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ABSTRACT
Motivated by the transformative impact of deep neural networks
(DNNs) in various domains, researchers and anti-virus vendors
have proposed DNNs for malware detection from raw bytes that do
not require manual feature engineering. In this work, we propose
an attack that interweaves binary-diversification techniques and
optimization frameworks to mislead such DNNs while preserving
the functionality of binaries. Unlike prior attacks, ours manipulates
instructions that are a functional part of the binary, which makes it
particularly challenging to defend against. We evaluated our attack
against three DNNs in white- and black-box settings, and found that
it often achieved success rates near 100%. Moreover, we found that
our attack can fool some commercial anti-viruses, in certain cases
with a success rate of 85%. We explored several defenses, both new
and old, and identified some that can foil over 80% of our evasion at-
tempts. However, these defenses may still be susceptible to evasion
by attacks, and so we advocate for augmenting malware-detection
systems with methods that do not rely on machine learning.

CCS CONCEPTS
• Security and privacy→Malware and its mitigation; • Com-
puting methodologies→ Supervised learning.
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1 INTRODUCTION
Modern malware detectors, both academic (e.g., [4, 44]) and com-
mercial (e.g., [25, 90]), increasingly rely on machine learning (ML)
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to classify executables as benign or malicious based on features such
as imported libraries and API calls. In the space of static malware
detection, where an executable is classified prior to its execution,
recent efforts have proposed deep neural networks (DNNs) that
detect malware from binaries’ raw byte-level representation, with
effectiveness similar to that of detectors based on hand-crafted
features selected through tedious manual processing [54, 76].

As old techniques for obfuscating and packing malware (see
Sec. 4) are rendered ineffective in the face of static ML-based de-
tection, recent advances in adversarial ML might provide a new
opening for attackers to bypass detectors. Specifically, ML algo-
rithms, including DNNs, have been shown vulnerable to adversarial
examples—modified inputs that resemble normal inputs but are
intentionally designed to be misclassified. For instance, adversar-
ial examples can enable attackers to impersonate users that are
enrolled in face-recognition systems [85, 86], fool street-sign recog-
nition algorithms into misclassifying street signs [30], and trick
voice-controlled interfaces to misinterpret commands [21, 74, 83].

In the malware-detection domain, the attackers’ goal is to alter
programs to mislead ML-based malware detectors to misclassify
malicious programs as benign or vice versa. In doing so, attackers
face a non-trivial constraint: in addition to misleading the malware
detectors, alterations to a program must not change its function-
ality. For example, a keylogger altered to evade being detected as
malware should still carry out its intended function, including in-
voking necessary APIs, accessing sensitive files, and exfiltrating
information. This constraint is arguably more challenging than
ones imposed by other domains (e.g., evading image recognition
without making changes conspicuous to humans [30, 85, 86]) as it
is less amenable to being encoded into traditional frameworks for
generating adversarial examples, and most changes to a program’s
raw binary are likely to break a program’s syntax or semantics.
Prior work proposed attacks to generate adversarial examples to
fool static malware detection DNNs [27, 49, 55, 72, 89] by adding
adversarially crafted byte values in program regions that do not
affect execution (e.g., at the end of programs or between sections).
These attacks can be defended against by eliminating the added
content before classification (e.g., [56]); we confirm this empirically.

In contrast, we develop a new way to modify binaries to both
retain their functionality and mislead state-of-the-art DNN-based
static malware detectors [54, 76].We leverage binary-diversification
tools—originally proposed to defend against code-reuse attacks by
transforming program binaries to create diverse variants [53, 71]—
to evade malware-detection DNNs. While these tools preserve the
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functionality of programs by design (e.g., functionality-preserving
randomization), their naïve application is insufficient to evade mal-
ware detection. We propose optimization algorithms to guide the
transformations of binaries to fool malware-detection DNNs, both
in settings where attackers have access to the DNNs’ parameters
(i.e., white-box) and ones where they have no access (i.e., black-box).
The algorithms we propose can produce program variants that of-
ten fool DNNs in 100% of evasion attempts and, surprisingly, even
evade some commercial malware detectors (likely over-reliant on
ML-based static detection), in some cases with success rates as high
as 85%. Because our attacks transform functional parts of programs,
they are particularly difficult to defend against, especially when
augmented with complementary methods to further deter static or
dynamic analysis (as our methods alone should have no effect on
dynamic analysis). We explore potential mitigations to our attacks
(e.g., by normalizing programs before classification [3, 18, 98]), but
identify their limitation in thwarting adaptive attackers.

In a nutshell, the contributions of our paper are as follows:
• We repair and extend prior binary-diversification implemen-
tations to iteratively yield candidate transformations. We
also reconstruct them to be composable, more capable, and
resource-efficient. The code is available online.1
• We propose a novel functionality-preserving attack on DNNs
for static malware detection from raw bytes (Sec. 3). The
attack precisely composes the updated binary-diversification
techniques, evades defenses against prior attacks, and applies
to both white- and black-box settings.
• We evaluate and demonstrate the effectiveness of the pro-
posed attack in different settings, including against com-
mercial malware detectors (Sec. 4). We show that our attack
effectively undermines ML-based static analysis, a signifi-
cant component of state-of-the-art malware detection, while
being robust to defenses that can thwart prior attacks.
• We explore the effectiveness of prior and new defenses
against our proposed attack (Sec. 5). While some defenses
seem promising against specific variants of the attack, none
explored neutralize our most effective attack, and they are
likely vulnerable to adaptive attackers.

2 BACKGROUND AND RELATED WORK
We first discuss previous work on DNNs that detect malware by
examining program binaries. We then discuss research on attacking
and defending ML algorithms generally, and malware detection
specifically. Finally, we provide background on binary randomiza-
tion methods, which serve as building blocks for our attacks.

2.1 DNNs for Static Malware Detection
We study attacks targeting two DNN architectures for detecting
malware from the raw bytes of Windows binaries (i.e., executables
in Portable Executable format) [54, 76]. The main appeal of these
DNNs is that they achieve state-of-the-art performance using au-
tomatically learned features, instead of manually crafted features
that require tedious human effort (e.g., [4, 43, 50]). Due to their de-
sirable properties, computer-security companies use DNNs similar

1https://github.com/pwwl/enhanced-binary-diversification

to the ones we study (i.e., ones that operate on raw bytes and use a
convolution architectures) for malware detection [24].

The DNNs proposed by prior work follow standard convolu-
tional architectures similar to the ones used for image classifica-
tion [54, 76]. Yet, in contrast to image classifiers that classify contin-
uous inputs, malware-detection DNNs classify discrete inputs—byte
values of binaries. To this end, the DNNs were designed with initial
embedding layers that map each byte in the input to a vector in
R8. After the embedding, standard convolutional and non-linear
operations are performed by subsequent layers.

2.2 Attacking and Defending ML Algorithms
Attacks on Image Classification Adversarial examples—inputs
that are minimally perturbed to fool ML algorithms—have emerged
as challenge to ML. Most prior attacks (e.g., [9, 11, 14, 33, 70, 91])
focused on DNNs for image classification, and on finding adversar-
ial perturbations that have small 𝐿𝑝 -norm (𝑝 typically ∈ {0, 2,∞})
that lead to misclassification when added to input images. By lim-
iting perturbations to small 𝐿𝑝 -norms, attacks aim to ensure that
the perturbations are imperceptible to humans. Attacks are often
formalized as optimization processes; e.g., Carlini and Wagner [14]
proposed the following formulation for finding adversarial pertur-
bations that target a class 𝑐𝑡 and have small 𝐿2-norms:

argmin
𝑟

Losscw (𝑥 + 𝑟, 𝑐𝑡 ) + 𝜅 · | |𝑟 | |2

where 𝑥 is the original image, 𝑟 is the perturbation, and 𝜅 is a
parameter to tune the 𝐿2-norm of the perturbation. Losscw is a
function that, when minimized, leads 𝑥 + 𝑟 to be (mis)classified as
𝑐𝑡 . It is roughly defined as:

Losscw (𝑥 + 𝑟, 𝑐𝑡 ) = max
𝑐≠𝑐𝑡
{L𝑐 (𝑥 + 𝑟 )} − L𝑐𝑡 (𝑥 + 𝑟 )

where L𝑐 is the output for class 𝑐 at the logits of the DNN—the out-
put of the one-before-last layer. Our attacks use Losscw to mislead
the malware-detection DNNs.

Attacks on Static Malware Detection Modern malware de-
tection systems often leverage both dynamic and static analyses
to determine maliciousness [8, 25, 44, 90, 93]. While in most cases
an attacker would hence need to adopt countermeasures against
both of these types of analyses, in other situations, such as poten-
tial attacks on end-user systems protected predominantly through
static-analysis based anti-virus detectors [20, 95], defeating a static
malware detector could be sufficient for an attacker to achieve their
goals. Even when a combination of static and dynamic analyses is
used for detecting malware, fooling static analysis is necessary for
an attack to succeed. Here we focus on attacks that target ML-based
static analyzers for detecting malware.

