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Abstract. In two dimensions, we consider the problem of inversion of the

attenuated X-ray transform of a compactly supported function from data re-

stricted to lines leaning on a given arc. We provide a method to reconstruct
the function on the convex hull of this arc. The attenuation is assumed known.

The method of proof uses the Hilbert transform associated with A-analytic

functions in the sense of Bukhgeim.

1. Introduction. This work concerns a problem of the inversion of the attenuated
X-ray transform from partial measurements in two dimensional domains. Discrimi-
nated by the type of their partial data, such problems have already been considered
both in the non-attenuated and the attenuated case. For example the 1800 angular
data in [29, 4], or the partial data case in [3]; or, in the constant attenuation case
in the works [22, 26, 28, 16, 21].

In here we are concerned with yet a different question, where the (fan beam)
data is collected on a convex arc. More precisely, let Ω � R2 be a strictly convex
domain and Λ be an arc of its boundary Γ . The chord L joining the endpoints of the
arc Λ partitions the domain in two subdomains Ω�, where Ω� denotes the domain
enclosed by Λ Y L, see Figure 1 below. For a function f compactly supported in
Ω, we provide a method to reconstruct f |Ω� from its attenuated X-ray transform
over lines leaning on Λ. In the attenuated case, the attenuation a is assumed known
in Ω. This is a particular type of the region-of-interest (ROI) inversion problem in
tomography [9]; see [5] for some limitations on the reconstruction methods of such
problems.
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Even in the non-attenuated case, if f happens to also be supported in Ω�, then
its X-ray data is incomplete and the classical Radon inversion [13, 27] does not
apply: while the measurements are affected by the possible nonzero values of f |Ω� ,
an entire cone of directions through points in Ω� are missing in the data, yielding
the reconstruction question nontrivial, even for the restriction f |Ω� .

The source reconstruction problem here is not covered by the inversion from
partial data results mentioned above. However, the unique determination of f |Ω�
follows from the support theorem in [7], provided the attenuation is analytic. One
could also adapt the Carleman weight formula in [1] by finding an explicit Car-
leman quenching operator as in [12]. Both such arguments are based on analytic
continuation and have not yet yielded a method of reconstruction. The novelty in
this work is a reconstruction method, based on the separation of the contribution
of f |Ω� from that of f |Ω� , and, in the attenuated case, does not assume analyticity
of the attenuation coefficient.

f

Ω�

Ω�

Γ � BΩ

Λ

ζ

νpζq
θ

L

Figure 1. Geometric setup: BΩ� � ΛY L

For a real valued function a P L1pR2q, the attenuated X-ray transform of f is
given by,

Xafpz, θq :�
» 8
�8

fpz � sθqe�Dapz�sθ,θqds, pz, θq P Ω� S1,(1)

where

Dapz, θq :�
» 8
0

apz � tθqdt(2)

is the divergence beam transform of a. For the non attenuated case a � 0 we use
the notation Xf .

In here, the inversion problem is approached through the known equivalence
between the attenuated X-ray transform and the boundary value problems for the
transport equation: Let Γ� :� tpζ, θq P Γ �S1 : �νpζq � θ ¡ 0u denote the outgoing
p�q, respectively incoming p�q submanifolds of the unit tangent bundle of Γ , with
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νpζq being the outer normal at ζ P Γ and θ is a direction in the unit sphere S1. If
upz, θq is the unique solution to

θ �∇upz, θq � apzqupz, θq � fpzq pz, θq P Ω� S1,(3a)

u|Γ� � 0,(3b)

then its trace on Γ� satisfies

u|Γ�pζ, θq � Xafpζ, θq, pζ, θq P Γ�.(4)

In our problem, the data Xaf is only available on

Λ� :� tpζ, θq P Λ� S1 : νpζq � θ ¡ 0u.
In Section 3 we prove the following.

