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1 Introduction

A central question in holography [1–4] is to understand how spacetime geometry emerges

from the dual field theory. The standard discussions of entanglement wedge reconstruction

do not address this since they depend on a choice of code subspace which represents small

fluctuations about a given semiclassical bulk geometry (or perhaps a finite number of such

geometries) [5]. The idea of geometry emerging from entanglement [6] has led to various

attempts to determine the bulk metric from measures of entanglement [7–14], in particular

via the geometrization in the bulk of the von Neumann entropy of boundary regions [15, 16].

Recently, it has been shown that a bulk geometry (if it exists) is uniquely determined by

second order variations of the area of two-dimensional extremal surfaces anchored to a

certain family of regions on the boundary [17].1

In [20, 21] a very different approach toward reconstructing the bulk geometry was pre-

sented. This involves special cross-sections of the conformal boundary of an asymptotically

Anti-de Sitter (AdS) spacetime. These cross-sections are called light-cone cuts, and can

1These areas correspond to the entanglement entropy of boundary regions when the bulk is four-

dimensional. In other dimensions, they are related to expectation values of Wilson loops in some cases, but

their general holographic interpretation is not well understood [17–19].
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be thought of as the intersection of the past (or future) light cones of bulk points with the

boundary.2 (A more precise definition will be given in the next section.) It was shown

that knowledge of these light-cone cuts is sufficient to determine the conformal metric in

the bulk, i.e. the metric up to an overall local rescaling, for most points causally related to

the boundary.3 It was further shown how to determine these light-cone cuts from singular-

ities in certain time-ordered Lorentzian correlators in the dual field theory which originate

precisely from bulk locality [27, 28].

The results in [20, 21], as well as those which employ entanglement entropy, apply

to spacetimes which are asymptotically AdS. However, the most well studied models of

holography require spacetimes to approach AdSn×Sk. The goal of this paper is to extend

the analysis of light-cone cuts to these more general spacetimes. (We will always assume

n > 2, since for n = 2 the light-cone cut consists of isolated points and does not determine

the conformal metric.) It is easy to see that a naive, straightforward attempt to apply

light-cone cuts to spacetimes with compact extra dimensions will fail to determine the

bulk geometry. However, we will show that there is a generalization of light-cone cuts that

we call “extended cuts”, that indeed determine the conformal metric of the full higher-

dimensional spacetime. We will then propose a method for obtaining these extended cuts

from the dual field theory.

The basic idea behind our extended cuts is the following. Every null geodesic which

reaches the boundary of AdS approaches a fixed point on Sk. This is simply because a

geodesic with asymptotic motion on the sphere acts like a massive particle in AdS and

will not reach the boundary. Thus for every point on our light-cone cut, we can associate

a point on Sk. Our extended cut is just the original light-cone cut C(p) together with a

map C(p) → Sk specifying the asymptotic location on Sk of the null geodesics from p to

C(p). We show in section 3 that this map is precisely the extra information that is needed

to reconstruct the full bulk conformal metric of generic spacetimes (if the spacetime has

symmetries that asymptotically act only on the internal space, this approach may fail).

In section 4, we propose a way to determine the extended cuts from the dual field theory,

using correlation functions involving the operators dual to the Kaluza-Klein modes of the

higher-dimensional bulk field. Our approach does not use any particular property of Sk

and should work equally well for a general compact internal space.

To completely determine the bulk geometry, one also needs to know the conformal

factor. This remains an open problem in general, however it is known how do to this for

some special asymptotically AdS spacetimes [21].

2 Review of light-cone cuts

In this section we review the construction in [20, 21] for obtaining the conformal metric

from the dual field theory. Two metrics g and ḡ are conformally related if there is a positive

2Analogous cross-sections of null infinity in asymptotically flat spacetimes were first introduced in [22,

23], and shown to encode the conformal metric of such spacetimes in [24]. However, holography or the

presence of internal spaces played no role in these discussions.
3An explicit implementation of the light-cone cut approach to bulk reconstruction was explored in [25].

The light-cone cut formalism was also used in [26] to covariantize the notion of bulk depth and relate it to

energy scales in the dual field theory.
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function f such that ḡµν = f2gµν . Points in spacetimes with conformally related metrics

clearly have the same light cone, but one does not need to know the entire light cone (or

even an open subset of it) to determine the conformal metric at those points; a sufficient

number of null vectors will do. This can be seen as follows. In a D-dimensional spacetime,

take D linearly independent null vectors `i at a point p. Since the `i all have zero norm,

the conformal metric at p is fixed by their inner products. To determine them, take a new

collection of null vectors, ηk, and expand them in terms of the null basis `i:

ηk =
∑
i

Mki`i. (2.1)

Using the fact that each ηk has zero norm, we obtain a set of algebraic equations for the

inner products `i · `j :

0 = ηk · ηk =
D∑

i,j=1

MkiMkj(`i · `j) no sum on k. (2.2)

While it is not always true that such equations have a solution, we are guaranteed a solution

here precisely because these equations describe a Lorentzian metric which by construction

exists. By choosing at least D(D − 1)/2 vectors ηk, the solution will be unique up to an

overall constant rescaling of all inner products. This determines the conformal metric at

p. Repeating this local construction at each point in a spacetime region U determines the

conformal metric on U .

Our goal is to determine these null vectors at p from boundary data. Due to gravita-

tional lensing, the light cone of a bulk point p can develop caustics. When this happens,

some null geodesics reach points that are timelike related to p. Since we want boundary

points that are null-related to p we proceed as follows.

Let (M, g) be an asymptotically locally AdS spacetime (without compact extra dimen-

sions) with conformal boundary ∂M , and denote its conformal compactification by (M̄, ḡ).

Recall that the causal past J−(p) of a point p ∈ M is the set of points in M which can

be reached by a past-directed causal curve starting at p. J+(p) is defined similarly with

“future” replacing “past”. A spacetime is said to be AdS-hyperbolic if there exist no closed

causal curves and for any two points p, q ∈ M , the set J+(p) ∩ J−(q) is compact in the

conformally compactified spacetime M̄ [29]. We will assume our spacetime is C2 differen-

tiable, maximally extended, connected, and AdS-hyperbolic. The future/past light-cone

cut C±(p) of a point p ∈ M is defined as the intersection of the boundary of the causal

future/past of p, ∂J±(p), with the conformal boundary ∂M , i.e.

C±(p) ≡ ∂J±(p) ∩ ∂M. (2.3)

This is illustrated in figure 1. We will use C(p) to denote either the future or past cut of a

bulk point p. Light-cone cuts are not differentiable everywhere since they can have cusps

due to caustics. However, it can be shown that the cusps form a set of measure zero within

the cut (cf. proposition 1 in section 3.2).

It was shown in [20] that light-cone cuts satisfy the following properties:

1. C(p) is a complete spatial slice of the conformal boundary.
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C−(p)

J+(p)

C+(p)

p
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p1
p2

p3
p4

p5

Figure 1. In the left figure, the shaded region illustrates the future and past light cones ∂J±(p)

of a bulk point p ∈ M in causal contact with the boundary in an asymptotically AdS spacetime

M . Their intersections with the conformal boundary ∂M define the future and past light-cone cuts

C±(p), which are complete spatial slices of ∂M (cf. properties 1 and 2). The right figure shows how

a sequence of null-related bulk points {pi ∈ M} corresponds to a set of light-cone cuts which all

intersect at a single point r ∈ ∂M (cf. property 4).

2. There is a one-to-one, onto map from past light-cone cuts to points in the future of

the boundary, even inside black holes. (A similar statement holds for future cuts.)

3. Two distinct cuts cannot agree on an open set.

4. If C(p) and C(q) intersect at precisely one point, and both cuts are C1 at this point,

then p and q are null-separated.

Using these properties, it is easy to construct the bulk conformal metric given the

light-cone cuts. Property 2 says that the set of past cuts represents all points to the future

of the boundary. Property 4 says that given a light-cone cut C(p), the set of cuts C(q)

which are tangent to C(p) at a regular point r ∈ C(p) represents a null curve passing

through p, as illustrated in figure 1. Repeating this for D(D+ 1)/2 cut points r allows one

to reconstruct the conformal metric at p.4 It is clear that a basis of null vectors `i at p

can be obtained this way, since the light-cone cut C(p) enables one to reconstruct an open

subset of the light cone at p.

The second half of the construction is a procedure for determining C(p) from the dual

field theory without using the bulk geometry. This is achieved using the notion of bulk-

4One needs D points for the basis vectors `i, and D(D − 1)/2 for the null vectors ηk used to determine

the inner products.
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Figure 2. Position-space Landau diagram for a boundary correlator with a bulk-point singularity

from p ∈ M used to obtain light-cone cuts from the dual field theory. For a D-dimensional bulk,

the D boundary points in the future already specify p as the unique bulk point null-related to all

of them. The two points in the past can be rotated around maintaining momentum conservation at

the interaction vertex (and hence the divergence in the correlator) to trace out the light-cone cut.

point singularities, first argued for in [27] and later studied in [28].5 Given D boundary

points in a D-dimensional spacetime, the only subset of M which can be null-related to

all of them are individual points. It was shown in [27, 28] that a time-ordered Lorentzian

(D+1)-point correlator on the boundary of AdS is singular when there exists a momentum-

preserving scattering point in the bulk that is null-related to all of them (i.e. if one can

draw a position-space Landau diagram with null lines in the bulk).6 This is the case if, for

example, one chooses two points in the past cut x1, x2 ∈ C−(p), and D − 1 points in the

future cut xi ∈ C+(p) of a bulk point p, in a manner similar to figure 2. Then, physically,

high energy quanta from x1 and x2 can scatter at p conserving energy-momentum and send

high energy quanta to the remaining xi in the future, which results in a singular correlator.

