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ABSTRACT

The fraction of stars in binary systems within star clusters is important for their evolution, but
what proportion of binaries form by dynamical processes after initial stellar accretion remains
unknown. In previous work, we showed that dynamical interactions alone produced too few
low-mass binaries compared to observations. We therefore implement an initial population
of binaries in the coupled MHD and direct N-body star cluster formation code Torch. We
compare simulations with, and without, initial binary populations and follow the dynamical
evolution of the binary population in both sets of simulations, finding that both dynamical
formation and destruction of binaries take place. Even in the first few million years of star
formation, we find that an initial population of binaries is needed at all masses to reproduce
observed binary fractions for binaries with mass ratios above the 𝑞 ≥ 0.1 detection limit.
Our simulations also indicate that dynamical interactions in the presence of gas during cluster
formation modify the initial distributions towards binaries with smaller primary masses, larger
mass ratios, smaller semi-major axes and larger eccentricities. Systems formed dynamically
do not have the same properties as the initial systems, and systems formed dynamically in
the presence of an initial population of binaries differ from those formed in simulations with
single stars only. Dynamical interactions during the earliest stages of star cluster formation are
important for determining the properties of binary star systems.
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1 INTRODUCTION

A complete picture of star cluster formation must account simul-

taneously for stars forming on the sub-AU scale, stellar dynamics

taking place on the cluster’s scale and gas flows at the scale of the

surrounding giant molecular cloud. Even when star formation is re-

solved by a sub-grid model, as is most often the case in simulations,

close dynamical encounters between stars must be resolved at the

same time as star-gas interactions and large scale stellar dynamics.

Effective numerical modelling of cluster formation must therefore

be highly multi-scale. Despite these challenges, it is essential to ad-

dress the problem of star cluster formation, as most stars are formed

★ E-mail:cournoyc@mcmaster.ca

in a clustered environment (Lada & Lada 2003; Portegies Zwart

et al. 2010).

Recent reviews of stellar multiplicity in the Galactic

field (Duchêne & Kraus 2013; Moe & Di Stefano 2017) and of

protostars embedded in gas (Reipurth et al. 2014) show that most

stars, at all evolutionary stages, live in binaries or higher order sys-

tems. Surveys of low mass stars (e.g. Fischer & Marcy 1992; Reid

& Gizis 1997; Delfosse et al. 2004; Winters et al. 2019), solar-type

stars (e.g. Abt & Levy 1976; Duquennoy & Mayor 1991; Ragha-

van et al. 2010) and intermediate and high mass stars (e.g. Sana

& Evans 2011; Sana et al. 2012; Chini et al. 2012) also reveal a

correlation between multiplicity and stellar mass. Both the fraction

of stars in multiple systems and the average number of compan-

ions per primary increase with increasing primary mass: about 27%

of low mass stars are in multiple systems (Delfosse et al. 2004;
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2 Cournoyer-Cloutier et al.

Winters et al. 2019), while multiplicity fraction is about 45% for

solar-type (Raghavan et al. 2010) and A-type (De Rosa et al. 2014)

stars, and is larger than 90% for high mass stars (Moe & Di Stefano

2017, and references therein).

Despite the ubiquity of binary systems, simulations of star

cluster formation and dynamical evolution often use simplistic pre-

scriptions for primordial binaries (i.e. binaries formed during star

formation, e.g. Kroupa 1995; Sills & Bailyn 1999; Portegies Zwart

et al. 2001; Leigh et al. 2013; Rastello et al. 2020) or ignore them

altogether (e.g. Portegies Zwart et al. 1999; Pelupessy & Portegies

Zwart 2012; Sills et al. 2018; Wall et al. 2019), primarily because

primordial binaries remain poorly understood via either observa-

tions or simulations. Most observations of binaries in star form-

ing regions (e.g. Kouwenhoven et al. 2005; Reipurth et al. 2007;

King et al. 2012) are of visual binaries, with intermediate separa-

tion; binaries with smaller or larger separations are hard to observe.

Nonetheless, a significant proportion of stars in star forming regions

and in clusters are found in binary systems. Observations of stel-

lar multiplicity in protostars indicate that binary fraction decreases

with age, which is attributed to dynamical interactions between the

stars (Tobin et al. 2016b).

Multiplicity is also influenced by environment. Binarity in

globular clusters is anti-correlated with cluster luminosity (Milone

et al. 2016), and binarity in open clusters is anti-correlated with

cluster density (Duchêne et al. 1999). Young clusters have field-like

binary fractions (Duchêne et al. 1999, 2018; Sana & Evans 2011),

and there is no clear difference between the distributions of periods,

mass ratios and eccentricities in the field and in young clusters

for massive stars (Sana & Evans 2011). Conversely, loose stellar

associations have binary fractions higher than in the field (Duchêne

et al. 1999, 2018). The presence of binary systems in star clusters

influences their dynamical evolution, for example by facilitating

evaporation. Binaries with low binding energy are disrupted, while

energetic binaries become more tightly bound and transfer kinetic

energy to the cluster, thus accelerating its dissolution (e.g. Heggie

1975; Hills 1975). Appropriate choices of sub-grid model for binary

formation and binary parameters – such as the separation or mass

ratio of the generated systems – are therefore also required for

realistic star cluster formation simulations.

The fact that binary systems can be both formed (e.g. Kouwen-

hoven et al. 2010; Parker & Meyer 2014) and destroyed (e.g. Parker

et al. 2009; Parker & Goodwin 2012) by the evolution of young

clusters further complicates the problem. Although a reasonable

assumption would be that some separations (and hence some pe-

riods) are associated with primordial formation and others with

dynamical formation, it is not so simple. Simulations (e.g. Offner

et al. 2010; Sigalotti et al. 2018) and observations (e.g. Tobin et al.