Theorem 1.1. Let Ω � R2 be a strictly convex, domain with C2 boundary, and
Λ � BΩ be an arc of its boundary. Let Ω� � Ω be the subset enclosed by Λ and by
the chord L joining the endpoints of Λ. For µ ¡ 1{2, assume that a P C1,µpΩq is a

known real valued function in Ω. If f P C1,µ
0 pΩq is an unknown real valued function,

then its restriction in Ω� can be reconstructed from the partial data Xaf |Λ� .
The method of reconstruction stated in the result above is yet another applica-

tion of the theory of A-analytic functions originally developed by Bukhgeim [8] to
address the tomography problem from complete data, see [2] for the attenuated case.
For different approaches to the inversion of the attenuated X-ray transform from
complete data we refer to [23, 24], and further developments in [20, 6, 3, 14, 17].

In the preliminary section we recall some ingredients used in the partial recon-
struction method. Section 3 contains the new idea of transporting the X-ray data
from the boundary arc Λ to the interior segment L. This is a direct consequence
of the range characterization condition in terms of the Bukhgeim-Hilbert transform
associated with A-analytic maps, see [30, 31, 32]. It is also in Section 3 that we
reconstruct f |Ω� , and prove Theorem 1.1. The proof is constructive and yields a
(partial) inversion that is implemented in the numerical experiments of Section 4.

2. Preliminaries. In this section we recall some known properties of theA-analytic
functions and of the finite Hilbert transform, on which our reconstruction method
is based. We denote by l8, and by l1, the space of bounded, respectively summa-
ble, sequences. For z � x � iy, let B � pBx � iByq {2, and B � pBx � iByq {2 be the
Cauchy-Riemann operators.

A sequence valued map

Ω Q z ÞÑ upzq :� xu0pzq, u�1pzq, u�2pzq, ...y
in CpΩ; l8q X C1pΩ; l8q is called L-analytic, if

(5) Bupzq � LBupzq � 0, z P Ω,

where L is the left shift operator, Lxu0, u�1, u�2, � � � y � xu�1, u�2, � � � y. Note that
we use the sequences of non-positive indexes to conform with the original notation
in Bukhgeim’s work [8].

For completeness we recall the spaces referenced in the results below. For 0  
µ   1, and Γ (some part of) the boundary BΩ we consider the spaces of sequence
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valued maps

l1,18 pΓ q :�
#
u : sup

ξPΓ

8̧

j�1

j|u�jpξq|   8
+
,

CµpΓ ; l1q :�

$'&
'%u : sup

ξPΓ
∥upξq∥l1 � sup

ξ,ηPΓ
ξ�η

∥upξq � upηq∥l1
|ξ � η|µ   8

,/.
/- .

We similarly consider CµpΩ; l1q, and CµpΩ; l8q.
Analogous to the analytic maps, the L-analytic maps are determined by their

boundary values via a Cauchy-like integral formula [8]. Following [10], the Bukhgeim-

Cauchy operator B acting on u � xu0, u�1, u�2, ...y P l1,18 pΓ q X CµpΓ ; l1q is defined
component-wise for n ¤ 0 by

(6)

pBuqnpzq :� 1

2πi

»
Γ

unpζq
ζ � z

dζ

� 1

2πi

»
Γ

"
dζ

ζ � z
� dζ

ζ � z

* 8̧

j�1

un�jpζq
�
ζ � z

ζ � z


j

, z P Ω.

Also similar to the analytic maps, the traces on the boundary of L-analytic maps
satisfy some constraints, which can be expressed in terms of a corresponding Hilbert
transform introduced in [30]. More precisely, the Bukhgeim-Hilbert transform H
acting on u P l1,18 pΓ q X CµpΓ ; l1q is defined component-wise for n ¤ 0 by

(7)

pHuqnpξq � 1

π

»
Γ

unpζq
ζ � ξ

dζ

� 1

π

»
Γ

"
dζ

ζ � ξ
� dζ

ζ � ξ

* 8̧

j�1

un�jpζq
�
ζ � ξ

ζ � ξ


j

, ξ P Γ.