Multiple attacks were proposed to evade ML-based malware clas-
sifiers while preserving the malware’s functionality. Some (e.g., [26,
88, 97, 102]) tweak malware to mimic benign files (e.g., adding be-
nign code-snippets to malicious PDF files). Others (e.g., [1, 27, 35, 41,
49, 55, 72, 89]) tweak malware using gradient-based optimizations
or generative methods (e.g., to find which APIs to import). Still
others combine mimicry and gradient-based optimizations [79].

Differently from some prior work (e.g., [1, 79, 97]) that studied
attacks against dynamic ML-based malware detectors, we explore
attacks that target DNNs for malware detection from raw bytes
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(i.e., static detection methods). Furthermore, the attacks we explore
do not introduce adversarially crafted bytes to unreachable regions
of the binaries [49, 55, 89] (which may be possible to detect and
sanitize statically, see Sec. 4.4), or by mangling bytes in the header
of binaries [27] (which can be stripped before classification [78]).
Instead, our attacks transform actual instructions of binaries in a
functionality-preserving manner to achieve misclassification.

More traditionally, attackers use various obfuscation techniques
to evade malware detection. Packing [12, 80, 92, 94]—compressing
or encrypting binaries’ code and data, and then uncompressing or
decrypting them at run time—is commonly used to hide malicious
content from static detection methods. As we explain later (Sec. 3.1)
we mostly consider unpacked binaries in this work, as is typical
for static analysis [12, 54]. Attackers also obfuscate binaries by
substituting instructions or altering their control-flow graphs [16,
17, 45, 92]. We demonstrate that such obfuscation methods do not
fool malware-detection DNNs when applied naïvely (see Sec. 4.3).
To address this, our attacks guide the transformation of binaries via
stochastic optimization techniques to mislead malware detection.

Pierazzi et al. formalized the process of adversarial example gen-
eration in the problem space and used their formalization to produce
malicious Android apps that evade detection [73]. Our attack fits the
most challenging setting they describe, where mapping the problem
space to features space is non-invertible and non-differentiable.

Most closely related to our work is the recent work on mislead-
ing ML algorithms for authorship attribution [65, 75]. Meng et al.
proposed an attack to mislead authorship attribution at the binary
level [65]. Unlike the attacks we propose, Meng et al. leverage
weaknesses in feature extraction and modify debug information
and non-loadable sections to fool the ML models. Furthermore,
their method leaves a conspicuous footprint that the binary was
modified (e.g., by introducing multiple data and code sections to
the binaries). While this is potentially acceptable for evading au-
thor identification, it may raise suspicion when evading malware
detection. Quiring et al. recently proposed an attack to mislead
authorship attribution from source code [75]. In a similar spirit to
our work, their attack leverages an optimization algorithm to guide
code transformations that change syntactic and lexical features of
the code (e.g., switching between printf and cout) to mislead ML
algorithms for authorship attribution.

Defending ML Algorithms Researchers are actively seeking
ways to defend against adversarial examples. One line of work,
called adversarial training, aims to train robust models largely by
augmenting the training data with correctly labeled adversarial
examples [33, 46, 47, 57, 62, 91]. Another line of work proposes al-
gorithms to train certifiably (i.e., provably) robust defenses against
certain attacks [22, 51, 60, 67, 103], though these defenses are lim-
ited to specific types of perturbations (e.g., ones with small 𝐿2- or
𝐿∞-norms). Moreover, they often do not scale to large models that
are trained on large datasets. As we show in Sec. 5, amongst other
limitations, these defenses would also be too expensive to practi-
cally mitigate our attacks. Some defenses suggest that certain input
transformations (e.g., quantization) can “undo” adversarial pertur-
bations before classification [37, 61, 64, 81, 87, 100, 101]. In practice,
however, it has been shown that attackers can adapt to circumvent
such defenses [5, 6]. Additionally, the input transformations that
have been explored in the image-classification domain cannot be

applied in the context of malware detection. Prior work has also
shown that attackers [13] can circumvent methods for detecting
the presence of attacks (e.g., [31, 34, 64, 66]). We expect that such
attackers can circumvent attempts to detect our attacks too.

Prior work proposed ML-based malware-classification methods
designed to be robust against evasion [28, 43]. However, these meth-
ods either have low accuracy [43] or target linear classifiers [28],
which are unsuitable for detecting malware from raw bytes.

Fleshman et al. proposed to harden malware-detection DNNs by
constraining parameter weights in the last layer to non-negative
values [32]. Their approach aims to prevent attackers from intro-
ducing additional features to malware to decrease its likelihood of
being classified correctly. While this rationale holds for single-layer
neural networks (i.e., linear classifiers), DNNs with multiple layers
constitute complex functions where feature addition at the input
may correspond to feature deletion in deep layers. As a result of
the misalignment between the threat model and the defense, we
found that DNNs trained with this defense are as vulnerable to
prior attacks [55] as undefended DNNs.

2.3 Binary Rewriting and Randomization
Software diversification is an approach to produce diverse binary
versions of programs, all with the same functionality, to resist dif-
ferent kinds of attacks, such as memory corruption, code injection,
and code reuse [58]. Diversification can be performed on source
code, during compilation, or by rewriting and randomizing pro-
grams’ binaries. In this work, we build on binary-level diversifica-
tion techniques, as they have wider applicability (e.g., self-spreading
malware can use them to evade detection without source-code ac-
cess [68]). Nevertheless, we expect that this work can be extended
to work with different diversification methods.

Binary rewriting takes many forms (e.g., [38, 52, 53, 63, 71, 82,
99]). Certain methods aim to speed up code via expensive search
through the space of equivalent programs [63, 82]. Other methods
significantly increase binaries’ sizes, or leave conspicuous signs that
rewriting took place [38, 99]. We build on binary-randomization
tools that have little-to-no effect on the size or run time of random-
ized binaries, thus helping our attacks remain stealthy [53, 71]. We
present these tools and our extensions thereof in Sec. 3.2.

3 TECHNICAL APPROACH
Herewe present the technical approach of our attack. Before delving
into the details, we initially describe the threat model.

3.1 Threat Model
We assume that the attacker has white-box or black-box access to
DNNs for malware detection that receive raw bytes of program
binaries as input. In the white-box setting, the attacker has access
to the DNNs’ architectures and weights and can efficiently compute
the gradients of loss functions with respect to the DNNs’ input via
forward and backward passes. On the other hand, the attacker in
the black-box setting may only query the model with a binary and
receive the probability estimate that the binary is malicious.

The DNNs’ weights are fixed and cannot be controlled by attack-
ers (e.g., by poisoning the training data). The attackers use binary



rewriting to manipulate the raw bytes of binaries and cause misclas-
sification while keeping functionality intact. Namely, attackers aim
mislead the DNNs while ensuring that the I/O behavior of program
and the order of syscalls remain the same after rewriting. In certain
practical settings (e.g., when both dynamic and static detection
methods are used [92]) evading static detection techniques as the
DNNs we study may be insufficient to evade the complete stack of
detectors. Nonetheless, evading the static detection techniques in
such settings is necessary for evading detection overall. In Sec. 4.6,
we show that our attacks can evade commercial detectors, some of
which may be using multiple detection methods.

Attacks may seek to cause malware to be misclassified as benign
or benign binaries to be misclassified as malware. The former may
causemalware to circumvent defenses and be executed on a victim’s
machine. The latter induces false positives, which may lead users to
turn off or ignore the defenses [39]. Our methods are applicable to
transform binaries in either direction, but we focus on transforming
malicious binaries in this paper.

As is common for static malware detection [12, 54], we assume
that the binaries are unpacked. While adversaries may attempt to
evade detection via packing, our attack can act as an alternative
or a complementary evasion technique (e.g., once packing is un-
done). Such a technique is particularly useful as packer-detection
(e.g., [12]) and unpacking (e.g., [15]) techniques improve. In fact,
we found that packing with a popular packer increases the likeli-
hood of detection for malicious binaries (see Sec. 4.6), thus further
motivating the need for complementary evasion measures.

As is standard for ML-based malware detection from raw bytes
in particular (Sec. 2.1), and for classification of inputs from discrete
domains in general (e.g., [59]), we assume that the first layer of the
DNN is an embedding layer. This layer maps each discrete token
from the input space to a vector of real numbers via a function E(·).
When computing the DNN’s output F(𝑥) on an input binary 𝑥 , one
first computes the embeddings and feeds them to the subsequent
layers. Thus, if we denote the composition of the layers following
the embedding by H(·), then F(𝑥) = H(E(𝑥)). While the DNNs we
attack contain embedding layers, our attacks conceptually apply to
DNNs that do not contain such layers. Specifically, for a DNN func-
tion F(𝑥) = ℓ𝑛−1 (. . . ℓ𝑖+1 (ℓ𝑖 (. . . ℓ0 (𝑥) . . . )) . . . ) for which the errors
can be propagated back to the (𝑖 + 1)th layer, the attack presented
below can be executed by defining E(𝑥) = ℓ𝑖 (. . . ℓ0 (𝑥) . . . ).