2016a; Lee et al. 2017) show that turbulent core fragmentation and

disk fragmentation are viable mechanisms to form binaries dur-

ing star formation, with separations up to ∼ 1000 AU. Simulations

have also shown that binaries with semi-major axes between 1000

AU and 0.1 pc can be formed during the dissolution of young star

clusters (Kouwenhoven et al. 2010). Tokovinin (2017) argues that

binaries with such separations are more prevalent than what would

be predicted by dynamical interactions alone, and proposes that

stars forming in adjacent cores could be bound as primordial bina-

ries. Conversely, dynamical interactions in a young cluster can also

form binaries with separations well below 1000 AU (e.g. Parker &

Meyer 2014; Wall et al. 2019).

We develop a new binary generation algorithm consistent with

observations of mass dependent binary fraction and distributions

of orbital periods, mass ratios and eccentricities. As an ansatz, we

use the observed distribution of zero-age main sequence binary

systems in the Galactic field to generate our population. Our choice

is motivated by the quality of the observations for this population

and by the simulations conducted by Parker & Meyer (2014): with

pure N-body simulations of star forming regions, they find that

using the distributions of binary fraction, mass ratio and period in

the field as initial conditions can reproduce the field distribution

after dynamical evolution. Our distributions can however be readily

modified to investigate different primordial binary distributions.

We use the star cluster formation code Torch (Wall et al. 2019) to

demonstrate the impacts of our new binary generation algorithm on

the earliest stages of star cluster formation, up to the formation of

the first massive stars.

In Section 2, we describe our simulation environment and our

binary generation algorithm. In Section 3, we present our suite

of simulations. In Section 4, we compare the properties of binary

systems in the simulations including primordial binaries and in

those starting with only single stars. We summarize our results in

Section 5 and discuss their implications in Section 6.

2 METHODS

2.1 Simulating cluster formation with Torch

Torch1 uses the AMUSE framework (Portegies Zwart & McMillan

2019) to couple self-gravitating, magnetized gas modelled by the

magnetohydrodynamics (MHD) adaptive mesh refinement (AMR)

code FLASH (Fryxell et al. 2000) with the N-body code ph4 (McMil-

lan et al. 2012) and the stellar evolution code SeBa (Portegies Zwart

& Verbunt 1996). We use FLASH with a Harten–Lax–van Leer Rie-

mann solver resolving discontinuities (HLLD, Miyoshi & Kusano

2005) and an unsplit MHD solver (Lee 2013) with third order piece-

wise parabolic method (PPM) reconstruction (Colella & Woodward

1984) for gas dynamics, and a multigrid solver for gravity (Ricker

2008). We handle the gravitational effects of the gas and the stars on

one another by a leapfrog integration between the two systems (see

Wall et al. 2019). Similar gravity bridges have been used previously

to couple direct N-body codes with smoothed particle hydrodynam-

ics (SPH) codes (e.g. Pelupessy & Portegies Zwart 2012; Sills et al.

2018) and with the AMR code RAMSES (Gavagnin et al. 2017).

Torch is also optimized to deal with multiple stellar systems.

Resolving repeated close encounters between the members of a sta-

ble, unperturbed system (e.g. a binary or a hierarchical triple) with

the N-body integrator prohibitively shortens the timestep. For each

binary or higher order system deemed stable by the Mardling crite-

rion (Mardling 2008, by which triples can have at most one orbital

resonance to avoid instability due to large energy exchanges be-

tween the orbits), we use multiples (Portegies Zwart & McMillan

2019), which replaces the stars by the systems’ centres of mass in

ph4. The internal configuration of the system is saved, and the posi-

tions of the stars within the system are only computed if the system

is perturbed. The encounter between the system and the perturbing

star is then resolved with the few-body solver smallN (Hut et al.

1995; McMillan & Hut 1996).

Star formation is handled by a sub-grid model via sink par-

ticles, which are formed in regions of high local gas density and

converging flows, following Jeans’ criterion and the additional con-

ditions detailed in Federrath et al. (2010). When a sink forms, we

1 https://bitbucket.org/torch-sf/torch/branch/binaries

commit 28a27574f667e8a580fe964f5ff185d4fb63f1e7
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use Poisson sampling to generate a list of stars it will form by draw-

ing stellar masses from a Kroupa (2001) initial mass function (IMF,

Sormani et al. 2017; Wall et al. 2019), with a minimum sampling

mass of 0.08 M� and a maximum sampling mass of 150 M� . We

randomize the list of stars; each star is then formed in order when

the sink has accreted sufficient mass. Once it is formed, the sink

follows the location of the centre of mass of the local stars and gas,

and continues accreting gas.

Torch also includes stellar feedback, heating and cooling,

which are handled via sub-grid models. The amount and loca-

tion of the feedback depends on the evolution (via SeBa) of the

specific stars formed in the simulation. It uses the FLASH module

FERVENT (Baczynski et al. 2015) for photoionization, direct ultra-

violet (UV) radiation pressure from massive stars and photoelectric

heating from far-UV radiation. It uses the method of Wall et al.

(2020) for stellar winds, and does not include either indirect radia-

tion pressure or protostellar outflows.