The first integral is in the sense of principal value, e.g., [18] .

Theorem 2.1. Let 0   µ   1. Let u � xu0, u�1, u�2, ...y be a sequence valued map
defined on the boundary Γ and B be the Bukhgeim-Cauchy operator acting on u as
in (6). If u P l1,18 pΓ qXCµpΓ ; l1q, then Bu P C1,µpΩ; l8qXCpΩ; l8q is L-analytic in
Ω. If u P C1,µpΩ; l8q X CpΩ; l8q is L-analytic in Ω, then upzq � B(

¯
zq, for z P Ω.

Moreover, for u to be the boundary value of an L-analytic function it is necessary
and sufficient that

pI � iHqu � 0.(8)

For the proof of first statement of the Theorem we refer to [31, Theorem 2.2].
For the proof of the last statement of the Theorem we refer to [30, Theorem 3.2].

The method of reconstruction proposed here considers the operator rI � iHts,
where Ht is the finite Hilbert transform

Htgpxq � 1

π

» l

�l

gpsq
x� s

ds, x P p�l, lq,(9)

with the integral understood in the sense of principal value. It is well-known, e.g
[33], that iHt is a bounded operator in L2p�l, lq, with spectrum r�1, 1s, see [15, 25].
However, 1 is not in the point spectrum, see e.g., [34] for a proof based on Riemann-
Hilbert problem. The arguments below use the unitary property in L2pRq of the
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(infinite) Hilbert transform

Hfpxq � 1

π

» 8
�8

fpsq
x� s

ds.(10)

Proposition 2.1. In L2p�l, lq,
KerrI � iHts � t0u.(11)

Proof. Let f P L2p�l, lq be extended by zero to the entire real line. If f P KerrI �
iHts, then |f | � |Htf | � |Hf | a.e. in p�l, lq, and

}f}2L2p�l,lq � }f}2L2pRq � }Hf}2L2pRq �
» l

�l

|Htf |2dx�
»
|x|¡l

|Hfpxq|2dx

�
» l

�l

|f |2dx�
»
|x|¡l

|Hfpxq|2dx.

The latter identity shows that |Hfpxq| � 0, for |x| ¡ l. Thus, for |x| ¡ l,

0 �
» l

�l

fpsq
x� s

ds � 1

x

» l

�l

fpsq
8̧

j�0

� s

x

	j

ds �
8̧

j�0

1

xj�1

» l

�l

fpsqsjds,

yielding f orthogonal on any polynomial. Since polynomials are dense in L2p�l, lq,
f � 0.

3. Partial source reconstruction. In this section, we present the method of
reconstruction of f |Ω� . We start with the non-attenuated case, a � 0. Upon a
rotation and translation of the domain Ω, we assume without loss of generality that
the arc Λ lies in the upper half plane with the endpoints on the real axis lying
symmetrically about the origin. In particular, Ω X tIm z � 0u � L � p�l, lq, for
some l ¡ 0, and BΩ� � ΛY L.

The main idea in our reconstruction method is the recovery of the trace on L of
an L-analytic function from its trace on Λ. In the following result, the arc Λ and
the chord L are considered without their endpoints.

To simplify the statement, for each n ¤ 0, let us introduce the functions Fnpzq
defined on ΛY L except at �l, by

(12)

Fnpzq :� 1

iπ

»
Λ

unpζq
ζ � z

dζ

� 1

iπ

»
Λ

"
dζ

ζ � z
� dζ

ζ � z

* 8̧

j�1

un�jpζq
�
ζ � z

ζ � z


j

, z P ΛY L,

where the first integral is in the sense of principal value. Note that Fn is known
since un|Λ are known for all n ¤ 0.

