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Abstract. Divergence-free (div-free) and curl-free vector fields are pervasive in many areas of4
science and engineering, from fluid dynamics to electromagnetism. A common problem that arises in5
applications is that of constructing smooth approximants to these vector fields and/or their potentials6
based only on discrete samples. Additionally, it is often necessary that the vector approximants7
preserve the div-free or curl-free properties of the field to maintain certain physical constraints.8
Div/curl-free radial basis functions (RBFs) are a particularly good choice for this application as they9
are meshfree and analytically satisfy the div-free or curl-free property. However, this method can10
be computationally expensive due to its global nature. In this paper, we develop a technique for11
bypassing this issue that combines div/curl-free RBFs in a partition of unity framework, where one12
solves for local approximants over subsets of the global samples and then blends them together to13
form a div-free or curl-free global approximant. The method is applicable to div/curl-free vector14
fields in R2 and tangential fields on two-dimensional surfaces, such as the sphere, and the curl-free15
method can be generalized to vector fields in Rd. The method also produces an approximant for the16
scalar potential of the underlying sampled field. We present error estimates and demonstrate the17
effectiveness of the method on several test problems.18
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1. Introduction. Approximating vector fields from scattered samples is a per-22

vasive problem in many scientific applications, including, for example, fluid dynamics,23

meteorology, magnetohydrodynamics, electromagnetics, gravitational lensing, imag-24

ing, and computer graphics. Often these vector fields have certain differential invariant25

properties related to an underlying physical principle. For example, in incompressible26

fluid dynamics the velocity of the fluid is divergence-free (div-free) as a consequence27

of the conservation of mass. Similarly, in electromagnetics the electric field is curl-free28

in the absence of a time varying magnetic field as a consequence of the conservation29

of energy. Additionally, the fields may have properties of being tangential to a surface30

(e.g., the sphere S2) and have a corresponding surface div-free or curl-free property,31

as occurs in many areas of geophysical sciences [16]. In several of these applications it32

is necessary for the approximants to preserve these differential invariants to maintain33

certain physical constraints. For example, in incompressible flow simulations using34

the immersed boundary method, excessive volume loss can occur if the approximated35

velocity field of the fluid is not div-free [4].36

To enforce these differential invariants on the approximant, one cannot approxi-37

mate the individual components of the field separately, but must combine them in a38

particular way. One idea uses the property that div-free fields (in two dimensions) and39

curl-free fields can be defined in terms of a scalar potential (e.g., a stream function or40

electric potential). These methods then compute an approximant for the potential of41

the field by solving a Poisson equation involving the divergence or curl of the sampled42

field [5]. A separate idea is to use a vector basis for the approximant that satisfies the43

underlying differential invariant. This paper develops a radial basis function (RBF)44

method that uses latter approach, but has similarities to the former.45
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2 K. P. DRAKE, E. J. FUSELIER, AND G. B. WRIGHT

RBFs are a main tool for scattered data approximation [18, 20, 47]. In the early46

1990s, researchers began to focus on the problem of developing vector RBF inter-47

polants for div-free fields that analytically satisfy the div-free constraint [2, 28, 36].48

The idea, as presented in [36], is to use linear combinations of shifts of a matrix-valued49

kernel, whose columns satisfy the div-free property, to interpolate the samples of given50

field. Since these kernels are constructed from scalar-valued RBFs, they are referred51

to as div-free RBFs. These ideas were later extended to curl-free fields in [14, 23].52

Further extensions of the idea to vector fields tangential to a two-dimensional surface53

(e.g., S2) that are surface div-free or curl-free were given in [37]. Some applications54

of these div/curl-free RBFs can, for example, be found in [11,25,31,34,35,42,48].55

There are, however, issues with scaling div/curl-free RBF interpolation to large56

data sets. For a data set with N scattered nodes X = {xj}Nj=1, the method requires57

solving a dN -by-dN linear system, where d = 2, 3 is the dimension of the underlying58

domain. Additionally, each evaluation of the resulting interpolant involves dN terms.59

If the div/curl-free RBFs are constructed from scalar-valued RBFs with global sup-60

port, then the linear system is dense and not well suited to iterative methods. To61

ameliorate these issues, a multilevel framework has been developed for compactly sup-62

ported div/curl-free RBFs in [17]. However, we take a different approach to reducing63

the computational cost using the partition of unity method (PUM) [6,18,32,33,46].64

In RBF-PUM, one only needs to solve for local approximants over small subsets65

of the global data set and then blend them together to form a smooth global approx-66

imant. A particular challenge with extending this idea to div/curl-free RBFs is in67

enforcing that the global approximant is analytically div/curl-free. To overcome this68

challenge, we use the local div/curl-free RBFs to obtain local approximants to scalar69

potentials for the field and then blend these together to form a global scalar potential70

for the entire field. A div/curl-free vector approximant is then obtained by applying71

the appropriate differential operator to the global scalar potential. The method as72

presented here will only work for fields that can be defined by scalar potentials, which73

includes div/curl-free vector fields in R2, surface div/curl-free tangential fields on two-74

dimensional surfaces, and curl-free fields in Rd, but not div-free fields in R3. However,75

there are several benefits of the method. First, for node sets X that are quasiuniform,76

the algorithm parameters can be chosen to produce global approximants to the field77

in O(N logN) operations. Second, we have error estimates showing the method can78

give high rates of convergence, and numerical evidence that rates faster than algebraic79

with increasing N are possible. Unlike the method from [17], these convergence rates80

are possible with the fixed complexity of O(N logN). Finally, a global approximant81

for the scalar potential is given directly from the samples without having to compute82

derivatives of the sampled field or solving a Poisson problem.83

As far as we are aware, the only other computationally scalable div-free approxi-84

mation technique for scattered data is the div-free moving least squares (MLS) method85

from [45]. The method is used for generating finite difference type discretizations for86

Stokes’ equations. While it worked quite successfully for this application, it can be87

computationally expensive for more general approximation problems, since it requires88

solving a new (small) linear system for each evaluation point. For the method we89

develop, the (small) linear systems are independent of the evaluation points. Addi-90

tionally, the div-free MLS method does not directly allow the potential for the field91

to also be approximated.92

The rest of the paper is organized as follows. In the next section we introduce some93

background material necessary for the presentation of the method. Section 3 contains94

a review of PUM and then presents the div/curl-free RBF-PUM. Error estimates for95
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A PUM FOR DIV-FREE OR CURL-FREE RBF APPROXIMATION 3

the new method are presented in Section 4. Section 5 contains numerical experiments96

demonstrating the convergence rates of the method on three model problems. The97

final section contains some concluding remarks.98

2. Div/Curl-free RBFs. We review the generalized vector RBF techniques for99

reconstructing vector fields below, first for div-free fields and then for curl-free fields.100

In both cases, we focus on approximations of tangential vector fields on smooth,101

orientable, surfaces embedded in R3 (which includes R2 and S2). In the curl-free102

case the method extends trivially to Rd. Before discussing these two techniques, we103

introduce some notation and review some relevant background material.104

2.1. Notation and preliminaries. Let P denote a smooth, orientable surface105

embedded in R3, possibly with a boundary, and let n ∈ R3 denote the unit normal106

vector to P expressed in the Cartesian basis. When discussing tangential vector fields107

on P, we use the terms divergence and curl to be tacitly understood to refer to surface108

divergence and surface curl for P. The surface curl (or rot) operator L and the surface109

gradient operator G play a central role in defining div-free and curl-free tangential110

fields on P. We can express these operators in extrinsic (Cartesian) coordinates as111

follows:112

L = n×∇, G = (I − nnT )∇,113

where ∇ is the standard R3 gradient, and I is the 3-by-3 identity matrix. It is a well114

known consequence of Poincaré’s Lemma that div-free and curl-free fields are locally115

images of these operators [13]1116

Proposition 2.1. Let u be a tangential vector field defined on P then117

1. u is div-free iff for each point x ∈ P there exists a neighborhood U ⊂ P and118

a scalar potential ψ : U −→ R such that u = L(ψ)119

2. u is curl-free for each point x ∈ P there exists a neighborhood U ⊂ P and a120

scalar potential φ : U −→ R such that u = G(φ)121

Note that since L and G only annihilate constant functions along P, the scalar po-122

tentials are unique up to the addition of a constant.123

The present method relies on this property as it solves for scalar potentials on124

overlapping patches covering the domain of interest. Since each of these potentials125

is unique up to a constant, a straightforward procedure can be derived to determine126

these values so that the potentials can be shifted to agree over the domain. In three127

dimensions, div-free vector fields have vector potentials unique up to the addition of128

the gradient of a harmonic scalar function, and it not clear to us how to adapt the129

current method to this situation. However, the method will be applicable to curl-130

free fields in higher dimensions since a vector field u on Rd is curl-free if and only if131

u = ∇φ for some scalar potential.132

In what proceeds, we use the following notation for the L operator:133

L =

⎡⎣ 0 −a3 a2
a3 0 −a1
−a2 a1 0

⎤⎦
⏞ ⏟⏟ ⏞

Qx

∇,(2.1)134

135

1Poincaré’s Lemma is typically given in terms of the exterior derivatve operator d. In this case
applying the Hodge star operator * to u before applying Poincaré’s Lemma gives the div-free result.
For the curl-free result, one starts with ∗du = 0 and applying the Hodge star operator to this allows
one to apply the lemma.
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where n = (a1, a2, a3) is the unit normal to P at x. Note that applying Qx to a vector136

in R3 gives the cross product of n with that vector. Similarly, we express G as137