2.2 Binary generation algorithm

We want to generate a final stellar population that is consistent with

the observed IMF, and that also ultimately reproduces the observed

binary properties after cluster interactions. However, the effects of

the cluster interactions on the primordial binary population are still

poorly understood, and observations are not sufficient to have a

complete and accurate picture of the properties of binary systems

at birth. Nonetheless, observations (e.g. Sana & Evans 2011) and

simulations (e.g. Parker & Meyer 2014) suggest that the multiplic-

ity fraction and period, mass ratio and eccentricity distributions in

young clusters are consistent with the field population. Volume-

limited observations of binary systems in the galactic field, for

systems with mass ratios 𝑀2/𝑀1 ≥ 0.1, are complete for a very

large range of orbital periods (Moe & Di Stefano 2017; Winters

et al. 2019). They are also obtained from much larger samples

than observations of young clusters. We therefore adopt for our

first suite of simulations a population of primordial binaries with

mass-dependent binary fraction and properties consistent with ob-

servations of zero-age main sequence stars in binary systems in the

Galactic field. Our framework can also be adapted to explore other

primordial binary populations.

2.2.1 Mass-dependent binary fraction

For simplicity, and following previous studies of binary popula-

tion synthesis (e.g. Kroupa 2001; Kouwenhoven et al. 2009; Parker

& Meyer 2014), we do not form any triple or quadruple systems

primordially. These are known to be ubiquitous for B and O-type

primaries (e.g. Sana et al. 2012; Moe & Di Stefano 2015), but

represent only 3% of systems for M-dwarfs (Winters et al. 2019)

and 10% of systems for solar-type stars (Moe & Di Stefano 2017),

which account together for > 90% of main-sequence stars (Kroupa

2001). We treat the mass dependent multiplicity fraction as a mass

dependent binary fraction, in order to include all systems included

in studies of stellar multiplicity. Since it is hard to determine obser-

vationally if there are any unresolved components to a system, most

reviews of stellar multiplicity make no distinction among binaries,

triples and higher order systems in their distributions of multiplicity

fraction, period, mass ratio and eccentricity. We hence implement

a mass dependent binary fraction, which reflects observed distribu-

tions of multiplicity fraction.

For each list of stellar masses obtained at the formation of a

Table 1. Multiplicity properties from Winters et al. (2019). 𝑀1 is the primary

mass, F is the binary fraction, 𝜇𝑎 is the mean projected separation around

which the lognormal probability distribution is centered, 𝜇𝑃 (days) is the

corresponding period in days (assuming a circular orbit) and log 𝜎𝑃 is the

standard deviation of the lognormal distribution. With the exception of the

binary fraction and the period, all the other properties for systems with

𝑀1 ≤ 0.60 M� are obtained from the same distributions as systems with

𝑀1 ∼ 1 M� (see Table 2, top row).

𝑀1 F 𝜇𝑎 (AU) 𝜇𝑃 (days) log 𝜎𝑃

0.08 − 0.15 M� 0.16 7 103.83 4.12

0.15 − 0.30 M� 0.21 11 104.12 4.37

0.30 − 0.60 M� 0.28 49 105.10 4.78

Table 2. Multiplicity properties from Moe & Di Stefano (2017). 𝑀1 is the

primary mass, F is the binary fraction, 𝑃 is the period range, F𝑃 is the

relative probability for a system to have a period in a given range; 𝛾≥0.3 is

the power-law exponent of the mass ratio distribution for 𝑞 ≥ 0.3 and 𝛾<0.3

is the power-law exponent of the mass ratio distribution for 𝑞 < 0.3.

𝑀1 F 𝑃 (days) F𝑃 𝛾≥0.3 𝛾<0.3

0.8 − 1.2 M� 0.40 100.5−1.5 0.06 −0.5 0.3

102.5−3.5 0.13 −0.5 0.3

104.5−5.5 0.22 −0.5 0.3

106.5−7.5 0.17 −1.1 0.3

2 − 5 M� 0.59 100.5−1.5 0.10 −0.5 0.2

102.5−3.5 0.16 −0.9 0.1

104.5−5.5 0.18 −1.4 −0.5

106.5−7.5 0.12 −2.0 −1.0

5 − 9 M� 0.76 100.5−1.5 0.11 −0.5 0.1

102.5−3.5 0.18 −1.7 −0.2

104.5−5.5 0.16 −2.0 −1.2

106.5−7.5 0.09 −2.0 −1.5

9 − 16 M� 0.84 100.5−1.5 0.13 −0.5 0.1

102.5−3.5 0.17 −1.7 −0.2

104.5−5.5 0.15 −2.0 −1.2

106.5−7.5 0.09 −2.0 −2.0

≥ 16 M� 0.94 100.5−1.5 0.14 −0.5 0.1

102.5−3.5 0.16 −1.7 −0.2

104.5−5.5 0.15 −2.0 −1.2

106.5−7.5 0.09 −2.0 −2.0

sink, we treat each star as a potential primary, and use the primary

mass dependent binary fraction to determine if the star is in a binary

system. Single stars and primaries are therefore drawn directly from

the IMF, while companions are drawn from mass ratio distributions.

For each potential primary, we use a random number generator to

obtain a number between 0 and 1; the star is found to be in a

binary system if the random number is below the mass dependent

multiplicity fraction. After a large number of draws, the binary

fraction approaches the prescribed multiplicity fraction.

For low-mass stars, we use the observed multiplicity fraction

of M-dwarfs in the solar neighbourhood, for primary masses in the

mass bins 0.08 – 0.15 M� , 0.15 – 0.30 M� and 0.30 – 0.60 M� (Win-

ters et al. 2019). For solar-type stars and above, we use the observed

multiplicity fractions for primary masses 0.8 – 1.2 M� , 2 – 5 M� ,

5 – 9 M� , 9 – 16 M� and above 16 M� (Moe & Di Stefano 2017).

Between 0.6 M� and 0.8 M� , and between 1.2 M� and 2 M� , we

interpolate linearly between the observed multiplicity fractions. We

summarize the multiplicity fractions in Tables 1 and 2.