Theorem 3.1. Let Ω � R2 be a strictly convex bounded domain with C2-smooth
boundary Γ , Λ � Γ be an arc of its boundary, and L be the chord joining the
endpoints of Λ. Let Ω� be the subset of Ω enclosed by Λ Y L and 0   µ   1. If
u P l1,18 pBΩ�qXCµpBΩ�; l1q is the boundary value of an L-analytic function in Ω�,
then its trace u|L on L is recovered pointwise from the trace u|Λ on Λ as follows:
for each n ¤ 0, un

∣∣
L
is the unique solution in L2p�l, lq of

rI � iHtspunqpxq �Fnpxq, x P L,(13)
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where Ht is the finite Hilbert transform in (9), and the right hand side is determined
by the data from (12).

Proof. Since u P l1,18 pBΩ�q X CµpBΩ�; l1q is the boundary value of an L-analytic
function in Ω�, then the necessity part of Theorem 2.1 yields

rI � iHsu � 0,(14)

where H is the Bukhgeim-Hilbert transform in (7).
We consider (14) on L, where for each x P p�l, lq and n ¤ 0, the n-th component

yields

unpxq � i

π

» l

�l

unpsq
x� s

ds � � i

π

»
Λ

unpζq
ζ � x

dζ

� i

π

»
Λ

"
dζ

ζ � x
� dζ

ζ � x

* 8̧

j�1

un�jpζq
�
ζ � x

ζ � x


j

� i

π

» l

�l

"
dζ

ζ � x
� dζ

ζ � x

* 8̧

j�1

un�jpζq
�
ζ � x

ζ � x


j

.(15)

Since the last integral in (15) ranges over the reals, it vanishes. The remaining
integrals give Fnpxq, and the expression (13) follows.

The equation (13) may not have any solution for an arbitrary right hand side in
L2p�l, lq. However, in the inverse problem, the function Fn already belongs to the
range of I� iHt, so that the solution exists. Moreover, since the range is open, (13)
is uniquely solvable in a sufficiently small L2-neighborhood of Fn.

We remark that u|L satisfies further constraints. If we consider (14) on Λ, we
obtain for each z P Λ and n ¤ 0:

unpzq � i

π

» l

�l

unpsq
z � s

ds � � i

π

»
Λ

unpζq
ζ � z

dζ

� i

π

»
Λ

"
dζ

ζ � z
� dζ

ζ � z

* 8̧

j�1

un�jpζq
�
ζ � z

ζ � z


j

� i

π

» l

�l

"
1

s� z
� 1

s� z

* 8̧

j�1

un�jpsq
�
s� z

s� z


j

ds,

or, by (12),

» l

�l

unpxq
x� z

dx�
» l

�l

pz � zq
|x� z|2

8̧

j�1

un�jpxq
�
x� z

x� z


j

dx � πi runpzq � Fnpzqs , z P Λ.

(16)

The additional constraints (16) may be used to stabilize the numerical inversion.
However, in the numerical experiments below the only regularization used is due to
the discretization.

Since u is now known on the entire boundary BΩ� � Λ Y L, we employ the
Bukhgeim-Cauchy integral formula (6) to recover u�1, and then the source in Ω�,
by

f |Ω�pzq � 2RetBrBus�1pzqu, z P Ω�.(17)
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For the sequence valued map u arising in the X-ray transform (3), its regularity
needed in Theorem 3.1 follows directly from the regularity properties of solutions
to the transport equation, particularly as shown in [30, Proposition 4.1].

Next we consider the attenuated case. Reconstruction in the attenuated case
follows by the reduction to the non-attenuated case via the special integrating factor
e�h with

hpz, θq :� Dapz, θq � 1

2
pI � iHqRapz � θK, θq,

In the equation above θK is orthogonal to θ, Dapz, θq is the divergence beam trans-

form in (2), Raps, θq �
» 8
�8

a
�
sθK � tθ

�
dt is the Radon transform of the atten-

uation, while the Hilbert transform H of (10) is taken in the first variable and
evaluated at s � z� θK. Since