G = Px∇,(2.2)138139

where Px = I− nnT projects any vector at x on P into a plane tangent to P at x.140

Two important cases of P are P = R2 and P = S2. For the former case, the unit141

normal is independent of its position and is typically chosen as n = (0, 0, 1). Using142

this with (2.1) and (2.2), leads to the standard definition for these operators for vector143

fields on R2:144

L =

⎡⎣−∂y∂x
0

⎤⎦ and G =

⎡⎣∂x∂y
0

⎤⎦ ,(2.3)145

146

which can be truncated to remove the unnecessary third component. For P = S2, the147

unit normal at x is n = x, but L and G do not simplify beyond this.148

2.2. Div-free RBF interpolation. Div-free vector RBF interpolants are sim-149

ilar to scalar RBF interpolants in the sense that one constructs them from linear150

combinations of shifts of a kernel at each of the given data sites. The difference be-151

tween the approaches is that in the vector case one uses a matrix-valued kernel whose152

columns are div-free. For the sake of brevity, we give the final construction of these153

kernels and refer the reader to [37] for a rigorous derivation. For more information on154

scalar-valued RBFs, which we do not discuss here, see any of the books [18,20,47].155

Let ϕ : R3 × R3 −→ R be a radial kernel in the sense that ϕ(x,y) = η(∥x− y∥),156

for some η : [0,∞) −→ R, where ∥ · ∥ is the vector 2-norm. It is common in this case157

to simply write ϕ(x,y) = ϕ(∥x − y∥). Supposing ϕ has two continuous derivatives,158

then the matrix kernel Φdiv is constructed using the operator L in (2.1) as159

(2.4)
Φdiv(x,y) = LxL

T
yϕ (∥x− y∥) = Qx

(︁
∇x∇T

yϕ (∥x− y∥)
)︁
QT

y

= Qx

(︁
∇∇Tϕ (∥x− y∥)

)︁
Qy,

160

where the subscripts in the differential operators indicate which variables they operate161

on and, for simplicity, no subscript means they operate on the x component. Here we162

have used the fact that the matrixQy in (2.1) is skew-symmetric and∇T
yϕ (∥x− y∥) =163

−∇Tϕ (∥x− y∥). For any c ∈ R3 and fixed y ∈ P, the vector field Φdiv(x,y)c is164

tangent to P and div-free in x, which follows from Proposition 2.1 since165

Φdiv(x,y)c = Qx∇
(︁
∇Tϕ (∥x− y∥)Qyc

)︁
= L(ψ(x)),(2.5)166167

where ψ is the potential for Φdiv(x,y)c. The second argument of Φdiv acts as a shift168

of the kernel and indicates where the field Φdivc is “centered.”169

An interpolant to a div-free tangential vector field u : P −→ R3 sampled at170

distinct points X = {xj}Nj=1 ⊂ P can be constructed using Φdiv as follows:171

(2.6) s(x) =

N∑︂
j=1

Φdiv(x,xj)cj ,172

where the coefficients cj ∈ R3 are tangent to P at xj (this is necessary to make the173

interpolation problem well-posed as discussed below) and are chosen so that s
⃓⃓
X

=174

u
⃓⃓
X
. We refer to (2.6) as a div-free RBF interpolant.175
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Instinctively, one may try to solve for the expansion coefficients in (2.6) by im-176

posing s(xj) = uj , j = 1, . . . , N , where uj = u(xj). However, this will lead to a177

singular system of equations since each uj can be expressed using only two degrees178

of freedom rather than three. To remedy this, let {dj , ej ,nj} be orthonormal vectors179

at the node xj , where nj is the outward normal to P, ej is a unit tangent vector180

to P, and dj = nj × ej . Since uj is tangent to P we can write it in this basis as181

uj = γjdj+δjej , where γj = dT
j uj and δj = eTj uj . We may also express each tangent182

cj as cj = αjdj + βjej , which leads us to express (2.6) as183

s(x) =

N∑︂
j=1

Φdiv(x,xj) [αjdj + βjej ] ,(2.7)184

185

and to write the interpolation conditions as dT
i s(xi) = γi and eTi s(xi) = δi. This186

leads to the 2N -by-2N system of equations187

N∑︂
j=1

(︃[︃
dT
i

eTi

]︃
Φdiv(xi,xj)

[︁
dj ej

]︁)︃
⏞ ⏟⏟ ⏞

A(i,j)

[︃
αj

βj

]︃
=

[︃
γi
δi

]︃
, 1 ≤ i ≤ N.(2.8)188

189

The interpolation matrix that arises from this system (with its (i, j)th 2-by-2 block190

given by A(i,j)) is positive definite if Φdiv is constructed from an appropriately chosen191

scalar-valued RBF (e.g., a positive definite ϕ) [37].192

When P = R2, the div-free RBF interpolant can be simplified considerably since193

in this case we can choose dj = (1, 0, 0) and ej = (0, 1, 0) and use (2.3) for defining194

Φdiv. Using this in (2.7) and truncating the unnecessary third component of the vector195

interpolant (since it is always zero) gives the expansion196

s̃(x) =

N∑︂
j=1

˜︁Φdiv(x,xj)c̃j ,(2.9)197

198

where s̃, c̃j ∈ R2, and199

˜︁Φdiv(x,xj) =

[︃
−∂yy ∂xy
∂xy −∂xx

]︃
ϕ(∥x− xj∥).200

201

This expression for ˜︁Φdiv can be written as ˜︁Φdiv = −I∆ϕ + ∇∇Tϕ, which is the202

standard way to express div-free kernels for general Rd [23].203

An important consequence from the construction of the div-free RBF interpolant204

(2.6) is that we can extract a scalar potential ψ for the interpolated field. Using (2.5)205

for Φdiv in (2.6) we have206

s(x) =

N∑︂
j=1

Φdiv(x,xj)cj = Qx∇⏞ ⏟⏟ ⏞
L

(︃ N∑︂
j=1

∇Tϕ (∥x− xj∥)Qxj
cj⏞ ⏟⏟ ⏞

ψ(x)

)︃
= L(ψ(x)).(2.10)207

208

This potential will play a crucial role in developing the PUM in Section 3.209
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2.3. Curl-free RBF interpolation. Curl-free vector RBF interpolants are con-210

structed in a similar fashion to the div-free ones, the only difference being that G is211

applied instead of L in the construction of the matrix kernel. Given a scalar RBF ϕ212

and using a derivation similar to (2.4), Φcurl is given as213

(2.11) Φcurl(x,y) = GxG
T
yϕ (∥x− y∥) = −Px

(︁
∇∇Tϕ (∥x− y∥)

)︁
Py,214

where we have used the fact that the Px matrix in (2.2) is symmetric. For any c ∈ R3215

and fixed y ∈ P, the vector field Φcurl(x,y)c is tangential to P and curl-free in x.216

This follows from Proposition 2.1 since217

Φcurl(x,y)c = Px∇
(︁
−∇Tϕ (∥x− y∥)Pyc

)︁
= G(φ(x)),(2.12)218219

where φ is the potential for Φcurl(x,y)c. As with the div-free kernel (2.5), the second220

argument of Φcurl acts as a shift of the kernel and indicates where the field Φcurlc is221

“centered”.222

Interpolants to a curl-free tangential vector field u : P −→ R3 sampled at distinct223

points X = {xj}Nj=1 ⊂ P are constructed from Φcurl as224

(2.13) s(x) =

N∑︂
j=1

Φcurl(x,xj)cj ,225

where the coefficients cj ∈ R3 are tangent to P at xj and are chosen so that s
⃓⃓
X

= u
⃓⃓
X
.226

The procedure for determining these coefficients is identical to the div-free case, one227

just needs to replace Φdiv with Φcurl in (2.7) & (2.8). The matrix from the linear228

system (2.8) with Φcurl is similarly positive definite for the same ϕ. Further, a scalar229

potential φ can also be extracted from the curl-free field (2.13) using (2.12):230

s(x) = Px∇⏞⏟⏟⏞
G

(︃
−

N∑︂
j=1

∇Tϕ (∥x− xj∥)Pxjcj⏞ ⏟⏟ ⏞
φ(x)

)︃
= G(φ(x)).(2.14)231

232

In the Euclidean case Rd, the curl-free kernel is simply given as Φcurl(x,y) =233

−∇∇Tϕ(∥x − y∥) [23], where ∇ is the d-dimensional gradient. The interpolation234

conditions s
⃓⃓
X

= u
⃓⃓
X

also lead to the simplified linear system for the expansion235

coefficients cj ∈ Rd:236

N∑︂
j=1

Φcurl(xi,xj)cj = ui, i = 1, 2, . . . , N,(2.15)237

238

which is dN -by-dN . A scalar potential φ for the vector interpolant can be extracted239

as240

s(x) = ∇
(︃
−

N∑︂
j=1

∇Tϕ (∥x− xj∥) cj⏞ ⏟⏟ ⏞
φ(x)