In special cases, only derivatives of the correlator will diverge and the correlator itself may

remain finite. However, for most operators, the correlator itself will diverge and we will

use such operators below.

To use this to find the light-cone cuts we need two modifications. First, we consider

correlation functions in certain excited states, not the ground state, so the dual spacetime

5These are singularities which appear in correlators for holographic states of the dual field theory at

large gauge group rank N and large ’t Hooft coupling λ. At finite N or finite λ, these singularities are

resolved and only expected to manifest themselves as resonances with a holographic origin [28, 35]. Large

N and λ are assumed in what follows.
6Even though a single bulk point p can be fixed by the condition that it is null-related to D boundary

points, one needs at least one extra point in the correlator to ensure that energy-momentum is conserved at p.
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is only asymptotically locally AdS and not pure global AdS. Second, we consider (D+ 2)-

point correlators, with two points x1 and x2 in the past and D points x3, . . . , xD+2 in the

future (see figure 2). In this case, if there is a bulk point p null-related to all the xi to the

future, it will remain fixed if we move the ones in the past. Starting with a configuration of

points where the correlator diverges, we can thus move x1 and x2 in a coordinated manner

keeping the correlator singular to trace out the past cut of p.7

3 Extended light-cone cuts

In this section we extend the discussion of light-cone cuts to spacetimes that have a compact

space asymptotically such as AdSn × Sk. The presence of this compact space implies that

most of the null geodesics on the light cone of a bulk point p end up crossing other null

geodesics and entering the interior of J(p). Only a small subset of these null geodesics stay

on the boundary of J(p) and form the light-cone cut. To illustrate this, consider the three-

dimensional flat spacetime ds2 = −dt2 +dz2 +dχ2, with χ periodically identified. Starting

at any point p, all null geodesics with χ̇ 6= 0 will go around the S1 and reach points timelike

related to p. The only ones that stay on ∂J(p) are those with χ̇ = 0. More generally, for

spacetimes locally asymptotic to AdSn×Sk, the light-cone cut has bulk codimension k+ 2

rather than 2. This means that one cannot recover an open subset of the light cone of a

bulk point p. Fortunately, as reviewed above, one does not need an open subset of the light

cone to recover the conformal metric at p. All one needs is a basis of null vectors and some

additional null vectors. As we discuss below, this can be obtained in generic spacetimes

from a simple generalization of the light-cone cut.

For asymptotically locally AdSn×Sk spacetimes, one way to understand the reduction

in the size of the light-cone cut is by noting that the conformal boundary of AdSn × Sk

is degenerate, in the sense that it is codimension k + 1 rather than 1 [30]. Indeed, the Sk

factor of the direct product shrinks to zero size and leaves a boundary manifold ∂M which

is locally isometric to the conformal boundary of just the AdSn part.

The presence of a degenerate boundary turns out to invalidate most results proven

in [20, 21]. Fortunately, it is possible to recover them with appropriate generalizations of

the framework. To motivate the solution, let us first understand the complications that

arise when the boundary is degenerate. In particular, consider the following two results

from [20] (cf. properties 3 and 4 reviewed in section 2) and counterexamples to them already

in the simple case of global AdSn × Sk:

• C(p) ∩ C(q) contains a nonempty open set if and only if p = q: for any two points p

and q on AdSn×Sk with the same global coordinates on the AdS part one has C(p) =

C(q), even if they have different coordinates on the sphere. More precisely, thinking

of the compactification space Sk as a fiber of a trivial bundle π : AdSn×Sk → AdSn,

7One could actually work with D+ 1 points and still move one vertex in a limited way to trace out part

of the light-cone cut, but one has more freedom to trace out the entire cut by adding an additional point.

One must also minimize the time difference between the points in the past and future to avoid caustics

along the null geodesics from the bulk point to the boundary.
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this means that C(p) = C(q) for any p, q ∈ AdSn×Sk with the same base space point

π(p) = π(q), implying that light-cone cuts do not distinguish points on the fibers.

• If C(p) and C(q) intersect at precisely one point, and both cuts are C1 at this point,

then p and q are distinct and null-separated : to falsify this claim, consider an arbitrary

point p ∈ AdSn × Sk and another null-separated point q ∈ ∂J(p) such that the null-

geodesic between p and q reaches ∂M at some point r ∈ C(p)∩C(q). It is easy to see

that their light-cone cuts will indeed intersect precisely only at r, and that both cuts

will be C1 at this point (since the spacetime is pure AdSn). Now take another point

q̃ which is at the same AdS location as q, but at a different point on the sphere. Since

the metric on the sphere is Euclidean, p and q̃ will be spacelike-separated. But from

the counterexample to the previous claim, one still has C(q̃) = C(q). Altogether, this

shows that C(p) and C(q̃) intersect at precisely one point, both cuts are C1 at this

point, but p and q̃ are spacelike-separated, thus contradicting the statement above.

As anticipated, the existence of these counterexamples can be traced back to the fact

that the light cone ∂J(p) of a bulk point p ∈ M degenerates asymptotically in essentially

the same way the conformal boundary does. More precisely, suppose a boundary observer

wanted to resolve the compact dimensions by introducing a regulated boundary ∂Mε at a

finite UV cutoff 0 < ε � 1, with limε→0 ∂Mε = ∂M . On ∂Mε, the dimensions of Sk are

restored and one has codim ∂Mε = 1, the dimensionality only dropping by k in the strict

limit ε→ 0. Similarly, intersecting ∂J(p) with the regulated boundary ∂Mε, one sees that

the corresponding regulated light-cone cut Cε(p) = ∂J(p) ∩ ∂Mε is now bulk-codimension

2, the dimensionality only decreasing by k in the strict limit ε→ 0.

Crucially, under the pertinent assumptions, all results proven in [20, 21] apply now to

regulated light-cone cuts. However, because the dual field theory does not gain any dimen-

sions, we need to find a way to retain this information in the limit ε→ 0. Unsurprisingly,

this will require supplementing the standard cuts C(p) with some information from Cε(p).

Precisely how the ε → 0 limit of Cε(p) can be used to extend C(p) sufficiently for the

light-cone cut reconstruction to succeed is the subject of this section.

3.1 Asymptotics of spacetimes with degenerate boundaries

The first step is to have an elementary understanding of how null geodesics behave asymp-

totically in spacetimes with an internal space. Henceforth, the bulk spacetime M is as-

sumed to be asymptotically locally isometric to AdSn× Sk, whose metric in global coordi-

nates reads

g = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
n−2 + `2dΩ2

k where f(r) = 1 +
r2

`2
. (3.1)

Here ` is the radius of curvature of AdSn, and the shorthand Ωd is used to collectively refer

to all coordinates on Sd. Define dimensionless time τ and radial ρ coordinates via τ = t/`

and r = ` tan ρ, so that (3.1) becomes

g =
`2

cos2 ρ

(
−dτ2 + dρ2 + sin2 ρ dΩ2

n−2 + cos2 ρ dΩ2
k

)
. (3.2)
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Since null geodesics are only sensitive to the causal structure, which depends just on the

conformal class of the metric, consider a Weyl rescaling g 7→ ḡ = ω2g, with `ω = cos ρ.

This gives

ḡ = −dτ2 + dρ2 + sin2 ρ dΩ2
n−2 + cos2 ρ dΩ2

k, (3.3)

which is simply time cross Sn+k−1. Noting that the conformal boundary ∂M corresponds

to the limit ρ → π/2, it is now evident how the induced metric on Sk degenerates in

the strict asymptotic limit. In fact, this is no different from the way in which the metric

degenerates at the origin ρ = 0 in these coordinates. More explicitly, letting ρ = π
2 − ε with

0 < ε� 1 and expanding locally in a neighborhood of ∂M , one finds

ḡ = −dτ2 + (1− ε2/2) dΩ2
n−2 + dε2 + ε2 dΩ2

k +O
(
ε4
)
. (3.4)

The (ε,Ωk) sector above provides a convenient chart on the space orthogonal to ∂M . The

AdSn sector of (3.3) takes the familiar form of one half of the Einstein static universe, and

the metric induced on ∂M ,

ḡ∂M = −dτ2 + dΩ2
n−2, (3.5)

reveals the usual boundary topology R×Sn−2 of conformally compactified AdS spacetimes.

The leading behavior of null geodesics in M near the conformal boundary can be

extracted from g in (3.2) in the limit ρ → π/2. Since null geodesics are conformally

invariant, we can actually work with (3.3). Let γ be a null geodesic curve with affine

parameter λ and tangent vector field N = γ̇. The Killing symmetries of (3.3) give rise

to several conserved quantities along γ. If we choose coordinates on the spheres so that

the geodesic is moving in the ϕ direction on Sn−2 and ψ direction on Sk, then we get the

following conserved charges:8

E = τ̇ , Ln−2 = sin2 ρ ϕ̇ and Lk = cos2 ρ ψ̇, (3.6)

One can fix an arbitrary overall factor in N by setting E = ±1, where the sign determines

the time orientation. The general asymptotic form of N can thus be written

Na = ±(∂τ )a + ρ̇ (∂ρ)
a +

Ln−2

sin2 ρ
(∂ϕ)a +

Lk
cos2 ρ

(∂ψ)a, (3.7)

where the null condition N2 = 0 constrains ρ to obey

ρ̇2 = 1− L2
n−2

sin2 ρ
− L2

k

cos2 ρ
. (3.8)

The limit ρ→ π/2 in (3.8) makes it immediately clear that γ can only reach ∂M if Lk = 0.

