterances Numeric count

2. #Sentences Numeric count

3. #Words Numeric count

4. Time Span Numeric measure
Succinct (SC) PH4, NPH2 5. #Text Speaks Numeric count

6. #Questions Numeric count

7. Unique Info Numeric measure

8. DG: Avg Shortest Path Numeric measure

9. DG: Avg Graph Degree Numeric measure

1. #Misspellings Numeric count

2. #Incomplete Sentences Numeric count

3. Automatic Readability Index Numeric measure
Well-Written NPH2 4. Coleman Liau Index Numeric measure
(WW) 5. Flesch Reading Ease Score Numeric measure

6. Flesch Kincaid Grade Level Numeric measure

7. Gunning Fog Index Numeric measure

8. SMOG Grade Numeric measure

1. Questioner: #Convs Numeric count
Participant 2. Questioner: #Utterances Numeric count
Experience (PE) PHI1, PH4, NPH1 3. All Participants: #Convs Numeric count

4. All Participants: #Utterances Numeric count

[43, 62] also used interrogative phrases (e.g., ‘why’, ‘how’,who’, ‘where’, and ‘what’). Similarly, we identify the primary
question feature by the presence of a question mark and 5W1H words [26] in the first utterance.

Knowledge-seeking Question: Harper et al. [39] noted that informational questions, which are asked to seek information,
frequently contain either “what", “where", or “how". We determine a primary question to be knowledge-seeking if it
contains any of these three words.

Accepted Answers: Accepted answers suggest sharing of good quality information. In their predictions of question
quality in Stack Overflow, Ponzanelli et al. [56] considered a question to be high quality if it has an accepted answer.
Similarly, we hypothesize that conversations that have an accepted answer are post hoc quality. In our previous work, we
created a list of words/phrases/emojis that indicate answer acceptance in a conversation [18]. We found those indicators
to be too specific for this task, thus we developed a set of seed words that includes words that express gratitude (e.g.,
thanks, appreciate) and words indicating that the solution worked (e.g., works, helps). We use the word embedding
model from the Python package spaCy [2], and calculate the similarity of each sentence in a conversation to each word
in the seed word list. If a sentence has a similarity score over 0.5, and the sentence belongs to an utterance whose
author matches the author who asked the primary question, we consider that conversation to contain an accepted
answer. The similarity threshold is based on our experience with the development set.

#Authors: A higher number of authors indicates variety of shared knowledge, which could contribute to the richness
of information. However, it is also possible that a too high number of authors could splinter the topic of the conversation,

contributing to noise. #Authors is extracted from conversation meta-data.

Contextual: Q&A conversations containing contextual information (e.g., when I do ..., I get...) help developers to
understand the relevance of the content to their issue and help mining-based software engineering tools to extract

10



521
522
523
524
525
526
527
528
529
530
531
532
533
534
535

536

538

539

541

542

544
545
546
547
548

550
551

553
554

556
557

559

560

562
563

565

566

568
569

571
572

Automatically Identifying the Quality of Developer Chats for Post Hoc Use Woodstock 18, June 03-05, 2018, Woodstock, NY

specific types of information. To determine whether a conversation contains sufficient contextual information, we
compute:

#API Mentions: Based on our preliminary analysis (Section 3), we designed a regular expression for API mentions
in each programming language (python, clojure, elm, racket) in our manual analysis dataset (Section 3: Dataset). We
count the number of unique APIs mentioned in the natural language text in a conversation [67] (details included in our
replication package). Specifically, we removed duplicates of the same API mention in a conversation and considered
only unique or distinct APIs.

#URLs: Several researchers have used number of URLs or links to external resources to predict deleted and closed
questions [27, 28, 79] and quality of questions [56] and answers on Stack Overflow [36, 67]. We count the number of
URLs/links from the chat to Stack Overflow or tutorials using regular expressions.

Contains Code: In a qualitative analysis of questions on Stack Overflow, Asaduzzaman et al. [8] observed that
unanswered questions often contain no example code. Without example code, it can be difficult for readers to identify
the problem and offer a solution. Similarly, we hypothesize that conversations containing example code would be more
post hoc quality. We determine if a conversation contains inline/multiline code examples by Slack’s single quotes for
enclosing inline code and triple quotes for multiline code, and links to code such as to Gist or Pastebin.

Contains Code Description: We compute the total number of sentences describing any code in a conversation.
Specifically, we extract all the code identifiers by tokenizing the embedded code snippets of a conversation [19]. This
feature is not specific to a given programming language. If a sentence contains any of the extracted identifiers, we
consider it to be a description of code.

Amount of Code: Researchers have found that size of embedded code segments is an important feature in predicting
deleted and closed questions on Stack Overflow [27, 79]. Hence, we count number of non-whitespace characters in all
code snippets that occur in each conversation [36, 67].

Contains Error Messages: We detect stack trace or error/exception context in the primary question by “Error:”, which
we frequently observed in our manual analysis dataset (Section 3) to be present along with error information. This
feature could be adapted to include other error strings.

#Software-specific Terms: We count the number of software-specific words or phrases [22, 42, 74] (e.g., deprecated,
wrapper, debugger, etc) in a conversation using a list that combines morphological terms collected by Chen et al. [22]

and software-related terms by Christensson [24].

Succinct: Conversations that are unclear or difficult to understand add little value to a knowledge source. We use
structural features to consider a conversation to be succinct, as follows:

#Utterances: We count the number of utterances or messages in a conversation as an indicator of interactivity between
users.

#Sentences and #Words: Conversations could be too short to provide useful information, or too long and provide
noisy or redundant information. Researchers used word and sentence counts to detect low quality Stack Overflow posts
[8, 36, 57]. We use the word and sentence tokenizer from NLTK [11] for these counts.

Time Span: A conversation over a long time could indicate less succinctness. We extract conversation time from
metadata.

#Text Speaks: Ponzanelli et al. [56] observed that text speak in a Stack Overflow question, where a lengthy phrase

is abbreviated or replaced by letters and numbers, (e.g., afaik’, ‘rotfl’), indicates low quality. We used a list of 50 most



573
574
575
576
577
578
579
580
581
582
583
584
585
586
587

588

590

591

593

594

596

597

599
600
601
602
603

604

606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623

624

Woodstock ’18, June 03-05, 2018, Woodstock, NY Chatterjee et al.

common text speaks in chats [1, 57] to count the number of sentences in a conversation containing one or more text
speak instances.

#Questions: Kitzie et al. [43] assumed that presence of multiple questions might confuse readers, so they used number
of questions to predict question quality in Q&A forums. We first tokenized all sentences in a conversation, and then
used two heuristics on each of those sentences to determine if it is a question. Specifically, we search for question marks
at the end and 5W1H words [26] in the beginning of a sentence, to count questions in a conversation.

Unique Info: Kitzie et al. [44] proposed that the amount of novel information communicated within a question could
help an answerer in interpreting the question with a higher level of specificity. We calculate this measure as the ratio of
the number of distinct words over the total number of words in a conversation.

Disentanglement Graph: Average Shortest Path Length: The disentanglement graph consists of utterances as nodes and
weighted undirected edges indicating strength of the relationship between two utterances. The average shortest path
length indicates how connected any two pairs of utterances are in the conversation. Our hypothesis is that connected
conversations (low value for average shortest path) are likely to represent a single cohesive topic.

Disentanglement Graph: Average Graph Degree: We also measure how connected, on average, each utterance is to
other utterances in the disentanglement graph by degree. Our hypothesis is that graphs with higher degrees show that
the utterances are more connected to each other, and thus likely to represent one technical topic and have less drift to

additional off-topic discussions.

Well-written: Syntactically incorrect sentences accompanied by misspelled words make mining of essential information
difficult. We use both form and readability as features to distinguish well-written chats:

#Misspellings: Researchers hypothesize that questions in Q&A forums that contain many misspelled words may be
unclear [43, 62]. We used pyspellchecker to count misspelled words detected by computing the word’s Levenshtein
distance [53] from words in a corpus of English and commonly used terms in software engineering [22, 42, 74].

#Incomplete Sentences: We consider a sentence to be incomplete if it does not contain a subject or object. We use
Python package spaCy to extract the subject and object of sentences [2].