)︃
.(2.16)241

242
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3. A div-free/curl-free partition of unity method. The cost associated243

with solving the linear systems (2.8) and (2.15) is O(N3), which is prohibitively high244

when the number of nodes N in X is large. In this section, we develop a partition of245

unity method (PUM) that requires solving several linear systems associated with sub-246

sets Xℓ of X with nℓ << N nodes, which reduces the computational cost significantly247

regardless of the nature of the RBF used.248

3.1. Partition of unity methods. Let Ω ⊂ Rd be an open, bounded domain of249

interest for approximating some function f : Ω −→ R. Let Ω1, . . . ,ΩM be a collection250

of distinct overlapping patches that form an open cover of Ω, i.e., ∪M
ℓ=1Ωℓ ⊇ Ω, and let251

the overlap between patches be limited such that at most K << M patches overlap252

at any given point x ∈ Ω. For each ℓ = 1, . . . ,M , let wℓ : Ωℓ −→ [0, 1] be a weight253

function such that wℓ is compactly supported on Ωℓ and the set of weight functions254

{wℓ} have the property that
∑︁M

ℓ=1 wℓ ≡ 1. Suppose sℓ is some approximation to f on255

each patch Ωℓ. The partition of unity approach of Babuška and Melenk [3] is to form256

an approximant s to f over the whole domain Ω by “blending” the local approximants257

sℓ with wℓ via s =
∑︁M

ℓ=1 wℓsℓ.258

When samples of f are given at N “scattered” nodes X = {xj}Nj=1 ⊂ Ω, RBF259

interpolants are a natural choice for the local approximants sℓ, as pointed out in [3].260

RBF-PUM was first explored for interpolation in 2002 by Wendland [46] and Lazzaro261

and Montefusco [33], and then later in 2007 by Fasshauer [18, Ch. 29]. More recent262

work has explored various aspects of the method in terms of applications, methods,263

and implementations, especially by Cavoretto, De Rossi, and colleagues (e.g., [7–9]),264

and also extensions to problems on the sphere [6, 42]. Additionally, the method has265

been adapted for approximating the solution of partial differential equations (e.g., [1,266

32,40,44]).267

Common choices for the patches in RBF-PUM are disks for problems in R2,268

spherical caps for problems on S2, and balls for problems in R3, and these are the269

choices we use throughout this paper. Figure 1 gives an example of a set of patches for270

a problem in R2. Techniques for choosing the patches are discussed in, e.g., [9,32,42]271

(see Section 3.3 for more discussion). Other choices for patches commonly used in272

PUM methods are rectangles and procedures for generating these can be found, for273

example, in [27].274

Based on the choices of patches, the weight functions wℓ can be constructed using275

Shepard’s method as follows. Let κ : R+ → R have compact support over the interval276

[0, 1). For each patch Ωℓ, let ξℓ denote its center and ρℓ denote its radius, and define277

κℓ(x) := κ (∥x− ξℓ∥/ρℓ). The weight functions are then given by278

wℓ(x) = κℓ(x)/

M∑︂
j=1

κj(x), ℓ = 1, . . . ,M.279

Note that each wℓ is only supported over Ωℓ and that the summation on the bottom280

only involves terms that are non-zero over patch Ωℓ, which is bounded by K. Figure 1281

(b) illustrates one of these weights functions for the example domain in part (a), where282

κ is chosen as the C1 quadratic B-spline283

κ(r) =

{︄
1− 3r2, 0 ≤ r ≤ 1

3 ,
3
2 (1− r)2, 1

3 ≤ r ≤ 1.
(3.1)284

285

This is the weight function we use throughout the paper.286
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(a) (b)

Figure 1. (a) Illustration of partition of unity patches (outlined in blue lines) for a node set X
(marked with black disks) contained in a domain Ω (marked with a dashed line). (b) Illustration of
one of the PU weight functions for the patches from part (a), where the color transition from white
to yellow to red to black correspond to weight function values from 0 to 1.

3.2. Description of the method. A first approach at a vector RBF-PUM may287

be to construct local vector approximants sℓ for the patches Ωℓ that make up the PU288

using either (2.6) for div-free fields or (2.13) for curl-free fields. These approximants289

can then be “blended” into a global approximant for the underlying field:290

s =

M∑︂
ℓ=1

wℓsℓ.(3.2)291

292

The issue with this approach is that s will not necessarily inherit the div-free or293

curl-free properties of sℓ because of the multiplication by the weight functions wℓ.294

We instead use the local scalar potentials that are recovered from each sℓ and then295

blend those together. A div-free or curl-free approximant can then be recovered by296

applying the appropriate differential operator to the blended potentials. Since the297

essential ingredients are very similar for all the kernels treated from Section 2, for298

brevity we describe the method only for the div-free case in R2 and mention any299

relevant differences as needed.300

Let Xℓ denote the nodes from X ⊂ R2 that belong to patch Ωℓ, and let sℓ denote301

the div-free RBF interpolant (2.6) to the target div-free field u over Xℓ. Our interest302

is also in the scalar potential for each interpolant given in (2.10), which we denote as303

ψℓ. While we could try to construct a global PU approximant for the scalar potential304

of the field ψ and then apply the operator L to the result, we would immediately305

run into problems since the scalar potentials are only unique up to a constant. This306

means that for two patches Ωℓ and Ωk that overlap, ψℓ and ψk could be off up to307

the addition of a constant in the overlap region and thus lead to an inaccurate PU308

approximant. To rectify this situation, we need to “shift” each ψℓ by a constant bℓ309

such that ψℓ + bℓ ≈ ψk + bk if Ωℓ and Ωk overlap.310

To summarize, the main steps of the div-free PUM are as follows:311

1. On each patch Ωℓ, compute a divergence free interpolant xℓ and extract its312

scalar potential ψℓ using (2.10).313

2. Determine constants {bℓ}Mℓ=1 such that ˜︁ψℓ := ψℓ+bℓ ≈ ψk+bk =: ˜︁ψk whenever314
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(a) (b)

Figure 2. Div-free RBF partition of unity approximant of the potential from Section 5.1 (a)

without the patch potentials shifted (ψk) (b) with the patch potentials shifted ( ˜︁ψk).

Ωℓ ∩ Ωk ̸= ∅.315

3. Blend the shifted potentials with the PU weight functions to obtain a global316

approximant for the underlying potential:317

(3.3) ˜︁ψ(x) := M∑︂
ℓ=1

wℓ(x) ˜︁ψℓ(x).318

4. Apply L to ˜︁ψ to obtain a global div-free approximant to the underlying field:319

(3.4) ˜︁s(x) := M∑︂
ℓ=1

L
(︂
wℓ(x) ˜︁ψℓ(x)

)︂
=

M∑︂
ℓ=1

wℓ(x)sℓ(x) +

M∑︂
ℓ=1

˜︁ψℓ(x)L(wℓ(x)).320

Note that the second term in the last equality acts as a correction to the PU ap-321

proximant formed by blending just the div-free RBF interpolants. Figure 2 illustrates322

the necessity of shifting the patch potentials by way of an example from Section 5.1.323

The figure shows a div-free RBF-PU approximant of a potential when the local patch324

potentials are not shifted (i.e., using ψℓ in (3.3) rather than ˜︁ψℓ) and when they are325

shifted.326

We now turn our attention to a technique for determining the constants {bℓ}Mℓ=1327

for shifting the potential. The idea is to pick a point in the overlap region of each pair328

of overlapping patches and enforce that the potentials for the each of these patches are329

equal at this point. We refer to these points as the “glue points” since they are where330

the potentials between neighboring patches are “glued” to one another. We have found331

the following procedure for choosing these points to be effective. If Ωℓ and Ωk overlap,332

then let x̄k
ℓ denote the center of the overlap region: x̄k

ℓ := (ρkξℓ+ρℓξk)/(ρk+ρℓ), where333

ℓ < k to avoid redundancy; see Figure 3 for an illustration. We denote the collection334

of all such points by X̄ := {x̄k
ℓ |Ωℓ ∩ Ωk ̸= ∅, ℓ < k} = {x̄i}Li=1, where L = |X̄| and335

we have reindexed the set so that each x̄i = x̄k
ℓ for some unique overlapping pair of336

patches Ωℓ and Ωk.337

On this set we want to impose the conditions338

ψℓ(x̄
k
ℓ ) + bℓ = ψk(x̄

k
ℓ ) + bk339340

for some constants bℓ, ℓ = 1, . . . ,M , which we refer to as the “potential shifts”. This341

can be arranged into a sparse L-by-M over-determined linear system342

Pb = c(3.5)343344
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Figure 3. Illustration of the glue points for shifting the potentials. The asterisks denote the
glue points and the small circles denote the patch centers.

with the following properties. The L-by-M matrix P is sparse with two non-zeros per345

row: the ith row, where x̄i corresponds to x̄k
ℓ , has a 1 in the ℓth column and a −1 in346

the kth column. The vector b contains the potential shifts, and the vector c is given347

by ci = ψk(x̄i)−ψℓ(x̄i) = ψk(x̄
k
ℓ )−ψℓ(x̄

k
ℓ ). The matrix P also has rank M − 1. This348

follows since P is the (oriented) incidence matrix for the graph with vertices being349

the patch centers Ωℓ and edges corresponding to non-empty intersections of patches.350

Based on the assumption that {Ωℓ}Mℓ=1 is an overlapping open covering, this graph is351

connected, so rank(P ) = M − 1 [12, Thm. 10.5]. In the next section we discuss the352

procedure we use to determine the potential shifts from (3.5).353

Remark 3.1. The procedure described above works exactly the same for curl-free354

fields in R2 and R3 using (2.16) for the interpolants and potential fields on each patch.355

The procedure also extends to more general surfaces P for div-free fields (using (2.10))356

and curl-free fields (using (2.14)). However, in this case determining the glue points357

using the above technique can be more difficult, but for P = S2, this is easy since the358

center of the overlap region is trivial to determine.359

3.3. Implementation details. We now discuss how the patches {Ωℓ}Mℓ=1 are360

chosen as well as how one might compute the potential shifts from the system (3.5).361