This means that null geodesics only reach the conformal boundary if they approach a fixed

point on Sk at infinity. This is easily understood from the perspective of Kaluza-Klein

reduction, where a non-zero Lk would physically correspond to a massive test particle on

the dimensionally-reduced spacetime, which of course cannot reach the conformal boundary.

8These are only conserved charges in global AdSn × Sk, and will not actually be conserved along γ on

M in general. More appropriately, these quantities should be thought of as the asymptotic charges carried

by γ as it reaches ∂M .
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r

∂M
N

γ

N̂⊥

Figure 3. Illustration of the tangent space normal to the conformal boundary at some r ∈ ∂M .

The vertical line represents the conformal boundary ∂M , and the normal plane corresponds to the

radial and Sk bulk dimensions. A null geodesic γ reaches ∂M with future-directed tangent vector

N . The unit-norm orthogonal projection of this vector N̂⊥ gives a point on Sk which corresponds

to the asymptotic location of γ on the compact space.

Expanding about ∂M as in (3.4), the asymptotic form of N becomes

Na = ±(∂τ )a −
√

1− L2
n−2 (∂ε(Ωk))

a + Ln−2 (∂ϕ)a +O
(
ε2
)
, (3.9)

where the notation ∂ε(Ωk) is introduced to make it explicit that the direction of the radial

vector ∂ε on the (ε,Ωk) sector is parameterized by the angular coordinates Ωk on the

asymptotic Sk, like in ordinary spherical coordinates. The corresponding parametric form

of its asymptotic integral curve is thus, to leading order,

γ(ε) =

(
τ∞ ∓ ε, π

2
−
√

1− L2
n−2 ε, ϕ

∞ − Ln−2 ε, Ω∞k

)
+O

(
ε2
)
, (3.10)

where coordinates with superscripts ∞ denote asymptotic values and ∂M is reached at

ε = 0. Note that the limiting Ω∞k will always be well defined despite the fact that the

spherical coordinate system (ε,Ωk) degenerates at its origin ε = 0. In particular, Lk = 0

implies that ∂ε(Ωk) = ∂ε(Ω∞k ) in (3.9).

3.2 Definition of extended light-cone cuts

In order to recover the higher-dimensional bulk conformal metric, we will need the point

on Sk associated with the null geodesic going from p to C(p). Since Sk shrinks to zero size

on the boundary, we will use the ε → 0 limit of ∂ε(Ω∞k ). The latter can be characterized

geometrically as the unit vector N̂⊥ ∈ Rk+1 along the projection of the null tangent vector

N orthogonal to ∂M . As a unit vector in a (k + 1)-dimensional vector space, one can

identify N̂⊥ with a point on Sk, the coordinates of which are Ω∞k (see figure 3).

Unfortunately, more than one null geodesic may connect p to C(p), so the assignment

of a point on Sk may not be unique. This motivates the following definition:

Definition 1 (Regular light-cone cut point). A regular light-cone cut point r ∈ C(p) for

some bulk point p ∈ M , is a cut point such that there exists a unique null geodesic from

p to r.

– 9 –
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It is tempting to think of a point r that fails to be regular as belonging to some caustic

on the light cone, as is the case in spacetimes without internal spaces. While this will

commonly be true here too, one should bear in mind that the null geodesics that connect p

and r might actually stay at finite proper distance apart on Sk, only coinciding strictly at

the conformal boundary. If this happened to be the case for all null geodesics connecting

p to r, these points would not be conjugate points, and thus it would not be correct to

think of r as arising from some bulk caustic. To account for this subtlety, it will be useful

to dispense with the notion of caustics and use only what happens to be relevant from the

boundary perspective in identifying whether a cut point is regular. Two null vectors N1

and N2 at r clearly define inequivalent null geodesics if and only if one is not a rescaling

of the other. Hence the failure of a light-cone cut point r ∈ C(p) to be regular can be

characterized by the existence of at least two null geodesics γ1 and γ2 from p to r with

respective tangent vector fields N1 and N2 satisfying (N1 ·N2)r 6= 0. It will thus be intuitive

to refer to a non-regular cut point as a cusp point.

Let G(p) ⊆ C(p) be the subset of regular points in the light-cone cut of p ∈ M . On

this subset, there exists a well-defined map Φ : G(p)→ Sk associating a point on the unit

k-sphere to every regular point. Explicitly, as remarked above, this map may be written

Φ(r) = N̂⊥r , (3.11)

where an isomorphism between the unit Sk and the space of (k + 1)-dimensional unit

vectors is implied (see figure 4). In contrast, there is no guarantee that an analogous

map on the set of cusp points E(p) ≡ C(p) rG(p) would be well-defined due to potential

multi-valuedness on Sk.

Definition 2 (Extended light-cone cut). The extended future/past light-cone cut C±(p) of

a point p ∈M is defined on the set of regular points G±(p) ⊆ C±(p) as

C±(p) =
⋃

r∈G±(p)

(r,Φ(r)) .

These extended cuts C(p) may be thought of as a generalization of the standard cuts C(p)

where every suitable point, namely every r ∈ G(p), is further endowed with the point on

Sk at which the null geodesic from p to r ends up (see figure 4).

Since the reconstruction strategy relies on the existence of regular points on which the

map (3.11) is defined, it is important to check whether G(p) contains sufficiently many

points at one’s disposal. An important step in this direction is accomplished by the follow-

ing proposition, which as proven in appendix A and applies to light-cone cuts in spacetimes

with degenerate boundaries:

Proposition 1. Every light-cone cut C(p) is differentiable everywhere except on a set of

measure zero.

A cut C(p) can be non-differentiable at r only if there is more than one null geodesic

from p to r. So any point r at which C(p) fails to be differentiable will be a cusp point

r ∈ E(p), and thus the set of all non-differentiable cusp points is of measure zero in C(p).
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r1
C−(p)

r2

p

Ω1

Ω2

Φ

Figure 4. The map Φ defined in (3.11) takes (regular) points in the cut C(p) of a point p ∈ M
and maps them to Sk. For instance, the blue segment between points r1, r2 ∈ C−(p) maps to the

blue segment between points Ω1,Ω2 ∈ Sk.

Since there may be cusp points where C(p) is differentiable, this is not enough to

conclude anything about the measure of E(p) ⊆ C(p). However, differentiability at cusp

points is only possible if all geodesics from p to r happen to have tangent vectors at r with

the same normalized projection onto ∂M . Fortunately, given one vector, such a condition

on the second is satisfied only by a set of measure zero and thus the set of all differentiable

cusp points is expected to be of measure zero in E(p).

Putting together the conclusions of the last two paragraphs, one expects that the union

of all differentiable and non-differentiable cusp points, which is nothing but the set of all

cusp points E(p), is of Lebesgue measure zero as a subset of C(p). This implies that its

complement, i.e. the set of all regular points G(p), is of full measure, everywhere dense and

that its closure Ḡ(p) = C(p).

The key property of the extended cut that we will use is the following:

Proposition 2. Each point (r,Φ(r)) on the extended cut C(p) determines the unique null

geodesic from r to p.

This result is proven in appendix A and provides the connection to previous results

in [20, 21].

3.3 Recovering the bulk conformal metric from extended cuts

The following results apply to standard light-cone cuts C(p) and their proofs are identical

to those in [20], so they are omitted:9

Proposition 3. C(p) is a complete spatial slice of ∂M .

Proposition 4. For any p ∈ J±[∂M ], there exists precisely one past/future cut C∓(p).

9These results correspond to parts (1) and (2) of the proposition in [20].
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r

C−(p)

C−(q)

p

q

C−(q)

C−(p)Φ(r)

Φ

Figure 5. By theorem 1, two extended cuts C−(p) and C−(q) intersect at precisely one point

(r,Φ(r)) only if they correspond to distinct, null-related points p, q ∈ M . As illustrated, this

requires both that their standard cuts C(p) and C(q) intersect at precisely one point r ∈ ∂M , and

also that their images under the map Φ intersect precisely at Φ(r) ∈ Sk.

The following results, in contrast, are generalizations of results in [20] which now apply

to extended light-cone cuts (see appendix A for proofs):10

Proposition 5. C(p) ∩ C(q) contains more than one point if and only if p = q.

Theorem 1. If C(p) ∩ C(q) contains exactly one point, then p and q are distinct and

null-related.

Actually, a slightly stronger version of theorem 1 is proven in appendix A. The idea of

the proof is simply that the common point on both extended cuts defines an ingoing null

geodesic that must go through both p and q, and hence they must be null related.

From proposition 4, the extended past cuts provide a copy of the space J+[∂M ].

