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ABSTRACT

Magnetic fields grow quickly even at early cosmological times, suggesting the action
of a small-scale dynamo (SSD) in the interstellar medium of galaxies. Many studies
have focused on idealized turbulent driving of the SSD. Here we simulate more realistic
supernova-driven turbulence to determine whether it can drive an SSD. Magnetic field
growth occurring in our models appears inconsistent with simple tangling of magnetic
fields, but consistent with SSD action, reproducing and confirming models by Balsara
et al. (2004) that did not include physical resistivity η. We vary η, as well as the
numerical resolution and supernova rate, σ̇, to delineate the regime in which an SSD
occurs. For a given σ̇ we find convergence for SSD growth rate with resolution of a
parsec. For σ̇ ' σ̇sn, with σ̇sn the solar neighbourhood rate, the critical resistivity
below which an SSD occurs is 0.005 > ηcrit > 0.001 kpc−1 km s−1, and this increases
with the supernova rate. Across the modelled range of 0.5–4 pc resolution we find that
for η < ηcrit, the SSD saturates at about 5% of kinetic energy equipartition, independent
of growth rate. In the range 0.2 σ̇sn ≤ σ̇ ≤ 8 σ̇sn growth rate increases with σ̇. SSDs in
the supernova-driven interstellar medium commonly exhibit erratic growth.
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1. INTRODUCTION

We here study the small-scale dynamo (SSD)
in the interstellar medium (ISM). SSD acts
at small eddy scales of turbulence, driving
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magnetic field growth at correspondingly short
timescales. The large-scale dynamo (LSD) with
much longer turnover times generates magnetic
fields ordered on kiloparsec scales. Hence, cap-
turing LSD alongside the faster growing modes
of SSD in simulations is computationally chal-
lenging. However, interaction between SSD and
LSD modes likely fundamentally determines the
evolution and structure of the magnetic field.
Many simulations of supernova- (SN)-driven

turbulence with realistic vertical stratification
(e.g., de Avillez & Breitschwerdt 2005; Piontek
& Ostriker 2007; Hill et al. 2012; Hennebelle &
Iffrig 2014) have no mechanism to induce LSD,
such as rotation and shear. Strong ordered mag-
netic field effects are modelled by imposition
of a background, typically uniform, magnetic
field. Some large-scale models do seek to in-
clude LSD (e.g., Korpi et al. 1999; Gressel et al.
2008; Hanasz et al. 2009; Wang & Abel 2009;
Pakmor et al. 2017; Gressel & Elstner 2020),
but show no SSD, or appear to find SSD within
the context of halo-disk scale flows (e.g., Rieder
& Teyssier 2016; Steinwandel et al. 2019), but
capture no LSD. Gent et al. (2013a, with addi-
tional analysis by Evirgen et al. 2017) appear to
include an SSD with an LSD. To confirm this
and determine its effect on LSD, we must un-
derstand the properties of the SSD.
Any magnetic noise produced by tangling of

a large-scale field will also grow exponentially
if an LSD is present. This noise can play an
important role in quenching the LSD. We need
to discriminate this effect from an SSD.
Previous experiments (e.g., Balsara et al.

2004, hereafter BKMM4; Balsara & Kim 2005;
Mac Low et al. 2005) examined the SN-driven
SSD. The limited resolution study of BKMM4

did not allow demonstration of solution conver-
gence. Furthermore, they imposed a uniform
background field and implemented no physical
resistivity or viscosity. We shall show that the

amplification of their field is a result of SSD ac-
tion and not just tangling of the field.
In this Letter we first compare the SSD to

tangling in an idealized simulation (Sect. 2).
We then describe our models of SN-driven tur-
bulence for demonstrating the action of SSD
(Sect. 3). Simulations use the Pencil Code1.
A broad resolution and parameter study allows
us to show numerical convergence and deter-
mine the critical resistivity for excitation of an
SSD, which we follow to saturation (Sect. 4).
This provides objective criteria for the action
of SSD in simulations (such as Gent et al.
2013a; Gressel & Elstner 2020; Steinwandel
et al. 2019). Finally, we conclude in Sect. 5.