Readability Scores: Researchers have used readability (e.g. Coleman, Flesch Kincaid) metrics to automatically detect
low quality posts [56], predict unanswered questions [8] and estimate question quality on Q&A forums [43, 62]. We
compute several readability measures including Automated Reading Index [68], Coleman Liau Index [25], Flesch Reading
Ease Score [35], Flesch Kincaid Grade Level [35], Gunning Fog Index [37], and SMOG Grade [51] of a conversation as

we hypothesize that conversations with high readability scores are more suitable for information extraction.

Participant Experience: Apart from content-related characteristics, the quality of a conversation could be impacted
by the participant users’ prior experience on Slack and the conversation’s topic. Inexperienced users could potentially
contribute low quality content [10, 28, 57]. Since Slack does not provide a built-in user reputation system or badge
status for users, we measure experience of users participating in a conversation in two parts: (a) questioner experience,
and (b) experience of all participants.

Questioner: The questioner’s experience is estimated by counting the conversations and the individual utterances
that one has participated in our whole dataset. Higher questioner #Conversations and #Utterances indicate that the
primary question is asked by an experienced user on Slack. We have calculated the questioner’s experience based
on their interactions in our dataset since we focus on the participants’ experience regarding the topic discussed in

a conversation or channel (from which the dataset is taken) rather than general experience. Since our questioner’s



626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674

676

Automatically Identifying the Quality of Developer Chats for Post Hoc Use Woodstock 18, June 03-05, 2018, Woodstock, NY

experience is only based on their interactions in the analyzed dataset, in some cases, it is possible to be biased towards
novice developers who often ask questions in the same channel.

All Participants: Similar to the previous feature, we estimate the experience of all participants in a conversation
by counting the conversations and the individual utterances that each participant has contributed to in our dataset.
Higher all-participant #Conversations and #Utterances indicate that the given conversation contains information that is

contributed by experienced Slack users.

4.2.2  Machine Learning-based Classifiers. With our features, we trained multiple classifiers using the Weka toolkit [38]
(for Logistic Regression, Stochastic Gradient Boosted Trees and Random Forest) and Python scikit-learn package (for
Sequential Neural Network). We explored other machine learning-based classifiers (e.g., Support Vector Machines);
however, we do not discuss them, since they yielded significantly inferior results. Here, we provide overview and
explanation of our classifier choices.

Logistic Regression (LR) is a discriminative classification model that predicts the class by calculating the probability
for each class and choosing the class with highest probability. In our case, the class probability is the likelihood of a
conversation being non post hoc quality. Logistic regression has been widely used for predicting duplicate and closed
questions on Stack Overflow [4, 27], and classifying high quality questions on Stack Overflow and Yahoo! Answers
[29, 36, 47, 62].

Stochastic Gradient Boosted Tree (SGBT) is an ensemble-based classification framework where a sequence of
decision trees is constructed, and each tree minimizes the residual error of the preceding sequence of trees. Given a set
of conversations with human-labeled informational judgments, SGBT automatically selects and uses combinations of
features in a conversation, combining evidence from each post hoc quality characteristic. Ensemble classifiers such
as SGBT have been observed to have high accuracy in predicting closed questions on Stack Overflow [27, 28] and
identifying high quality content in social media [3].

Random Forest (RF) is an ensemble-based classifier that constructs a set of decision trees in randomly selected
spaces of the feature space. The predictions of the individual decision trees are combined by applying bagging or
bootstrap aggregating to generate the final classification. RF has been used for classifying high/low quality questions
on Stack Overflow and Yahoo! Answers [29, 62].

Sequential Neural Network (SNN) is trained to perform binary classification by using the logarithmic loss function
and Adam optimization algorithm for gradient descent. Our model has three hidden layers; each layer consists of 64
neurons (twice the number of our features) and uses relu activation function. We standardized the data using Python
scikit-learn package. We use a batch size of 5 and train the model over 10 epochs. Our SNN takes 10 minutes to perform
10-fold classification of 2000 conversation instances on a system with 2.5 GHz Intel Core i5 processor and 8GB DDR3

RAM. All features are pre-computed before classification.

5 EVALUATION STUDY DESIGN

We designed our evaluation to analyze the automatic classifiers’ effectiveness, features, and misclassifications.

5.1 Evaluation Metrics

We use measures that are widely used for evaluation in information retrieval and classification: precision, recall,

F-measure, AUC and Matthews correlation coefficient. To measure the fraction of automatically identified conversations

that are indeed post hoc quality, we use precision, the ratio of true positives (tp) over the sum of true and false positives
13



677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705

707
708

710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728

Woodstock 18, June 03-05, 2018, Woodstock, NY Chatterjee et al.

Table 4. Evaluation Dataset

[ Community [ #Conv [ #Utterances #Users
pythondev#help 400 7746 304
clojurians#clojure 400 6521 387
elmlang#beginners 400 8897 310
elmlang#general 400 8793 318
racket#general 400 6020 81
total 2000 37977 1400

(fp). To see how often our approaches miss post hoc quality conversations, we use recall, the ratio of true positives over
the sum of true positives and false negatives (fn). F-measure combines these measures by harmonic mean. To measure
robustness, we use AUC, the area under the ROC (Receiver Operating Characteristics) curve, which represents the
degree of separability between prediction classes. These metrics range between 0 and 1, where 1 represents complete
agreement between prediction and gold set.

Lastly, because our data is not completely balanced, we compute MCC (Matthews correlation coefficient), which is a
correlation coefficient between observed and predicted binary classifications that is well suited for unbalanced data;
MCC lies between -1 and +1, where +1 represents a perfect prediction, 0 no better than random prediction and -1 total

disagreement between prediction and observation.

5.2 Evaluation Dataset

5.2.1 Source and Size. We extract a subset of the developer conversations ? of our previously released dataset [17],
following the data selection procedure for our studies in section 3. Specifically, we first collected all the conversations
from the dataset which occurred within a period of 489 days (June 2017- November 2018), which enabled us to collect
sufficient data for analysis, and then we curated our evaluation dataset by randomly selecting a representative portion
of the channel activity. In total, our evaluation dataset, as described in Table 4, consists of 2000 conversations (400 from

each of five communities), 37,977 utterances, and 1,400 users.

5.22 Gold Set Creation. Our preliminary study helped us systematically define post hoc quality conversations, which
we now leverage to create a large and representative annotated dataset for evaluation. We recruited two human judges
with experience in programming (3+ years) and in using Slack, but no knowledge of our techniques or features. Our
annotation instructions focused on labeling each conversation as either post hoc quality or non post hoc quality, based
on the description and characteristics of post hoc quality and non post hoc quality conversations in section 3. Post hoc
quality conversations were annotated as 1 and non post hoc quality conversations as 0. To avoid errors arising from the
disentanglement to affect our automatic quality classification, our human judges corrected the errors before annotating
any incorrectly disentangled conversations.

Frequencies of post hoc quality conversations across the channels are pythondev#help: 251/400, clojurians#clojure:
288/400, elmlang#beginners: 328/400, elmlang#general: 263/400, racket#general: 180/400. Racket has the lowest number
of post hoc quality conversations because, several discussions were about specific projects and temporary design
changes/bug fixes, or events and announcements that would not be useful for future readers. To promote future research
in this area, we release our code and dataset along with the gold set annotation®.

Both judges first annotated shared 200 conversations (40 from each Slack channel). This sample size is sufficient

to compute the agreement measure with high confidence [14]. We computed Cohen’s Kappa inter-rater agreement

Zhttps://www.zenodo.org/record/3763432 - version 2
Shttps://bit.ly/3dkgA9g



729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756

758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780

Automatically Identifying the Quality of Developer Chats for Post Hoc Use Woodstock 18, June 03-05, 2018, Woodstock, NY

between the two judges, who iteratively discussed and resolved conflicts, resulting in an agreement of 0.79, which is
considered to be sufficient (> 0.6) [45]. Thus, the judges separately annotated the remaining conversations to reach
2000.

5.3 Procedures

We configured classifiers and ran them as follows.

Hyperparameter Tuning: We investigated hyperparameters to adjust each classifier - (RF #trees {100, 500, 1000,
2000}, SGBT #boosting stages {10, 100, 500}, and SNN #hidden layers {1, 3, 5}, #neurons {32, 64, 128}, and #epochs {10, 40,
100}); the bolded configurations produced the best classifications. We observed that the classification task was not very
sensitive to parameter choices, as they had little discernible effect on the effectiveness metrics (in most cases <= 0.01).
For all other classifier parameters, we used the reasonable defaults offered by popular libraries, Weka, scikit-learn, and
keras.