From theorem 1, we can determine a class of null directions at each point p ∈ J+[∂M ],

by looking for extended cuts C−(q) which intersect C−(p) at precisely one point. This

situation is depicted in figure 5. One cannot recover all null directions at p but only those

corresponding to null geodesics which stay on ∂J−(p). To obtain the conformal metric,

one needs a basis of null directions. So the key question is whether the null directions we

can reconstruct form a basis. This is not obvious since the tangent space at p is n + k

dimensional, and we only have access to an n − 2 dimensional space of null directions

associated to points of C(p). For instance, the answer would be negative in a spacetime

which is globally a product such as AdSn × Sk, since C(p) would yield null geodesics that

are everywhere orthogonal to Sk. However, for a generic spacetime without any symmetries

acting only on the internal space asymptotically, one expects the n−2 dimensional space of

null geodesics corresponding to C(p) to span the tangent space, and not all be orthogonal to

10These results are analogous to (a stronger version of) part (3) of the proposition and theorem 1 in [20].
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any vector at p. Hence we expect that one can generically construct a basis of null vectors

`i at p. One can then choose the additional null vectors ηk and determine the conformal

metric as described in section 2.

4 Data from the dual field theory

In the present context, there is no obstruction to obtaining the standard light-cone cuts

from the perspective of the boundary theory via the method reviewed in section 2 and

originally presented in [20, 21].11 Nevertheless, as observed in section 3, knowledge of the

cuts C(p) is not sufficient for the reconstruction of the higher-dimensional bulk metric when

the latter has a degenerate conformal boundary. The additional information needed for

such reconstruction to succeed is encoded in the extended light-cone cuts C(p) and given

by the map Φ : G(p)→ Sk from regular cut points to the asymptotic k-sphere. The main

focus of this section is to address the problem of how to obtain this extra ingredient solely

from the dual field theory. We will propose a procedure to recover this map to the sphere

using only field theory correlators.

4.1 Higher-dimensional bulk-to-boundary propagator

From the bulk perspective, the action that describes some matter field ϕ is naturally

defined on all D = n+ k dimensions of the bulk spacetime. Accordingly, the bulk-to-bulk

propagator G takes as input the coordinates X of bulk points in some higher-dimensional

chart, i.e. X ∈ RD.12 In particular, if ϕ obeys an equation of motion of the form PXϕ(X) =

J(X) for some source term J , then G is defined as the Green function of PX ,

PXG(X, X̃) =
1√

det g
δD(X − X̃). (4.1)

Although it is a natural object, G rarely appears in the literature (see [32] for an exception

in global AdSn × Sk). Instead, propagators are commonly obtained after dimensionally-

reducing spacetime and Kaluza-Klein expanding on the compact dimensions. The result

is an infinite family of simpler propagators associated to the infinite Kaluza-Klein tower

of modes which, holographically, correspond to operators of definite conformal dimension.

However, in a completely general spacetime, there is no well-defined way of discriminat-

ing the compact dimensions far from the conformal boundary. Hence, one cannot hope

to learn much about the higher-dimensional spacetime geometry from the perspective of

boundary correlators unless one understands how all such Kaluza-Klein mode propagators

combine into the higher-dimensional propagator G and its bulk-to-boundary analogue K.

The goal of this section is to define and understand these higher-dimensional propagators

and demonstrate how they may be used to obtain the map Φ for the construction of the

extended cuts.

11Notice, though, that the required number of correlator insertions to obtain a bulk-point singularity now

needs to account for the bulk dimensions, not the boundary dimensions. In other words, one needs at least

n+ k + 1 operators, not just n+ 1. See section 4.3 for more details.
12In what follows, it suffices to work with retarded and advanced propagators. Under an appropriate

notion of global or AdS hyperbolicity, these are well-defined and unique in general time-dependent space-

times [31].
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Although G is a perfectly well-defined object, it turns out to be nontrivial to obtain an

explicit, compact expression for it for a general minimally-coupled Klein-Gordon scalar field

even in global AdSn × Sk. Without simplifying assumptions, the latter can be expressed

as an infinite Kaluza-Klein series expansion as in (B.18). However for a conformally flat

choice of radii in AdSn × Sk and a specific mass term for the scalar corresponding to the

Weyl invariant coupling to the scalar curvature, this infinite sum can be recast into the

very simple form of (B.22) [32]. One example of this is the massless dilaton in AdS5 × S5

(with equal radii), since the scalar curvature vanishes.

On the other hand, the bulk-to-boundary propagator K is a more subtle object. For

local AdSn×Sk asymptotics, a canonical choice of coordinates near the conformal boundary

is Fefferman-Graham (z, x) on the AdSn part [33] and standard hyperspherical coordinates

Ω on the Sk part. Accordingly, in some neighborhood of the conformal boundary one may

set X = (z, x,Ω). Despite Ω being a degenerate coordinate for any point on the conformal

boundary, corresponding to z = 0, the limiting value of Ω exists along some curves as

z → 0 (cf. the discussion at the beginning of section 3.2). From this standpoint, one would

expect that some generalization of the extrapolate dictionary should allow one to obtain

the bulk-to-boundary propagator K given the bulk-to-bulk propagator G. In particular,

one would hope to construct an object like K(X̃; x,Ω) as some limit z → 0 along curves of

constant (x,Ω) of G(X̃; z, x,Ω), where X̃ are the coordinates of an arbitrary bulk point.

There is a subtlety, though: because the boundary is a conformal boundary, one gen-

erally only considers the z → 0 limit of propagators of definite scaling dimension, for which

it is clear which power of z the leading term carries. Asymptotically, this scaling dimension

is associated to Kaluza-Klein modes arising from the dimensional reduction of the Sk. But

by virtue of being higher-dimensional, the propagator G incorporates all such modes, and

therefore the extrapolation of it to K via the z → 0 limit should take care of all of them at

once. Due to these complications, we shall take a more axiomatic approach in defining K.

As a bulk-to-boundary propagator, K will be defined to be the kernel of PX , i.e. the

solution to the homogeneous equation

PX̃K(X̃; x,Ω) = 0, (4.2)

and subject to some choice of boundary conditions at ∂M . These conditions are imposed

on the limit in which the bulk point approaches the conformal boundary too. In this limit,

X̃ = (z̃, x̃, Ω̃) is again an appropriate chart and as z̃ → 0 one may work with the intuition

that AdSn × Sk provides. In particular, by dimensionally reducing near the conformal

boundary, one can decompose K into contributions from lower-dimensional propagators for

all possible Kaluza-Klein modes K∆ of definite scaling dimension ∆. Thus, at least for X̃

near the boundary, we have

K(X̃; x,Ω) =

∞∑
L=0

K∆L
(X̃; x,Ω). (4.3)

The dependence on Sk is not arbitrary, but fixed by the choice of boundary conditions.

For the usual Dirichlet conditions one would demand that limz̃→0 z̃
∆−dK∆(z̃, x̃, Ω̃; x,Ω) ∝
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δd(x − x̃), where d = n − 1. In the higher-dimensional analogue, the Sk coordinates

really correspond to physical, compact dimensions, and the Dirichlet conditions should be

imposed on those too. This motivates accounting for all Kaluza-Klein modes L in the

definition of boundary conditions via

lim
z̃→0

∞∑
L=0

z̃∆L−dK∆L
(z̃, x̃, Ω̃; x,Ω) =

1√
det gSk

δd(x− x̃)δk(Ω− Ω̃). (4.4)

We can now continue the propagator K deeper inside the bulk as a kernel of PX

using either retarded or advanced evolution. The result is our desired bulk-to-boundary

propagator in the full spacetime. This approach is followed in appendix B.2 to obtain the

general form of the bulk-to-boundary propagator for the Klein-Gordon scalar field in global

AdSn×Sk, expressed as an infinite series in (B.25) (cf. the bulk-to-bulk series in (B.18)).13

In the particular case of Weyl-invariant matter, it is again possible to resum this series

expansion and obtain a compact expression, namely (B.33).

4.2 The compact space from the dual field theory

The asymptotic form of a scalar field ϕ on an asymptotically locally AdSn × Sk spacetime

admits a Kaluza-Klein expansion over the Sk in scalar hyperspherical harmonics Y IL
L of

the form14

ϕ(z, x,Ω) =
∞∑
L=0

∑
IL

Y IL
L (Ω)ϕILL (z, x). (4.5)

According to the holographic dictionary, the leading asymptotic term of the non-

normalizable branch of every mode

lim
z→0

z∆L−dϕILL (z, x) = φILL (x), (4.6)

becomes a source of a local boundary operator OILL (x) of definite conformal dimension ∆L.

Introducing a generic bulk field ϕ involving arbitrarily many Kaluza-Klein modes thus cor-

responds to turning on arbitrarily heavy operators on the boundary theory. Explicitly, the

bulk partition function is equal to a field theory partition function involving a complicated

operator sum Oφ of the form

Oφ(x) =

∞∑
L=0

∑
IL

φILL (x)OILL (x). (4.7)

As a boundary operator in its own right, Oφ creates a bulk field with a conformal asymptotic

profile φ(x,Ω) which is given by contributions from all sources

φ(x,Ω) =

∞∑
L=0

∑
IL

Y IL
L (Ω)φILL (x). (4.8)

13Since this spacetime is static, Euclidean propagators are used in appendix B.
14For more details on how the harmonic functions Y ILL are defined see appendix B.1.
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Following this intuition and using a quantum mechanical language, at any fixed boundary

coordinate x, the insertion of Oφ(x) produces a particle which is thrown into the bulk

localized at a point in ∂M with coordinates x and whose wavefunction is spread over

the asymptotic Sk according to φ(x,Ω) as a function of Ω. More explicitly, the action

of the operator Oφ(x) on the vacuum state |0〉 of the boundary theory creates a state

|φx〉 = Oφ(x) |0〉. When projected onto the position basis Ω of Sk, this state reads 〈Ω|φx〉 =

φ(x,Ω), whereas when projected onto the basis of eigenfunctions Y IL
L of �Sk , it reads

〈Y IL
L | φx〉 = φILL (x).

