
Estimating Grounding Sizes of Logic Programs under

Answer Set Semantics

Nicholas Hippen and Yuliya Lierler

University of Nebraska at Omaha, Omaha NE 68182, USA

{nhippen,ylierler}@unomaha.edu

Abstract. Answer set programming (ASP) is a declarative logic programming

paradigm geared towards solving difficult combinatorial search problems. While

different logic programs can encode the same problem, their performance may

vary significantly. It is not always easy to identify which version of the program

performs the best. We present a system PREDICTOR (and its algorithmic back-

end) for estimating the grounding size of programs, a metric that can influence

a program’s performance. We evaluate an impact of PREDICTOR when used as a

guide for rewritings produced by the ASP rewriting tool PROJECTOR. The results

demonstrate potential to this approach.

Keywords: Answer set programming · Language optimization.

1 Introduction

Answer set programming (ASP) [3] is a declarative (constraint) programming paradigm

geared towards solving difficult combinatorial search problems. ASP programs model

problem specifications/constraints as a set of logic rules. These logic rules define a

problem instance to be solved. An ASP system is then used to compute solutions (an-

swer sets) to the program. ASP has been successfully used in scientific and industrial

applications.

Intuitive ASP encodings are not always the most optimal/performant making this

programming paradigm less attractive to novice users as their first attempts to problem

solving may not scale. ASP programs often require careful design and expert knowledge

in order to achieve performant results [13]. Figure 1 depicts a typical ASP system archi-

tecture. The first step performed by systems called grounders transforms a non-ground

logic program (with variables) into a ground/propositional program (without variables).

Expert ASP programmers often modify their ASP solution targeting the reduction of

grounding size of a resulting program. Size of a ground program has been shown to be

a predictive factor of a program’s performance, enabling it to be used as an “optimiza-

tion metric” [13]. Intelligent grounding techniques [10] utilized by grounders such as

GRINGO [14] or IDLV [5] also keep such a reduction in mind. Intelligent grounding pro-

cedures analyze a given program to produce a smaller propositional program without

altering the solutions. In addition, researchers looked into automatic program rewriting

procedures. Systems such as SIMPLIFY [8,9], LPOPT [1,2], PROJECTOR [15] rewrite

non-ground programs targeting the reduction of the grounding size. These systems are

meant to be prepossessing tools agnostic to the later choice of ASP solving technology.

2 Nicholas Hippen, Yuliya Lierler

Fig. 1: Typical ASP system architecture

Fig. 2: An ASP system with PROJECTOR and PREDICTOR

Tools such as SIMPLIFY, LPOPT, and PROJECTOR, despite illustrating promising

results, often hinder their objective. Sometimes, the original set of rules is better than

the rewritten set, when their size of grounding is taken as a metric. Research has been

performed to mitigate the negative impact of these rewritings. Mastria et al. [18] demon-

strated a novel approach to guiding automatic rewriting techniques performed in IDLV

using machine learning with a set of features built from structural properties and do-

main information. Calimeri et al. [6] illustrated truly successful application of a pro-

gram rewriting technique stemming from LPOPT by incorporating its procedure inside

the intelligent grounding algorithm of grounder IDLV. It was achieved by making a de-

cision on whether to apply an LPOPT rewriting based on the current state of grounding.

IDLV accurately estimated the impact of rewriting on grounding and based on this infor-

mation decided whether to perform a rewriting. This synergy of intelligent grounding

and a rewriting technique demonstrates the best performant results. Yet, it makes the

transfer of rewriting techniques laborious assuming the need of tight integration of any

rewriting within a grounder of choice. Here we propose an algorithm for estimating

the size of grounding a program based on (i) mimicking an intelligent grounding pro-

cedure documented in [10] and (ii) techniques used in query optimization in relational

databases (see, for instance, Chapter 13 in [19]). We then implement this algorithm in a

system called PREDICTOR. This tool is meant to be used as a decision support mecha-

nism for ASP program rewriting systems so that they perform a possible rewriting based

on estimates produced by PREDICTOR. This work culminates in the integration of tools

PREDICTOR and PROJECTOR depicted in Figure 2. We illustrate the true success of this

synergy by extensive experimental analysis. It is important to note that PREDICTOR is

a stand alone tool and can be used as part of any ASP inspired technology where its

functionality is of interest.

We start by introducing the subject matter terminology. The key contribution of the

work lays in the development of formulas for estimating the grounding size of a logic

program based on its structural analysis and insights on intelligent grounding proce-

dures. First, we present the simplified version of these formulas for the case of tight

programs. We trust that this helps the reader to build intuitions for the work. Second,

Estimating Grounding Sizes of Logic Programs under Answer Set Semantics 3

the formulas for arbitrary programs are given. We then describe the implementation

details of system PREDICTOR. We conclude by experimental evaluation that includes

incorporation of PREDICTOR within system PROJECTOR.