Configurations: We investigated 24 classifier configurations. Each of the four machine learning-based techniques
was configured with all features as well as singly with each of the five feature sets: Knowledge Seeking/Sharing (KS),
Contextual (CX), Succinct (SC), Well-written (WW), Participant Experience (PE).

Class Imbalance Handling: Our dataset is imbalanced, with almost twice as many post hoc quality than non post hoc
quality conversations. To address this imbalance in training our classifiers, we explored both over-sampling (SMOTE)
and under-sampling techniques. We found that neither led to significant improvements in the results. Since, in most
cases, we observed same or slightly inferior results (< 0.1), we opted against using over or under-sampling in our study.
Evaluation Process: Results from the classifiers were obtained using stratified 10-fold cross validation i.e., the conver-
sation set was partitioned into ten equal-sized sub-samples with stratification, ensuring that the original distribution of

conversation types (% post hoc quality conversations) is retained in each sub-sample.

5.4 Baselines

To the best of our knowledge, this is the first work to automatically identify post hoc quality and non post hoc quality
developer conversations in chat forums. Thus, we developed two heuristic-based techniques as baselines to evaluate
our classifiers’ performance.

From manual analysis, we found that knowledge is shared in conversations by someone asking a question and people
responding with information from their own knowledge, possibly with follow-up questions and answers. Thus, we look
for discussions initiated by a question. The presence of a question is determined by a question mark (?) at the end of a
sentence in the first utterance of a conversation.

As discussed in Section 3, a post hoc quality conversation is one that could help a person to gain useful software-
related knowledge. For designing the baselines, we explore the first characteristic (PH1 and NPH1 defined in Section 3)
i.e., determine if a discussion is related to software and programming topics. Specifically, we investigated two proxies
for determining whether a conversation is software-related. The first baseline, Q&A:SEterms detects software-related
conversations based on the existence of software-related words. We consider a conversation to be of post hoc quality if
it contains at least one software-specific term. We use the list of software-related words described in section 4.2.1 to
detect a software-specific term. The second baseline, Q&A:Code considers a conversation as software-related based on
containing at least one code segment. Multi-line code snippets in Slack are encoded as markdown using triple quotes.

Hence, for Q&A:Code, we use the presence of triple quotes to detect a code segment.

15



781
782
783
784
785
786
787
788
789
790
791
792
793

794

796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832

Woodstock 18, June 03-05, 2018, Woodstock, NY Chatterjee et al.

Table 5. Classification Results (Classifiers - LR: Logistic Regression, SGBT: Stochastic Gradient Boosted Trees, RF: Random Forest, SNN: Sequential Neural Net;
Feature Sets - KS: Knowledge Sharing, CX: Contextual, SC: Succinct, WW: Well-written, PE: Participant Exp)

. Evaluation
Classifier Feature Precision [ Recall [ F1 [ AUC [ MCC
, Q&ASEterms 0.78 0.67 | 072 | 0.66 | 0.30
Baseline Q&ACode 0.91 030 | 045 | 0.62 | 028
All 0.78 078 | 0.78 | 0.83 | 0.50
KS 0.77 077 | 076 | 076 | 0.46
X 0.77 077 | 077 | 082 | 048
SGBT SC 0.78 077 | 075 | 078 | 0.47
WW 0.75 075 | 074 | 077 | 0.43
PE 0.74 075 | 074 | 078 | 0.41
All 0.79 079 | 079 | 084 | 052
KS 0.75 075 | 074 | 077 | 0.43
X 0.76 076 | 076 | 0.81 | 046
LR SC 0.72 072 | 069 | 075 | 0.34
WW 0.72 073 | 072 | 075 | 037
PE 0.68 068 | 061 | 076 | 0.21
All 0.81 081 | 081 | 0.86 | 0.57
KS 0.77 077 | 075 | 076 | 0.45
X 0.76 076 | 0.76 | 0.80 | 0.46
RE SC 0.75 075 | 074 | 077 | 0.42
WW 0.73 074 | 073 | 077 | 040
PE 0.74 075 | 074 | 077 | 0.4l
All 0.82 090 | 0.86 | 0.86 | 055
KS 0.77 092 | 0.84 | 0.77 | 046
CcX 0.80 087 | 084 | 082 | 050
SNN
SC 0.77 089 | 083 | 078 | 0.44
WW 0.77 086 | 082 | 078 | 0.42
PE 0.76 0.86 | 0.80 | 0.78 | 037

5.5 Evaluation Results and Discussion

RQ1: How effective are machine learning-based techniques for automatic identification of post hoc quality developer chats?
Table 5 presents precision, recall, F-measure, AUC and MCC for each configuration. We compare both of our baselines
Q&A:SEterms and Q&A:Code with the machine learning-based techniques. When using Q&A:SEterms, we observe a
reasonable F-measure of 0.72, but low MCC of 0.30. This discrepancy in the results is from Q&A:SEterms being reasonably
good at recognizing post hoc quality conversations, but inadequate at effectively recognizing instances of the non post
hoc quality (minority) class. In Q&A:Code, precision rises from Q&A:SEterms’s 0.78 to 0.91, but recall falls from 0.67 to
0.30, indicating that Q&A:Code is much more restrictive in labeling a conversation as non post hoc quality. The MCC
score, 0.28, for Q&A:Code is a bit lower than Q&A:SEterms, 0.30. In Table 5, we provide the evaluation measures for
both the baselines. Since, Q&A:SEterms performs better than Q&A:Code in terms of all measures (except precision),
we only show the graphical representation of Q&A:SEterms in Figure 2. We have bolded Q&A:SEterms in Table 5, to
emphasize that Q&A:SEterms perform better than Q&A:Code. Although the two baselines perform reasonably well with
some metrics, they are poor particularly for MCC that adjusts for class imbalance. We compare the various machine

learning-based classifiers as part of RQ2.

RQ2: Which classifiers and features result in more effective automatic identification?

Classifier Effectiveness. Figure 2 graphically depicts the overall effectiveness using Q&A:SEterms for the baseline

and all features for the ML-based classifiers. From Table 5, and Figure 2 we observe that precision across all methods is
16



833
834
835
836
837
838
839
840

841

843
844

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874

876
877
878
879
880
881
882
883
884

Automatically Identifying the Quality of Developer Chats for Post Hoc Use Woodstock *18, June 03-05, 2018, Woodstock, NY

# Baseline (Q&A:SEterms) R SGBT M LR =RF MESNN
1

o7 | N NE B
N N N 7
A2 A8 AlE 7

=2 AE 2B A %
N N N 2 7

6 = = Z Z
Precision Recall F1 AUC McCC

Fig. 2. Comparing Effectiveness (with all features)

nearly the same (except Q&A:Code which has a precision of 0.91, but a low recall of 0.30); however, we see differences in
the rest of the measures. Across most metrics, the best performance is achieved using Sequential Neural Network (SNN)
with all features, achieving both F-measure and AUC = 0.86, and MCC = 0.55. However, when considering only MCC,
Random Forest (RF) with all features performs slightly better (0.57). The remaining machine learning-based classifiers
produce slightly worse results, with precision, recall and F-measure all ranging 0.78-0.79, AUC ranging 0.83-0.84, and
MCC ranging 0.50-0.52 when using all features.

Overall, we observed the best performance when all features are used; however, knowledge-seeking/sharing (KS)
and contextual (CX) features perform better than other sets when single feature sets are used. This suggests that
conversation structure (e.g., Q&A -based structure, indication of answer acceptance) and context (e.g., code snippets
and their descriptions) are strong indicators for distinguishing post hoc quality vs non post hoc quality conversations.
It is interesting to note that although SGBT has overall worse performance (compared to LR and RF) when using all
features, it produces better results when using individual feature sets. This indicates the strengths of different classifiers

for handling larger vs. smaller feature sets.