MNRAS 000, 1–15 (2020)
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2.2.2 Period distribution

Periods also depend on primary mass. For primary masses below

0.60 M� , we use the lognormal distributions from Winters et al.

(2019), which are given for each of the primary mass bins discussed

above. For each primary mass range, Moe & Di Stefano (2017)

give probabilities at different period values; we extend each given

value over one order of magnitude in period (in days), then linearly

interpolate between two different period ranges. We use the same

mass bins as defined above, but extend the 0.8 – 1.2 M� range

down to 0.6 M� and up to 1.6 M� , while we extend the 2 – 5 M�

range down to 1.6 M� . We therefore have a probability distribution

depending on both primary mass and period. For each primary, we

obtain the orbital period by drawing it from the observed proba-

bility distribution for the corresponding mass range, sampled with

the rejection method (Von Neumann 1951). For each primary, we

pick a pair of random numbers – here, a period between 100.5 and

107.5 days and a number between 0 and the maximum value of our

probability distribution surface – and accept the pair if the point it

defines in parameter space lies below our probability distribution.

If it lies above our probability distribution, we reject the pair and

repeat the algorithm until a pair is accepted (following the algorithm

from Press et al. 2007, §7.3.6).

2.2.3 Companion mass distribution

We obtain the companion masses from distributions of mass ratios

𝑞 = 𝑀2/𝑀1, where 𝑀1 is the primary mass, 𝑀2 is the companion

mass and 𝑞 ≤ 1 by definition. Kouwenhoven et al. (2009), in

a review of binary pairing functions, summarize as follows the

different possible ways to assemble a binary system:

(i) Random pairing Two stars are independently drawn from

the IMF; the most massive is labelled as the primary. Random pair-

ing of stars from the Kroupa IMF results in a uniform distribution

of system masses (Kroupa 2001), which Kouwenhoven et al. (2009)

find to result in mass ratios inconsistent with observations.

(ii) Primary-constrained random pairing The primary is

drawn randomly from the IMF; the companion is then also drawn

from the IMF, but with the constraint that it must be less massive

than the primary. This pairing function does not reproduce observed

mass ratios either (Kouwenhoven et al. 2009).

(iii) Primary-constrained pairing The primary is drawn ran-

domly from the IMF; the companion is then drawn from the mass

ratio probability distribution. This technique is meant to be used

with a stellar IMF (e.g. Kroupa 2001). It is compatible with obser-

vations, and allows for the use of a primary mass dependent mass

ratio distribution, which is observed in nature.

(iv) Split-core pairing The system mass is drawn randomly

from a distribution of system or core masses, then fragmented as

a mass ratio is drawn from an observed probability distribution.

This technique is meant to be used with a system initial mass func-

tion (e.g. Chabrier 2003). It is also compatible with observations.

Both primary-constrained pairing (iii) and split-core pairing (iv) can

reproduce observations of stellar masses and mass ratios concur-

rently, as well as of a mass dependent binary fraction. They require

different pieces of information to implement. Primary-constrained

pairing requires a distribution of stellar masses, and primary mass

dependent binary properties; split-core pairing requires a distribu-

tion of system masses, and can be implemented with primary mass

dependent binary properties. We choose to assemble the binary sys-

tems with primary-constrained pairing, by drawing primary masses

from a Kroupa (2001) IMF then obtaining the companion masses

from the observed primary mass and period-dependent mass ratio

distributions. Torch uses by default the Kroupa (2001) initial mass

function, and it is the initial mass function that was used in the

original suite of simulations (Wall et al. 2019; Wall et al. 2020).

We use the same initial mass function for ease of comparison and

consistency.

We use the probability distributions from Moe & Di Stefano

(2017), which we extend to lower masses. The mass ratio probability

distributions are modelled as power laws,

𝑝𝑞 ∝ 𝑞𝛾 (1)

where the exponent 𝛾 is a function of the mass ratio range, the

primary mass and the orbital period. We consider three primary

mass ranges, 0.08−2 M� , 2−5 M� and above 5 M�; the first mass

range is extended from the 0.8 − 1.2 M� range provided by Moe

& Di Stefano (2017) since Winters et al. (2019) admit that their

results are likely incomplete at low companion masses. For each of

these mass ranges, we consider a broken power law, with 𝛾 defined

for mass ratios between 0.1 and 0.3, and above 0.3. Finally, the

probability is given at different values of the period, between which

we interpolate with the same technique as for the period probability

distribution. From there, we use the rejection method to obtain a

mass ratio.

We reject mass ratios that would result in substellar com-

panions. We also note that observations are unreliable below

𝑞 ≤ 0.1 (Duchêne & Kraus 2013; Moe & Di Stefano 2017; Winters

et al. 2019). Price-Whelan et al. (2020), in their analysis of 20,000

close binary systems, acknowledge that their observations are in-

complete at low mass ratios. At the high mass end, the problem

is most prevalent for spectroscopic searches at intermediate sepa-

rations (Kobulnicky et al. 2014). In open clusters, Sana & Evans

(2011) are only confident in their observations for 𝑞 ≥ 0.2 for mas-

sive binaries, while Deacon & Kraus (2020) are unable to detect

companions with 𝑞 ≤ 0.1 and estimate that they detect only ∼ 50%

of systems with 𝑞 = 0.3 in their surveys of wide binaries in Alpha

Per, the Pleiades and Praesepe. Following the completeness limit

of Moe & Di Stefano (2017) and Winters et al. (2019), we therefore

also reject mass ratios below 𝑞 = 0.1.