Consider the following object, a generalization of which will be relevant in the next

subsection:

Π(X̃; x) =

∫
Sk
dΩ φ(x,Ω)K(X̃; x,Ω). (4.9)

For instance, in global AdSn × Sk, using the Kaluza-Klein expanded form of K in (B.25),

Π(z̃, x̃, Ω̃; x) =
∞∑
L=0

∑
IL

Y IL
L (Ω̃) φILL (x)K∆L

(z̃, x̃; x), (4.10)

where K∆L
is the usual L-mode bulk-to-boundary propagator, given in (B.23). The bilocal

field Π in (4.9) can be thought of as the response function of a boundary probe φ at x

smeared over the Sk to a localized bulk source at X̃ propagated through spacetime via

K. This interpretation will naturally follow from a more complicated but closely related

construct in section 4.3 that comes out of a correlation function which boundary observers

have access to. Although the right-hand side of (4.9) is integrated over Ω, note that Π

depends on the profile of φ as a function of Ω and is thus sensitive to dependencies on the

asymptotic Sk. More precisely, if a boundary observer who can measure Π had complete

control over φ, by tuning the boundary profile to be φ(x,Ω) = δk(Ω−Ω′) parametrized by

Ω′, it would be possible for them to scan over Ω′ and reproduce K precisely. However, note

that by completeness of the spherical harmonics, such a choice of φ would correspond to

picking φILL (x) = Y IL
L

∗
(Ω′), which according to (4.7) would build Oφ out of operators OILL

of all dimensions L, including arbitrarily heavy ones.

More realistically, one might want to only use light operators and get as good an

approximation to K as possible. With this goal, consider letting φILL = δLL̃δ
ILĨL̃ in (4.8)

(which corresponds to simply Oφ = OĨL̃
L̃

), and label the resulting right-hand side in (4.9)

by Π
ĨL̃
L̃

. This allows one to invert (4.9) by writing K as a harmonic series

K(X̃; x,Ω) =
∞∑
L=0

∑
IL

ΠIL
L (X̃; x)Y IL

L

∗
(Ω), (4.11)

where the correlators in the sum are effectively the Fourier coefficients of the expansion.

For an approximation to K, one may want to employ L modes only up to some finite cut-off

L∞ < ∞. It should be noted that (4.11) applies to any asymptotically locally AdSn × Sk

spacetime (cf. (4.3) and comments below).

We would like to obtain the position of a local bulk source solely from the boundary

perspective using the bulk-to-boundary propagator. It is pertinent at this point to make
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clear the semantic distinction between localizing and locating. We do not want to create a

perturbation localized on Sk, which would require the whole tower of Kaluza-Klein modes.

Instead, what we want is to locate a source that already is localized on Sk, which need not

require such high-L physics. Indeed, in the tractable case of global AdSn × Sk, we now

show that using Π it is possible from the boundary perspective to find the exact location

on Sk of a localized bulk source employing just L = 1 operators.

Let Oφ only involve light operators in the fundamental representation of SO(k + 1)

such that only L = 1 harmonics contribute to φ. With homogeneous sources, a general

expression for the latter is obtained by writing the coefficients φILL = δL,1Y
I1

1

∗
(Ω) parame-

terized by a point Ω on Sk. Suggestively writing Π(X̃; x) = Π1(X̃; x,Ω) for this choice of

φ, (4.9) becomes15

Π1(z̃, x̃, Ω̃; x,Ω) =
∑
I1

Y I1
1

∗
(Ω)

∫
Sk
dΩ′ Y I1

1 (Ω′)K(X̃; x,Ω′)

= (k + 1)K∆1(z̃, x̃; x) cos θ,

(4.12)

where θ is the angular separation between coordinates Ω̃ and Ω on Sk. Therefore, a

boundary observer that is able to vary Ω will find Ω = Ω̃ precisely at the maximum of Π1,

corresponding to θ = 0. This shows that, from the boundary perspective, the function Π1

of L = 1 modes allows one to locate the exact position on Sk at which a localized bulk

source resides.

4.3 Recovering the extended cut

As observed in previous sections, even with a compact space asymptotically, one can deter-

mine the standard light-cone cuts C(p) from bulk-point singularities in certain boundary

correlators. The only change is the number of operators in the correlator. The light cone of

an arbitrary boundary point permeates the bulk as a submanifold of bulk-codimension one.

In a generic spacetime, the intersection of the light cones of ` arbitrary boundary points

will generically be a submanifold of bulk-codimension ` (or the empty set when ` > D.)16

So one needs at least D operators to single out a point in the bulk. In this section we

further refine the usage of these correlators in order to obtain the map Φ. In particular,

the strategy will be to find Φ from the prefactor of the leading divergent term of bulk-point

singular correlators, which exhibits a suitable dependence on the asymptotic Sk.
We start with a divergent correlator as used to find the standard light-cone cuts C±(p)

of some bulk point p ∈M ,17 〈
T
{
D+2∏
i=1

O(xi)

}〉
(4.13)

15Note that Ω here has been introduced as just a parameter for the choice of coefficients φILL .
16As stated, it is important for this result to be generic that the spacetime compactification does not

factorize exactly or have exact symmetries, and that the boundary points be chosen arbitrarily. Global

AdSn × Sk is thus clearly non-generic.
17Any set of operators referred to henceforth shall be assumed to correspond to some local interaction

term in the action of the bulk theory. For example, in 10-dimensional supergravity, there is a coupling

between the dilaton and 3-form, e−2φH2
3 . Expanding out the exponential yields φ10H2

3 interaction terms.
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x1
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x3
x4

x5

x6 xD+2
. . .

x

p

Figure 6. Configuration of boundary points in the correlator (4.14) used to obtain the extended

light-cone cuts from the dual field theory. By choosing suitable operators at x and looking at the

coefficient of the divergence when x approaches the cut point x1 ∈ C−(p), one can obtain the map

Φ from regular cut points to the Sk.

where T denotes time ordering. As argued above, the choice of any D such points xi in the

correlator above singles out p as the unique bulk point that is null-related to all of them.

As shown in figure 6, we place these D points on the future cut and add two points on the

past cut. By moving these two points in a way that keeps the correlator divergent (which

requires maintaining momentum conservation at p), we can trace out the past cut. This

does not depend on the choice of operator insertions. Let us denote all but one of these

boundary points collectively by x = {xi ∈ C±(p) | i = 2, . . . , D + 2} and use L = 0 scalar

operators O at all of these D+1 points.18 To obtain the extended cut, it will be convenient

to work with a probe point x near the remaining point x1. We choose an operator Oφ at

x as in (4.7) which is sensitive to the Sk.

As a result of the existence of the null-related, momentum-preserving point p, the

(D + 2)-point, time-ordered Lorentzian correlator

Fφ(x) ≡
〈
T
{
Oφ(x)

D+2∏
i=2

O(xi)

}〉
(4.14)

will develop a bulk-point singular contribution in the limit x → x1 [28]. This divergent

limit of interest is illustrated in figure 6. Written out in a particularly convenient form, for

18One may want to consider more general insertions Oφi at each boundary point, but this is unnecessary.
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some choice of normalization, the correlation function (4.14) reads

Fφ(x) =

∫
Sk
dΩ φ(x,Ω)

∫
M
dDX̃ Ψx(x,Ω; X̃), (4.15)

where the integrand of the bulk-point integral is

Ψx(x,Ω; X̃) = λ K(x,Ω; X̃)

∫
Sk

D+2∏
i=2

dΩi K(xi,Ωi; X̃), (4.16)

and λ is the coupling of some local interaction involving the D + 2 fields of interest.

The dominant bulk-point singular contribution from p to (4.15) manifests itself as the

highest-order pole in Ψx, precisely located at the coordinates Xp of p, close to which the

function Ψx will be governed by a power-law divergence in the proper distance between X̃

and Xp. To intuitively see why this is the case, observe first that propagators generally

behave as inverse powers of proper distances between the points in their arguments, here

with coordinates (xi,Ωi) and X̃. Importantly, because the asymptotic Sk trivializes on

∂M , this proper distance does not depend on the value of Ωi for the boundary point. Now,

since all xi are null-related to Xp, for X̃ in a small neighborhood of Xp, to leading order

the proper distance s(xi, X̃) between any boundary point xi and X̃ will be proportional to

s(X̃,Xp) ≈
∥∥∥X̃ −Xp

∥∥∥, where the use of the Minkowski metric in the last approximation

is justified by local flatness at Xp. The dependence on the choice of boundary points x is

thus relegated simply to the specification of the unique bulk point p in this equation (cf.

the rank argument in [28]) and the form of the residue of the pole of Ψx at Xp. The order

of the dominant pole ∆D+2 depends on the operator insertions and details of the spacetime

metric.19 Pulling out the leading divergent factor in Ψx, one may write

Ψx(x,Ω; X̃) =
ψ(x,Ω; X̃)∥∥∥X̃ −Xp

∥∥∥∆D+2
, (4.17)

where now the function ψ is finite and non-zero at X̃ = Xp. To leading order in the

distance ‖x− x1‖ off the light-cone cut, the integral of (4.17) over X̃ will be dominated by

the zeroth order term of ψ in a series expansion about X̃ = Xp and evaluated at x = x1.