Feature Importance. To understand the overlap between our 32 features, i.e., how many underlying dimensions of
post hoc quality are expressed by our features collectively, we applied Principal Component Analysis (PCA) to the gold
set. We specifically use PCA to extract the relevant information in our high-dimensional dataset, i.e., capturing the
principal components that explain the spread or variance of features. To capture 90% of the variance in the dataset,
PCA produces 15 different components, which shows relatively high diversity among our feature set. The most highly
expressed component, accounting for 35% of the variance, broadly groups the features pertaining to the length of a
conversation: #Utterances, #Sentences, #Words, #Software-specific Terms, and #Incomplete Sentences. The second
component, accounting for 12% variance, broadly combines the readability metrics: Flesch Reading Ease Score, Flesch
Kincaid Grade Level, Automatic Readability Index, and Gunning Fog Index. The remaining components produced by
PCA consist of even smaller sets of the remaining features, which account for decreasing portions of the variance in
the dataset, from 5% to 2%. We also separately applied PCA to the conversations from our manual analysis dataset in
Section 3, observing highly similar components and feature distributions. Overall, the results of applying PCA show
that our features are diverse, expressing separable notions of post hoc quality, with overlap between small groups of
features.

We also determined the information gain [58] of each feature in our feature sets. Table 6 shows the top eight features
across all feature sets, arranged in decreasing order of information gain. The values in the column Tnfo Gain’ on Table

17



885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935

936

Woodstock *18, June 03-05, 2018, Woodstock, NY

Chatterjee et al.

Table 6. Information Gain of Top 8 Features (Decreasing Order) and Data Distribution (White: Post Hoc Quality, Grey: Non Post Hoc

Quality

Feature Info Gain | Data Distribution
#Utterances (SC) 0.204
I
5 0 a0 &
#Sentences (SC) 0.182
L
0 20 40 60 80
Software-specific Terms (CX) 0.174
6 20 40 60 &0
#Words (SC) 0.171
6 250 500 750
#Authors (KS) 0.158
3 @ 6 5
Time Span (SC) 0.156
6 5000 10600
All Participants:#Convs (PE) 0.151
o 5000 10000 15600
DG: Avg Graph Degree (SC) 0.146

— T+
—{._(

075  1.00

6 indicate that the length (#Utterances, #Sentences, #Words, Time Span), coherence (DG: Avg Graph Degree), topic

of conversation (#Software-specific Terms), and participant knowledge (#Authors, All Participants:#Convs) are the

most informative features for our classification task. In the column ‘Data Distribution’ of Table 6 we show box plot

representations; the x-axis represents the range of values for each feature, and the boxes indicate the distribution of

post hoc quality and non post hoc quality conversations represented in white and grey, respectively. For example, the

median number of utterances for post hoc quality conversations is 14 and non post hoc quality conversations is 4, which

indicates that too short conversations do not presumably provide useful information. Similar observations can be made

for the other features related to the length of the conversations, such as, number of sentences, number of words, and

time span. We observe that post hoc quality conversations have higher frequency of software specific terms, which

18



937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988

Automatically Identifying the Quality of Developer Chats for Post Hoc Use Woodstock *18, June 03-05, 2018, Woodstock, NY

Logistic
Regression

Baseline -
Q&A: SEterms,

Stochastic
Gradient
Boosted
Trees

Sequential
Neural
Network

Random Forest

Fig. 3. False Positive Overlap Among Approaches

Logistic
Regression

Baseline -
Q&A: SEterms,

Stochastic
Gradient
Boosted
Trees

Sequential
Neural
Network

Random
Forest

Fig. 4. False Negative Overlap Among Approaches

serve as indicators to identify software-related conversations. Post hoc quality conversations have higher number of
authors and participant experience (with high variance), possibly contributing to the variety and richness of shared
knowledge. The results also confirm our hypothesis that post hoc quality conversations are likely to represent one

coherent topic and have less drift to off-topic discussions; thus have higher average graph degrees than non post hoc

quality conversations.

RQ3: What types of conversations are difficult to automatically detect as post hoc quality using our techniques?

To perform classification error analysis, we qualitatively analyzed the False Positives (FP) and False Negatives (FN)
across our baseline (Q&A:SEterms) and all ML-based classifiers (using all features). We chose Q&A:SEterms as baseline
for this analysis since it performs better than Q&A:Code in all measures except precision. We found that a set of 114

conversations were marked as FP, and 38 conversations were marked as FN, by all the classifiers (i.e., intersection sets).

19



989

990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039

1040

Woodstock ’18, June 03-05, 2018, Woodstock, NY Chatterjee et al.

The analysis procedure consisted of the following steps: (1) First we collected the conversation instances that were
marked FP by all classifiers, and instances that were marked FN by all classifiers. (2) Following an open coding procedure
[63], two authors of this paper independently studied the conversation instances from step 1. We manually analyzed
the conversations to identify the characteristics of conversations in each category (FP and FN), in terms of various
representative feature values such as #Utterances, #Authors, Primary Question?, Accepted Answers?, Contains Code?.
We also recorded additional comments and reflections from the manual analysis of the conversations in the form of
words or short phrases, e.g. “Conversation contains general discussion about code editors for Python”, “Conversation
contains general discussion about Elm apps”. These insights helped us investigate additional characteristics that our
features failed to capture. (3) The two authors then met to discuss and group common observed characteristics of FP and
FN conversations. The analysis was performed in an iterative approach composed of multiple sessions, which helped in
generalizing the hypotheses and revising the characteristics. For example, the previous two mentioned observations
were grouped into a category of “Topic of discussion not related to specific programming-related questions”.

Figure 3 presents a Venn diagram of the False Positives (FP). We manually analyzed the 114 conversations marked FP by
all classifiers, and observed that most of them lack specific programming-related questions. Instead, these conversations
are software-related discussions where the participants discuss/ask for recommendations about code editors, testing
practices, tutorials, etc. In addition, our classifiers struggled distinguishing conversations based on the quality of the
answers provided. For example, some FP conversations were not completely answered or the proposed solution did
not seem to work as indicated by follow-on discussion. A third group of FP conversations that we misclassified were
either long and noisy (contain utterances that do not add value), or too specific (e.g. discussions about possible feature
improvements to a language that are unlikely to be relevant to others post-conversation).

Figure 4 is a Venn diagram of False Negatives (FN) across all classifiers. We manually analyzed the 38 conversations
marked FN by all classifiers, and observed that most are very short with an average of 3-4 utterances. These conversations
are misclassified since they do not offer a lot of content for our features. Additionally, we are not able to correctly
classify conversations that do not typically start with a specific question since most of our features are based on Q&A

conversations.

5.6 Threats to Validity

Construct Validity: There might be some cases where the humans misclassified a post hoc quality conversation in the
gold set. To limit this threat, we ensured the annotators had considerable experience in programming and using Slack,
followed a consistent procedure piloted in advance, and we computed Cohen’s Kappa inter-rater agreement between
the two annotation sets for a shared sample of 200 conversations, observing a 0.79 agreement, which is more than 0.6
considered to be sufficient [14, 45]. Another potential threat is the description of post hoc quality conversation. Since
Slack does not provide a built-in mechanism for evaluation of the quality of the conversations, we used the results from a
post-conversation knowledge-seeking analysis (Section 3) to refine our understanding of post hoc quality conversations.
The constructs to measure the phenomena under the study are the features for the machine learning-based approach,
that were designed based on the characteristics of post hoc quality conversations and quality indicators in Stack
Overflow. The characteristics of post hoc quality were based on the results of our preliminary manual analysis.

Internal Validity: Errors arising from the automatically disentangled conversations, particularly, some orphaned
sequences of 1-2 messages, could pose a threat to internal validity resulting in misclassification. We mitigated this
threat by humans without knowledge of our techniques manually refining the conversation disentanglement (Section
5.2.2). Since chat communications are informal in nature, it is possible that punctuations are omitted in the text [85].

20



1056

1057

Automatically Identifying the Quality of Developer Chats for Post Hoc Use Woodstock 18, June 03-05, 2018, Woodstock, NY

To minimize this threat, we have used 5SWIH words along with question mark to detect questions. Our heuristics for
question identification could potentially be improved to handle more complex forms, such as indirect questions. Other
potential threats could be related to errors in our scripts and evaluation bias. To overcome these threats, we used the
conversations from our manual analysis dataset in Section 3 as the development set, to develop the scripts and classifier.
We wrote separate test cases to test our scripts and performed code reviews.