3.2 Functionality-Preserving Attack
The attack we propose iteratively transforms a binary 𝑥 of class 𝑦
(𝑦=0 for benign binaries and𝑦=1 formalware) until misclassification
occurs or a maximum number of iterations is reached. To keep the
binary’s functionality intact, only functionality preserving transfor-
mations are used. In each iteration, the attack determines the subset
of transformations that can be safely used on each function in the
binary. The attack then randomly selects a transformation from
each function-specific subset and enumerates candidate byte-level
changes. Each candidate set of changes is mapped to its correspond-
ing gradient. The changes are only applied if this gradient has
positive cosine similarity with the target model’s loss gradient.

Alg. 1 presents the pseudocode of the attack in the white-box
setting. The algorithm starts with a random initialization. This is

Algorithm 1: White-box attack.
Input :F = H(E( ·)) , LF, 𝑥 , 𝑦, niters
Output :𝑥

1 𝑖 ← 0;
2 𝑥 ← RandomizeAll (𝑥) ;
3 while F(𝑥) = 𝑦 and 𝑖 < niters do
4 for 𝑓 ∈ 𝑥 do
5 𝑒 ← E(𝑥) ;
6 𝑔← 𝜕LF (𝑥̂,𝑦)

𝜕𝑒
;

7 𝑜 ← RandomTransformationType () ;
8 𝑥̃ ← RandomizeFunction(𝑥, 𝑓 , 𝑜) ;
9 𝑒 ← E(𝑥̃) ;

10 𝛿𝑓 = 𝑒𝑓 − 𝑒𝑓 ;
11 if 𝑔𝑓 · 𝛿𝑓 > 0 then
12 𝑥 ← 𝑥̃ ;
13 end
14 end
15 𝑖 ← 𝑖 + 1;
16 end
17 return 𝑥 ;

manifested by transforming all the functions in the binary in an
undirected way. Namely, for each function in the binary, a transfor-
mation type is selected at random from the set of available trans-
formations and applied to that function without consulting loss-
gradient similarity. When there are multiple ways to apply the
transformation to the function, one is chosen at random. The al-
gorithm then proceeds to further transform the binary using our
gradient-guided method for up to niters iterations.

Each iteration starts by computing the embedding of the binary
to a vector space, 𝑒 , and the gradient, 𝑔, of the DNN’s loss function,
LF, with respect to the embedding. Particularly, we use the Losscw,
presented in Sec. 2, as loss function. Because the true value of 𝑔 is
affected by any committed function change and could be unreliable
after transforming many preceding functions in large files, it is
recalculated prior to transforming each function (lines 5–6).

Ideally, to move the binary closer to misclassification, we would
manipulate the binary so that the difference of its embedding from
𝑒 + 𝛼𝑔 (for some scaling factor 𝛼) is minimized (see prior work for
examples [49, 55]). However, if applied naively, such manipulation
would likely cause the binary to be ill-formed or change its function-
ality. Instead, we transform the binary via functionality-preserving
transformations. As the transformations are stochastic and may
have many possible outcomes (in some cases, more than can be
feasibly enumerated), we cannot precisely estimate their impact
on the binary a priori. Therefore, we implement the transforma-
tion of each function, 𝑓 , as the acceptance or denial of candidate
functionality-preserving transformations we iteratively generate
throughout the function, where we apply a transformation only
if it shifts the embedding in a direction similar to 𝑔 (lines 5–13).
More concretely, if 𝑔𝑓 is the gradient with respect to the embedding
of the bytes corresponding to 𝑓 , and 𝛿𝑓 is the difference between
the embedding of 𝑓 ’s bytes after the attempted transformation and
its bytes before, then each small candidate transformation is ap-
plied only if the cosine similarity (or, equivalently, the dot product)



between 𝑔𝑓 and 𝛿𝑓 is positive. Other optimization methods (e.g.,
genetic programming [102]) and similarity measures (e.g., similarity
in the Euclidean space) that we tested did not perform as well.

If the input was continuous, it would be possible to perform the
same attack in a black-box setting after estimating the gradients
by querying the model (e.g., [42]). In our case, however, it is not
possible to estimate the gradients of the loss with respect to the
input, as the input is discrete. Therefore, the black-box attack we
propose follows a general hill-climbing approach (e.g., [88]) rather
than gradient ascent. The black-box attack is conceptually similar
to the white-box one, and differs only in the method of checking
whether to apply attempted transformations: Whereas the white-
box attack uses gradient-related information to decide whether to
apply a transformation, the black-box attack queries the model after
attempting to transform a function and accepts the transformation
only if the probability of the target class increases.

Transformation Types We consider two families of transfor-
mation types [53, 71]. As the first family, we adopt and extend trans-
formation types proposed for in-place randomization (IPR) [71].
Given a binary to randomize, Pappas et al. proposed to disassem-
ble it and identify functions and basic blocks, statically perform
four types of transformations that preserve functionality, and then
update the binary accordingly from the modified assembly. The
four transformation types are: 1) replacing instructions with equiv-
alent ones of the same length (e.g., sub eax,4→ add eax,-4); 2)
reassigning registers within functions or sets of basic blocks (e.g.,
swapping all instances of ebx and ecx) if this does not affect code
that follows; 3) reordering instructions using a dependence graph to
ensure that no instruction appears before one it depends on; and 4)
altering the order in which register values are pushed to and popped
from the stack to preserve them across function calls. To maintain
the semantics of the code, the disassembly and transformations are
performed conservatively (e.g., speculative disassembly, which is
likely to misidentify code, is avoided). IPR does not alter binaries’
sizes and has no measurable effect on their run time [71]. Fig. 1
shows examples of transforming code via IPR.

The original implementation of Pappas et al. was unable to pro-
duce the majority of functionally equivalent binary variants that
should be achievable under the four transformation types. Thus,
we extended and improved the implementation in various ways.
First, we enabled the transformations to compose: unlike Pappas et
al.’s implementation, our implementation allows us to iteratively
apply different transformation types to the same function. Second,
we apply transformations more conservatively to ensure that the
functionality of the binaries is preserved (e.g., by not replacing add
and sub instructions if they are followed by instructions that read
the flags register). Third, compared to the previous implementation,
ours handles a larger number of instructions and function-calling
conventions. In particular, our implementation can rewrite bina-
ries containing additional instructions (e.g., shrd, shld, ccmove)
and less common calling conventions (e.g., nonstandard returns
via increment of esp followed by a jmp instruction). Last, we fixed
significant bugs in the original implementation. These bugs in-
clude incorrect checks for writes to memory after reads, as well as
memory leaks which required routine experiment restarts.

The second family of transformation types that we build on
is based on code displacement (Disp) [53]. Similarly to IPR, Disp
begins by conservatively disassembling the binary. The original
idea of Disp is to break potential gadgets that can be leveraged by
code-reuse attacks by moving code to a new executable section.
The original code to be displaced has to be at least five bytes in
size so that it can be replaced with a jmp instruction that passes
control to the displaced code. If the displaced code contains more
than five bytes, the bytes after the jmp are replaced with trap in-
structions that terminate the program; these would be executed if
a code-reuse attack is attempted. In addition, another jmp instruc-
tion is appended to the displaced code to pass control back to the
instruction that should follow. Any displaced instruction that uses
an address relative to the instruction pointer (i.e., IP) register is
also updated to reflect the new address after displacement. Disp
has a minor effect on binaries’ sizes (∼2% increase on average) and
causes a small amount of run-time overhead (<1% on average) [53].

We extend Disp in two main ways. First, we allow it to displace
any set of consecutive instructions within a basic block, not only
ones that belong to gadgets. Second, instead of replacing the original
instructions with traps, we replace them with semantic nops—sets
of instructions that cumulatively do not affect the memory or regis-
ter values and have no side effects [17]. These semantic nops get
jumped to immediately after the displaced code is done executing.