θ �∇hpz, θq � �apzq, pz, θq P Ω� S1,

u is the unique solution of (3) if and only if

vpz, θq � e�hpz,θqupz, θq, pz, θq P Ω� S1,

is the unique solution of

θ �∇vpz, θq � fpzqe�hpz,θq pz, θq P Ω� S1,(18a)

v|Γ� � 0.(18b)

In particular the sequence of their respective negative Fourier modes un �
³
S1 upz, θq

e�inθdθ satisfy

Bunpzq � Bun�2pzq � apzqun�1pzq � 0, n ¤ 0,(19)

while for vn �
³
S1 vpz, θqe�inθdθ,

Bvnpzq � Bvn�2pzq � 0, n ¤ 0.(20)

The key property of hpz, �q is that it extends analytically from S1 inside the unit
disk as noted by Natterrer in [19]; see also [10, 6]. In particular all its negative
Fourier coefficients vanish, and thus

e�hpz,θq :�
8̧

k�0

αkpzqeikφ, ehpz,θq :�
8̧

k�0

βkpzqeikφ, pz, θq P Ω� S1.(21)

Since the attenuation a is assumed known in Ω, αn and βn are known in Ω
for all n ¥ 0. Moreover, for a P C1,µpΩq, µ ¡ 1{2, the sequence valued maps
z ÞÑ xα0pzq, α1pzq, ..., y, and z ÞÑ xβ0pzq, β1pzq, ..., y lie in C1,µpΩ; l1qXCpΩ; l1q; see,
e.g., [32, Lemma 4.1].

The equivalence of the attenuated to non-attenuated X-ray case is based on the
connection between (19) and (20), which, in turn, is intrinsic to negative Fourier
modes only:

Lemma 3.2. [32, Lemma 4.2] Assume a P C1,µpΩq, µ ¡ 1{2 and let αj , βj’s be the
Fourier modes in (21).

(i) If v P C1pΩ, l1q satisfy (20), and u � xu0, u�1, u�2, ...y is defined component-
wise by the convolution

un :�
8̧

j�0

βjvn�j , n ¤ 0,(22)
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then u P C1pΩ, l1q solves (19).
(ii) Conversely, if u P C1pΩ, l1q satisfy (19), and v � xv0, v�1, v�2, ...y is defined

component-wise by the convolution

vn :�
8̧

j�0

αjun�j , n ¤ 0.(23)

then v P C1pΩ, l1q solves (20).

Proof of the Theorem 1.1
Recall that

upz, θq �
8̧

n��8

unpzqeinφ and vpz, θq �
8̧

n��8

vnpzqeinφ

are the solution in Ω�S1 to the boundary value problem (3), respectively (18), with
v � e�hu. Let u � xu0, u�1, u�2, ...y be the sequence valued map of non-positive
Fourier modes of u, and let vodd � xv�1, v�3, v�5, ...y, veven � xv0, v�2, v�4, ...y be
the subsequences of negative odd, respectively, even Fourier modes of v.

Since f P C1,µ
0 pΩq and a P C1,µpΩq, then u, h, v P C1,µpΩ � S1q. The traces

u|BΩ��S1P C1,µpBΩ�;C1,µpS1qq and v|BΩ��S1P C1,µpBΩ�;C1,µpS1qq. By applying

[30, Proposition 4.1 (i)] we obtain u,veven,vodd P l1,18 pBΩ�q X CµpBΩ�; l1q.
By (4), the attenuated X-ray transform Xaf on Λ� determines u on Λ. By

formula (23), u|Λ determines the traces vodd|ΛP l1,18 pΛq X CµpΛ; l1q and veven|ΛP
l1,18 pΛq X CµpΛ; l1q on Λ.

The equations (20) show that vodd and veven are L-analytic in Ω, thus in Ω�.

By applying Theorem 3.1 to vodd|ΛP l1,18 pΛqXCµpΛ; l1q we recover the trace vodd|L
on L. Similarly, we recover the trace veven|L on L.