External Validity: We selected the subjects of our study from Slack, which is one of the most popular software developer
chat communities. Our study’s results may not transfer to other chat platforms or developer communications. To
mitigate this threat, we selected four active programming language communities (5 Slack channels) for our study. There
is a broad set of topics related to a particular programming language in each channel. Since the quality characteristics
(Section 3) and the features (Section 4.2.1) are not specific to the Slack chat platform, our automatic approach is likely to
be applicable to all developer chat conversations, regardless of platform. It is also possible that our 2000 conversations
are not representative of the full corpus of Slack conversations for a given community. The size of this dataset was
chosen to give us a statistically representative sample (statistical significance with confidence of 95% + 5%), feasible for

our human judges to annotate. However, scaling to larger datasets might lead to different classification results.

6 RELATED WORK

Analyzing Software Developer Chats. Studies have focused on how chat communities are used by development
teams, learning about developer behaviors, and examining information embedded in chats. Shihab et al. analyzed
content, participants, contributions and communication styles of Internet Relay Chat (IRC) meeting logs [65, 66]. Yu
et al. studied IRC and mailing lists to understand how real time and asynchronous communication methods could be
used across global software development projects [82]. Elliott and Scacchi showed that open source communities use
IRC channels, email discussions and community digests to mitigate and resolve conflicts [32]. Lin et al. showed that
most developers use Slack for team-wide purposes such as facilitating communication and team collaboration through
team management, file and code sharing [48]. Ehsan et al. conducted an empirical study to analyze the characteristics
of the posted questions and the impact on the response behavior on Gitter developer chat platform [31]. Lebeuf et al.
investigated how chatbots can reduce developers’ collaborative friction points [46]. Paikari et al. compared chatbots
for software development [54]. Panichella et al. investigated emerging developers’ collaborations in software projects,
and how those collaboration links complement each other by analyzing communication data from mailing lists, issue
trackers, and IRC chat logs [55]. Our previous work showed that Q&A chats contain descriptions of code snippets and
specific APIs, and identified challenges in mining developer chats [18]. Chowdhury and Hindle automatically filter
off-topic IRC discussions [23]. Alkadhi et al. showed that machine learning can be leveraged to detect rationale in IRC
messages [5-7]. Wood et al. created a supervised classifier to automatically detect speech acts in developer Q&A bug
repair conversations [78]. Shi et al. detected feature-request dialogues from chat messages using deep Siamese network
[64].

Outside the domain of software engineering, researchers have extensively studied chat communications to analyze
discourse acts [70, 83], and informal writing styles [85]. More recently, researchers are focusing on the broad areas of
developing conversational intelligence and understanding the social interactions embedded within chats [15, 16, 72].
Analyzing Quality of Q&A Forums. To our knowledge, there is a lack of research on assessing quality of information
shared in developer chat communities. Other developer communications, such as Q&A forums, have explicit signals of
quality. Specifically in Stack Overflow, users can vote on the posts they think are of good quality. In addition, Stack

Overflow has a user reputation system built up mainly by answering questions on the site. A high reputation carries
21



1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143

1144

Woodstock ’18, June 03-05, 2018, Woodstock, NY Chatterjee et al.

a significant amount of prestige within the forum community as well as externally. Additional prestige is earned via
badges awarded when a contributor reaches specific point thresholds or when she becomes one of the top contributors
to a specific topic. However, the level of distinction is achieved by a very few contributors (< 1% of active contributors
have gold badge status) [12]. Beginning contributors are allowed only limited influence on the site, such as voting
up or down for questions or answers. Experienced users with exceedingly high numbers of points receive additional
moderation capabilities, with a few (~24) elected to become Stack Overflow moderators, who can perform additional
tasks, such as closing or opening questions [28]. Low quality posts are identified through a review queue system
managed by moderators. Based on several system criteria, Stack Overflow has 7 review queues: Late Answers, First
Posts, Low Quality Posts, Close/Reopen Votes, Suggested Edits and Community Eval [57]. No such built-in mechanisms
for indication of quality is present in chat platforms.

Beyond built-in mechanisms in Q&A forums, researchers have conducted studies of the characteristics associated
with the quality of questions, answers, and code segments in posts on those forums. Sillito et al. found that the most
helpful Stack Overflow answers contain concise examples with contextual explanations [67]. Yang et al. observed that
good answers mostly contain multiple line code [80]. Duijn et al. determined that code-to-text ratio and code readability
are most important in determining question quality [29]. Baltadzhieva and Grzegorz observed that questions in Q&A
forums containing incorrect tags or that are too localized, subjective, or off topic are considered bad quality [10]. Correa
and Sureka proposed a predictive model to detect the deletion of a Stack Overflow question at creation time [27, 28].
Ponzanelli et al. automatically identify and remove misclassified good quality Stack Overflow posts from the review
queue [57]. Yao et al. predict high impact questions and useful answers just after they are posted by predicting voting
scores [81]. Some researchers [4, 84] have also designed automatic techniques to help moderators detect duplicate
questions on Stack Overflow.

Outside the software domain, researchers have focused on identifying high quality content in Yahoo Answers [3],
designing techniques to automatically predict or detect question quality [43, 44, 47, 62], and best answer prediction on
Community Question Answering (CQA) forums [34, 40, 52]. Harper et al. found that conversational questions have
potentially lower archival value than informational questions [39]. Guy et al. replicated [39] on a larger dataset, and
developed machine learning classifiers that use a large dataset of unlabeled data and achieve enhanced performance on
automatically identifying informational vs. conversational questions on community question answering archives. Our
techniques use Harper et als question words for informational questions as a feature to automatically detect post hoc

quality questions.

7 SUMMARY AND FUTURE WORK

This paper reports on the first work to automatically identify and extract post hoc quality information from developer
chat communications. In this paper, we presented machine learning-based classifiers to classify software-related Slack
conversations in terms of post hoc quality. Our evaluation shows that the machine-learning based approach could
achieve a reasonable performance of 0.82 precision and a higher recall of 0.90. The qualitative analysis suggests that we
can further improve the performance of our approach by refining the techniques of question identification (to handle
more complex forms such as indirect questions) and for assessing the quality of the answers by understanding the
conversation context, for example.

Automatically identifying post hoc quality conversations takes a first step in the research of quality assessment
with developer chat communities. Understanding the quality of the information in those chats is essential for building

software maintenance tools so that they contribute to efficient problem solving and enrich existing knowledge-bases
22



1145
1146
1147
1148

1149

1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195

1196

Automatically Identifying the Quality of Developer Chats for Post Hoc Use Woodstock 18, June 03-05, 2018, Woodstock, NY

and community knowledge. With the capability to automatically identify post hoc quality conversations from software-
related chats, we provide a significant advancement opening up many opportunities to leverage the quality developer
knowledge embedded in chats for software development tools and ultimately the software engineer. Our immediate
future work focuses on improving the effectiveness by analyzing the quality of answers using text analysis clues. We
will also expand to a larger and more diverse developer chat communication dataset, including conversations from
other developer chat platforms. We envision improving developer communications by designing a chatbot to assign
quality scores to previous conversations in the medium, and to help developers find high-quality information in public
chat platforms. This would prevent duplication of questions asked on the medium, and help developers better manage

their communications.

ACKNOWLEDGMENTS

We acknowledge the support of the National Science Foundation under grants 1812968 and 1813253.

REFERENCES

[1] 2020. smart-words.org. https://www.smart-words.org/abbreviations/text.html. Accessed: 2020-09-02.

[2] 2020. spaCy. https://spacy.io/. Accessed: 2020-09-02.