While nops can be defined atomically (e.g., by a nop instruction),
initial failures to mislead malware detection indicated that a rich
semantic nop language is needed for successful attacks. Such a lan-
guage enables the attack to search through a large set of functionally
equivalent programs to evade DNNs. Therefore, we developed a
context-free grammar to create diverse semantic nops (see Fig. 2).
At a high level, a semantic nop is an atomic instruction; or an in-
vertible instruction that is followed by a semantic nop and then by
the inverse instruction (e.g., push eax followed by a semantic nop
and then by pop eax); or two consecutive semantic nops. When
the flags register’s value is saved (i.e., between pushfd and popfd
instructions), a semantic nop may contain instructions that affect
flags (e.g., add and then subtract a value from a register); and when
a register’s value is saved (i.e., between push r and pop r), a se-
mantic nop may contain instructions that affect the register (e.g.,
decrement it by a random value). Using the grammar for generating
semantic nops, for example, one may generate a semantic nop that
stores the flags and ebx registers on the stack (pushfd; push ebx),
performs an operation that might affect both registers (e.g., add
ebx, 0xff), and then restores the registers (pop ebx; popfd).

When using Disp, our attacks start by displacing code up to a
certain budget, to ensure that the resulting binary’s size does not
increase above a threshold (e.g., 1% above the original size). We
divide the budget (expressed as the number of bytes to be displaced)
by the number of functions in the binary and attempt to displace
exactly that number of bytes per function. If multiple options exist
for what code in a function to displace, we choose at random. If a
function does not contain enough code to displace, then we attach
semantic nops after the displaced code to meet the per-function
budget. In the rare case that the function does not have any basic
block larger than five bytes, we skip that function. Fig. 3 illustrates
an example of displacement where semantic nops are inserted to
replace original code as well as after displaced code, to consume



push ebp
mov ebp, esp
push ebx
push edx
mov ebx, [ebp+4]
add ebx, 0x10
mov edx, [ebp+8]
mov [edx], ebx
pop edx
pop ebx
pop ebp

(55)
(89e5)
(53)
(52)
(8b5d04)
(83c310)
(8b5508)
(891a)
(5a)
(5b)
(5d)

(a) Original

push ebp
mov ebp, esp
push ebx
push edx
mov ebx, [ebp+4]
sub ebx, -0x10
mov edx, [ebp+8]
mov [edx], ebx
pop edx
pop ebx
pop ebp

(55)
(89e5)
(53)
(52)
(8b5d04)
(83ebf0)
(8b5508)
(891a)
(5a)
(5b)
(5d)

(b) Equivalent instructions

push ebp
mov ebp, esp
push ebx
push edx
mov edx, [ebp+4]
sub edx, -0x10
mov ebx, [ebp+8]
mov [ebx], edx
pop edx
pop ebx
pop ebp

(55)
(89e5)
(53)
(52)
(8b5504)
(83eaf0)
(8b5d08)
(8913)
(5a)
(5b)
(5d)

(c) Register reassignment

push ebp
mov ebp, esp
push ebx
push edx
mov ebx, [ebp+8]
mov edx, [ebp+4]
sub edx, -0x10
mov [ebx], edx
pop edx
pop ebx
pop ebp

(55)
(89e5)
(53)
(52)
(8b5d08)
(8b5504)
(83eaf0)
(8913)
(5a)
(5b)
(5d)

(d) Instruction reordering

push ebp
mov ebp, esp
push edx
push ebx
mov ebx, [ebp+8]
mov edx, [ebp+4]
sub edx, -0x10
mov [ebx], edx
pop ebx
pop edx
pop ebp

(55)
(89e5)
(52)
(53)
(8b5d08)
(8b5504)
(83eaf0)
(8913)
(5b)
(5a)
(5d)

(e) Register preservation

Figure 1: An illustration of IPR. We show how the original code (a) changes after replacing instructions with equivalent ones
(b), reassigning registers (c), reordering instructions (d), and changing the order of instructions that preserve register values
(e). We provide the hex encoding of each instruction to its right. The affected instructions are boldfaced and colored in red.

1 S→ Atom | S · S |
2 bswp r · S · bswp r |
3 xchg rh, rl · S · xchg rh, rl |
4 push r · Sr · pop r |
5 pushfd · Sef · popfd
6 Atom→ Φ | nop | mov r, r
7 Sr → S | Sr · Sr | pushfd · Sef ,r · popfd
8 Sef → S | Sef · Sef |
9 arth r, v · Sef · invarth r, v |
10 push r · Sef ,r · pop r
11 Sef ,r → S | Sr | Sef | Sef ,r · Sef ,r |
12 arth r, v · Sef ,r |
13 logic r, v · Sef ,r

Figure 2: A context-free grammar for generating semantic
nops. S is the starting symbol; Φ the empty string; arth indi-
cates an arithmetic operation (specifically, add, sub, adc, or
sbb); invarth indicates its inverse; logic indicates a logical
operation (specifically, and, or, or xor); and r and v indicate
a register and a randomly chosen integer, respectively.

the budget. Then, in each iteration of modifying the binary to cause
it to be misclassified, new semantic nops are chosen at random and
used to replace the previously inserted semantic nops if that moves
the binary closer to misclassification.

Some of the semantic nops contain integer values that can be set
arbitrarily (e.g., see line 12 of Fig. 2). In awhite-box setting, the bytes
of the binary that correspond to these values can be set to perturb
the embedding in the direction that is most similar to the gradient.
Namely, if an integer value in the semantic nop corresponds to
the 𝑖th byte in the binary, we set this 𝑖th byte to 𝑏 ∈ {0, . . . , 255}
such that the cosine similarity between E(𝑏) − E(𝑥𝑖 ) and 𝑔𝑖 is
maximized. This process is repeated each time a semantic nop is
drawn to replace previous semantic nops in white-box attacks.

Known methods [18] for detecting and removing semantic nops
from binaries might appear viable for defending against Disp-based
attacks. However, as we discuss in Sec. 5, attackers can leverage
various techniques to evade semantic-nop detection and removal.

Limitations Our implementation leaves room for improve-
ment. For instance, it does not displace code that has been dis-
placed in earlier iterations. A better implementation might apply
displacements recursively. Furthermore, the composability of IPR

...
0x4587:
0x458b:
0x458f:
...

...
add ax, 0x10
sub bx, 0x10
cmp ax, bx
...

...
(6683c010)
(6683eb10)
(6639d8)
...

(a) Original code

...
0x4587:
0x458c:
0x458f:
...

...
0x4800:
0x4804:
0x4808:
0x4805:
0x4806:
0x4807:
0x480a:
0x480b:
0x480d:
...

...
jmp 0x4800
mov cx, cx
cmp ax, bx
...

...
add ax, 0x10
sub bx, 0x10
nop
pushfd
push ebx
add ebx, 0x1a
pop ebx
popfd
jmp 0x458c
...

...
(e974020000)
(6689c9)
(6639d8)
...

...
(6683c010)
(6683eb10)
(90)
(9c)
(53)
(83c31a)
(5b)
(9d)
(e97afdffff)
...

(b) After Disp

Figure 3: An example of displacement. The two instructions
staring at address 0x4587 in the original code (a) are dis-
placed to starting address 0x4800. The original instructions
are replaced with a jmp instruction and a semantic nop. To
consume the displacement budget, semantic nops are added
immediately after the displaced instructions and just before
the jmp that passes the control back to the original code. Se-
mantic nops are shown in boldface and red.

and Disp transformations could be improved. In particular, when
applying both Disp and IPR transformations to a binary, both types
of transformations affect the original instructions of the binary.
However, IPR does not affect the semantic nops that are introduced
by Disp. Despite room for improvement, our implementation is
already sufficient to generate successful attacks (see below).

4 EVALUATION
In this section, we comprehensively evaluate our attack. We first
detail the DNNs and data used for evaluation. We then show that
naïve, random transformations that are not guided via optimization
do not lead to misclassification. Subsequently, we evaluate variants



VTFeed Train Val. Test

Benign 111,258 13,961 13,926
Malicious 111,395 13,870 13,906

Table 1: The number of benign and malicious binaries used
to train, validate, and test the DNNs.

Accuracy TPR @
Train Val. Test 0.1% FPR

AvastNet 99.89% 98.59% 98.60% 94.78%
MalConv 99.97% 98.67% 98.53% 96.08%

Table 2: The DNNs’ accuracy and the TPR at the operating
point where the FPR equals 0.1%.

of our attack in the white- and black-box setting and compare with
prior work. We then evaluate our attack against commercial anti-
viruses and close the section with experiments to validate that the
attacks preserve functionality.

4.1 Datasets and Malware-Detection DNNs
4.1.1 Dataset composition. Our dataset, VTFeed, contains raw bina-
ries of malware samples targeting Windows machines. As such, the
binaries adhere to the Portable Executable format (PE; the standard
format for .dll and .exe files) [48]. Overall, we use significantly
more samples than similar prominent prior work (e.g., [4, 50]).

VTFeed was collected by sampling the VirusTotal feed for PE
binaries, representing binaries encountered in practice by anti-virus
vendors. Collection took around two weeks and was restricted to
binaries first seen in 2020, to ensure recency, and smaller than 5
MB. Following prior work [2], binaries were filtered and labeled as
benign (resp., malicious) if they were classified as malicious by 0
(resp., over 40) antivirus vendors as aggregated by VirusTotal. The
dataset contains 278,316 binaries with a roughly even distribution
between benign and malicious binaries. We sampled training, test,
and validation sets at a ratio of 80%, 10%, and 10% respectively.
Exact numbers can be seen in Table 1.