The Bukhgeim-Cauchy integral formula (6) extends vodd and veven from ΛY L
to Ω� as L-analytic maps. From the uniqueness of an L-analytic map with a given
trace, we recovered

vevenpzq � Brveven|ΛYLspzq, and voddpzq � Brvodd|ΛYLspzq, z P Ω�.(24)

Thus v � xv0, v�1, v�2, v�3, ...y is recovered in Ω�.
Now use the convolution formula (22) for n � 0 and �1 to recover u0 and u�1

in Ω�.
Finally, f is reconstructed in Ω� by

f |Ω�pzq � 2RetBu�1pzqu � apzqu0pzq, z P Ω�.(25)

We summarize below in a stepwise fashion the reconstruction of f in the convex
hull Ω� of the boundary arc Λ. Recall that L is the segment joining the endpoints
of Λ.

Reconstruction procedure. Consider the data u|Λ.
1. Using formula (23), determine the traces vodd|Λ and veven|Λ on Λ.
2. Recover the traces vodd|L and veven|L pointwise on L as follows:

(a) Using vodd|Λ and veven|Λ, compute by formula (12), the function Fn, for
each n ¤ 0.

(b) Recover for each n ¤ 0, the trace v2n�1

∣∣
L
by solving (13).

(c) Similarly, the trace veven|L is recovered pointwise on L.
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3. By Bukhgeim-Cauchy formula (24), extend vodd and veven from the boundary
ΛY L to Ω�.

4. Recover u0, u�1 in Ω� using (22) for n � 0,�1.
5. Recover f |Ω� by formula (25).

4. Numerical reconstruction results. To illustrate the feasibility of the recon-
struction procedure above, in this section we present two of its numerical implemen-
tations. The rigorous analysis on the numerical methods presented below requires
further study and is left for a separate discussion.

Let Ω be the unit disk with following sub-domains depicted in Figure 2:

R � p�0.25, 0.5q � p�0.15, 0.15q,
B1 � tpx� 0.5q2 � y2   0.32u,

B2 �
#
px� 0.25q2 �

�
y �

?
3

4


2

  0.22

+
,

B3 �
 
x2 � py � 0.6q2   0.32

(
.

The measurement boundary is Λ � tpcos θ, sin θq : 0   θ   πu, while the inaccessible
chord L � t�1   x   1, y � 0u.

Ω

B3

R

B1

B2

Figure 2. Setting of numerical experiments. The gray regions
correspond to the support of the source f , whereas the dotted cir-
cles delineate regions of high attenuation. Note that f is to be
reconstructed only in the upper semi-disc.

We consider the equation (3a) in the unit disk with the attenuation coefficient

apzq �

$'&
'%
1, in B1;

2, in B2;

0.1, otherwise,

and the source

fpzq �

$'&
'%
2, in R;

1, in B2 YB3;

0, otherwise.

(26)

Note the contribution to the data coming from the source supported in the lower
half of the rectangle R and in the ball B3. In the inverse problem, the attenuation
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a is known in the whole domain Ω, while the source f is unknown. We will recover
f of (26) in the upper semidisk Ω�.

In the numerical experiments, the measurement data is obtained by numerical
computation of the attenuated X-ray transform (1) with (2) on 180 and 360 equi-
spaced angular directions ζ P Λ and θ P S1, respectively. The red curves in Figure 3
depict computed data in the polar coordinate representation

 �
upζ, θq, θ� : θ P S1

(
centered at ζ P Λ which is indicated by a black dot (
). The right graph is its
magnification at ζ � p0, 1q. The pink disks in the left figure show the highly
attenuating regions B1, B2.

•θ

u(
ζ,
θ)

ζ=(0,1)

Figure 3. Partial measurement data upζ, θq|Λ�S1 obtained by nu-
merical computation of the attenuated Radon transform (4). The
red curves are their polar coordinate representation tpupζ, θq, θq :
θ P S1u and that at ζ � p0, 1q is magnified in the right graph. The
pink areas show the regions of (known) higher absorption.