[3] Eugene Agichtein, Carlos Castillo, Debora Donato, Aristides Gionis, and Gilad Mishne. 2008. Finding High-quality Content in Social Media. In
Proceedings of the 2008 International Conference on Web Search and Data Mining (Palo Alto, California, USA) (WSDM °08). ACM, New York, NY, USA,
183-194. https://doi.org/10.1145/1341531.1341557

[4] Muhammad Ahasanuzzaman, Muhammad Asaduzzaman, Chanchal K. Roy, and Kevin A. Schneider. 2016. Mining Duplicate Questions in Stack
Overflow. In Proceedings of the 13th International Conference on Mining Software Repositories (Austin, Texas) (MSR ’16). ACM, New York, NY, USA,
402-412. https://doi.org/10.1145/2901739.2901770

[5] R. Alkadhi, J. O. Johanssen, E. Guzman, and B. Bruegge. 2017. REACT: An Approach for Capturing Rationale in Chat Messages. In 2017 ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement (ESEM). 175-180. https://doi.org/10.1109/ESEM.2017.26

[6] R. Alkadhi, T. Lata, E. Guzmany, and B. Bruegge. 2017. Rationale in Development Chat Messages: An Exploratory Study. In 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR). 436—-446. https://doi.org/10.1109/MSR.2017.43

[7] R. Alkadhi, M. Nonnenmacher, E. Guzman, and B. Bruegge. 2018. How do developers discuss rationale?. In 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering (SANER), Vol. 00. 357-369. https://doi.org/10.1109/SANER.2018.8330223

[8] Muhammad Asaduzzaman, Ahmed Shah Mashiyat, Chanchal K. Roy, and Kevin A. Schneider. 2013. Answering Questions About Unanswered

Questions of Stack Overflow. In Proceedings of the 10th Working Conference on Mining Software Repositories (San Francisco, CA, USA) (MSR ’13). IEEE

Press, Piscataway, NJ, USA, 97-100. http://dl.acm.org/citation.cfm?id=2487085.2487109

Alberto Bacchelli, Luca Ponzanelli, and Michele Lanza. 2012. Harnessing Stack Overflow for the IDE. In Proc. 3rd Int’l Wksp. on Recommendation

Systems for Software Engineering. 26-30.

[9

[10

Antoaneta Baltadzhieva and Grzegorz Chrupala. 2015. Question Quality in Community Question Answering Forums: A Survey. SIGKDD Explor.

Newsl. 17, 1 (Sept. 2015), 8-13. https://doi.org/10.1145/2830544.2830547

Steven Bird. 2002. Nltk: The natural language toolkit. In In Proceedings of the ACL Workshop on Effective Tools and Methodologies for Teaching Natural

Language Processing and Computational Linguistics. Philadelphia: Association for Computational Linguistics.

[12] Amiangshu Bosu, Christopher S. Corley, Dustin Heaton, Debarshi Chatterji, Jeffrey C. Carver, and Nicholas A. Kraft. 2013. Building Reputation in
StackOverflow: An Empirical Investigation. In Proceedings of the 10th Working Conference on Mining Software Repositories (San Francisco, CA, USA)
(MSR ’13). IEEE Press, Piscataway, NJ, USA, 89-92.

[13] Wesley Brants, Bonita Sharif, and Alexander Serebrenik. 2019. Assessing the Meaning of Emojis for Emotional Awareness - A Pilot Study. In

Companion Proceedings of The 2019 World Wide Web Conference (San Francisco, USA) (WWW ’19). Association for Computing Machinery, New York,

NY, USA, 4197423. https://doi.org/10.1145/3308560.3316550

Mohamad Adam Bujang and Nurakmal Baharum. 2017. A Simplified Guide to Determination of Sample Size Requirements for Estimating the Value

[11

(14

of Intraclass Correlation Coefficient: a Review. Archives of Orofacial Science 12, 1 (2017).

Jonathan P. Chang, Caleb Chiam, Liye Fu, Andrew Z. Wang, Justine Zhang, and Cristian Danescu-Niculescu-Mizil. 2020. ConvoKit: A Toolkit for the
Analysis of Conversations. arXiv:2005.04246 [cs.CL]

Jonathan P. Chang and Cristian Danescu-Niculescu-Mizil. 2019. Trouble on the Horizon: Forecasting the Derailment of Online Conversations as they

(15

[16

Develop. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP). Association for Computational Linguistics, Hong Kong, China, 4743-4754. https://doi.org/10.18653/v1/D19-
1481

23



1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247

1248

Woodstock ’18, June 03-05, 2018, Woodstock, NY Chatterjee et al.

[17]

(18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]
[26]

[27]

[28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

P. Chatterjee, K. Damevski, N.A. Kraft, and L. Pollock. 2020. Software-related Slack Chats with Disentangled Conversations. In Proceedings of the
17th International Conference on Mining Software Repositories (MSR’20).

P. Chatterjee, K. Damevski, L. Pollock, V. Augustine, and N.A. Kraft. 2019. Exploratory Study of Slack Q&A Chats as a Mining Source for
Software Engineering Tools. In Proceedings of the 16th International Conference on Mining Software Repositories (MSR’19) (Montreal, Canada).
https://doi.org/10.1109/MSR.2019.00075

P. Chatterjee, B. Gause, H. Hedinger, and L. Pollock. 2017. Extracting Code Segments and Their Descriptions from Research Articles. In 2017
IEEE/ACM 14th International Conference on Mining Software Repositories (MSR). 91-101. https://doi.org/10.1109/MSR.2017.10

C. Chen, S. Gao, and Z. Xing. 2016. Mining Analogical Libraries in Q&A Discussions — Incorporating Relational and Categorical Knowledge into
Word Embedding. In Proc. IEEE 23rd Int’l Conf. on Software Analysis, Evolution, and Reengineering. 338-348. https://doi.org/10.1109/SANER.2016.21
Chunyang Chen, Zhenchang Xing, and Ximing Wang. 2017. Unsupervised Software-specific Morphological Forms Inference from Informal
Discussions. In Proc. 39th Int’l Conf. on Software Engineering. 450-461. https://doi.org/10.1109/ICSE.2017.48

Chunyang Chen, Zhenchang Xing, and Ximing Wang. 2017. Unsupervised Software-specific Morphological Forms Inference from Informal
Discussions. In Proceedings of the 39th International Conference on Software Engineering (Buenos Aires, Argentina) (ICSE ’17). IEEE Press, Piscataway,
NJ, USA, 450-461. https://doi.org/10.1109/ICSE.2017.48

S. A. Chowdhury and A. Hindle. 2015. Mining StackOverflow to Filter Out Off-Topic IRC Discussion. In 2015 IEEE/ACM 12th Working Conference on
Mining Software Repositories. 422-425. https://doi.org/10.1109/MSR.2015.54

Per Christensson. Accessed: 2020-09-02. TechTerms.com. https://techterms.com/category/software.

M. Coleman and T. L. Liau. 1975. A computer readability formula designed for machine scoring. Journal of Applied Psychology (1975), 283-284.
Gao Cong, Long Wang, Chin-Yew Lin, Young-In Song, and Yueheng Sun. 2008. Finding Question-answer Pairs from Online Forums. In Proceedings
of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (Singapore, Singapore) (SIGIR "08).
ACM, New York, NY, USA, 467-474. https://doi.org/10.1145/1390334.1390415

Denzil Correa and Ashish Sureka. 2013. Fit or Unfit: Analysis and Prediction of *Closed Questions’ on Stack Overflow. In Proceedings of the First
ACM Conference on Online Social Networks (Boston, Massachusetts, USA) (COSN ’13). ACM, New York, NY, USA, 201-212. https://doi.org/10.1145/
2512938.2512954

Denzil Correa and Ashish Sureka. 2014. Chaff from the Wheat: Characterization and Modeling of Deleted Questions on Stack Overflow. In
Proceedings of the 23rd International Conference on World Wide Web (Seoul, Korea) (WWW ’14). ACM, New York, NY, USA, 631-642. https:
//doi.org/10.1145/2566486.2568036

Maarten Duijn, Adam Kucera, and Alberto Bacchelli. 2015. Quality Questions Need Quality Code: Classifying Code Fragments on Stack Overflow.
In Proceedings of the 12th Working Conference on Mining Software Repositories (Florence, Italy) (MSR °15). IEEE Press, Piscataway, NJ, USA, 410-413.
http://dl.acm.org.udel.idm.oclc.org/citation.cfm?id=2820518.2820574

F. Ebert, F. Castor, N. Novielli, and A. Serebrenik. 2017. Confusion Detection in Code Reviews. In 2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME). 549-553.

Osama. Ehsan, Safwat Hassan, Mariam E. Mezouar, and Ying Zou. 2020. An Empirical Study of Developer Discussions in the Gitter Platform.
Transactions on Software Engineering and Methodology (TOSEM) (July 2020).

Margaret S. Elliott and Walt Scacchi. 2003. Free Software Developers As an Occupational Community: Resolving Conflicts and Fostering Collaboration.
In Proceedings of the 2003 International ACM SIGGROUP Conference on Supporting Group Work (Sanibel Island, Florida, USA) (GROUP ’03). ACM, New
York, NY, USA, 21-30. https://doi.org/10.1145/958160.958164

Micha Elsner and Eugene Charniak. 2008. You talking to me? A Corpus and Algorithm for Conversation Disentanglement. In Proc. Association of
Computational Linguistics: Human Language Technology. 834-842.