This leads to

Fφ(x) = I(x)

∫
Sk
dΩ φ(x,Ω)ψ(x1,Ω; Xp), (4.18)

where I(x) captures the bulk-point singularity as x→ x1 from the integral over X̃,20

I(x) ∝ ‖x− x1‖−(∆D+2−D). (4.19)

The previous section showed that in global AdSn × Sk it was possible to locate the

unique direction specified by Ω1 in which the null geodesic from Xp arrives at x1 using

19In the case of global AdSn×Sk, the symmetries lead to ∆D+2 being just a sum over the largest scaling

dimension of each of the boundary operator insertions.
20The order of the pole agrees with the result in [28] if one identifies ∆D+2 → (D + 1)∆ (corresponding

to D + 1 external vertices rather than D + 2), and D → d+ 1 (corresponding to no internal space).
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the object defined in (4.9). The reason for this could be traced back to the fact that the

higher-dimensional propagator K in (4.12) had a global maximum at Ω = Ω1. By causality,

this fact is expected to extend to arbitrary spacetimes, where now the general function ψ

in (4.18) is the object peaked at Ω = Ω1.21

In analogy to the previous section, choosing φ to consist of a single Y IL
L , define

F ILL (x) = I(x)

∫
Sk
dΩ Y IL

L (Ω)ψ(x1,Ω; Xp), (4.20)

which, up to I(x), may be thought of as the Fourier coefficients of an expansion of ψ into

hyperspherical harmonic functions. Inverting this relation leads to

ψ(x1,Ω; Xp) = lim
x→x1

ψ0

F0(x)

∞∑
L=0

∑
IL

F ILL (x)Y IL
L

∗
(Ω), (4.21)

where F0 corresponds to (4.20) for L = 0 and is introduced to cancel out the common

bulk-point singular factor of every term in the series. The constant ψ0, given by

ψ0 =
1

vol Sk

∫
Sk
dΩ ψ(x1,Ω; Xp), (4.22)

is irrelevant and will be left undetermined.22 The upshot is that, up to an overall constant,

ψ can be reconstructed to arbitrary precision by computing the terms in the series in (4.21)

for increasingly high L values. Since the right-hand side is built solely out of boundary

correlators, this information is in principle accessible to boundary observers. Once ob-

tained, the location of the global maximum of ψ in Ω, namely Ω1, determines the desired

map Φ to the asymptotic Sk. More explicitly, one obtains Φ(x1) = Ω1 from the solution

to ψ(x1,Ω; Xp) = maxψ, where the specific choice of the D + 1 additional light-cone cut

points x may be ignored since it is arbitrary so long as they belong to the same choice of

past and future light-cone cuts C(p) of point p at Xp (see figure 6).

5 Discussion

Most discussions of bulk reconstruction in holography consider asymptotically AdS space-

times and ignore the extra compact directions. This was true for the discussion of light-cone

cuts in [20, 21]. We have considered asymptotically locally AdSn × Sk spacetimes and de-

fined a generalization of light-cone cuts that we call extended cuts. We then showed that

in the region of spacetime causally connected to the boundary, one can generically recover

the full higher-dimensional conformal metric just from the location of the extended cuts.

Finally, we proposed a procedure for determining these extended cuts from the dual field

21In AdSn×Sk, it sufficed to use light modes with L = 1 to locate this point since in this highly symmetric

case, all nontrivial Kaluza-Klein modes are peaked at the same point. In a general spacetime, it is still

expected that ψ will have a global maximum at Ω = Ω1, but no single L mode need be peaked there. Put

differently, ψ will generically exhibit no symmetries in Ω and higher L will be required to locate Ω1.
22If ψ0 vanishes identically so will F0, and one may just use a different L mode to cancel out singular

factors.
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theory. Note that at no time did we need to use any bulk equations of motion, or impose

any restrictions on the matter content (such as energy conditions).

Our proposal for determining the extended cuts from the dual field theory is not very

practical since it requires considering the entire tower of Kaluza-Klein modes to precisely

locate the bulk points. But the lesson is that the information is there in principle.23 It

would be interesting to find a more efficient way to determine the extended cuts.

Although we have focused on the case where the bulk metric asymptotically approaches

AdSn×Sk, our reconstruction should work equally well for spacetimes that asymptotically

approach AdSn × K, where K is any compact Einstein space. To see this, note that

null geodesics that remain on ∂J(p) will again approach a fixed point on K, and we

can again define our extended cut to be the light-cone cut C(p) together with a map

C(p)→ K. The arguments in section 3 then apply to show that the conformal metric can

be reconstructed from the location of these extended cuts. One difference with Sk is that

when we conformally rescale the asymptotic metric, the result will take the form (3.3) with

dΩ2 replaced by the metric on K, which will be singular at the conformal boundary. This

should not be a problem since our arguments only require that each point on the extended

cut defines a unique ingoing null geodesic in the bulk. Since we know the geodesic starts

at a fixed point on K, and the bulk metric reduces to pure AdS asymptotically when a

point on K is held fixed, the geodesic leaves the boundary exactly as it would in pure AdS.

The arguments in section 4 also extend to this case since the hyperspherical harmonics on

Sk can be replaced by the eigenfunctions of the Laplacian on K which form a complete

basis of functions. Scalar fields can be expanded in terms of these functions, yielding

the usual infinite tower of massive Kaluza-Klein modes in the asymptotic AdS region.

Holography requires that there is a operator dual to each of these modes which we can use

in our correlators.

It is natural to ask how quantum or stringy corrections affect our arguments. It was

argued in [28] that bulk-point singularities would still be present when perturbative 1/N

or 1/λ corrections to holography are included, but not for finite N or λ. More recently, the

stringy resolution of these singularities has been quantified under some general assumptions

in [35]. Since bulk-point singularities are a key ingredient in our approach, we note that

exact reconstruction of the bulk conformal metric is possible with perturbative but not

finite quantum or stringy corrections.

We close with a few open questions. First, to recover the full bulk metric and not

just the conformal metric, we clearly need a procedure to obtain the conformal factor.

One would like this to be independent of the bulk equations of motion. Second, general

arguments on bulk reconstruction [36] show that one should be able to reconstruct the

higher-dimensional metric on the entire entanglement wedge of the boundary. The light-

cone cut approach to bulk reconstruction only applies to points in the causal wedge, since

they have to be in causal contact with the boundary both to the past and future. Actually,

not all points in the causal wedge are accessible since momentum must be conserved near

23In practice, from the perspective of the dual field theory, one would probably first want to know how

many extra dimensions the bulk spacetime has. This interesting question was recently addressed in [34].
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the vertex. This means that points just outside the horizon of an eternal black hole are

excluded since they are causally connected to infinity only through a narrow cone.

To expand the reach of the light-cone cuts, we either need more general ways to obtain

the extended cuts from the dual field theory, or we need to use other methods (perhaps

combined with light-cone cuts). The recent work of [37] relating bulk scattering and holo-

graphic entanglement suggests a plausible direction to connect the light-cone cut approach

to bulk reconstruction with those based on entropic measures, thereby hinting at a po-

tentially synergistic combination of the two. It is nevertheless important to note that

it is unlikely that the standard holographic entanglement entropy as given by the pre-

scriptions in [15, 16] could on its own be used for higher-dimensional bulk reconstruction.

In a variety of nontrivial examples, it has been shown that these prescriptions applied

to dimensionally-reduced spacetimes give entropies that agree with those obtained by per-

forming the extremization problem on the full higher-dimensional spacetime, which suggest

that the latter carries no more information about the extra dimensions than the former

does [38]. Intuitively, this is a consequence of the boundary condition that instructs the

higher-dimensional extremal surfaces to wrap uniformly around the compact dimensions

asymptotically. However one might be able to generalize these ideas, perhaps along the

lines of [39–41], to probe the higher-dimensional geometry. If a suitable boundary interpre-

tation of this generalized entropy is available, one could perhaps use e.g. some upgraded

version of the arguments in [17] to prove uniqueness of the higher-dimensional metric and

potentially come up with an entropy-based reconstruction strategy.
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A Mathematical results

In this appendix we give the proofs of the new results stated in section 3. We will assume

that the spacetime M is at least C2, maximally extended, connected, AdS-hyperbolic and

asymptotically locally AdSn × Sk with n > 2. Similarly, ∂M is assumed to be maximally

extended, connected, and globally hyperbolic. Recall that AdS-hyperbolic means that

there are no closed causal curves, and for any two points p and q, the set J+(p)∩ J−(q) is

compact after conformally compactifying the AdS boundary [29].

We will assume everywhere in this section that p and q are bulk points in the domain

of influence of the asymptotic boundary, so that their light-cone cuts are not empty. The

results below apply to both future and past light-cone cuts which we denote C(p), or C(p)
for the extended cuts. In expressions like C(p) ∩ C(q) it will be understood that both cuts

are past or both cuts are future.
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Proposition 1. Every light-cone cut C(p) is differentiable everywhere except on a set of

measure zero.

Proof. The logic of the first part of this proof parallels that of proposition 6.3.1 in [42].24

Let r ∈ C(p) and consider an open neighborhood Uα ⊂ ∂M about r. One can introduce

normal coordinates xα = {xµα : Uα → R | µ = 0, . . . , n− 2} with ∂0 timelike and such that

the coordinate slices γc = {s ∈ Uα | xα(s) = c}, where xα = {xiα | i = 1, . . . , n − 2},
define curves intersecting both I−(r)∩Uα and I+(r)∩Uα for any constant c ∈ xα[Uα]. By

continuity and achronality, each curve γc must intersect C(p) at precisely one point sc, i.e.