The lowest negative Fourier mode used in (19) is u�64 , and the series (e.g. in
(6)) are truncated with finite terms.

To calculate each of the occurring integrals, including in the integrating factor
(21), we adopt the composite mid-point rule with 100 sampling points. Particularly,
a method in [11] is employed to calculate integrations in the sense of principal value.
Moreover, the integrating factors (21) are calculated with 360 equi-spaced angular
directions φ.

The reconstruction requires u|ΛYL. While u|Λ is known from the data, we obtain
each component pun|Lq of u|L by numerically solving (13). The numerical solution
un|L is found for each mode n via the discretized collocation rI � iHtsunpxiq �
unpxiq � i

π

¸
j�i

unpxjq
xi � xj

∆x, which avoids the singularities. The only regularization

used in solving (13) is implicit by the discretization. For illustration, computed
solutions of un|L, for �5 ¤ n ¤ 0 are shown in Figure 4, where left and right graphs
are their real and imaginary parts respectively.

When recovering f via (17) we approximate derivatives via the standard central
finite difference on a regular grid with ∆x � ∆y � 0.01. Note that in our numerical
experiments we avoid the inverse crime, since the corresponding forward problem
is calculated by the line integral on the characteristics.

Under the setting above, the elapsed times for the forward and inverse problems
are approximately 5 and 180 seconds respectively, while using the OpenMP parallel
computation on two Xeon E5-2650 v4 (2.20GHz, 12 cores) processors (totally 24
cores).
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Figure 4. Numerical solutions on L to the singular integral equa-
tion (13), from u0 to u�5, real parts (left) and imaginary parts
(right).
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Figure 5. Numerically reconstructed source f in Ω� (left), and
its section on y � �?3x (right), which is indicated by the dotted
line in the left figure.

Figure 5 on the left shows the numerically reconstruction source f in Ω�. Note
that the singular support of f (the discontinuities across BR and BB2) is clearly
detected. This is to be expected, since, at least for an infinitely smooth attenuation,
the conormal singularities are known to be microlocally stable. However, in here we
do a quantitative reconstruction. To assess its accuracy, Figure 5 on the right shows
the section of reconstructed f on the line y � �?3x (the dotted segment in the
left figure). We note a reasonably quantitative agreement with the exact solution.
The discrepancy is due in part to the instability of the singular integral equation
(13), but also to the simplicity of the regularization used to stabilize it (merely by
discretization).

To check the robustness of the proposed method, we performed a numerical re-
construction from noisy boundary data, where in addition to the computational
error caused by numerical quadrature to (1) with (2), we introduce some artificial
error. The noisy boundary data shown in Figure 6 is generated with a pseudo-
random number routine in the programming language C++ and has 10.9% error
(in the relative L2 norm) added to the noiseless data of Figure 3. The reconstructed
source f from noisy data is shown in Figure 7. Its similarity with the reconstructed
source from the noiseless data in Figure 5 indicates the robustness of the proposed
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Original (Figure 4)
With 10.9% Error

•ζ=(0,1)

Figure 6. Partial measurement data upζ, θq|Λ�S1 with 10.9%
noise in the relative L2 norm, depicted in the same manner as
in Figure 3.

-1 -0.5  0  0.5  1
0.0

0.2

0.4

0.6

0.8

1.0

 0

 0.5

 1

 1.5

 2

(a) Profiles of reconstructed source f in Ω�

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

-0.5 -0.35 -0.15 0

f(
x
,y

)

x

numerical
exact

(b) Section on y � �
?
3x

Figure 7. Numerically reconstructed source f from partial mea-
surement data with 10.9% noise shown in Figure 6.

procedure. Moreover, since the numerical experiment considered discontinuous co-
efficients, the numerical results also suggest the possibility of reconstruction under
less regular assumptions than the ones required by Theorem 1.1.
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