2. DISENTANGLING THE DYNAMO

Previous SSD studies have examined Pm de-
pendence with stochastic nonhelical forcing, in-
cluding at high Mach number (e.g., Haugen
et al. 2003, 2004a,b; Federrath et al. 2011,
2014). Here we specifically seek to illustrate
differences between tangling and SSD. Nonheli-
cal random forcing is applied at wavenumber
kf/k1 = 8 to 2563 zone, 2π-periodic, isothermal
boxes with viscosity ν = 5 · 10−3. The lowest
wavenumber in the domain is k1 = 1 and the
largest is the Nyquist frequency k/k1 = 128.
The imposed uniform field has eB ' 6·10−22 eK ,
where eK is the time-averaged kinetic energy
density.
Two simulations are distinguished by use of

dimensionless resistivity η = 10−4 and η =
2 · 10−3. Respectively, these yield magnetic
Reynolds number Rm = 150, with magnetic
Prandtl number Pm = 50, exciting an SSD and
Rm = 7.4, with Pm = 2.5, inhibiting the dy-
namo so that amplification is limited to tangling
of the imposed field.

1 https://github.com/pencil-code
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at shocks. In Figure 2 we show comparative
slices of the magnetic energy and gas density
with and without resistive shock diffusion ζη.
With ζη > 0 (Fig. 2 b) magnetic energy is re-
duced in the remnant shell relative to Figure 2 a,
where compression actually enhances it. Since
the magnetic field is well resolved in either case,
as also shown by the magnetic energy spectra
below, and the simulation is numerically stable
without it, this extra artificial diffusion is un-
necessary.
In both models a concentration of magnetic

energy, marked with + in Figure 2, has below
average gas density. This snapshot reflects the
overall behaviour of the system, in which mag-
netic field amplification also occurs indepen-
dently of shock compression. As Figure 2 shows,
SN shock fronts do compress and amplify the
magnetic field, resulting in strong local and in-
stantaneous correlation of the field and density.
However, on global and long-term scale, this is
not the dominant mechanism for the dynamo,
which operates just as effectively in the non-
shocked, more diffuse regions, as is also indi-
cated by this figure. This is based on the am-
plification factor due to compression being es-
timated . 2, taken as density fluctuations to
power 4/3, while the magnetic energy is ampli-
fied by 4–6 orders of magnitude.
Unlike past experiments (Gent et al. 2013a,b,

2020), thermal diffusivity χ is also omitted, as
the artificial diffusivities chosen are adequate to
ensure numerical stability. The physical effects
of thermal conductivity can be expected to be
relevant only at the unresolved or marginally re-
solved Field length defined by Begelman & Mc-
Kee (1990, named after George Field, not the
magnetic field). Terms containing ν3, χ3 and η3
apply sixth-order hyperdiffusion to resolve grid-
scale instabilities (see, e.g., Brandenburg & Sar-
son 2002; Haugen & Brandenburg 2004), with
mesh Reynolds number set to be ' 1 for each
δx.

The simplified isothermal model considered in
Sect. 2 solves only Equations (1), (2) and (4),
without the shock-dependent diffusion or hyper-
diffusion terms, and while setting B = ∇×A+
Bimposed.
In the ISM simulations SNe are exploded at

uniform random positions at a Poisson rate σ̇

scaled by the solar neighborhood value σ̇sn '

50 kpc−3 Myr−1. Explosions inject Eth =
1051 erg thermal energy, except in dense regions,
where a proportion (< 5%) may be kinetic Ekin