4.1.2 DNN Training. Using the malicious and benign samples, we
trained two malware-detection DNNs. All DNNs receive binaries’
raw bytes as inputs and output the probability that the binaries are
malicious. The first DNN (henceforth, AvastNet), proposed by Krčál
et al. [54], receives inputs up to 512 KB in size. The second DNN
(henceforth, MalConv), proposed by Raff et al. [76], receives inputs
up to 2MB in size. Except for the batch size (set to 32 due to memory
limitations), we used the same training parameters reported in prior
work. When using binaries for training, we excluded their headers
so the DNNs would not rely on header values, which are easily
manipulable, for classification [27].

EachDNN achieves test accuracy of about 99% (see Table 2). Even
when restricting the false positive rates (FPRs) conservatively to
0.1% (as is often done by anti-virus vendors [54]), the true positive
rates (TPRs) remain as high as 94–96% (i.e., 94–96% of malicious
binaries are detected). These results are superior to those reported in

the original papers both for classification from raw bytes and from
manually crafted features [54, 76]. This is likely because VTFeed
was sampled over a narrow time span, and expect the performance
would slightly decrease if we increased the diversity of the dataset.

In addition to the two DNNs that we trained, we evaluated our at-
tacks using a publicly available DNN (henceforth, Endgame) trained
by Anderson and Roth [2]. Endgame has a similar architecture to
MalConv. The salient differences are that: 1) Endgame’s input di-
mensionality is 1 MB (compared to 2 MB for MalConv); and 2)
Endgame uses the PE header for classification. On a dataset curated
by a computer-security company, Endgame achieved about 92%
TPR when the FPR was restricted to 0.1% [2].

To evaluate attacks against the DNNs, we selected binaries ac-
cording to three criteria. First, the binaries had to be unpacked.
We used standard packer detectors, Packerid [84] and Yara [96],
and deemed binaries as unpacked only if no detector exhibited a
positive detection. This method is similar to the one followed by
Biondi et al. [12].2 We also filtered out binaries labeled as packed in
their VirusTotal metadata. While the data used to train and test the
DNNs included packed binaries, the high accuracy of the DNNs on
the test samples suggests that the DNNs’ performance was not im-
pacted by (lack of) packing. Second, the binaries had to be classified
correctly and with high confidence by the DNNs that we trained. In
particular, malicious binaries had to be classified as malicious and
the estimated probability that they are malicious had to be above
the threshold where the FPR is 0.1%. Consequently, our evaluation
of the attacks’ success is conservative: the attacks would be more
successful for binaries that are initially classified correctly, but not
with high confidence. Third, the binaries’ sizes had to be smaller
than the DNNs’ input dimensionality. We further restricted the
binaries’ sizes to be smaller than smallest input dimensionality
of our DNNs (AvastNet at 512 KB). While the DNNs can classify
binaries whose size is larger than the input dimensionality (as can
be seen from the high classification accuracy on the validation and
test sets), we avoided large binaries as a means to prevent evasion
by displacing malicious code outside the input range of the DNNs.
Using these criteria, we selected 100 malicious binaries from the
test set to evaluate the attacks against each of the three DNNs.

The total number of samples we collected is comparable to that
used in prior work on evading malware detection [49, 55, 88, 89].

4.2 Attack-Success Criteria
We executed the attacks for up to 200 iterations, stopping early if
the binaries were misclassified at the operating point where the FPR
equals 0.1%. For malicious binaries, this meant that they were mis-
classified as benign with a probability higher than a model-specific
threshold set to achieve 0.1% FPR. This follows the threshold typi-
cally used by antivirus vendors (e.g., [54]). We also found that attack
success on the same binary, given identical experiment parameters,
was often stochastic. Therefore, we repeated each attack 10 times
to get a reliable measure of attack success.

We compared the overall success of attacks in two ways: by the
percentage of binaries that were misclassified in at least 1 of the 10
repeated attacks on them (coverage); and the overall percentage of

2Biondi et al. used three packer-detection tools instead of two. Unfortunately, we were
unable to get access to one of the proprietary tools.



attacks that were successful across all attacked binaries (potency).
Coverage is a measure of what percentage of binaries our attack
can be successful on whereas potency is a measure of the how often
a single attack trial succeeds. As a result of this definition, coverage
will always be higher than potency.

4.3 Randomly Applied Transformations
We first evaluated whether naïvely transforming binaries at random
would lead to evading the DNNs. For each binary that we used to
evaluate the attacks we created 200 variants using the IPR and Disp
transformations and classified them using the DNNs. We trans-
formed the binaries sequentially and at random. Namely, starting
from the original variant, we created the next variant by transform-
ing every function using a randomly picked transformation type
that was applied at random. If any of the variants were misclassi-
fied by a DNN given the 1% FPR threshold, we would consider the
evasion attempt successful. We set Disp to increase binaries’ sizes
by 5% (i.e., the displacement budget was set to 5% of the binary’s
original size). We selected 200 and 5% as parameters for this ex-
periment because our attacks were executed for 200 iterations at
most and achieved almost perfect success when increasing binaries’
sizes by 5% (see below). This technique was most effective when
attempting to misclassify malware as benign on Endgame, where
four binaries evaded detection. However, for all other attempts to
evade, no more than three binaries were successful.

Hence, we conclude the DNNs are robust to naïve transforma-
tions and more principled approaches are needed to mislead them.

4.4 White-Box Attacks vs. DNNs
In the white-box setting, we evaluated seven variants of our at-
tack. One variant, to which we refer to as IPR, relies on the IPR
transformations only. Three variants, Disp-1, Disp-3, and Disp-5,
rely on the Disp transformations only, where the numbers indicate
the displacement budget as a percentage of the binaries’ sizes (e.g.,
Disp-1 increases binaries’ sizes by 1%). The last three attack variants,
IPR+Disp-{1,3,5}, use the IPR and Disp transformations combined.

We set 5% as the maximum displacement budget and 200 as the
maximum number of iterations, as the attacks were almost always
successful with these parameters.

The results of the experiments are provided in Fig. 4 where the
lighter part of the bar represents potency and the darker part rep-
resents coverage. One can immediately see that attacks using the
Disp transformations were more successful than IPR. While show-
ing some effectiveness in evading Endgame, IPR at best achieves a
coverage of 52% while Disp of all budgets on all three models are
able to cause at least 92% of binaries to be misclassified.

Moreover, Disp-5 achieved misclassification on all binaries ex-
cept one on AvastNet. As one would expect, attacks with higher
displacement budgets were more successful than attacks with lower
displacement budgets. However, the main difference we see is in
the potency of the attack, whereas the coverage only differs by a
single missed binary between Disp-3 and Disp-5.

In addition to achieving higher coverage and potency, another
advantage of Disp-based attacks over IPR-based ones is their time
efficiency. While displacing instructions at random from within a
function with 𝑛 instructions has O(𝑛) time complexity, certain IPR

transformations have O(𝑛2) time complexity. For example, reorder-
ing instructions requires building a dependence graph and extract-
ing instructions one after the other. If every instruction in a function
depends on previous ones, this process takes O(𝑛2) time. In prac-
tice, we found that IPR–based, Disp–based, and IPR+Disp–based
attacks took 4424, 283, and 961 seconds on average respectively.3

Combining IPR with Disp achieved noticeably better results in
fewer iterations than respective Disp-only attacks when the budget
for Disp is low. For example, IPR+Disp-1 had 11% higher potency
than Disp-1 when misleading Endgame to misclassify a malicious
binary as benign (61% vs. 50% potency). Thus, in certain situations,
Disp and IPR can be combined to fool the DNNs while increasing
binaries’ sizes less than Disp alone.

For our most performant attack, IPR+Disp-5, we re-executed the
attackswith significantlymore difficult success criteria.We changed
the threshold for attack success to MalConv and AvastNet’s FNR
of 0.01%. Beating this threshold means that a transformed binary
must appear less malicious than the least malicious 0.1% of malware
in the dataset. For MalConv, our potency drops from 97% to 92%,
while coverage drops from 100% to 99%. For AvastNet, potency
drops from 95% to 90% and coverage from 100% to 95%. These
results demonstrate our attack’s ability to evade more cautious ML
detectors, even though this threshold is unlikely to be used as it
would flag roughly a third of benign binaries as malware.