2.2.4 Eccentricity distribution

The eccentricity probability distribution is similarly modelled as a

broken power law, as a function of primary mass and period,

𝑝𝑒 ∝ 𝑒𝜂 (2)

where 𝜂 = 1 would result in a thermal distribution and 𝜂 = 0

would result in a uniform distribution. Following Moe & Di Stefano

(2017), we define

𝜂 = 0.6 −
0.7

(log(𝑃/days) − 0.5)
(3)

for primary masses up to 5 M� , while for primary masses above 5

M� , we define

𝜂 = 0.9 −
0.2

(log(𝑃/days) − 0.5)
. (4)

We further define a period-dependent upper limit on the eccentricity,

to avoid binary systems with filled Roche lobes. We use the analytic

form of the maximum eccentricity from Moe & Di Stefano (2017),

𝑒𝑚𝑎𝑥 (𝑃) = 1 −

(

𝑃

2 days

)−2/3

(5)

MNRAS 000, 1–15 (2020)
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Single stars inherit the velocity of the sink at the time of formation,

plus a random fraction of the local sound speed (Wall et al. 2019).

We adopt this prescription for the systems’ centres of mass. For

stars in a binary system, their velocity is obtained from the addition

of the sink’s velocity, the random component from the local sound

speed, and the velocity with respect to the centre of mass velocity.

3 SIMULATIONS

Initial tests of Torch (Wall et al. 2019; Wall et al. 2020) have shown

that the time evolution of the star formation rate and the spatial dis-

tribution of star formation are highly stochastic, and depend strongly

on the initial conditions. We therefore adopt a single set of initial

conditions for our full suite of simulations, to investigate solely the

impact that the presence or absence of primordial binaries has on

the final distributions of binaries. We initialize all our simulations

from the same spherical cloud of dense molecular gas with a mass

of 104 M� , a virial parameter of 0.2, a radius of 7 pc and a Gaussian

density profile with central density 8.73 x 10−22 g/cm3. The initial

cloud has a central temperature of 20.64 K and sits in a medium

of warm gas with a temperature of 6.11 x 103 K and a density of

2.18 x 10−22 g/cm3. Each simulation uses the same initial turbu-

lent Kolmogorov velocity spectrum but a different random seed for

the stellar masses. There is no initial magnetic field. The gas fol-

lows an adiabatic equation of state with 𝛾 = 5/3. The simulations

include atomic, molecular and dust cooling, as well as ionization,

following Wall et al. (2020).

Galactic effects are ignored, as the clusters are evolved for

𝑡 . 3.2 Myr. Tidal perturbations or disk crossing effects are unlikely

to have an impact on the cluster’s structure on such a timescale (e.g.

Kruĳssen et al. 2011; Miholics et al. 2017). The size of the simula-

tion box (∼ 18 pc) is large enough to ensure the choice of boundary

conditions does not have a strong impact on the outcome of the simu-

lation: observed star clusters in nearby galaxies with the same stellar

mass as our simulations have half-mass radii one order of magni-

tude smaller than the box size (Krumholz et al. 2019, and references

therein). We use zero-gradient boundary conditions, which allow the

gas and stars to leave the domain. The choice of spatial resolution

(∼ 0.05 pc) is appropriate to model the gas dynamics in the cluster,

excluding star formation which is treated by a sub-grid model. The

resolution is approximately one order of magnitude smaller than the

average separation between stars in dense clusters (Krumholz et al.

2019, and references therein) and thus resolves well the behaviour

of the gas between the stars.

We perform a total of 15 simulations, at two different maxi-

mum FLASH refinement levels. At our lowest refinement level, we

perform five simulations with primordial binaries and five without

primordial binaries; at our highest refinement level, we perform four

simulations with primordial binaries and one simulation without pri-

mordial binaries. The least resolved regions in all our simulations

are at refinement level 4 and have a gas spatial resolution of 0.136 pc.

The spatial and mass resolutions of our simulations are presented

in Table 3. In our analysis, we use the combined results of groups

of simulations to ensure we have a large population of systems to

analyze. We will use the variation between simulations to quantify

the uncertainty in our results and the numerical effects of resolu-

tion. We denote our suites of simulations with primordial binaries at

refinement levels 5 and 6 as respectively M4r5b and M4r6b, and our

suite of simulations without primordial binaries at refinement level

5 as M4r5s. We refer to our full suites of simulations at refinement

levels 5 and 6 as respectively M4r5 and M4r6; similarly, we refer to

Table 3. Spatial and mass resolution, at maximum refinement level ref. Δ𝑥

denotes the minimum zone size while Δ𝑚 and 𝜌𝑐 denote respectively the

maximum mass and the maximum density in a grid cell to trigger sink

formation, assuming a sound speed 𝑐𝑠 = 1.9 x 104 cm s−1 (following

Federrath et al. 2010)

.
ref Δ𝑥 (pc) Sink diameter (AU) Δ𝑚 (M�) 𝜌𝑐 (g cm−3)

5 6.83 x 10−2 7.05 x 104 1.80 x 10−2 3.82 x 10−21

6 3.42 x 10−2 3.53 x 104 9.00 x 10−3 1.53 x 10−20

our full suite of simulations with primordial binaries as M4b and to

our full suite of simulations without primordial binaries as M4s. We

perform our analysis with 9866 stars in M4r5b, 9016 stars in M4r5s,

6384 stars in M4r6b and 1517 stars in M4r6s. We plot the results

from M4r5, as this suite of simulations has the most stars.