(see Gent et al. 2020). Models with common σ̇

have the same timing and location of explosions.
Non-adiabatic heating Γ and cooling Λ(T ) are
included (Gent et al. 2013a) following Wolfire
et al. (1995) and Sarazin & White (1987).
To understand the effects of purely numeri-

cal diffusivity, we also run an ideal MHD model
with η = 0 and ν = 0. We determine how
low a physical resistivity η can be resolved by
varying it from 10−5 to 10−3 kpc km s−1 (units
assumed henceforth). We also test the effect of
Pm = ν/η, varying ν with η = 10−4 or varying η
with ν = 10−3. Our direct comparison with the
results of BKMM4 uses Pm = 2.5, apart from
one run using η = ν = 0.

4. RESULTS

4.1. Resolution and convergence

Figure 3 shows that numerical diffusion still
dominates at studied resolutions for resistivity
η = 10−4, as can be seen from the increasing
speed of the SSD with resolution, but that a
converged SSD solution emerges at η = 10−3

for parsec resolution. Saturation at around 5%
of eK appears to be a well-converged result. The
η = 10−3 models show false convergence (Fryx-
ell et al. 1991) of solutions with similar mag-
netic energy decay at δx ≥ 2. We note that
strong fluctuations in the characteristics of the
flow occur at the low σ̇ that we choose to avoid
thermal runaway (Li et al. 2015), with thermal
phases occupying changing fractional volumes
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saturates in the ISM at about 5%eK and grows
more rapidly with increasing SN rate.

4.2. Effective resistivity and Prandtl number

To understand the role of physical resistivity
η and viscosity ν on the SSD, we need to de-
termine the value at each resolution where they
exceed numerical diffusion in strength. Figure 5
shows that a physical resistivity of η = 10−5

(panels a1, a2) makes no impact on field growth
at σ̇ = 0.2σ̇sn, while η = 10−3 clearly dominates
over numerical resistivity at all resolutions. The
exact value of the minimum physical resistivity
does seem to vary not just with δx but also with
σ, as can be seen by comparison of the η = 10−4

and 10−3 cases (panels c1 to d2).
When we consider eB for the models with only

numerical viscosity (Fig 5 a, c, d), η ≥ 10−3 ini-
tially appears sufficient to suppress SSD. At low
resolution this remains so for σ̇ = 0.2σ̇sn (pan-
els c1 and d1), apart from a transitory surge
near 100Myr for δx = 2. However, for σ̇ = σ̇sn

within 100Myr SSD is evident. Only, η = 0.005
dampens SSD (panel d2).
The kinetic energy spectra in Figure 4 may

show the resolution of this contradiction. They
display a bottleneck effect (Falkovich 1994;
Haugen et al. 2003), an energy cascade less effi-
cient than k−5/3 leading to an accumulation of
power and then rapid dissipation at high k. This
bottleneck shifts to lower k as δx increases (pan-
els a–c) or σ̇ decreases (panel d). The deeper
into the magnetic energy spectrum this peak ex-
tends, the more scales available for transfer to
magnetic energy and the more efficient the SSD.
The critical resistivity above which SSD is sup-
pressed, therefore, increases with σ̇, within the
range considered. Even at σ̇ = 0.2, for η = 10−3

and δx ≤ 1 SSD occurs after 20 – 40Myr.
Resistivity contributes to Rm, which is ex-

pected to control the onset of the SSD and af-
fect growth rate. We therefore anticipate that
lower η would correlate with higher growth rate
(Schekochihin et al. 2007). This mainly is the

case when we compare models with δx ≤ 1 at
concurrent stages in their evolution. However,
in Figure 5 (c2) there are some anomolous pat-
terns, where higher η models overtake lower η
models, e.g., at 80Myr. To explore this fur-
ther we include experiments with δx = 1 and
ν > 0, and examine the effect of Pm on the SSD
(Figure 5 b1, b2). We identify each model by
Pm = ν/η, but due to the inclusion of shock and
hyper diffusivities, the effective Pm and, indeed,
Rm vary substantially across space and time.
In b1 we include one run with shock resistivity,
ζη 6= 0 (olive, dashed), which is referenced in
Figure 2. The dynamo is slower and saturates
lower than the comparative model Pm = 10
(blue, solid). This is consistent with more ef-
ficient dissipation of compressed field.
Plotted in panel b2, where we fix η = 10−4