Pnina Fichman. 2011. A comparative assessment of answer quality on four question answering sites. Journal of Information Science 37, 5 (2011),
476-486. https://doi.org/10.1177/0165551511415584 arXiv:https://doi.org/10.1177/0165551511415584

Rudolph Flesch. 1948. A new readability yardstick. Journal of Applied Psychology 32, 3 (June 1948), p221 — 233. http://libezproxy.open.ac.uk/login?
url=http://search.ebscohost.com libezproxy.open.ac.uk/login.aspx?direct=true&db=pdh&AN=apl-32-3-221&site=ehost-live&scope=site
Neelamadhav Gantayat, Pankaj Dhoolia, Rohan Padhye, Senthil Mani, and Vibha Singhal Sinha. 2015. The Synergy Between Voting and Acceptance
of Answers on Stackoverflow, or the Lack Thereof. In Proceedings of the 12th Working Conference on Mining Software Repositories (Florence, Italy)
(MSR ’15). IEEE Press, Piscataway, NJ, USA, 406-409. http://dl.acm.org/citation.cfm?id=2820518.2820573

R. Gunning. 1952. The Technique of Clear Writing. McGraw-Hill (1952).

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H. Witten. 2009. The WEKA Data Mining Software: An
Update. SIGKDD Explor. Newsl. 11, 1 (Nov. 2009), 10-18. https://doi.org/10.1145/1656274.1656278

F. Maxwell Harper, Daniel Moy, and Joseph A. Konstan. 2009. Facts or Friends?: Distinguishing Informational and Conversational Questions in
Social Q&#38;A Sites. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Boston, MA, USA) (CHI ’09). ACM, New
York, NY, USA, 759-768. https://doi.org/10.1145/1518701.1518819

F. Maxwell Harper, Daphne Raban, Sheizaf Rafaeli, and Joseph A. Konstan. 2008. Predictors of Answer Quality in Online Q&Amp;A Sites. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Florence, Italy) (CHI "08). ACM, New York, NY, USA, 865-874.
https://doi.org/10.1145/1357054.1357191

24



1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299

1300

Automatically Identifying the Quality of Developer Chats for Post Hoc Use Woodstock 18, June 03-05, 2018, Woodstock, NY

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]
[59]

[60]

[61]

[62]

[63]

[64]

Liangjie Hong and Brian D. Davison. 2009. A Classification-based Approach to Question Answering in Discussion Boards. In Proceedings of the 32Nd
International ACM SIGIR Conference on Research and Development in Information Retrieval (Boston, MA, USA) (SIGIR *09). ACM, New York, NY, USA,
171-178. https://doi.org/10.1145/1571941.1571973

M. J. Howard, S. Gupta, L. Pollock, and K. Vijay-Shanker. 2013. Automatically Mining Software-Based, Semantically-Similar Words from Comment-
Code Mappings. In 2013 10th Working Conference on Mining Software Repositories (MSR). 377-386. https://doi.org/10.1109/MSR.2013.6624052
Vanessa Kitzie, Erik Choi, and Chirag Shah. 2013. Analyzing Question Quality Through Intersubjectivity: World Views and Objective Assessments
of Questions on Social Question-answering. In Proceedings of the 76th ASIS&T Annual Meeting: Beyond the Cloud: Rethinking Information Boundaries
(Montreal, Quebec, Canada) (ASIST ’13). American Society for Information Science, Silver Springs, MD, USA, Article 5, 10 pages. http://dl.acm.org/
citation.cfm?id=2655780.2655785

Vanessa Kitzie, Erik Choi, and Chirag Shah. 2013. From Bad to Good: An Investigation of Question Quality and Transformation. In Proceedings of
the 76th ASIS&T Annual Meeting: Beyond the Cloud: Rethinking Information Boundaries (Montreal, Quebec, Canada) (ASIST '13). American Society for
Information Science, Silver Springs, MD, USA, Article 107, 4 pages. http://dl.acm.org/citation.cfm?id=2655780.2655887

J Richard Landis and Gary G Koch. 1977. The measurement of observer agreement for categorical data. biometrics (1977), 159-174.

Carlene Lebeuf, Margaret-Anne D. Storey, and Alexey Zagalsky. 2017. How Software Developers Mitigate Collaboration Friction with Chatbots.
CoRR abs/1702.07011 (2017). http://arxiv.org/abs/1702.07011

Baichuan Li, Tan Jin, Michael R. Lyu, Irwin King, and Barley Mak. 2012. Analyzing and Predicting Question Quality in Community Question
Answering Services. In Proceedings of the 21st International Conference on World Wide Web (Lyon, France) (WWW ’12 Companion). ACM, New York,
NY, USA, 775-782. https://doi.org/10.1145/2187980.2188200

Bin Lin, Alexey Zagalsky, Margaret-Anne Storey, and Alexander Serebrenik. 2016. Why Developers Are Slacking Off: Understanding How Software
Teams Use Slack. In Proceedings of the 19th ACM Conference on Computer Supported Cooperative Work and Social Computing Companion (San
Francisco, California, USA) (CSCW ’16 Companion). ACM, New York, NY, USA, 333-336. https://doi.org/10.1145/2818052.2869117

Bin Lin, Fiorella Zampetti, Gabriele Bavota, Massimiliano Di Penta, and Michele Lanza. 2019. Pattern-Based Mining of Opinions in Q&A Websites.
In Proceedings of the 41st International Conference on Software Engineering (Montreal, Quebec, Canada) (ICSE ’19). IEEE Press, 548?559. https:
//doi.org/10.1109/ICSE.2019.00066

Ryan Lowe, Nissan Pow, Iulian Serban, and Joelle Pineau. 2015. The Ubuntu Dialogue Corpus: A Large Dataset for Research in Unstructured
Multi-Turn Dialogue Systems. In Proceedings of the 16th Annual Meeting of the Special Interest Group on Discourse and Dialogue. Association for
Computational Linguistics, Prague, Czech Republic, 285-294. https://doi.org/10.18653/v1/W15-4640

H. G. McLaughlin. 1969. SMOG grading - a new readability formula. Journal of Reading (May 1969), 639-646.

Piero Molino, Luca Maria Aiello, and Pasquale Lops. 2016. Social Question Answering: Textual, User, and Network Features for Best Answer
Prediction. ACM Trans. Inf. Syst. 35, 1, Article 4 (Sept. 2016), 40 pages. https://doi.org/10.1145/2948063

Gonzalo Navarro. 2001. A Guided Tour to Approximate String Matching. ACM Comput. Surv. 33, 1 (March 2001), 31-88. https://doi.org/10.1145/
375360.375365

Elahe Paikari and André van der Hoek. 2018. A Framework for Understanding Chatbots and Their Future. In Proceedings of the 11th International
Workshop on Cooperative and Human Aspects of Software Engineering (Gothenburg, Sweden) (CHASE ’18). ACM, New York, NY, USA, 13-16.
https://doi.org/10.1145/3195836.3195859

S. Panichella, G. Bavota, M. D. Penta, G. Canfora, and G. Antoniol. 2014. How Developers’ Collaborations Identified from Different Sources Tell Us
about Code Changes. In 2014 IEEE International Conference on Software Maintenance and Evolution. 251-260. https://doi.org/10.1109/ICSME.2014.47
Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and Michele Lanza. 2014. Mining StackOverflow to Turn the IDE into a
Self-confident Programming Prompter. In Proc. 11th Working Conf. on Mining Software Repositories. 102-111. https://doi.org/10.1145/2597073.2597077
L. Ponzanelli, A. Mocci, A. Bacchelli, M. Lanza, and D. Fullerton. 2014. Improving Low Quality Stack Overflow Post Detection. In 2014 IEEE
International Conference on Software Maintenance and Evolution. 541-544. https://doi.org/10.1109/ICSME.2014.90

J. R. Quinlan. 1986. Induction of Decision Trees. MACH. LEARN 1 (1986), 81-106.

M.M. Rahman, CK. Roy, and D. Lo. 2016. RACK: Automatic API Recommendation Using Crowdsourced Knowledge. In Proc. IEEE 23rd Int’l Conf. on
Software Analysis, Evolution, and Reengineering. 349-359. https://doi.org/10.1109/SANER.2016.80

M.M. Rahman, S. Yeasmin, and C.K. Roy. 2014. Towards a context-aware IDE-based meta search engine for recommendation about programming
errors and exceptions. In Proc. IEEE Conf. on Software Maintenance, Reengineering, and Reverse Engineering. 194-203. https://doi.org/10.1109/CSMR-
WCRE.2014.6747170

M. M. Rahman, C. K. Roy, and I. Keivanloo. 2015. Recommending Insightful Comments for Source Code using Crowdsourced Knowledge. In Proc.
IEEE 15th Int’l Working Conf. on Source Code Analysis and Manipulation. 81-90. https://doi.org/10.1109/SCAM.2015.7335404

Manasa Rath, Long T. Le, and Chirag Shah. 2017. Discerning the Quality of Questions in Educational Q&#38;Ausing Textual Features. In Proceedings
of the 2017 Conference on Conference Human Information Interaction and Retrieval (Oslo, Norway) (CHIIR ’17). ACM, New York, NY, USA, 329-332.
https://doi.org/10.1145/3020165.3022145

Per Runeson, Martin Host, Austen Rainer, and Bjorn Regnell. 2012. Case Study Research in Software Engineering: Guidelines and Examples (1st ed.).
Wiley Publishing.