In what follows, we assume that the nodes X are quasiuniformly distributed (i.e.,362

have low discrepancy) in the underlying domain Ω, so that the mesh-norm for X,363

h := sup
y∈Ω

min
x∈X

dist(x,y),(3.6)364

365

satisfies h = O(1/ d
√
N), where d is the dimension of Ω. We also assume that there is a366

signed distance function for the domain to distinguish the interior from the exterior.367

3.3.1. Patch centers. To determine the patches {Ωℓ} for domains in R2 and368

R3, we use an approach similar to the one described in [32]. The idea is to start with369

a regular grid structure of spacing H that covers the domain Ω of interest and then370

remove the grid points that are not contained in the domain. The remaining grid371

points are chosen as the patch centers {ξℓ}Mℓ=1. Next, an initial radius ρ is chosen372

proportional to H so the patches {Ωℓ}Mℓ=1 form an open cover and there is sufficient373

overlap between patches (specifics on this are given below). Finally, for any node in X374

that is not contained in one of the patches, the nearest patch center ξj is determined375

and the radius ρj for that patch is enlarged to enclose the node. We perform all range376

queries on patch centers using a k-d tree.377
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For domains in R2, we choose the initial grid structure for the patch centers as378

regular hexagonal lattice of spacing H. Neighboring patches will not overlap if the379

initial radius is less than or equal to H/2. Therefore, to guarantee overlap, we set380

the initial radii for the patches to ρ = (1 + δ)H/2, where δ > 0. See Figure 1 for an381

illustration of the patches chosen using this algorithm for δ = 1/2. For domains in R3,382

we choose the initial grid structure for the patch centers as a regular Cartesian lattice383

of spacing H. In this case, neighboring patches along the longest diagonal directions384

will not overlap if the initial radius is less than or equal to
√
3H/2. To guarantee385

overlap, we thus set the initial radii for the patches to ρ = (1 + δ)
√
3H/2.386

To determine the patches for S2, we use an approach similar to the one described387

in [42]. The idea is to use M quasi-uniformly spaced points on S2 for the set of patch388

centers. We choose these as near minimum energy (ME) point sets [30], and use the389

pre-computed near ones from [49]. For a set with M points, the average spacing H390

between the points can be estimated as H ≈
√︁

4π/M . We select a value of H and391

then determine M as M = ⌈4π/H2⌉. Since the ME points are typically arranged in392

hexagonal patterns (with a few exceptions [30]), we choose the radius for each patch393

as ρℓ = (1 + δ)H/2, where the parameter δ again determines the overlap.394

To keep the overall cost under control, the initial radii of the patches H should395

decrease as N increases. The rate at which H should decrease can be determined396

as follows. Assuming that the patches that intersect the boundary have similar radii397

to the interior patches, and using the assumption that X is quasiuniform, a simple398

volume argument gives that number of nodes in each patch satisfies n = O(ρdN) =399

O(HdN), where d is the dimension of Ω. So, to keep the work roughly constant per400

patch, we need H = O(1/N1/d). In our implementation of the vector PUM, we choose401

H = q (A/N)
1/d

,(3.7)402403

where A is related to the area/volume of Ω, and q is a parameter that controls the404

average number of nodes per patch. Note that from the above analysis, the compu-405

tational cost increases as the overlap parameter increases and as q increases. Based406

on the assumptions on X and the patches, choosing H according to (3.7) results in407

a computational cost of O(N) for constructing the vector PUM approximants, and408

O(N logN) for the range queries involved for determining the patch structure. How-409

ever, in practice, the cost is dominated by the former part of the method.410

3.3.2. Potential shifts. Since rank(P ) = M − 1 and its nullspace consists of411

constant vectors, we first set one of the shifts bj to zero, for some 1 ≤ j ≤ M , and412

then compute the remaining shifts using the least squares solution of (3.5). For this413

problem we can form the normal equations directly since the matrix PTP is just a414

graph Laplacian (recall P is an oriented incidence matrix). We have found that the415

accuracy of the reconstructed field (3.4) can often be improved if a weighted least416

squares approach is used. In this case, we use a diagonal weight matrix W with417

entries that depend on the distance between the glue points and the patch centers.418

Specifically, we set ri as the closer of the two distances between the ith glue point x̄i419

and the centers of the two patches it was formed from, and then set420

Wii = exp

(︄
−γ
(︃
1− ri

rmin

)︃2
)︄
,(3.8)421

422

where rmin = minj rj and γ > 0. The normal equations in this case now look like a423

weighted graph Laplacian.424
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4. Error Estimates. The error bounds will be expressed in terms of local mesh425

norms hℓ, which are given by (3.6), with Ω = Ωℓ and X = Xℓ. Error rates for RBF426

interpolation, including divergence-free (curl-free) RBF approximation, both in flat427

space and on the sphere, have been known for some time. Many of these estimates are428

valid for target functions within the native space, which we denote by N (Ω), of the429

RBF used - which for infinitely smooth RBFs are subspaces of analytic functions and430

for kernels of finite smoothness are essentially Sobolev spaces (with norms equivalent431

to Sobolev norms on bounded subsets)2. For the RBF kernels considered here, there432

is a continuous embedding from the native space of the matrix kernel into a Sobolev433

space of order τ > d/2. In this situation we get the estimate below. In what follows,434

we let Hτ (Ωℓ) denote the space of vector fields with each coordinate function in the435

Sobolev space Hτ (Ω) with smoothness τ .436

Proposition 4.1. Suppose that u ∈ N (Ω) and that each Ωℓ ⊂ Ω satisfies an437

interior cone condition with radius Rℓ and angle θ independent of ℓ. Suppose also438

that there is a continous embedding of the native space into Hτ (Ω). Then there are439

constants Q := Q(θ, τ) and C := C(θ, τ, d) such that if hℓ < QRℓ, then440

∥u− sℓ∥L∞(Ωℓ) ≤ E(hℓ)∥u∥N (Ωℓ),441

where E(h) = Chτ−d/2.442

Proof. Estimates like these have been worked out for div/curl-free RBFs on sub-443

sets of Rd and on S2 [23, 24, 26]. However, in the papers referenced the domain was444

fixed and the dependence of the constants on the cone condition radius was not em-445

phasized, so we should briefly review the arguments here.446

First, note that the function u− sℓ will be zero on Xℓ. On domains satifying an447

interior cone condition, in the Euclidean case and on surfaces, we may therefore employ448

a “zeros lemma” in each coordinate function. These give constants Q := Q(θ, τ) and449

C := C(θ, τ, d) such that if hℓ < QRℓ, then450

∥u− sℓ∥L∞(Ωℓ) ≤ Ch
τ−d/2
ℓ ∥u− sℓ∥Hτ (Ωℓ).451

See for example [47, Theorem 11.32] and [29, Theorems A.4 and A.11]).452

Next, since u ∈ N (Ω), then u ∈ N (Ωℓ) and there is an isometric extension453

E : N (Ωℓ) → N (Ω) such that ∥Eu∥N (Ω) = ∥u∥N (Ωℓ) (see [47, Theorem 10.46,10.47]3).454

With this, since N (Ω) is continuously embedded in Hτ (Ω) for some τ > d/2, we get455

∥u− sℓ∥Hτ (Ωℓ) = ∥Eu− sEu,ℓ∥Hτ (Ωℓ) ≤ ∥Eu− sEu,ℓ∥Hτ (Ω) ≤ C∥Eu− sEu,ℓ∥N (Ω),456

where we write sEu,ℓ = sℓ to emphasize that the interpolant on Xℓ of the extension457

is also sℓ. Note that the constant here may depend on Ω, but not on Ωℓ. Finally, it is458

well-known that the interpolation error is always orthogonal to the kernel interpolant459

in the native space, which implies the bound460

∥Eu− sEu,ℓ∥N (Ω) ≤ ∥Eu∥N (Ω) = ∥u∥N (Ωℓ),461

where the last equality follows because E is an isometry. This completes the proof.462

2See [47, Ch. 10] for native spaces of scalar valued functions, and see [22,24] for the vector cases
on Rd and the sphere.