and vary ν, initial growth of eB is faster for
Pm = 0.1 than for higher values. This is a
regime less conducive to exciting the SSD than
the high Pm regime typical of the ISM (Hau-
gen et al. 2004a). A plausible explanation may
be that the higher fluid Reynolds number, Re,
could facilitate the dynamo. We therefore set a
physical viscosity ν = 10−3 and vary η. Plotted
in panel (b1) the growth rates mainly conform
to our expectations, except for Pm = 5 between
20 and 40Myr. We confirm that η ≥ 10−2.3

suppresses SSD at σ̇ = 0.2σ̇sn. While the sat-
uration level is insensitive to Pm, with ν fixed
(panel b2), the saturation level increases with
Pm for η fixed (panel b1), indicating saturation
level is sensitive to Re. We also include two
of these plots in panel (a2) for comparison to
ν = 0. Comparing the kinetic energy spectra
(magenta) models in Figure 4 (b2, c2), ν alters
very little.
We have shown that the critical resistivity

for SSD in the ISM with a low SN rate is
10−2.3 > ηcrit > 10−3 and that this increases
with increasing σ̇ within the range considered.
Although higher Rm and Pm generally increase
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as k → 0, a signature of tangling of the im-
posed field. However, as the magnetic field
grows much larger than the imposed field, this
signature disappears and the peak shifts to high
k, suggesting a healthy SSD.
We have demonstrated that the magnetic field

amplification in BKMM4 is due to SSD. Tan-
gling of the imposed field is initially present, but
is dominated by SSD. Our other models with
only a weak seed field confirm that an imposed
field is not required.

5. CONCLUSIONS

Through the most extensive resolution and
parameter study to date, we demonstrate in
this Letter that SSD likely occurs easily in the
ISM. The critical resistivity is 0.005 > ηcrit &

0.001 kpc km s−1 for supernova rate σ̇ = 0.2σ̇sn

and increasing over the range considered σ̇ ∈

(0.2σ̇sn, 8σ̇sn). The SSD saturates at about 5%
of the equipartition kinetic energy density. This
level is insensitive to Pm, but increases with in-
creasing Re. We find that the conventional ap-
proach from dynamo theory of categorising the
turbulence according to Rm based on a forcing
scale `, mean random velocity urms and resis-
tivity η is inadequate for such a complicated
system.
We show that simulations with insufficient res-

olution can appear to converge to a false solu-
tion lacking dynamo activity (Fig. 3b). This can
occur because these simulations are not scale in-
dependent. The SN energy input and the phys-
ically motivated ISM cooling processes impose
length and time scales that must be adequately

resolved. We obtain convergent results for SSD
with grid resolution δx . 1.
We confirm, by comparing models with and

without an imposed magnetic field, that the
field amplification obtained in SN-driven ISM
turbulence by Balsara et al. (2004) was evidence
of an SSD and not only due to tangling of their
imposed field. A seed field of less than 1 nG can
be amplified to saturation at microgauss levels
within about 10Myr (Figure 3).
Gressel et al. (2008) and Gressel & Elstner

(2020) have δx = 8.3 and 6.7 pc, respectively,
and η ' 10−2.2 kpc km s−1, which appears
to exclude an SSD. Gent et al. (2013b) with
δx = 4 pc applied η ' 10−3.1 kpc km s−1, which
would support SSD for σ̇ ' σ̇sn. We can now
construct LSD experiments to explore how SSD
impacts the onset of LSD, critical Ω, and de-
pendence on σ̇.
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