Lin Shi, Mingzhe Xing, Mingyang Li, Yawen Wang, Li Shoubin, and Qing Wang. 2020. Detection of Hidden Feature Requests from Massive Chat
Messages via Deep Siamese Network. In Proceedings of the 42nd International Conference on Software Engineering (ICSE °20). ACM, New York, NY,

25



1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351

1352

Woodstock ’18, June 03-05, 2018, Woodstock, NY Chatterjee et al.

[65]

[66]

[67]

[68]

[69]
[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80

(81]

(82]

(83]
(84]

(85]

USA.

Emad Shihab, Zhen Ming Jiang, and Ahmed E. Hassan. 2009. On the Use of Internet Relay Chat (IRC) Meetings by Developers of the GNOME GTK+
Project. In Proceedings of the 2009 6th IEEE International Working Conference on Mining Software Repositories (MSR ’09). IEEE Computer Society,
Washington, DC, USA, 107-110. https://doi.org/10.1109/MSR.2009.5069488

E. Shihab, Z. M. Jiang, and A. E. Hassan. 2009. Studying the Use of Developer IRC Meetings in Open Source Projects. In 2009 IEEE International
Conference on Software Maintenance. 147-156. https://doi.org/10.1109/ICSM.2009.5306333

Jonathan Sillito, Frank Maurer, Seyed Mehdi Nasehi, and Chris Burns. 2012. What Makes a Good Code Example?: A Study of Programming Q&A
in StackOverflow. In Proceedings of the 2012 IEEE International Conference on Software Maintenance (ICSM) (ICSM ’12). IEEE Computer Society,
Washington, DC, USA, 25-34. https://doi.org/10.1109/ICSM.2012.6405249

E. A. Smith and R. J. Senter. 1967. Automated readability index. AMRL TR (May 1967), 1-14.

The Statistics Portal Statista. 2020. https://www.statista.com/statistics/652779/worldwide-slack-users-total-vs-paid/.

Matthew Stone, Una Stojnic, and Ernest Lepore. 2013. Situated Utterances and Discourse Relations. In Proceedings of the 10th International
Conference on Computational Semantics (IWCS 2013) — Short Papers. Association for Computational Linguistics, Potsdam, Germany, 390-396.
https://www.aclweb.org/anthology/W13-0214

Margaret-Anne Storey, Leif Singer, Brendan Cleary, Fernando Figueira Filho, and Alexey Zagalsky. 2014. The (R) Evolution of Social Media in
Software Engineering. In Proceedings of the on Future of Software Engineering (Hyderabad, India) (FOSE 2014). ACM, New York, NY, USA, 100-116.
https://doi.org/10.1145/2593882.2593887

Naama Tepper, Anat Hashavit, Maya Barnea, Inbal Ronen, and Lior Leiba. 2018. Collabot: Personalized Group Chat Summarization. In Proceedings of
the Eleventh ACM International Conference on Web Search and Data Mining (Marina Del Rey, CA, USA) (WSDM ’18). Association for Computing
Machinery, New York, NY, USA, 771?774. https://doi.org/10.1145/3159652.3160588

Y. Tian, D. Lo, and J. Lawall. 2014. Automated construction of a software-specific word similarity database. In Proc. IEEE Conf. on Software Maintenance,
Reengineering, and Reverse Engineering. 44-53. https://doi.org/10.1109/CSMR-WCRE.2014.6747213

Y. Tian, D. Lo, and J. Lawall. 2014. Automated Construction of a Software-Specific Word Similarity Database. In 2014 Software Evolution Week - IEEE
Conference on Software Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE). 44-53. https://doi.org/10.1109/CSMR-WCRE.2014.
6747213

David C Uthus and David W Aha. 2013. Multiparticipant Chat Analysis: A Survey. Artificial Intelligence 199 (2013), 106-121.

W. Wang and MW. Godfrey. 2013. Detecting API usage obstacles: A study of iOS and Android developer questions. In Proc. 10th Working Conf. on
Mining Software Repositories. 61-64. https://doi.org/10.1109/MSR.2013.6624006

Edmund Wong, Jinqiu Yang, and Lin Tan. 2013. AutoComment: Mining Question and Answer Sites for Automatic Comment Generation. In Proc.
28th IEEE/ACM Int’l Conf. on Automated Software Engineering. 562-567. https://doi.org/10.1109/ASE.2013.6693113

Andrew Wood, Paige Rodeghero, Ameer Armaly, and Collin McMillan. 2018. Detecting Speech Act Types in Developer Question/Answer
Conversations during Bug Repair. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE 2018). Association for Computing Machinery, New York, NY, USA,
491?502. https://doi.org/10.1145/3236024.3236031

X.Xia,D.Lo, D. Correa, A. Sureka, and E. Shihab. 2016. It Takes Two to Tango: Deleted Stack Overflow Question Prediction with Text and Meta Features.
In 2016 IEEE 40th Annual Computer Software and Applications Conference (COMPSAC), Vol. 1. 73-82. https://doi.org/10.1109/COMPSAC.2016.145
Di Yang, Aftab Hussain, and Cristina Videira Lopes. 2016. From Query to Usable Code: An Analysis of Stack Overflow Code Snippets. In
Proceedings of the 13th International Conference on Mining Software Repositories (Austin, Texas) (MSR ’16). ACM, New York, NY, USA, 391-402.
https://doi.org/10.1145/2901739.2901767

Yuan Yao, Hanghang Tong, Tao Xie, Leman Akoglu, Feng Xu, and Jian Lu. 2015. Detecting High-quality Posts in Community Question Answering
Sites. Inf. Sci. 302, C (May 2015), 70-82. https://doi.org/10.1016/j.ins.2014.12.038

Liguo Yu, Srini Ramaswamy, Alok Mishra, and Deepti Mishra. 2011. Communications in Global Software Development: An Empirical Study Using
GTK+ OSS Repository. Springer Berlin Heidelberg, Berlin, Heidelberg, 218-227. https://doi.org/10.1007/978-3-642-25126-9_32

Amy Zhang, Bryan Culbertson, and Praveen Paritosh. 2017. Characterizing Online Discussion Using Coarse Discourse Sequences.

Yun Zhang, David Lo, Xin Xia, and Jian-Ling Sun. 2015. "Multi-Factor Duplicate Question Detection in Stack Overflow". Journal of Computer Science
and Technology 30, 5 (01 Sep 2015), 981-997. https://doi.org/10.1007/s11390-015-1576-4

L. Zhou and Dongsong Zhang. 2005. A heuristic approach to establishing punctuation convention in instant messaging. IEEE Transactions on
Professional Communication 48, 4 (2005), 391-400.

26



	Abstract
	1 Introduction
	2 Motivational Examples
	3 Towards Discerning Post Hoc Quality Conversations
	4 Automatically Identifying Post Hoc Quality Conversations
	4.1 Conversation Disentanglement
	4.2 Machine Learning-based Classification

	5 Evaluation Study Design
	5.1 Evaluation Metrics
	5.2 Evaluation Dataset
	5.3 Procedures
	5.4 Baselines
	5.5 Evaluation Results and Discussion
	5.6 Threats to Validity

	6 Related Work
	7 Summary and Future Work
	Acknowledgments
	References