In Fig. 5, we averaged and plotted the classification output of
the models and the resultant misclassifications of the binaries over
the iterations of each attack. As shown, the majority of successful
attacks that incorporate Disp succeeded in a single iteration, with
almost all successful attacks occurring within ten iterations. We
also examined the performance of the attacks as a function of the
number of modifiable functions in a binary. On average, 89% of
functions in a binary were modifiable. As expected, attacks were
less likely to succeed when the binaries had few functions to modify
(Fig. 6a). Consistent with that finding, as the number of modifiable
functions (and number of functions overall) in a binary increased,
the average number of iterations required for an attack to succeed
decreased (Figs. 6b–6d). This trend held across different types of
attacks, but was more pronounced for less successful attacks (IPR)
than more successful ones (Disp), as the vast majority of the latter
completed within a small number of iterations.

Finally, we compared the evasion success rates of our attack
with a representative prior attack proposed by Kreuk et al. [55].
To mislead DNNs, this attack appends adversarially crafted bytes
to binaries. These bytes are crafted via an iterative algorithm that
first computes the gradient 𝑔𝑖 of the loss with respect to the em-
bedding E(𝑥𝑖 ) of the binary 𝑥𝑖 at the 𝑖th iteration, and then sets the
adversarial bytes to minimize the 𝐿2 distance of the new embedding
E(𝑥𝑖+1) from E(𝑥𝑖 )+𝜖sign(𝑔𝑖 ), where 𝜖 is a scaling parameter. We
tested three variants of the attack which increase the binaries’ sizes
by 1%, 3%, and 5%. We used Losscw as the loss function. As with our
attacks, we executed Kreuk et al.’s attacks for up to 200 iterations,
stopping sooner if misclassification occurred. We set 𝜖=1, as we
empirically found it leads to high evasion success.

3Times were computed on four machines: one with 2.2GHz AMD Opteron CPU and
128GB RAM, one with 3.4GHz Intel-i7 CPU and 24GB RAM, one with 2.2Ghz AMD
Ryzen 3900X and 64GB RAM, and one with 2.7GHz Intel-i5 CPU and 24GB RAM.
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Figure 4: Attack success rates in the white-box setting. We show potency as the lighter bars and coverage as the darker bars.
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Figure 5: A contrasting view showing the potency over iteration for the whitebox attacks.
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Figure 6: As the number of modifiable functions increased, the average number of iterations to success decreased, while the
time to execute an iteration increased. The lines in each plot are the best fit degree-3 polynomials.

The variants of Kreuk et al.’s attack achieved success rates com-
parable to our attack. Kreuk-5 was almost always able to mislead
the DNNs—it achieved 99% and 98% success rate when attempting
to mislead Endgame and MalConv, respectively, to misclassify ma-
licious binaries, and 100% success rate in all other attempts. Also
similar to our attacks, the success rates increased as the attacks
increased the binaries’ sizes. However, as described in App. A, their
attack is easier to defend against by sanitizing bytes (specifically,
by masking with zeros) in sections that do not contain instructions.

4.5 Black-Box Attacks vs. DNNs
As explained in Sec. 3, because the DNNs’ input is discrete, estimat-
ing gradient information to mislead them in a black-box setting is
not possible. So, the black-box version of Alg. 1 uses hill climbing
to query the DNN after each attempted transformation to decide
whether to keep the transformation. Because querying the DNNs
after each attempted transformation significantly increased the run
time of the attacks (∼30× on a machine with GeForce GTX 980
GPU), we limited our experiments to Disp transformations with

a displacement budget of 5%. We executed the attacks up to 200
iterations, stopped early if misclassification occurred, and repeated
them three times each to account for stochasticity.

The attacks were most successful against MalConv, achieving a
coverage of 95% and potency of 92%. AvastNet and Endgame were
only slightly more robust with attack coverages of 92% and 59%
and potencies of 87% and 56% respectively. These results show our
attack remains effective even in a black-box setting.

4.6 Commercial Anti-Viruses
To assess whether our attacks affect commercial anti-viruses, we
tested the malicious transformed binaries that were misclassified
by the DNNs in the white-box setting on the anti-viruses available
via VirusTotal [19]—a service that aggregates the results of 68 com-
mercial anti-viruses. Since anti-viruses often rely in part on static
analysis, with increasing integration of ML, we expected that the
malicious binaries generated by our attacks would be detected by
fewer anti-viruses than the original binaries.



Due to contractual constraints, we were unable to perform this
experiment with our previously described dataset. Thus, we re-
sorted to using binaries taken from other sources. In this alter-
nate dataset, we used 21,741 malicious binaries belonging to seven
malware families that were published by Microsoft as part of a
malware-classification competition [78]. We complemented these
binaries with 19,534 benign binaries collected by installing standard
packages (browsers, productivity tools, etc.) on a newly created
32-bit Windows 7 virtual machine.4 After splitting the binaries
for training (21,217), testing (9,105), and validation (10,953), we
trained variants ofMalConv and AvastNet that achieved 99.15% and
98.92% test accuracy, respectively. Subsequently, we collected 95
malicious binaries from VirusShare [77] that pertain to the seven
malware families from the Microsoft competition. We then trans-
formed these malicious binaries using our white-box attack to evade
the DNNs we trained as well as Endgame, and tested how often the
transformed binaries were detected by anti-viruses on VirusTotal.

Original Binaries As a baseline, we first classified the original
binaries using the VirusTotal anti-viruses. As one would expect,
all the malicious binaries were detected by several anti-viruses.
The median number of anti-viruses that detected any particular
malware binary as malicious was 55, out of 68 total anti-viruses.

Random Transformations To further gauge the efficacy of
our guided attack over random diversification, we used commercial
anti-viruses to classify binaries that were transformed at random
using the Disp and IPR transformations (as described in Sec. 4.3).
We found that certain anti-viruses were susceptible to such simple
evasion attempts, presumably due to using fragile detection mech-
anisms such as signatures. The median number of anti-viruses that
correctly detected the malicious binaries decreased from 55 to 43.

Packing We tested whether anti-viruses were susceptible to
evasion via packing. We used UPX [69], one of the most popu-
lar packers [80], and packed binaries using the highest compres-
sion ratios. Interestingly, packing malicious binaries was counter-
productive for evading anti-viruses. Packed malicious binaries were
more likely to be detected as malware—the median number of anti-
viruses that correctly detected malicious binaries increased from
55 for the original binaries to 59 after packing.

Our Attacks Compared to the original malicious binaries and
randomly transformed ones, the malicious binaries transformed by
our attacks were detected by fewer anti-viruses. The median num-
ber of anti-viruses that correctly detected the malicious binaries
decreased from 55 for the original binaries and 42 for ones trans-
formed at random to 33–36, depending on the attack variant and the
targeted DNN. According to a Kruskal-Wallis test, this reduction
is statistically significant (𝑝 <0.01 after Bonferroni correction). In
other words, the malicious binaries that were transformed by our at-
tacks were detected by only 49%–53% of the VirusTotal anti-viruses
in the median case. Table 3 in App. B summarizes each attack vari-
ant’s effect on the number of positive detections by anti-viruses.

Because our attack should not affect any dynamic analysis (due to
the desired attack property of functional invariance), these results
indicate some anti-viruses may be over-reliant on static analyses
and/or ML.We also highlight these results cannot only be attributed

4Specifically, we used the Ninite and Chocolatey (https://ninite.com/ and https://
chocolatey.org/) package managers to install 179 packages.

to breaking signature-based defenses, as the randomly transformed
binaries (which were transformed for an equal number of iterations)
would have been equally likely to evade anti-viruses as our attacks.

Furthermore, several anti-virus vendors that were misled by our
attacks advertise the use of ML detectors. Evading the ML detec-
tors of those vendors was necessary to mislead their anti-viruses.
A glance at vendors’ websites showed that 15 of the 68 vendors
explicitly advertise relying on ML for malware detection. These
anti-viruses were especially susceptible to evasion by our attacks.
Even more concerning, a popular and highly credible anti-virus
whose vendor claims to rely on ML misclassified 85% of the mali-
cious binaries produced by one of our attacks as benign. Generally,
malicious binaries that were produced by our attacks were detected
by a median number of 7–9 anti-viruses of the 15—down from 12
positive detections for the original binaries. All in all, our results
support that binaries that were produced by our attacks were able to
evade ML-based static detectors that are used by anti-virus vendors.

4.7 Correctness
A key feature of our attacks is that they transform binaries to mis-
lead DNNs while preserving their functionality. We followed stan-
dard practices from the binary-diversification literature [52, 53, 71]
to ensure that the functionality of the binaries was kept intact after
being processed by our attacks. First, we transformed ten different
benign binaries (e.g., python.exe of Python version 2.7, and Cyg-
win’s5 less.exe and grep.exe) with our attacks and manually
validated that they functioned properly after being transformed.
For example, we were still able to search files with grep after the
transformations. Second, we transformed the .exe and .dll files
of a stress-testing tool6 with our attacks and checked that the tool’s
tests passed after the transformations. Using stress-testing tools
to evaluate binary-transformation correctness is common, as such
tools are expected to cover most branches affected by the transfor-
mations. Third, and last, we also transformed ten malware binaries
and used the Cuckoo Sandbox [36]—a popular sandbox for malware
analysis—to check that their behavior remained the same. All ten
binaries attempted to access the same hosts, IP addresses, files, APIs,
and registry keys before and after being transformed.