3The theorems referenced are given in the Euclidean scalar-valued context, but the arguments
are general enouch to apply to matrix valued positive definite kernels on any set.
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Thus it is possible to acheive high order convergence with patch sizes that are pro-463

portional to the mesh norm. In what follows we assume that the patch radii and local464

mesh norms are such that Proposition 4.1 is satisfied.465

In addition to the estimate above, our arguments that follow will also rely on466

the Mean Value Theorem, which for a scalar function ψ: Rd → R and x,y ∈ Rd we467

express as468

|ψ(x)− ψ(y)| ≤ |∇(ψ)|x∗ | dist(x,y),469

where x∗ is on the line segment between x and y. Here we use the notation | · |470

to denote the Euclidean length when the argument is a vector. To derive a similar471

estimate on surfaces, let x,y ∈ P and let γ : [0,distP(x,y)] → P denote a shortest472

path in P connecting x and y with γ(0) = x, γ(distP(x,y)) = y, parameterized by473

arclength. This implies that γ′ is tangent to P and |γ′| = 1. Applying the single474

variable Mean Value Theorem to the real-valued function ψ ◦ γ implies that475

|ψ(x)− ψ(y)| ≤ |∇ψ · γ′|t∗ |distP(x,y),476

where t∗ ∈ [0,distP(x,y)]. Since γ
′ is tangent to P and has length 1, we get |∇ψ ·γ′| =477

|Gψ · γ′| ≤ |Gψ|. Combining the above with the fact that |G(ψ)| = |L(ψ)| gives us478

the following479

(4.1) |ψ(x)− ψ(y)| ≤ |G(ψ)|x∗ | distP(x, y) = |L(ψ)|x∗ | distP(x,y),480

where x∗ ∈ P.481

Before proceeding we summarize some of the important assumptions on the par-482

tition of unity. Recall that each x ∈ Ω is covered by only a small number of patches483

(say at most K patches). We also assume that the number of patches that intersect484

a given patch is uniformly bounded by some constant m. Additionally, we suppose485

that there are roughly the same number of nodes in each patch, and that the node486

distribution in each patch is quasi-uniform. This leads to an estimate of the form487

chℓ ≤ diam(Ωℓ) ≤ Chℓ for some constants c, C independent of ℓ. Lastly, we assume488

that the partition is “1-stable” (see [47][Def. 15.16]), meaning that first order deriv-489

atives of the weight functions satisfy a bound of the form |∇wℓ| ≤ C(diam(Ωℓ))
−1,490

where C is some constant independent of ℓ. This with the quasi-uniformity supposi-491

tion gives the bound |∇wℓ| = |Lwℓ| ≤ Ch−1
ℓ for some C independent of ℓ.492

Now we give an estimate for the pointwise error of the divergence-free approximant493

in a two dimensional domain. Note that the bound is local in the sense that it494

comprised of a local interpolation error plus an expression involving the residuals495

rkℓ := ˜︁ψℓ(x̄
k
ℓ )− ˜︁ψk(x̄

k
ℓ ) from adjusting neighboring potential functions.496

Theorem 4.2. Suppose that the conditions in Proposition 4.1 are satisfied. Given497

a div-free vector field u = L(ψ) ∈ N (Ω), let ˜︁ψ and ˜︁s = L( ˜︁ψ) denote the PUM498

approximants from (3.3) and (3.4). Then the error at x ∈ Ω satisfies499 ⃓⃓⃓
G( ˜︁ψ − ψ)(x)

⃓⃓⃓
=
⃓⃓⃓
L( ˜︁ψ − ψ)(x)

⃓⃓⃓
= |u(x)− ˜︁s(x)|500

≤ mC max
ℓ |x∈Ωℓ

(︁
E(hℓ)∥u∥N (Ωℓ)

)︁
+ C

∑︂
ℓ|x∈Ωℓ, ℓ ̸=k

h−1
ℓ |rkℓ |,(4.2)501

where k is any index such that x ∈ Ωk.502
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Proof. The first equality follows from the fact that Gf and Lf have the same503

magnitude. Next, note that504

(4.3) ˜︁s =∑︂
ℓ

wℓsℓ +
∑︂
ℓ

L(wℓ) ˜︁ψℓ.505

The first term is a weighted average of RBF interpolants to u and the weight functions506

sum to 1, so we have507 ⃓⃓⃓⃓
⃓u(x)−∑︂

ℓ

wℓ(x)sℓ(x)

⃓⃓⃓⃓
⃓ =

⃓⃓⃓⃓
⃓∑︂

ℓ

wℓ(x)u(x)−
∑︂
ℓ

wℓ(x)sℓ(x)

⃓⃓⃓⃓
⃓ ≤∑︂

ℓ

wℓ(x)|u(x)− sℓ(x)|508

≤
∑︂
ℓ

wℓ(x)CE(hℓ)∥u∥N (Ωℓ) = C max
ℓ |x∈Ωℓ

E(hℓ)∥u∥N (Ωℓ).509

To complete the proof we need to bound the second term in (4.3). Given x ∈ Ω,510

fix a k such that x ∈ Ωk. Since
∑︁

L(wℓ) = 0 and wℓ(x) = 0 for x /∈ Ωℓ we get511 ∑︂
ℓ

L(wℓ) ˜︁ψℓ(x) =
∑︂

ℓ |x∈Ωℓ

L(wℓ)
(︂ ˜︁ψℓ(x)− ˜︁ψk(x)

)︂
.512

This and our assumptions on the weight functions give us the estimate513

(4.4)

⃓⃓⃓⃓
⃓∑︂

ℓ

L(wℓ) ˜︁ψℓ(x)

⃓⃓⃓⃓
⃓ ≤ ∑︂

ℓ |x∈Ωℓ

Ch−1
ℓ

⃓⃓⃓ ˜︁ψℓ(x)− ˜︁ψk(x)
⃓⃓⃓
.514

If ℓ = k, the corresponding term in the sum is zero. If ℓ ̸= k, we let g := ˜︁ψℓ − ˜︁ψk and515

x̄k
ℓ be the adjustment point for Ωℓ and Ωk, we can rewrite516

˜︁ψℓ(x)− ˜︁ψk(x) = g(x)− g(x̄k
ℓ ) + g(x̄k

ℓ ) = g(x)− g(x̄k
ℓ ) + rkℓ .517

To bound g(x)− g(x̄k
ℓ ), we use (4.1) and the fact that L(g) = sℓ − sk to get518

|g(x)− g(x̄k
ℓ )| ≤ ∥L(g)∥L∞(Ωk∩Ωℓ)dist(x, x̄

k
ℓ ) ≤ ∥L(g)∥L∞(Ωk∩Ωℓ)hℓ519

≤ hℓ
(︁
∥sℓ − u∥L∞(Ωk∩Ωℓ) + ∥u− sk∥L∞(Ωk∩Ωℓ))

)︁
520

≤ Chℓ
(︁
E(hℓ)∥u∥N (Ωℓ) + E(hk)∥u∥N (Ωk)

)︁
,521

which when applied to (4.4) gives522 ⃓⃓⃓⃓
⃓∑︂

ℓ

L(wℓ) ˜︁ψℓ(x)

⃓⃓⃓⃓
⃓ ≤ ∑︂

ℓ|x∈Ωℓ, ℓ ̸=k

C
(︁
E(hℓ)∥u∥N (Ωℓ) + E(hk)∥u∥N (Ωk)

)︁
+ Ch−1

ℓ |rkℓ |523

≤ mC max
ℓ |x∈Ωℓ

E(hℓ)∥u∥N (Ωℓ) + C
∑︂

ℓ|x∈Ωℓ, ℓ ̸=k

h−1
ℓ |rkℓ |.524

The result follows.525

Note that very similar arguments follow through also for curl-free vector fields526

on surfaces, i.e. an estimate identical to (4.2) holds for the curl-free case. The proof527

also carries directly over to Rd - namely if u = ∇φ, and ˜︁s = ∇˜︁φ denotes the curl-free528

RBF-PUM approximant, one has an estimate of the form529

|∇(˜︁φ− φ)(x)| = |u(x)− ˜︁s(x)| ≤ mC max
ℓ |x∈Ωℓ

(︁
E(hℓ)∥u∥N (Ωℓ)

)︁
+ C

∑︂
ℓ|x∈Ωℓ, ℓ ̸=k

h−1
ℓ |rkℓ |.530
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Now we discuss the residual in shifting the local potentials. We begin by showing531

that good constants for the shifts exist.532

Proposition 4.3. Let sℓ = Lψℓ be the local RBF interpolant on Xℓ ⊂ Ωℓ and let533

X̄ℓ = X̄ ∩Ωℓ be the collection of glue points on Ωℓ. Given any v such that u = L(v),534

the constant535

b∗ℓ :=
1

|X̄ℓ|
∑︂
y∈X̄ℓ

v(y)− ψℓ(y)536

gives537

∥ψℓ + b∗ℓ − v∥L∞(Ωℓ) ≤ ChℓE(hℓ)∥u∥N (Ωℓ).538

Proof. Let x ∈ Ωℓ. First we apply the triangle inequality and the Mean Value539

Theorem to obtain540

|ψℓ(x) + b∗ℓ − v(x)| ≤ 1

|X̄ℓ|
∑︂
y∈X̄ℓ

|ψℓ(x)− v(x)− (ψℓ(y)− v(y))|541

≤ 1

|X̄ℓ|
∑︂
y∈X̄ℓ

∥sj − u∥L∞(Ωℓ)
dist(x,y).542

Next, an application of Proposition 4.1 and the fact that diam(Ωℓ) ≤ Chℓ finishes the543

proof.544

Letting r∗ := Pb∗ − c, i.e., the residual in the system (3.5) using the shifts given545

in the above proposition, with a triangle inequality and using the fact that hk ∼ hℓ546

for neighboring patches, we get547

(4.5) (r∗)kℓ ≤ ChℓE(hℓ)∥u∥N (Ωℓ) + ChℓE(hk)∥u∥N (Ωk).548

Applying this to the residual term from (4.2) becomes:549 ∑︂
ℓ|x∈Ωℓ, ℓ ̸=k

h−1
ℓ (r∗)kℓ ≤ mC max

ℓ |x∈Ωℓ

E(hℓ)∥u∥N (Ωℓ)(4.6)550

Thus if the shifts are chosen appropriately the method can achieve the same approxi-551

mation order as that of local interpolation. However, we compute the shifts according552

to the overdetermined (3.5). The residual from that system satisfies the following.553

Proposition 4.4. Let b be the least squares solution to (3.5). The residual r :=554