We summarize the time of onset of star formation, the time at

which the simulation is ended, the maximum stellar mass, the num-

ber of stars and the total stellar mass for each of our simulations in

Table 4. Since the only difference between the different simulations

at the same resolution is in the stellar sampling, star formation starts

at the same time and the first sink forms at the same location for all

simulations at the same resolution. We present two examples of the

time evolution of the star formation rate in Figure 4. In Figure 5,

we present the projected density for nine simulations, a minimum

of ∼ 1.5 Myr after the onset of star formation. We note that the

general structure of the gas and the sink locations are very similar

in all simulations, as expected since all the simulations start from

the same initial gas conditions. Nevertheless, the number of stars

and their locations, as well as the total stellar mass, differ among

the simulations. At similar times, there are spreads of 18% in num-

ber of stars and 24% in stellar mass. Our simulations end at 1.5 –

2 Myr after the start of star formation, at the time when feedback

from massive stars starts to have a significant impact on the gas

properties. Therefore, our simulations probe the earliest stages of

star cluster formation, when the dominant physical effects are gas

collapse and star formation, combined with dynamical interactions

between stars, binary systems, and their natal gas.

4 BINARY PROPERTIES

As discussed in Section 2.2.3, observations of binary stars in the

galactic field and in open clusters are only complete for mass ratios

𝑞 ≥ 0.1; consequently, our algorithm only generates primordial bi-

naries with such mass ratios. Our work differs from previous studies

of dynamical binary formation in clusters (e.g. Wall et al. 2019) or

of evolution of a population of primordial binaries in clusters (e.g.

Parker & Meyer 2014) by taking into account this observational

limit, and comparing directly our population of binary systems with

𝑞 ≥ 0.1 to the observed field population. We emphasize that any

system with mass ratio 𝑞 < 0.1 would not have been included in the

surveys on which our work is based. Where applicable, we therefore

present two different sets of comparison: the comparison between

our full simulation results and the field population (for consistency

and ease of comparison with earlier literature), and the comparison

between our simulation results with 𝑞 ≥ 0.1 (hereafter, observable

simulation results) and the field population.

To consider stars to be members of a binary, we require the stars

to be gravitationally bound and perturbations by the other cluster

stars must be comparatively small. Following Wall et al. (2019), we

consider a system with primary mass 𝑀1, companion mass 𝑀2 and
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masses, mass ratios, semi-major axes and eccentricities for systems

above the 𝑞 ≥ 0.1 detection limit. We note that if we consider the

full binary population (i.e. if we also consider systems with mass ra-

tios 𝑞 < 0.1), the differences in the distributions of primary masses

and mass ratios are not obvious. We also find that primordial bi-

naries are needed at all primary masses to reproduce the observed

binary fraction above the 𝑞 ≥ 0.1 detection limit. We argue that

the distinction between the full binary population and the subset of

observable systems is important, as observations are incomplete for

𝑞 < 0.1 and considering only the systems with 𝑞 ≥ 0.1 significantly

affects our conclusions. We find that all our conclusions are robust

to a change in spatial resolution by a factor of 2.

We observe both dynamical formation and destruction of bi-

nary systems inM4b, which includes an initial population of binaries.

In these simulations, we see that systems formed dynamically do not

have the same properties as primordial systems, and more impor-

tantly, that systems formed dynamically in M4b do not have the same

properties as those formed in M4s, which includes only single stars

initially. The cumulative distributions of primary masses, mass ra-

tios, semi-major axes and eccentricities formed dynamically in M4b

lie between the primordial distribution and the distribution resulting

from pure dynamical formation in M4s. The presence of an initial

population of binary stars has a significant impact on the subse-

quent binary properties in the star cluster. We find that systems with

higher primary masses, lower mass ratios, larger semi-major axes

and larger eccentricities are preferentially formed dynamically. We

also find that systems with higher primary masses, smaller mass

ratios and larger semi-major axes are preferentially destroyed or

modified by dynamical interactions. Globally, dynamical evolution

of a field-like primordial population favours systems with smaller

primary masses, larger mass ratios, smaller semi-major axes and

larger eccentricities. Most importantly, our results demonstrate that

even in the earliest stages of cluster formation, when there is still

a significant amount of gas and active star formation, dynamical

interactions modify the binary population.

6 DISCUSSION

These simulations indicate that dynamical interactions in embed-

ded clusters modify the properties of the primordial distribution

of binaries by forming and destroying systems, but do not modify

the mass-dependent binary fraction. We emphasize that our simu-

lations model the earliest stages of star cluster formation, and thus

that we are probing those dynamical interactions that act on the

binary systems on short timescales. Our analysis is conducted 1.2

– 2 Myr after the onset of star formation, while there is still active

star formation and there has been very little feedback from the stars.

Furthermore, protostellar outflows, which we do not include, play

a role in regulating star formation efficiency in low-mass star form-

ing regions (Matzner & McKee 2000). With protostellar outflows,

fewer stars would be formed during the earliest stages of cluster for-

mation, and thus dynamical interactions between these stars would

likely have a smaller impact on the properties of the binary distribu-

tion. Magnetic fields, which are absent from our simulations, also

participate in the regulation of star formation (Price & Bate 2008).

Gas dynamical friction, which acts on scales smaller than our gas

spatial resolution, may be a channel for the formation of short-

period binaries with circular orbits (Gorti & Bhatt 1996; Stahler

2010). Its absence may play a part in driving the shift towards larger

semi-major axes and eccentricities. Our simulations were also con-

ducted with a single choice for the initial gas properties (total mass,

initial size of the cloud, etc). Additional simulations are needed to

determine whether the global gas properties play a significant role

in modifying the population of binary stars.

The next steps are to investigate the impact of an initial mag-

netic field on the evolution of an initial population of binaries, as

well as the impact of stellar winds. Massive stars will have a signifi-

cant impact on the forming cluster: they interact gravitationally with

other stars and deplete the supply of cold molecular gas available

for star formation by increasing its temperature and ejecting it from

the cluster.