5 POTENTIAL MITIGATIONS
Our proposed attacks achieved high success rates at fooling DNNs
for malware detection in white-box and black-box settings. The
attacks were also able to mislead commercial anti-viruses, espe-
cially ones that leverage ML algorithms. To protect users and their
systems, it is important to develop mitigation measures to make
malware detection robust against evasion by our attacks. Our efforts
to explore mitigations, however, have met with limited success.

Due to space limitations, we defer a complete discussion of miti-
gations we have explored to App. C, providing only a brief summary
here. We found adversarial training (e.g., [33, 57]) too expensive in
this domain to be practical. Leveraging static or dynamic analysis
methods to “cleanse” binaries is challenging because our attacks
transform binaries’ original code (vs. inserting unreachable code)
and can be confounded through the insertion of opaque [23, 68]

5https://www.cygwin.com/
6https://www.passmark.com/products/performancetest/

https://ninite.com/
https://chocolatey.org/
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https://www.passmark.com/products/performancetest/


or evasive [10] predicates. We found masking random subsets of
the binary prior to classification promising as a defense in some
cases, but it is far from comprehensive and likely a small obsta-
cle to an adaptive attacker. Finally, detecting adversarial samples
based on binary size or jmp instructions seems both difficult (our
attacks increase neither substantially) and ultimately evadable. As
further discussed in App. C, we thus advocate that ML-based static
malware detection be augmented with methods not based on ML.

6 CONCLUSION
Our work proposes evasion attacks on DNNs for malware detec-
tion. Differently from prior work, the attacks do not merely insert
adversarially crafted bytes to mislead detection. Instead, guided
by optimization processes, our attacks transform the instructions
of binaries to fool malware detection while keeping functionality
of the binaries intact. As a result, these attacks are challenging
to defend against. We conservatively evaluated different variants
of our attack against three DNNs under white-box and black-box
settings, and found the attacks successful as often as 100% of the
time. Moreover, we found that the attacks pose a security risk to
commercial anti-viruses, particularly ones using ML, achieving
evasion success rates of up to 85%. We explored several potential
defenses, and found some to be promising. Nevertheless, adaptive
adversaries remain a risk, and we recommend the deployment of
multiple detection algorithms, including ones not based on ML, to
raise the bar against such adversaries.
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A COMPARISON TO KREUK ET AL. AND
SUCCESS AFTER SANITIZATION

While Kreuk et al.’s attack achieved success rates comparable to
ours, their attack is easier to defend against. As a proof of concept,
we implemented a sanitization method to defend against the attack
using our alternate dataset described in Sec. 4.6. The method finds
all the sections in a binary that do not contain instructions (using
the IDAPro disassembler [40]) and masks the sections’ content with
zeros. As Kreuk et al.’s attack does not add functional instructions
to the binaries, the defense masks the adversarial bytes that the
attack introduces. Consequently, the evasion success rates of the
attack drop significantly. In fact, except for when attempting to
mislead the Endgame DNN with malicious binaries, the success
rates of the Kreuk attacks dropped below 15%. This defense had
little-to-no effect on our attacks, however: e.g., Disp-5 still achieved
92% and 100% success rates against MalConv for malicious and
benign binaries, respectively. Moreover, the classification accuracy
remained high both for malicious (99%) and benign (93%) binaries
after the defense. Fig. 7 in App. A presents the full results of the
impact of sanitization on attacks’ success on the Kaggle dataset.

Fig. 7 shows the success rates of attacks when sanitizing bytes in
sections that do not include instructions. In particular, we replaced
byte values in such sections with zeros, as described in Sec. 4.4. Our
attacks maintained high success rates after sanitization (e.g., >90%
for Disp-5), whereas the success rates of the Kreuk attacks dropped
below 15% in most cases.
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Figure 7: Attacks’ success rates (measured by the percent-
age of misclassified binaries) in the white-box setting when
masking out bytes in sections that do not include instruc-
tions before classification.

B OUR ATTACKS’ TRANSFERABILITY TO
COMMERCIAL ANTI-VIRUSES

Table 3 summarizes the effect of different attack variants on the
number of positive detections (i.e., classification of binaries as mali-
cious) by the anti-viruses featured on VirusTotal. Sec. 4.6 describes
the experiment and explains the results.

C POTENTIAL MITIGATIONS
In this appendix we summarize our efforts to provide mitigations
for our attacks.

C.1 Prior Defenses
We considered several prior defenses to mitigate our attacks, but,
unfortunately, most showed little promise. For instance, adversarial

training (e.g., [33, 57]) is currently infeasible, as the attacks are
computationally expensive. Depending on the attack variant, it
took an average of 283 to 4424 seconds to run an attack. As a re-
sult, running just a single epoch of adversarial training would to
take several weeks (using our hardware configuration), as each
iteration of training requires running an attack for every sample
in the training batch. Moreover, while adversarial training might
increase the DNNs’ robustness against attackers using certain trans-
formation types, attackers using new transformation types may
still succeed at evasion [29]. Defenses that provide formal guar-
antees (e.g., [51, 67]) are even more computationally expensive
than adversarial training. Moreover, those defenses are restricted
to adversarial perturbations that, unlike the ones produced by our
attacks, have small 𝐿∞- and 𝐿2-norms. Prior defenses that trans-
form the input before classification (e.g., via quantization [101]) are
designed mainly for images and do not directly apply to binaries.
Lastly, signature-based malware detection would not be effective,
as our attacks are stochastic and produce different variants of the
binaries after different executions.

Differently from prior attacks onDNNs formalware detection [49,
55, 89], our attacks do not merely append adversarially crafted bytes
to binaries, or insert them between sections. Such attacks may be
defended against by detecting and sanitizing the inserted bytes
via static analysis methods (e.g., similarly to the proof of concept
shown in Sec. 4.4, or using other methods [56]). Instead, our at-
tacks transform binaries’ original code, and extend binaries only
by inserting instructions that are executed at run time at various
parts of the binaries. As a result, our attacks are difficult to defend
against via static or dynamic analyses methods (e.g., by detecting
and removing unreachable code), especially when augmented by
measures to evade these methods.

Binary normalization [3, 18, 98] is a defense that initially seemed
viable for defending against our attacks. The high-level idea of
normalization is to employ certain transformations to map binaries
to a standard form and thus undo attackers’ evasion attempts be-
fore classifying the binaries as malicious or benign. For example,
Christodorescu et al. proposed a method to detect and remove se-
mantic nops from binaries before classification, and showed that
it improves the performance of commercial anti-viruses [18]. To
mitigate our Disp-based attacks, we considered using the semantic
nop detection and removal method followed by a method to re-
store the displaced code to its original location. Unfortunately, we
realized that such a defense can be undermined using opaque predi-
cates [23, 68]. Opaque predicates are predicates whose value (w.l.g.,
assume true) is known a priori to the attacker, but is hard for the
defender to deduce. Often, they are based onNP-hard problems [68].
Using opaque predicates, attackers can produce semantic nops that
include instructions that affect the memory and registers only if
an opaque predicate evaluates to false. Since opaque predicates are
hard for defenders to deduce, the defenders are likely to have to
assume that the semantic nops impact the behavior of the program.
As a result, the semantic nops would survive the defenders’ detec-
tion and removal attempts. As an alternative to opaque predicates,
attackers can also use evasive predicates—predicates that evaluate
to true or false with an overwhelming probability (e.g., checking
if a randomly drawn 32-bit integer is equal to 0) [10]. In this case,



DNN IPR Disp-1 Disp-3 Disp-5 IPR+Disp-1 IPR+Disp-3 IPR+Disp-5

AvastNet - 36 35 36 36 35 36
Endgame 33 35 36 35 35 36 35
MalConv - 36 35 36 36 35 36

Table 3: Themedian number of VirusTotal anti-viruses that positively detected (i.e., as malicious) malicious binaries that were
transformed by our white-box attacks (columns) to mislead the different DNNs (rows). The median number of anti-viruses
that positively detected for the original malicious binaries is 55. Cases in which the change in the number of detections is
statistically significant are in bold.

the binary will function properly the majority of the time, and may
function differently or crash once every many executions.