Pb− c satisfies the bound555

|r|2 ≤ mC
∑︂
ℓ

h2ℓE(hℓ)2∥u∥2N (Ωℓ)
.556

Proof. Choose any scalar potential v such that u = L(v), and let b∗ be the vector557

whose ℓth element is b∗ℓ as defined in Proposition 4.3. Then we have |r| ≤ |r∗|. Next,558

we square the left-most inequality in (4.5) and estimate further to get559

(4.7) ((r∗)kℓ )
2 ≤ C

(︂
E(hℓ)2h2ℓ∥u∥2N (Ωℓ)

+ E(hk)2h2k∥u∥2N (Ωk)

)︂
.560

Now sum the estimate over all glue points, and note that each Ωℓ (and Ωk) will appear561

in the sum at most m times (the maximum number of patches that intersect any given562

patch). This gives the result.563
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In an attempt to bound the error solely in terms of the point distribution and564

target function, let us look at an application of this estimate to the residual term565

from (4.2). For simplicity, assume that all hℓ ∼ h for all hℓ. Since there are at most566

m terms in the sum, a Cauchy-Schwarz inequality gives567

∑︂
ℓ|x∈Ωℓ, ℓ ̸=k

h−1
ℓ |rkℓ | ≤ h−1

√
m|r| ≤ CmE(h)

√︄∑︂
ℓ

∥u∥2N (Ωℓ)
.568

Due to the sum over all patches, this bound may or may not match the expected error569

rates. It is reasonable to guess that this sum is equivalent to ∥u∥2N (Ω). Numerical570

experiments for scalar RBF interpolants, not presented here, suggest that such a sum571

may be uniformly bounded in the case of a thin plate spline, and may grow very572

slowly for Matérn kernels. We leave exploring a tight bound for this term as an open573

question. A very rough estimate of the sum would introduce a factor of
√
M , where574

M is the number of patches. In the quasi-uniform case, a volume argument gives575 √
M ∼ h−d/2. Thus a worst-case scenario is that the method converges according to576

E(h)h−d/2. However, numerical experiments suggest that the errors decay according577

to E(h) (see for example Section 5.2) and do not seem to depend on the number of578

patches - which suggests that the estimate E(h)h−d/2 is pessimistic.579

5. Numerical experiments. In this section, we numerically study the vector580

RBF-PUM for three different test problems: a div-free field in a star-shaped domain581

in R2, a div-free field on S2, and a curl-free field in the unit ball in R3. For each of582

these cases, we numerically test the convergence rates of the method and compare583

them to the estimates from Section 4. The point sets we use in the experiments are584

all quasiuniform, so rather than compute the mesh-norm h and use this to measure585

convergence rates, we simply use h ∼ N−1/d.586

To illustrate the different convergence rates that are possible, we use the in-587

verse multiquadric (IMQ) kernel ϕ(r) = 1/
√︁

1 + (εr)2 and the Matérn kernel ϕ(r) =588

e−εr
(︁
1 + (εr) + 3

7 (εr)
2 + 2

21 (εr)
3 + 1

105 (εr)
4
)︁
. The latter kernel is piecewise smooth589

and the local error from Proposition 4.1, in terms of N , is given by E(N) = (
√
N)−3.5590

for d = 2 (see [26] for more details). The IMQ kernel is analytic and therefore the591

local error decreases faster than any algebraic rate. For scalar interpolation with the592

IMQ, the local error estimate is E(N) = e−C log(N)N1/2d

[39], where C > 0 is a con-593

stant. We demonstrate that this also appears to be the correct rate for the vector594

case. While the error estimates are in terms the ∞-norm, we also include results on595

the 2-norm for comparison purposes. Since we are interested in demonstrating the596

convergence rates from the theory, we fix the shape parameter ε in all the tests, as597

using different ε on a per patch level will lead to different constants in the estimates.598

The values were selected so that conditioning of the linear systems (2.8) (or (2.15))599

is not an issue. Choosing variable shape parameters in scalar RBF-PUM is explored600

in [10] and may be adapted to the current method, but we leave that to a separate601

study. For brevity we report results for one kernel per example, with the IMQ kernel602

used for the first and third test and the Matérn used for the second. However, we note603

that the estimated convergence rates for each kernel were consistent with the theory604

across all tests. Finally, we set the weighted least squares parameter in (3.8) to η = 4.605

This value produced good results over all the numerical experiments performed.606

All results were obtained from a MATLAB implementation of the vector RBF-607

PUMmethod executed on a MacBook Pro with 2.4 GHz 8-Core Intel Core i9 processor608

and 32 GB RAM. No explicit parallelization was implemented.609
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5.1. Div-free field on R2. The target field and domain for this numerical test610

are defined as follows. Let the potential for the field be611

ψ(1)(x) = −2g( 272 ∥x∥4)− 1

2
g(27∥x∥2)− 2

4∑︂
j=0

g(9∥x− ξj∥2),(5.1)612

613

where ξj = (cos(2πj/5 + 0.1), sin(2πj/5 + 1
2 )) and614

g(r) = exp(r)/(1 + exp(r))2.(5.2)615616

The target domain is set from the potential as Ω(1) = {x ∈ R2|ψ(1)(x) ≤ − 1
10}, and617

target div-free vector field is u
(1)
div = Lψ(1). This gives a star-like domain with a non-618

trivial field that is tangential to ∂Ω; see Figure 4 for a visualization of the potential619

and field.
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Figure 4. Contours of the potential ψ(1) (left) and corresponding div-free velocity field u
(1)
div

(right) for the numerical experiment on R2.

620

The node sets X for this test were initially generated from DistMesh [38], but621

then perturbed by a small amount to remove any regular structures. The sizes of the622

node sets for the tests are N = 11149, 17405, 30943, 44570, and 696354. We estimate623

A in (3.7) to be 6, and use an overlap parameter for the patches of δ = 1/2. We624

test three different values of q to see how the errors are effected by increasing the625

nodes per patch. For q = 6, 8, 10, there are an average of 63, 112, 173 nodes per patch,626

respectively. The boundaries create some variability in the nodes per patch and lead627

to minimum values of 32, 57, 85 and the maximums of 109, 191, 300, respectively. As628

mentioned above, we only report results for the IMQ kernel, for which the shape629

parameter is set to ε = 13 for all tests. Errors in the approximations of the target630

potential and field are computed at a dense set of 94252 points over the domain. Errors631

in the approximation of the target potential are computed after first normalizing the632

approximant and the potential to have a mean of zero over the evaluation points. For633

each N and q, the error reported is the average of the ∞-norm (2-norm) errors using634

20 different random perturbations of the initial node set X. This reduces fluctuations635

in the errors caused by particularly good samples of the target field. We observed636

4These node sets were produced from DistMesh when setting the “spacing” parameter to h0 =
0.025, 0.02, 0.015, 0.0125, 0.01
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(a) Errors for the potential ψ(1) (b) Errors for the field u
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div

Figure 5. Convergence results for the numerical experiment on the star domain in R2 for the
IMQ kernel and different values of q. Filled (open) markers correspond to the relative ∞-norm

(2-norm) errors and solid (dashed) lines indicate the fit to the estimate E(N) = e−C log(N)N1/4
,

without the first values included.

that the relative standard deviation in the norms of the errors using this sampling637

technique varied from 5% to 10% for the 2-norm and 20% to 40% for the ∞-norm638

across the N we used.639

Figure 5 displays the relative ∞-norm and 2-norm errors in the approximation of640

the target potential and field as a function of log(N)N1/4. Included in the figures are641

the lines of best fit to the errors using the error estimate E(N) = e−C log(N)N1/4

from642

scalar RBF theory. We see from the figure that this error estimate provides a good fit643

to both the ∞-norm and 2-norm errors for the potential and the field. The ∞-norm644

errors for the potential have more variability especially for q = 6, but the 2-norm645

errors are quite consistent. As expected, the errors in reconstructing the potential are646

lower than those for reconstructing the field, and the 2-norm errors are lower than647

the ∞-norm errors. Increasing q leads to a consistent decrease in the 2-norm errors,648

but the decrease is more variable for the ∞-norm errors.649

5.2. Div-free field on S2. Let x = (x, y, z) ∈ S2, and the potential for the650

target field be defined as651

ψ(2)(x) = − 1

1 + e−20(z+1/
√
2)

− 1

1 + e−20(z−1/
√
2)

− 3

5∑︂
j=0

(−1)jg(∥x− yj∥2, aj),

(5.3)

652

653

where g is given in (5.2), yj = (cos(λj) cos(θj), sin(λj) cos(θj), sin(θj)) for {λj}5j=0 =654

{0.05,1.1,2.12, 3.18,4.22,5.26} and {θj}5j=0 ={0.79,−0.82,0.76,−0.81,0.8,−0.77}, and655

aj = 4 + j/2. The div-free field is then given as u
(2)
div = Lψ(2). The values used656

in (5.3) were chosen to produce a zonal jet in the mid-latitudes with three superim-657

posed vortices in each of the northern and southern hemispheres; see Figure 6 for a658

visualization of the potential and field.659

The node sets X for this test are chosen as Hammersley nodes, which give qua-660

siuniform, but random sampling points for S2 [49]. The sizes of the node sets for the661
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Figure 6. Contours of the potential ψ(2) (left) and corresponding div-free velocity field

u
(2)
div(right) for the numerical experiment on S2.
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Figure 7. Convergence rates for the numerical experiment on S2 for the Matérn kernel and
different values of q. Filled (open) markers correspond to the relative ∞-norm (2-norm) errors and
solid (dashed) lines indicate the lines of best fit to the ∞-norm (2-norm) errors as a function of