In future work, we will alter our assumed primordial binary

distribution to empirically determine what distribution leads to the

field binary distribution observed after dynamical interactions in the

embedded cluster. An important feature of the dynamical evolution

appears to be the destruction of systems with massive primaries,

or the replacement of the observable companion by a companion

with 𝑞 < 0.1 in such systems. Our altered distribution should there-

fore favour the retention of the original companion in systems with

massive primaries, which could be done by assuming smaller semi-

major axes. This would be expected for primordial binaries forming

from the fragmentation of a single core. In addition, primordial

binaries with mass ratios 𝑞 < 0.1 likely do form primordially and

may have a dynamically interesting effect on the binary populations.

Similarly, our primordial binary population is based on the full dis-

tributions of parameters for observed primary-companion pairs in

the field: the distributions include mass ratios and semi-major axes

from the outer components of triples and higher order systems.

Such systems are ubiquitous at high masses but the outer compo-

nents are likely to have small mass ratios and large semi-major axes.

An avenue to explore for our altered distribution would be to use

distributions derived exclusively from only binaries and the inner

components of hierarchical systems. It is likely some of the systems

detected in our simulations are dynamically formed stable triples or

higher order systems, which we will also address in future work.

ACKNOWLEDGEMENTS

We warmly thank Ralf Klessen for useful discussions. We also

thank the referee, Douglas Heggie, for comments that improved the

manuscript. We gratefully acknowledge the hospitality of the Centre

for Computational Astrophysics, where this work was started during

the first Torch users meeting in 2019. M-MML, SLWM, and AT are

partly supported by US NSF grant AST18-15461. CCC and AS

are supported by the Natural Sciences and Engineering Research

Council of Canada. The simulations in this work were conducted

on Cartesius; we acknowledge the Dutch National Supercomputing

Center SURFSara grant 15520.

DATA AVAILABILITY

The data underlying this article will be shared on reasonable request

to the corresponding author.

REFERENCES

Abt H. A., Levy S. G., 1976, ApJS, 30, 273

Baczynski C., Glover S. C. O., Klessen R. S., 2015, MNRAS, 454, 380

Chabrier G., 2003, PASP, 115, 763

Chini R., Hoffmeister V. H., Nasseri A., Stahl O., Zinnecker H., 2012,

MNRAS, 424, 1925

MNRAS 000, 1–15 (2020)



Primordial binaries and cluster formation 15

Colella P., Woodward P. R., 1984, J. Comput. Phys., 54, 174

Deacon N. R., Kraus A. L., 2020, MNRAS, 496, 5176

Delfosse X., et al., 2004, in Hilditch R. W., Hensberge H., Pavlovski K.,

eds, ASP Conference Series Vol. 318, Spectroscopically and Spatially

Resolving the Components of the Close Binary Stars. Astronomical

Society of the Pacific, San Francisco, pp 166–174

Duchêne G., Kraus A., 2013, ARA&A, 51, 269

Duchêne G., Bouvier J., Simon T., Close L., Eislöffel J., 1999, in Bonaccini

D., ed., ESO Conference and Workshop Proceedings Vol. 56, Astronomy

with adaptive optics : present results and future programs. European

Southern Observatory, Garching, p. 185

Duchêne G., Lacour S., Moraux E., Goodwin S., Bouvier J., 2018, MNRAS,

478, 1825

Duquennoy A., Mayor M., 1991, A&A, 500, 337

Federrath C., Banerjee R., Clark P. C., Klessen R. S., 2010, ApJ, 713, 269

Fischer D. A., Marcy G. W., 1992, ApJ, 396, 178

Fryxell B., et al., 2000, ApJS, 131, 273

Gavagnin E., Bleuler A., Rosdahl J., Teyssier R., 2017, MNRAS, 472, 4155

Gehrels N., 1986, ApJ, 303, 336

Gorti U., Bhatt H. C., 1996, MNRAS, 283, 566

Heggie D. C., 1975, MNRAS, 173, 729

Heggie D. C., Rasio F. A., 1996, MNRAS, 282, 1064

Hills J. G., 1975, AJ, 80, 809

Hughes I. G., Hase T. P., 2010, Measurements and their Uncertainties.

Oxford University Press, Oxford

Hut P., Makino J., McMillan S., 1995, ApJ, 443, L93

Ivanova N., Heinke C. O., Rasio F. A., Taam R. E., Belczynski K., Fregeau

J., 2006, MNRAS, 372, 1043

King R. R., Goodwin S. P., Parker R. J., Patience J., 2012, MNRAS, 427,

2636

Kobulnicky H. A., et al., 2014, ApJS, 213, 34

Kouwenhoven M. B. N., Brown A. G. A., Zinnecker H., Kaper L., Portegies

Zwart S. F., 2005, A&A, 430, 137

Kouwenhoven M. B. N., Brown A. G. A., Goodwin S. P., Portegies Zwart

S. F., Kaper L., 2009, A&A, 493, 979

Kouwenhoven M. B. N., Goodwin S. P., Parker R. J., Davies M. B., Malmberg

D., Kroupa P., 2010, MNRAS, 404, 1835

Kroupa P., 1995, MNRAS, 277, 1522

Kroupa P., 2001, MNRAS, 322, 231

Kruĳssen J. M. D., Pelupessy F. I., Lamers H. J. G. L. M., Portegies Zwart

S. F., Icke V., 2011, MNRAS, 414, 1339

Krumholz M. R., McKee C. F., Bland-Hawthorn J., 2019, ARA&A, 57, 227

Lada C. J., Lada E. A., 2003, ARA&A, 41, 57

Lee D., 2013, J. Comput. Phys., 243, 269

Lee J.-E., Lee S., Dunham M. M., Tatematsu K., Choi M., Bergin E. A.,

Evans N. J., 2017, Nature Astronomy, 1, 0172

Leigh N., Giersz M., Webb J. J., Hypki A., de Marchi G., Kroupa P., Sills

A., 2013, MNRAS, 436, 3399

Mann H. B., Whitney D. R., 1947, Ann. Math. Statist., 18, 50

Mardling R. A., 2008, in Vesperini E., Giersz M., Sills A., eds, Proceedings

IAU Symposium No. 246. Cambridge University Press, Cambridge, pp

199–208

Matzner C. D., McKee C. F., 2000, ApJ, 545, 364

McMillan S. L. W., Hut P., 1996, ApJ, 467, 348

McMillan S., Portegies Zwart S., van Elteren A., Whitehead A., 2012, in

Capuzzo-Dolcetta R., Limongi M., Tornambè A., eds, ASP Conference

Series Vol. 453, Advances in Computational Astrophysics: Methods,

Tools, and Outcome. San Francisco, p. 129 (arXiv:1111.3987)