{sc} = γc ∩C(p), and therefore the map xα : Uα ∩C(p)→ Rn−2 is a homeomorphism onto

its image.

Now define a map x̃0 : x[Uα ∩ C(p)] → x0[Uα] by x̃0(c) = x0(rc), where rc is the

unique point at which γc intersects C(p). Because C(p) is achronal, for any two points

r, s ∈ Uα ∩ C (p) one has that
∣∣x̃0(x(r))− x̃0(x(s))

∣∣ ≤ K|x(r)− x(s)| for some K ≥ 1,

with | · | the Euclidean norm. This shows that x̃0 is Lipschitz continuous. A Lipschitz

continuous transition map ϕαβ : xα[Uα ∩ Uβ ∩ C(p)] → xβ [Uα ∩ Uβ ∩ C(p)] can now be

constructed by direct product and composition with maps of higher differentiability class

as ϕαβ = xα ◦ x−1
β ◦ {x̃0

β , id}. Thus a collection of charts (Uα ∩ C(p), xα) forms an atlas

for C(p) and endows it with a Lipschitz structure.

The differentiability of C(p) at a point r ∈ Uα ∩ C(p) is determined by the differen-

tiability class of the transition maps ϕαβ at xα(r) ∈ xα[Uα ∩ Uβ ∩ C(p)]. Because the

transition map ϕαβ is Lipschitz continuous, Rademacher’s theorem [43] implies that the

points in xα[Uα ∩ Uβ ∩ C(p)] ⊂ Rn−2 at which ϕαβ is not differentiable form a set of

Lebesgue measure zero as a subset of Rn−2. Thus the set of points at which C(p) fails to

be differentiable has measure zero.

Proposition 2. Each point (r,Φ(r)) on the extended cut C(p) determines the unique null

geodesic from r to p.

Proof. Consider an arbitrary point (r,Φ(r)) ∈ C(p) and let γ : [0, 1] → M̄ be the unique

null geodesic from r = γ(0) ∈ C(p) to p = γ(1) ∈ M . Write γ̇(0) ∝ V ⊥ + V ‖ with

V some rescaled vector parallel to γ̇(0) such that V ⊥ has unit norm, where V ⊥ (V ‖) is

the projection of V onto the normal (tangent) bundle of ∂M . Since r is regular, C(p) is

differentiable at r, and therefore there is a well-defined space tangent to C(p) at r, denoted

TrC(p). Because C(p) is a codimension-1 spacelike subspace of ∂M , there is a unique

timelike vector T ∈ Tr∂M normal to C(p) with T 2 = −1. Under natural identifications of

the vectors in ∂M with their inclusions in the ambient space M̄ , one can further decompose

γ̇(0) ∝ T +cosαV ⊥+sinαS, where S ∈ TrC(p) is a unit spacelike vector and α ∈ [0, π/2).

If α 6= 0, there would be a nontrivial vector S such that one could consider a point rε ∈ C(p)

arbitrarily close to r in the direction parallel to S. Notice that then one could deform γ

infinitesimally near ∂M into a timelike piece that connects up with rε, thus making p and rε
timelike-related, which contradicts the achronality of the light cone ∂J(p). Hence one finds

24There is a typo in the proof in [42]: both instances of the set L appearing in the penultimate sentence

should be replaced by its boundary set L̇.
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that α = 0 necessarily, and therefore γ̇(0) ∝ T + V ⊥ in general. In other words, regularity

of the cut point implies that the vector field γ̇ tangent to γ is orthogonal to C(p) at r. The

dimensionality of the normal bundle of C(p) in M̄ is given by the codimension of C(p),

which is k + 2 corresponding to timelike and radial bulk directions and the conformally-

shrinking Sk. The specification of Φ(r) by the extended cut point fixes the direction of

γ̇(0) on Sk, such that this vector only remains undetermined in 2 dimensions. Out of the

2 possible null directions spanning the latter, only one points inwards towards the bulk.

Hence the choice of a point in C(p) together with the orthogonal ingoing condition fix γ̇(0)

up to scaling. But because γ̇(0) is null and γ is geodesic, this suffices to determine a unique

null geodesic from r to p.

Proposition 5. C(p) ∩ C(q) contains more than one point if and only if p = q.

Proof. (⇐) If p = q, C(p) ∩ C(q) = C(p), which always contains more than one point.

(⇒) Consider an arbitrary point (r,Φ(r)) ∈ C(p) ∩ C(q). According to proposition 2,

the pair (r,Φ(r)) determine a unique ingoing null geodesic γr. If there were two distinct

such points in the intersection of the two extended cuts, their associated γr geodesics would

pass through both p and q, which would then be either equal or conjugate to each other.

But since there cannot be any conjugate points along any γr strictly between either of

these points and their cuts, it must be the case that p = q.

Theorem 2. C(p) ∩ C(q) contains exactly one point (r,Φ(r)) if and only if q 6= p and q

belongs to an achronal extension of a null geodesic γ from p to a regular point r ∈ C(p).25

Proof. (⇒)26 Since C(p) ∩ C(q) contains exactly one point (r,Φ(r)), proposition 5 already

implies p 6= q. Then proposition 2 shows that (r,Φ(r)) defines the unique null geodesic γr
associated to the regular point r. Since (r,Φ(r)) belongs to the intersection of the two cuts,

γr passes through both p and q and stays on the union of their light cones ∂J(p) ∪ ∂J(q).

Thus the two points are null-related by an achronal geodesic through both that ends at r.

(⇐) If p and q both lie on an achronal null geodesic γ that reaches a regular point

r ∈ C(p) and Φ(r) on Sk, then γ lies on both ∂J(p) and ∂J(q). So (r,Φ(r)) is clearly in

both extended cuts C(p) and C(q).

B Higher-dimensional scalar propagators in global AdSn × Sk

Consider a free bulk scalar field of mass m with Euclidean action

Sϕ =
1

2

∫
ε
(
|dϕ|2g +m2ϕ2

)
, (B.1)

25The statement of an analogous result in [21] is not quite correct. In particular, q need not belong to

the null geodesic from p to r ∈ C±(p), but instead could lie on an extension of this geodesic beyond p (i.e.

p itself would lie in a null geodesic connecting q to r). This explains the qualification of the statement to

an achronal extension of the null geodesic from p to r.
26This direction proves theorem 1 in section 3.3.
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where ε is the volume element on all D = n+ k dimensions of AdSn × Sk. Using Poincaré

coordinates in Euclidean signature,

g =
`2

z2

(
dz2 + δijdx

idxj
)

+ `2dΩ2, (B.2)

where Latin indices run over the d = n− 1 spatial dimensions of AdSn.

B.1 Bulk-to-bulk propagator

The higher-dimensional bulk-to-bulk scalar propagator G is defined as the Green function

of the Klein-Gordon operator,(
−�g +m2

)
G(z, x,Ω; z̃, x̃, Ω̃) =

1√
det g

δn(z − z̃, x− x̃)δk(Ω− Ω̃). (B.3)

where �g denotes the d’Alembertian built from the D-dimensional metric g. Because

AdSn × Sk is a product spacetime, this operator is diagonal and decomposes as

�g = �AdSn + `−2∆Sk , (B.4)

where �AdSn only acts on AdS coordinates (z, x) and the unit k-sphere Laplacian ∆Sk only

acts on coordinates Ω. Explicitly,

�AdSn =
z2

`2
(
∂2
z − (d− 1)z−1∂z + ∂2

x

)
, (B.5)

and, using Cartesian coordinates on Rk+1 ⊃ Sk, one can write

∆Sk =

k∑
α>β

(xα∂β − xβ∂α)2 . (B.6)

Consider first the propagator G∆ of a free scalar in AdSn of mass µ, defined by(
−�AdSn + µ2

)
G∆(z, x; z̃, x̃) =

1√
det gAdSn

δn(z − z̃, x− x̃). (B.7)

This Green function is well-known and can be written in terms of the hypergeometric

function 2F1 as [3, 44]

G∆(z, x; z̃, x̃) =
2−∆C∆

2∆− d ξ
∆

2F1

(
∆

2
,

∆

2
+

1

2
; ∆− d

2
+ 1; ξ2

)
, (B.8)

where the conformal ratio ξ is defined in terms of the coordinates of the two points by

ξ ≡ 2zz̃

z2 + z̃2 + (x− x̃)2
, (B.9)

and the conformal dimension ∆ and normalization constant C∆ are

µ2 =
∆(∆− d)

`2
and C∆ =

Γ(∆)

πd/2Γ(∆− d/2)
. (B.10)
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The two solutions of the quadratic equation obeyed by ∆ correspond to the usual two

branches

∆ =
d

2
±
√
d2

4
+ `2µ2, (B.11)

with the positive (negative) sign giving the normalizable (non-normalizable) one.

Consider now the Sk term in (B.4). The eigenfunctions of ∆Sk are called hyper-

spherical harmonics Y I
L (Ω) and labeled by their scaling degree L ∈ Z≥0 and a tuple

IL = (i1, . . . , ik+1) ∈ Zk+1 with
∑k+1

l=1 il = L, which specifies an element of the representa-

tion of SO(k + 1) in terms of traceless symmetric tensors of degree L in k + 1 dimensions.