√
N

on a loglog scale. The legend indicates the slopes of these lines with the first number corresponding
to the ∞-norm and the second the 2-norm, which give estimates for the algebraic convergence rates.

tests are N = 10000, 15000, 20000, 30000, 40000, 50000 and 60000. We use A = 4π662

in (3.7) and set the overlap parameter to δ = 9/16. We again use three different663

values of q to see how the errors are effected by increasing the nodes per patch. For664

q = 6, 9, 12, there are an average of 63, 143, 252 nodes per patch, respectively. Since665

there are no boundaries for this domain, the number of nodes per patch is much more666

consistent across all patches. The minimum nodes per patch are 58, 137, 245 and the667

maximums are 69, 150, 261, respective to the q values. For this example, we only re-668

port results for the Matérn kernel, for which the shape parameter is set to ε = 7.5 for669

all tests. Errors in the approximations of the target potential and field are computed670

at a quasiuniform set of 92163 points over S2. Errors in the approximation of the671

target potential are again computed after first normalizing the approximant and the672

potential to have a mean of zero over the evaluation points. Similar to the previous673

experiment, for each N and q, the error reported is the average of the ∞-norm (2-674
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norm) errors from 20 different random rotations of the initial Hammersley node set675

X. We observed similar results on the relative standard deviations of the norms of676

the errors as the previous experiment using this sampling technique.677

Figure 8. Timing results for the numerical experiment on S2 with different values of q. The
darker region of each bar marks the time it takes to compute the interpolation coefficients on each
patch and solve for the potential shifts, while the full bar includes this time and the time it takes to
evaluate the approximant of the field and the potential at N points.

Figure 7 displays the relative ∞-norm and 2-norm errors in the approximation678

of the target potential and field as a function of N1/2. Included in the figure are the679

lines of best fit to the log of the errors vs. the log of N1/2 for each q, and the slopes680

of these lines are reported in the legend of the figure (where the first number is for681

∞-norm and second for the 2-norm). We see from this figure that the computed rates682

of convergence for the ∞-norm are slightly higher than the theoretical rate of −3.5.683

Thus the residual estimate from Proposition 4.4 is not leading to a reduction in the684

convergence rates as discussed at the end of Section 4. We also see from the figure685

that the estimated rates for the 2-norm errors are higher than the ∞-norm errors as686

one would expect. Finally, similar to the previous experiment, we see that the errors687

in reconstructing the potential are lower than those for reconstructing the field.688

We also display timing results for this experiment in Figure 8. For these results,689

we scaled the evaluation points with N and measured the time for the fitting phase of690

the method (determining the interpolation coefficients on each patch and the potential691

shifts) and the evaluation phase (evaluating the approximants of the field and potential692

on each patch and combining these using the PU weight functions). The results for693

q = 9 and q = 12 show a clear linear scaling with N , but the rate appears to be a bit694

higher for q = 6, which we anticipate is due to not being in the asymptotic range of695

N for this case. Also, the predicted O(N logN) complexity is most likely not visible696

over the range of N considered. In all the results, we see that the evaluation phase697

takes less time than the fitting phase, which is expected since the cost for this phase698

is O(n2) per patch vs. O(n3) for fitting. Interestingly, with this serial version of the699

code, q = 9 is overall the fastest. Since the number of patches is inversely proportional700

to q2, these results indicate that there is an optimal value that balances solving fewer701

larger systems to more smaller systems.702
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5.3. Curl-free field on the unit ball. The target curl-free field for this test703

is generated as follows. Let g(r, a) = (a+ r2)−1/2 and define the following potential:704

ψ(3)(x) = −1

4
g(∥x∥, 0.1) + 1

8

1∑︂
j=1

2g(∥x− ξj∥, 0.04),(5.4)705

706

where {xj}12j=1 are the vertices of a regular icosahedron with each vertex a distance707

of 2/3 from the origin. The target curl-free is then generated by u
(3)
curl = −∇ψ(3).708

This field can be interpreted as the (idealized) electric field that is generated from a709

negative (smoothed) point charge at the origin, surrounded by 12 positive (smoothed)710

point charges, equidistance from one another; see Figure 9(a) for a visualization of711

the potential and field.712

(a) Potential and field (b) Nodes

Figure 9. (a) Visualization of the potential φ(3) and corresponding curl-free velocity field

u
(3)
curl = −∇φ(3) for the numerical experiment on the unit ball. (b) Example of N = 4999 node set

(small solid disks) used in the numerical experiment on the unit ball, where colors of the nodes are
proportional to their distance from the origin (yellow=1, green = 0.5, blue=0). The plots in both
figures show the unit ball with a wedge removed to aid in the visualization.

The node sets X for this test are obtained from the meshfree node generator713

described in [41], which produces quasiuniform but unstructured nodes in general714

domains; see Figure 9 (b) for an example of the nodes used for the unit ball. The715

sizes of the node sets for the tests are N = 4999, 9103, 19636, 59116, and 1584745.716

We use A = 4/3π in (3.7) and an overlap parameter of δ = 1/4. We again test three717

different values of q: q = 2, 3, 4. For q = 2, the minimum, average, and maximum718

nodes per patch are 18, 37, 83, for q = 3 these values are 72, 120, 238, and for q = 4719

these values are 186, 271, 512. As with the first experiment, we only present results720

for the IMQ kernel, for which the shape parameter is set to ε = 4 for all tests. Errors721

in the approximations of the target potential and field are computed at a set of 208707722

points over the unit ball. Errors in the approximation of the target potential are again723

computed after first normalizing the approximant and the potential to have a mean of724

zero over the evaluation points. Similar to the previous experiments, for each N and725

q, the error reported is the average of the ∞-norm (2-norm) errors from 20 different726

random rotations of the initial node set X.727

5These node sets were produced from the node generator [41] when setting the “spacing” param-
eter to h0 = 0.1, 0.08, 0.06, 0.04, 0.028
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Figure 10. Convergence results for the numerical experiment on the unit ball in R3 for the IMQ
kernel and different values of q. Filled (open) markers correspond to the relative ∞-norm (2-norm)

errors and solid (dashed) lines indicate the fit to the expected error estimate E(N) = e−C log(N)N1/6
,

without the first values included.

Figure 10 displays the relative ∞-norm and 2-norm errors in the approxima-728

tion of the target potential and field as a function of log(N)N1/6. As in the first729

experiment, we have included the lines of best fit to the errors, but now using730

E(N) = e−C log(N)N1/6

. We see from the Figure that the error estimate again gener-731

ally provides a good fit to both the ∞-norm and 2-norm errors for the potential and732

the field. The ∞-norm errors deviate more from the estimates than the 2-norm errors,733

especially for field in the q = 2 case. However, for this case the minimum number of734

points per patch can be quite small.735

Remark 5.1. In practice, there are several parameters a user needs to choose in736

the algorithm that effect the computational cost and accuracy. In the experiments737

reported here, and several others not reported, we have explored these parameters738

and come up with the following suggestions. For the q parameter, which controls739

the average nodes per patch, we recommend a value in the range of 8 ≤ q ≤ 9 for740

2D problems and 3 ≤ q ≤ 4 for 3D problems. For the overlap parameter, δ, we741

recommend a value in the range 1/2 ≤ δ ≤ 3/4. For the shape parameter ε, we742

recommend choosing it as small as possible on each patch before ill-conditioning sets743

in when solving the local linear systems (2.8). This is similar to the method [43] used744

for generating RBF finite difference formulas. For smooth vector fields, this typically745

gives the best accuracy for a given N .746

6. Concluding remarks. We have presented a new method based on div/curl-747

free RBFs and PUM for approximating div/curl-free vector fields in R2 and S2, and748

for curl-free fields in R3. The method produces approximants that are analytically749

div/curl-free and also produces an approximant potential for the field at no additional750

cost. For quasi-uniform samples, we have shown how the parameters can be selected751

so that the computational complexity of the method is O(N logN). We have proved752

error estimates for the approximants based on local estimates for the div/curl-free753

interpolants on the PU patches. We have also demonstrated the high-order conver-754

gence rates of the method on three different test problems with samples ranging from755
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thousands to hundreds of thousands of nodes—all done on a standard laptop.756

While we have only focused on div/curl-free interpolation over local patches, a757

future area to explore is to instead use a least squares approach similar to the one used758

for scalar RBFs in [32]. Here one can choose fewer centers in the local patches for the759

div/curl-free RBFs than data samples, a technique referred to as regression splines in760

the statistics literature [18, ch. 19]. This has the benefit of further reducing the cost761

of the local patch solves for the approximation coefficients and could provide some762

regularization. Another future area to explore is the adaption of stable algorithms763

for “flat” RBFs [19, 21] to the div/curl-free RBFs. These algorithms are especially764

important in scalar RBF-PUM methods based on smooth RBFs for reaching high765

accuracies [32]. Some work has been done along these lines for S2 in [15], but not for766

the local setting on patches. A final promising area for future research is in developing767

adaptive algorithms for the method along the lines of [10].768

Acknowledgments. We thank Elisabeth Larsson for helpful discussions regard-769

ing the PU patch distribution algorithm and Varun Shankar for generating the node770

sets used for the unit ball example. KPD’s work was partially supported by the771