The normalization methods proposed by prior work would not
apply to the transformations performed by our IPR-based attacks.
Therefore, we explored methods to normalize binaries to a stan-
dard form to undo the effects of IPR before classification. We found
that a normalization process that leverages the IPR transformations
to produce the form with the lowest lexicographic representation
(where the alphabet contains all possible 256 byte values) prevented
IPR-based attacks. Formally, if [𝑥] is the equivalence class of bina-
ries that are functionally equivalent to 𝑥 and that can be produced
via the IPR transformation types, then the normalization process
produces an output norm(𝑥) ∈ [𝑥], such that, norm(𝑥) ≤ 𝑥𝑖 for
every 𝑥𝑖 ∈ [𝑥]. App. D presents an algorithm that computes the
normalized form of a binary when executed for a large number of
iterations, and approximates it when executed for a few iterations.
At a high level, the algorithm applies the IPR transformations it-
eratively in an effort to reduce the lexicographic representation
after every iteration. We found that executing the algorithm for
ten iterations was sufficient to defend against IPR-based attacks.
In particular, we executed the normalization algorithm using the
malicious and benign binaries produced by the IPR-based attacks to
fool Endgame in the white-box setting, and found that the success
rates dropped to 3% and 0%, respectively, compared to 62% and
74% before normalization. At the same time, the classification accu-
racy over the original binaries was not affected by normalization.
As our experiments in Sec. 4 have shown, generating functionally
equivalent variants of binaries via random transformations results
in correct classifications almost all of the time. Normalization of
binaries deterministically led to specific variants that were correctly
classified with high likelihood.

C.2 Masking Random Instructions
While normalization was useful for defending against IPR-based
attacks, it cannot mitigate the more pernicious Disp-based attacks
that are augmented with opaque or evasive predicates. Moreover,
normalization has the general limitations that attackers could use
transformations that the normalization algorithm is not aware of
or could obfuscate code to inhibit normalization. Therefore, we
explored additional defensive measures. In particular, motivated
by the fact that randomizing binaries without the guidance of an
optimization process is unlikely to lead to misclassification, we
explored whether masking instructions at random can mitigate
attackswhilemaintaining high performance on the original binaries.
The defense works by selecting a random subset of the bytes that

pertain to instructions and masking them with zeros (a commonly
used value to pad sections in binaries). While the masking is likely
to result in an ill-formed binary that is unlikely to execute properly
(if at all), the masking only occurs before classification, which does
not require a functional binary. Depending on the classification
result, one can decide whether or not to execute the unmasked
binary.

We tested the defense on binaries generated via the IPR+Disp-
5 white-box attack on Kaggle and found that it was effective at
mitigating attacks. For example, when masking 25% of the bytes
pertaining to instructions, the success rates of the attack decreased
from 83%–100% for malicious and benign binaries against the three
DNNs to 0%–20%, while the accuracy on the original samples was
only slightly affected (e.g., it became 94% for Endgame). Masking
less than 25% of the instructions’ bytes was not as effective at
mitigating attacks, while masking more than 25% led to a significant
decrease in accuracy on the original samples.

C.3 Detecting Adversarial Examples
To prevent binaries transformed with our attacks (i.e., adversarial
examples) from fooling malware detection, defenders may attempt
to deploy methods to detect them. In cases of positive detections of
adversarial examples, defenders may immediately classify them as
malicious (regardless of whether they were originally malicious or
benign). For example, because Disp-based attacks increase binaries’
sizes and introduce additional jmp instructions, defenders may train
statistical ML models that use features such as binaries’ sizes and
the ratio between jmp instructions and other instructions to detect
adversarial examples. While training relatively accurate detection
models may be feasible, we expect this task to be difficult, as the
attacks increase binaries’ sizes only slightly (1%–5%), and do not
introduce many jmp instructions (7% median increase for binaries
transformed via Disp-5). Furthermore, approaches for detecting
adversarial examples are likely to be susceptible to evasion attacks
(e.g., by introducing instructions after opaque predicates to decrease
the ratio between jmp instructions and others). Last, another risk
that defenders should take into account is that the defense should
be able to precisely distinguish between adversarial examples and
non-adversarial benign binaries that are transformed by similar
methods to mitigate code-reuse attacks [53, 71].

C.4 Takeaways
While masking a subset of the bytes that pertain to instructions
led to better performance on adversarial examples, it was still un-
able to prevent all evasion attempts. Although the defense may



raise the bar for attackers, and make attacks even more difficult
if combined with a method to detect adversarial examples, these
defenses do not provide formal guarantees and so attackers may
be able to adapt to undermine them. For example, attackers may
build on techniques for optimization over expectations to generate
binaries that would mislead the DNNs even when masking a large
number of instructions, in a similar manner to how attackers can
evade image-classification DNNs under varying lighting conditions
and camera angles [7, 30, 85, 86]. In fact, prior work has already
demonstrated how defenses without formal guarantees are often
vulnerable to adaptive, more sophisticated, attacks [6]. Thus, since
there is no clear defense to prevent attacks against the DNNs that
we studied in this work, or even general methods to prevent at-
tackers from fooling ML models via arbitrary perturbations, we
advocate for augmenting malware-detection systems with methods
that are not based on ML (e.g., ones using templates to reason about
the semantics of programs [17]), and against the use of ML-only
detection methods, as has become recently popular [25].

D IN-PLACE NORMALIZATION
In this section, we present a normalization process to map binaries
to a standard form and undo the effect of the IPR transformations on
classification. Specifically, the normalization process maps binaries
to the functionally equivalent variant with the lowest lexicographic
presentation that is achievable via the IPR transformation types.
For each transformation type, we devise an operation that would
decrease a binary’s lexicographic representation when applied: 1)
instructions would be replaced with equivalent ones only if the new
instructions are lexicographically lower (Eqv); 2) registers in func-
tions would be reassigned only if the byte representation of the first
impacted instruction would decrease (Regs); 3) instructions would
be reordered such that each time we would extract the instruction
from the dependence graph with the lowest byte representation
that does not depend on any of the remaining instructions in the
graph (Ord1); and 4) push and pop instructions that save register
values across function calls would be reordered to decrease the
lexicographic representation while maintaining the last-in-first-out
order (Ord2). Fig. 8 depicts an example of replacing one instruction
with an equivalent one via Eqv to decrease the lexicographic order
of code.

sub eax, -0x20
test ebx, ebx

(83e8e0)
(85db)

(a)

add eax, 0x20
or ebx, ebx

(83c020)
(09db)

(b)

Figure 8: An example of normalizing code via Eqv. The orig-
inal code (a) is transformed via Eqv (b) to decrease the lexi-
cographic order.

Unfortunately, as shown in Fig. 9, when the different types of
transformation types are composed, applying individual normal-
ization operations does not necessarily lead to the binary’s variant
with the minimal lexicographic representation, as the procedure
may be stuck in a local minima. To this end, we propose a stochastic
algorithm that is guaranteed to converge to binaries’ normalized
variants if executed for a sufficiently large number of iterations.

push edx
push ebx
mov dh, 0x4
mov bh, 0x3
pop ebx
pop edx

(52)
(53)
(b604)
(b703)
(5b)
(5a)

(a)

push edx
push ebx
mov bh, 0x4
mov dh, 0x3
pop ebx
pop edx

(52)
(53)
(b704)
(b603)
(5b)
(5a)

(b)

push edx
push ebx
mov bh, 0x3
mov dh, 0x4
pop ebx
pop edx

(52)
(53)
(b703)
(b604)
(5b)
(5a)

(c)

push edx
push ebx
mov dh, 0x3
mov bh, 0x4
pop ebx
pop edx

(52)
(53)
(b603)
(b704)
(5b)
(5a)

(d)

Figure 9: The normalization process can get stuck in a lo-
cal minima. The lexicographic order of the original code (a)
increases when reassigning registers (b) or reordering instr-
cutions (c). However, composing the two transformation (d)
decreases the lexicographic order.

The algorithm receives a binary 𝑥 and the number of iterations
niters as inputs. It begins by drawing a random variant of 𝑥 , by
applying all the transformation types to each function at random.
The algorithm then proceeds to apply each of the individual normal-
ization operations to decrease the lexicographic representation of
the binary while self-supervising the normalization process. Specif-
ically, the algorithm keeps track of the last iteration an operation
decreased the binary’s representation. If none of the four opera-
tions affect any of the functions, we deduce that the normalization
process is stuck in a (global or local) minima, and a random binary
is drawn again by randomizing all functions and the normalization
process restarts.

When niters→∞ (i.e., the number of iterations is large enough),
This algorithm would eventually converge to a global minima.
Namely, it would find the variant of 𝑥 with the minimal lexico-
graphic representation. In fact, we are guaranteed to find norm(𝑥)
even if we simply apply the transformation types at random 𝑥 for
niters→∞ iterations. When testing the algorithm with two bina-
ries of moderate size, we found that niters=2,000 was sufficient to
converge for the same respective variants after every run. These
variants are likely to be the global minimas. However, executing
the algorithm for 2,000 iterations is computationally expensive,
and impractical within the context of a widely deployed malware-
detection system. Hence, for the purpose of our experiments, we set
niters=10, which we found to be sufficient to successfully mitigate
the majority of attacks.
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