They are defined by the eigenvalue problem

∆SkY
IL
L (Ω) = −L(L+ k − 1)Y IL

L (Ω). (B.12)

and conventionally orthonormalized to satisfy∫
Sk
dΩY IL

L

∗
(Ω)Y

ĨL̃
L̃

(Ω) = δLL̃δ
ILĨL̃ , (B.13)

where dΩ is the volume element of Sk. Additionally, as a basis for functions on Sk, hyper-

spherical harmonics obey the completeness relation

∞∑
L=0

∑
IL

Y IL
L

∗
(Ω̃)Y IL

L (Ω) =
1√

det gSk
δk(Ω− Ω̃). (B.14)

The sum over SO(k + 1) representation indices IL for fixed L can be performed explicitly

and leads to [45] ∑
IL

Y IL
L

∗
(Ω)Y IL

L (Ω̃) = NLC
(k−1)/2
L (cos θ) , (B.15)

where cos(θ) ≡ n · ñ for unit vectors n, ñ ∈ Rk+1 oriented on Sk as specified by Ω and Ω̃,

respectively, and NL is a normalization constant given by

NL =
2L+ k − 1

(k − 1) vol Sk
where vol S2l−1 =

2πl

Γ(l)
, (B.16)

The symbol Cαl (x) is a Gegenbauer polynomial, which can be written as

Cαl (x) =
Γ(2α+ l)

Γ(2α)
2F1

(
−l, 2α+ l; α+

1

2
;

1− x
2

)
. (B.17)

It is now a simple matter to construct the desired propagator:

Proposition 6. The higher-dimensional bulk-to-bulk propagator G for a free scalar of mass

m in global AdSn × Sk given as an infinite series by

G(z, x,Ω; z̃, x̃, Ω̃) =

∞∑
L=0

NLC
(k−1)/2
L (cos θ)G∆L

(z, x; z̃, x̃), (B.18)

where G∆L
is the propagator of a free scalar in AdSn of scaling dimension ∆L defined to be

∆L =
d

2
±
√
d2

4
+ `2M2

L where M2
L = m2 +

L(L+ k − 1)

`2
. (B.19)
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Proof. Applying the right-hand side of (B.3) to (B.18) leads to

(
−�g +m2

)
G(z, x,Ω; z̃, x̃, Ω̃) =

∞∑
L=0

NLC
(k−1)/2
L (cos θ)

(
−�AdSn +M2

L

)
G∆L

(z, x; z̃, x̃)

=
1√

det g
δn(z − z̃, x− x̃)δk(Ω− Ω̃) (B.20)

where (B.4), (B.15), (B.12) and (B.19) have been used in the first equality, and (B.7), (B.15)

and (B.14) in the second one. The result thus agrees with the right-hand side of (B.3).

The series form of (B.18) may be understood as a Kaluza-Klein series expansion of the

higher-dimensional bulk-to-bulk propagator. This expression reduces to a very compact

form for conformally flat AdSn × Sk, as is the case of (B.2),27 if one chooses the scalar to

be coupled to the metric in a Weyl invariant manner [32]. This is accomplished in (B.1)

by choosing the mass of the scalar to be precisely

m2 =
(k − 1)2 − (n− 1)2

4`2
. (B.21)

The resulting propagator is simply a power-law in the total chordal distance along both

AdSn and Sk, viz. (see [32] for more details)

G(z, x,Ω; z̃, x̃, Ω̃) =
Γ(h)

2(2π)h+1

1

(ξ−1 − cos θ)h
where h =

n+ k − 2

2
. (B.22)

B.2 Bulk-to-boundary propagator

One would naively hope to be able to derive a simple expression for the bulk-to-boundary

propagator starting from (B.22) and using some version of the extrapolate dictionary [46].

Unfortunately, it is not at all clear in this case how one would take the z → 0 limit of (B.22).

A naively reasonable guess would be to Taylor expand this object in ξ, kill off the zl power

in ξl of the lth term with a factor of (2l − d)z−l, take the z → 0 limit and hope to be able

to perform the summation of the resulting series to obtain a compact expression. However,

this would neither be a kernel as defined in (4.2) nor obey the desired boundary condition

in (4.4).

Instead, our approach will be to perform the summation in (4.3) directly. The terms in

the summation can be obtained by applying the extrapolate dictionary to every term in the

series (B.18) that defines G. These will involve the usual dimension-∆L bulk-to-boundary

propagator [2, 46]

K∆L
(z, x; x̃) = lim

z̃→0
(2∆L − d)z̃−∆̂L G∆L

(z, x; z̃, x̃) = C∆L
χ∆L , (B.23)

where χ is given by

χ =
z

z2 + (x− x̃)2
. (B.24)

27Recall that global AdSn×Sk is conformally flat if and only if the radius of the Sk matches that of AdSn.
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The upshot is the following infinite Kaluza-Klein series definition of the higher-dimensional

bulk-to-boundary propagator:

K(z, x,Ω; x̃, Ω̃) =
∞∑
L=0

NLC∆L
C

(k−1)/2
L (cos θ)χ∆L . (B.25)

Note that in Lorentz signature, the limit that the bulk and boundary point become null

separated corresponds to χ→∞. Each term in this series then develops a singularity with

a coefficient that is a smooth function on Sk peaked at the location of the bulk point.

The computation of this sum becomes tractable for Weyl invariant matter, which fixes

the mass of the scalar to be given by (B.21). The resulting Lth term in (B.25) is

K∆L
(z, x,Ω; x̃, Ω̃) =

Γ
(
k−1

2

)
2πh+1

(
L+

k − 1

2

)
Γ(L+ h)

Γ
(
L+ k−1

2

)C(k−1)/2
L (cos θ) χL+h, (B.26)

where h was defined in (B.22). For convenience, focus on the odd-n case, for which the

ratio of Γ functions may be expanded as a finite product. Using the Pochhammer symbol

(a)n = a(a+ 1) · · · (a+ n− 1), this is

Γ(L+ h)

Γ
(
L+ k−1

2

) =

(
L+

k − 1

2

)
n−1
2

. (B.27)

The goal will be to manipulate (B.26) so as to be able to utilize the identity of Gegenbauer

polynomials that gives their defining generating function, namely28

∞∑
L=0

CαL(y)χL =
1

(1− 2χy + χ2)α
. (B.28)

To do this, note that the right-hand side of (B.27) can be realized via differentiation in χ

in the following way

Γ(L+ h)

Γ
(
L+ k−1

2

) =
1

χL+ k−1
2
−1
∂
n−1
2

χ

(
χL+h−1

)
, (B.29)

and similarly one can write

L+
k − 1

2
=

1

χL+ k−1
2
−1
∂χ

(
χL+ k−1

2

)
. (B.30)

Putting (B.29) and (B.30) together with χL+h, consider the following manipulations:(
L+

k − 1

2

)
Γ(L+ h)

Γ
(
L+ k−1

2

)χL+h =
1

χL+ k−1
2
−1
∂χ

(
χL+ k−1

2
Γ(L+ h)

Γ
(
L+ k−1

2

)) χL+h

= χ
n+1
2 ∂χ

(
χ∂

n−1
2

χ

(
χL+h−1

))
.

(B.31)

28Note that this identity holds as an equality between power series in χ. However, as an infinite series,

the left-hand side is only convergent for |χ| < 1. While this should be kept in mind, in practice in will not

be a problem: physically, one is interested in looking at each L mode independently. Every relation derived

henceforth using this identity should thus be understood as an equality between power series in χ.

– 28 –
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With this expression at hand, the infinite series that defines K may now be rewritten as

∞∑
L=0

K∆L
(z, x,Ω; x̃, Ω̃) =

Γ
(
k−1

2

)
2πh+1

χ
n+1
2 ∂χ

(
χ∂

n−1
2

χ

(
χh−1

∞∑
L=0

C
(k−1)/2
L (cos θ)χL

))
.

(B.32)

At this point it only remains to employ (B.28) to obtain the desired explicit form of the

higher-dimensional bulk-to-boundary propagator:

K(z, x,Ω; x̃, Ω̃) =
Γ
(
k−1

2

)
2πh+1

χ
n+1
2 ∂χ

(
χ∂

n−1
2

χ

(
χh−1

(1− 2χ cos θ + χ2)
k−1
2

))
. (B.33)

This result is valid for any odd n ≥ 3 and any integer k ≥ 2. Note also that this expression

only holds as an equality between coefficients in a power series in χ, the reason being

that the radius of convergence of the infinite series is |χ| < 1. This is not a problem in

Euclidean signature because |χ| < 1 always, but should be kept in mind for Lorentzian

signature where e.g. null separation corresponds to χ→∞.

The spacetime with one of the simplest evaluations of (B.33) is AdS3 × S3, for which

K(z, x,Ω; x̃, Ω̃) =
χ2
(
χ4 + 2χ

(
χ2 + 1

)
cos θ − 6χ2 + 1

)
2π3 (χ2 − 2χ cos θ + 1)3 . (B.34)

For the usual case of interest of AdS5 × S5 one gets the following:

K(z, x,Ω; x̃, Ω̃) = −2χ4
(
χ6 + 2χ4 cos 2θ − 17χ4 + 25χ2 + 2

(
4χ4 − 5χ2 − 3

)
χ cos θ − 3

)
π5 (χ2 − 2χ cos θ + 1)5 .

(B.35)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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