SMART Scholarship funded by The Under Secretary of Defense-Research and Engi-772

neering, National Defense Education Program/BA-1, Basic Research. GBW’s work773

was partially supported by National Science Foundation grant 1717556.774

REFERENCES775

[1] K. A. Aiton, A Radial Basis Function Partition of Unity Method for Transport on the Sphere,776
master’s thesis, Boise State University, USA, 2014.777

[2] L. Amodei and M. N. Benbourhim, A vector spline approximation, J. Approx. Theory, 67778
(1991), pp. 51–79.779
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[11] D. Coe, E. Fuselier, N. Beńıtez, T. Broadhurst, B. Frye, and H. Ford, LensPerfect:802
Gravitational lens mass map reconstructions yielding exact reproduction of all multiple803
images, Astrophys. J, 681 (2008), pp. 814–830.804

[12] A. Dharwadker and S. Pirzad, Graph Theory, CreateSpace Independent Publishing Plat-805
form, North Charleston, SC, USA, 2011.806

[13] M. P. do Carmo, Differential forms and applications, Universitext, Springer-Verlag,807
Berlin, 1994, https://doi.org/10.1007/978-3-642-57951-6, https://doi.org/10.1007/808
978-3-642-57951-6. Translated from the 1971 Portuguese original.809

This manuscript is for review purposes only.

https://doi.org/10.1007/978-3-642-57951-6
https://doi.org/10.1007/978-3-642-57951-6
https://doi.org/10.1007/978-3-642-57951-6
https://doi.org/10.1007/978-3-642-57951-6


24 K. P. DRAKE, E. J. FUSELIER, AND G. B. WRIGHT

[14] F. Dodu and C. Rabut, Irrotational or divergence-free interpolation, Numer. Math., 98 (2004),810
pp. 477–498.811

[15] K. P. Drake and G. B. Wright, A stable algorithm for divergence-free radial basis functions812
in the flat limit, J. Comput. Phys., 417 (2020), p. 109595.813

[16] M. Fan, D. Paul, T. C. M. Lee, and T. Matsuo, Modeling tangential vector fields on a814
sphere, Journal of the American Statistical Association, 113 (2018), pp. 1625–1636.815

[17] P. Farrell, K. Gillow, and H. Wendland, Multilevel interpolation of divergence-free vector816
fields, IMA J. Numer. Anal., 37 (2016), pp. 332–353.817

[18] G. E. Fasshauer, Meshfree Approximation Methods with MATLAB, Interdisciplinary Mathe-818
matical Sciences, World Scientific Publishers, Singapore, 2007.819

[19] G. E. Fasshauer and M. J. McCourt, Stable evaluation of Gaussian radial basis function820
interpolants, SIAM J. Sci. Comput., 34 (2012), pp. A737–A762.821

[20] B. Fornberg and N. Flyer, A Primer on Radial Basis Functions with Applications to the822
Geosciences, SIAM, Philadelphia, 2014.823

[21] B. Fornberg, E. Larsson, and N. Flyer, Stable computations with Gaussian radial basis824
functions, SIAM J. Sci. Comput., 33 (2011), pp. 869–892.825

[22] E. J. Fuselier, Improved stability estimates and a characterization of the native space for826
matrix-valued RBFs, Adv. Comput. Math., 29 (2008), pp. 269–290.827

[23] E. J. Fuselier, Sobolev-type approximation rates for divergence-free and curl-free RBF inter-828
polants, Math. Comp., 77 (2008), pp. 1407–1423.829

[24] E. J. Fuselier, F. J. Narcowich, J. D. Ward, and G. B. Wright, Error and stability830
estimates for surface-divergence free RBF interpolants on the sphere, Math. Comp., 78831
(2009), pp. 2157–2186.832

[25] E. J. Fuselier, V. Shankar, and G. B. Wright, A high-order radial basis function (RBF)833
Leray projection method for the solution of the incompressible unsteady Stokes equations,834
Comput. Fluids, 128 (2016), pp. 41–52.835

[26] E. J. Fuselier and G. B. Wright, Stability and error estimates for vector field interpolation836
and decomposition on the sphere with RBFs, SIAM J. Numer. Anal., 47 (2009), pp. 3213–837
3239.838

[27] M. Griebel and M. A. Schweitzer, A particle-partition of unity method–part II: Efficient839
cover construction and reliable integration, SIAM J. Sci. Comput., 23 (2002), pp. 1655–840
1682.841

[28] D. Handscomb, Local recovery of a solenoidal vector field by an extension of the thin-plate842
spline technique, Numer. Algorithms, 5 (1993), pp. 121–129. Algorithms for approximation,843
III (Oxford, 1992).844

[29] T. Hangelbroek, F. J. Narcowich, and J. D. Ward, Polyharmonic and related kernels on845
manifolds: Interpolation and approximation, Foundations of Computational Mathematics,846
12 (2012), pp. 625–670.847

[30] D. P. Hardin and E. B. Saff, Discretizing manifolds via minimum energy points, Notices848
Amer. Math. Soc., 51 (2004), pp. 1186–1194.849

[31] U. Harlander, T. von Larcher, G. B. Wright, M. Hoff, K. Alexandrov, and C. Eg-850
bers, Orthogonal decomposition methods to analyze PIV, LDA and thermography data of851
a thermally driven rotating annulus laboratory experiment, in Modelling Atmospheric and852
Oceanic flows: insights from laboratory experiments and numerical simulations, T. von853
Larcher and P. D. Williams, eds., American Geophysical Union, Washington D.C., 2014.854

[32] E. Larsson, V. Shcherbakov, and A. Heryudono, A least squares radial basis function855
partition of unity method for solving PDEs, SIAM J. Sci. Comput., 39 (2017), pp. A2538–856
A2563.857

[33] D. Lazzaro and L. B. Montefusco, Radial basis functions for the multivariate interpolation858
of large scattered data sets, J. Comp. Appl. Math., 140 (2002), pp. 521–536.859

[34] S. Lowitzsch, Error estimates for matrix-valued radial basis function interpolation, J. Approx.860
Theory, 137 (2005), pp. 238–249.861

[35] A. A. Mitrano and R. B. Platte, A numerical study of divergence-free kernel approxima-862
tions, Appl. Numer. Math., 96 (2015), pp. 94 – 107.863

[36] F. J. Narcowich and J. D. Ward, Generalized Hermite interpolation via matrix-valued con-864
ditionally positive definite functions, Math. Comp., 63 (1994), pp. 661–687.865

[37] F. J. Narcowich, J. D. Ward, and G. B. Wright, Divergence-free RBFs on surfaces, J.866
Fourier Anal. Appl., 13 (2007), pp. 643–663.867

[38] P.-O. Persson and G. Strang, A simple mesh generator in Matlab, SIAM Rev., 46 (2004),868
pp. 329–345.869

[39] C. Rieger and B. Zwicknagl, Sampling inequalities for infinitely smooth functions, with ap-870
plications to interpolation and machine learning, Adv. Comput. Math., 32 (2010), pp. 103–871

This manuscript is for review purposes only.



A PUM FOR DIV-FREE OR CURL-FREE RBF APPROXIMATION 25

129.872
[40] A. Safdari-Vaighani, A. Heryudono, and E. Larsson, A radial basis function partition of873

unity collocation method for convection–diffusion equations arising in financial applica-874
tions, J. Sci. Comput., 64 (2015), pp. 341–367.875

[41] V. Shankar, R. Kirby, and A. Fogelson, Robust node generation for mesh-free discretiza-876
tions on irregular domains and surfaces, SIAM J. Sci. Comput., 40 (2018), pp. A2584–877
A2608.878

[42] V. Shankar and G. B. Wright, Mesh-free semi-Lagrangian methods for transport on a sphere879
using radial basis functions, J. Comput. Phys., 366 (2018), pp. 170–190.880

[43] V. Shankar, G. B. Wright, R. M. Kirby, and A. L. Fogelson, A radial basis function881
(RBF)-finite difference (FD) method for diffusion and reaction-diffusion equations on sur-882
faces, J. Sci. Comput., 63 (2014), pp. 745–768.883

[44] V. Shcherbakov, Radial basis function partition of unity operator splitting method for pricing884
multi-asset American options, BIT, 56 (2016), pp. 1401–1423.885

[45] N. Trask, M. Maxey, and X. Hu, A compatible high-order meshless method for the Stokes886
equations with applications to suspension flows, J. Comput. Phys., 355 (2018), pp. 310–326.887

[46] H. Wendland, Fast evaluation of radial basis functions : Methods based on partition of unity,888
in Approximation Theory X: Wavelets, Splines, and Applications, Vanderbilt University889
Press, 2002, pp. 473–483.890

[47] H. Wendland, Scattered data approximation, vol. 17 of Cambridge Monographs on Applied891
and Computational Mathematics, Cambridge University Press, Cambridge, 2005.892

[48] H. Wendland, Divergence-free kernel methods for approximating the Stokes problem, SIAM893
J. Numer. Anal., 47 (2009), pp. 3158–3179.894

[49] G. B. Wright, SpherePts. https://github.com/gradywright/spherepts/, 2017.895

This manuscript is for review purposes only.

https://github.com/gradywright/spherepts/

	Introduction
	Div/Curl-free RBFs
	Notation and preliminaries
	Div-free RBF interpolation
	Curl-free RBF interpolation

	A div-free/curl-free partition of unity method
	Partition of unity methods
	Description of the method
	Implementation details
	Patch centers
	Potential shifts


	Error Estimates
	Numerical experiments
	Div-free field on R2
	Div-free field on S2
	Curl-free field on the unit ball

	Concluding remarks
	References