Miholics M., Kruĳssen J. M. D., Sills A., 2017, MNRAS, 470, 1421

Milone A. P., et al., 2016, MNRAS, 455, 3009

Miyoshi T., Kusano K., 2005, J. Comput. Phys., 208, 315

Moe M., di Stefano R., 2015, ApJ, 810, 61

Moe M., di Stefano R., 2017, ApJS, 230, 15

von Neumann J., 1951, in Householder A. S., Forsythe G. E., Germond H. H.,

eds, National Bureau of Standards Applied Mathematics Series, Vol. 12,

Monte Carlo Method. US Government Printing Office, Washington, DC,

Chapt. 13, pp 36–38

Offner S. S. R., Kratter K. M., Matzner C. D., Krumholz M. R., Klein R. I.,

2010, ApJ, 725, 1485

Parker R. J., Goodwin S. P., 2012, MNRAS, 424, 272

Parker R. J., Meyer M. R., 2014, MNRAS, 442, 3722

Parker R. J., Reggiani M. M., 2013, MNRAS, 432, 2378

Parker R. J., Goodwin S. P., Kroupa P., Kouwenhoven M. B. N., 2009,

MNRAS, 397, 1577

Pelupessy F. I., Portegies Zwart S., 2012, MNRAS, 420, 1503

Portegies Zwart S., McMillan S. L. W., 2019, Astrophysical Recipes: The

Art of Amuse. Institute of Physics Publishing, Bristol

Portegies Zwart S. F., Verbunt F., 1996, A&A, 309, 179

Portegies Zwart S. F., Makino J., McMillan S. L. W., Hut P., 1999, A&A,

348, 117

Portegies Zwart S. F., McMillan S. L. W., Hut P., Makino J., 2001, MNRAS,

321, 199

Portegies Zwart S. F., McMillan S. L. W., Gieles M., 2010, ARA&A, 48,

431

Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P., 2007, Nu-

merical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge

University Press, Cambridge

Price D. J., Bate M. R., 2008, MNRAS, 385, 1820

Price-Whelan A. M., et al., 2020, ApJ, 895, 2

Raghavan D., et al., 2010, ApJS, 190, 1

Rastello S., Carraro G., Capuzzo-Dolcetta R., 2020, ApJ, 896, 152

Reid I. N., Gizis J. E., 1997, AJ, 113, 2246

Reipurth B., Guimarães M. M., Connelley M. S., Bally J., 2007, AJ, 134,

2272

Reipurth B., Clarke C. J., Boss A. P., Goodwin S. P., Rodríguez L. F.,

Stassun K. G., Tokovinin A., Zinnecker H., 2014, in Beuther H., et

al. eds, , Protostars and Planets VI. University of Arizona, Tucson, pp

267–290

Ricker P. M., 2008, ApJS, 176, 293

de Rosa R. J., et al., 2014, MNRAS, 437, 1216

Sana H., Evans C. J., 2011, in Neiner C., Wade G., Meynet G., Peters G., eds,

IAU Symposium Vol. 272, Active OB Stars: Structure, Evolution, Mass

Loss, and Critical Limits. Cambridge University Press, Cambridge, pp

474–485

Sana H., et al., 2012, Science, 337, 444

Sigalotti L. D. G., Cruz F., Gabbasov R., Klapp J., Ramírez-Velasquez J.,

2018, ApJ, 857, 40

Sigurdsson S., Phinney E. S., 1993, ApJ, 415, 631

Sills A., Bailyn C. D., 1999, ApJ, 513, 428

Sills A., Rieder S., Scora J., McCloskey J., Jaffa S., 2018, MNRAS, 477,

1903

Sollima A., 2008, MNRAS, 388, 307

Sormani M. C., Treß R. G., Klessen R. S., Glover S. C. O., 2017, MNRAS,

466, 407

Stahler S. W., 2010, MNRAS, 402, 1758

Tobin J. J., et al., 2016a, Nature, 538, 483

Tobin J. J., et al., 2016b, ApJ, 818, 73

Tokovinin A., 2017, MNRAS, 468, 3461

Wall J. E., McMillan S. L. W., Mac Low M.-M., Klessen R. S., Portegies

Zwart S., 2019, ApJ, 887, 62

Wall J. E., Mac Low M.-M., McMillan S. L. W., Klessen R. S., Porte-

gies Zwart S., Pellegrino A., 2020, submitted to ApJ

Wilcoxon F., 1945, Biometrics Bulletin, 1, 80

Winters J. G., et al., 2019, AJ, 157, 216

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 000, 1–15 (2020)


	1 Introduction
	2 Methods
	2.1 Simulating cluster formation with Torch
	2.2 Binary generation algorithm
	2.3 Implementing primordial binaries in Torch

	3 Simulations
	4 Binary properties
	4.1 Binary fractions
	4.2 Final binary properties
	4.3 Modification of primordial binaries
	4.4 Dynamical binary formation

	5 Results
	6 Discussion