2 Preliminaries

An atom is an expression p(t1, ..., tk), where p is a predicate symbol of arity k ≥ 0
and t1, ..., tk are terms – either object constants or variables. As customary in logic

programming, variables are marked by an identifier starting with a capital letter. We

assume object constants to be numbers. This is an inessential restriction as we can map

strings to numbers using, for instance, the lexicographic order. For an atom p(t1, ..., tk)
and position i (1 ≤ i ≤ k), we define an argument denoted by p[i]. By p(t1, ..., tk)

0

and p(t1, ..., tk)
i we refer to predicate symbol p and the term ti, respectively. A rule is

an expression of the form

a0 ← a1, ..., am, not am+1, ..., not an. (1)

where n ≥ m ≥ 0, a0 is either an atom or symbol⊥, and a1, ..., an are atoms. We refer

to a0 as the head of the rule and an expression to the right hand side of an arrow symbol

in (1) as the body. An atom a and its negation not a is a literal. To literals a1, ..., am
in the body of rule (1) we refer as positive, whereas to literals not am+1, ..., not an we

refer as negative. For a rule r, by H(r) we denote the head atom of r. By B
+(r) we

denote the set of positive literals in the body of r. We obtain the set of variables present

in an atom a and a rule r by vars(a) and vars(r), respectively. For a variable X
occurring in rule r, by args(r,X) we denote set

{p[i] | a ∈ B
+(r), a0 = p, and ai = X}.

A rule r is safe if each variable in r appears in B
+(r). Let r be a safe rule

p(A)← q(A,B), r(1, A), not s(B). (2)

Then vars(r) = {A,B}, args(r, A) = {q[1], r[2]}, and args(r,B) = {q[2]}. A

(logic) program is a finite set of safe rules. We call programs containing variables non-

ground.

For a program Π , oc(p[i]) denotes the set of all object constants occurring in {H(r)i |
r ∈ Π and H(r)0 = p}; whereas oc(Π) denotes the set of all object constants occurring

in the head atoms of the rules in Π . For instance, consider a program, named Π1:

p(1). p(2). r(3). (3)

q(X, 1)← p(X). (4)

Then, oc(p[1]) = {1, 2}, oc(q[1]) = ∅, oc(q[2]) = {1} and oc(Π1) = {1, 2, 3}. The

grounding of a program Π , denoted gr(Π), is a ground program obtained by instan-

tiating variables in Π with all object constants of the program. For example, gr(Π1)
consists of rules in (3) and rules

q(1, 1)← p(1). q(2, 1)← p(2). (5)

q(3, 1)← p(3). (6)

4 Nicholas Hippen, Yuliya Lierler

Fig. 3: Left: Graph GΠ2
; Center: Graph GΠ3

; Right: Graph Gsc
Π3

Given a program Π , ASP grounders utilizing intelligent grounding are often able to

produce a program smaller than its grounding gr(Π), but that has the same answer sets

as gr(Π). For instance, a program obtained from gr(Π1) by dropping rule (6) may be a

result of intelligent grounding. The ground extensions of a predicate within a grounded

program Π are the set of terms associated with the predicate in the program. For in-

stance, in gr(Π1), the ground extensions of predicate q is the set {〈1, 1〉, 〈2, 1〉, 〈3, 1〉}
of tuples. For an argument p[i] and a ground program Π , we call the number of distinct

object constants occurring in the ground extensions of p in Π at position i the argument

size of p[i]. For instance, for program gr(Π1) argument sizes of p[1], q[1], and q[2] are

3, 3, and 1, respectively.

The dependency graph of a program Π is a directed graph GΠ = 〈N,E〉 such

that N is the set of predicates appearing in Π and E contains the edge (p, q) if there is

a rule r in Π in which p occurs in B
+(r) and q occurs in the head of r. A program Π

is tight if GΠ is acyclic, otherwise the program is non-tight [11]. For instance, consider

program Π2 constructed from Π1 by extending it with rules:

r(2). r(4). (7)

s(X,Y, Z)← r(X), p(X), p(Y), q(Y, Z). (8)

Program Π3 is the program Π2 extended with the rule:

q(Y,X)← s(X,Y, Z). (9)

Figure 3 shows the dependency graphs GΠ2 (left) and GΠ3 (center). Program Π2 is

tight, while program Π3 is not.

3 System PREDICTOR

The key contribution of this work is the development of system PREDICTOR (its algo-

rithmic and software base), whose goal is to provide estimates for the size of an “intel-

ligently” grounded program. PREDICTOR is based on the intelligent grounding proce-

dures implemented by grounder DLV [10]. The key difference is that, instead of building

the ground instances of each rule in the program, PREDICTOR constructs statistics about

the predicates, their arguments, and rules of the program. This section provides formu-

las we developed in order to produce the estimates backing up the computed statistics.

We conclude with details on the implementation.

Estimating Grounding Sizes of Logic Programs under Answer Set Semantics 5

Argument size estimation Tight program case: The estimation formulas are based

on predicting argument sizes. To understand these it is essential to talk about an order in

which we produce estimates for predicate symbols/arguments. Given a program Π , we

obtain such an ordering by performing a topological sorting on its dependency graph.

We associate each node in this ordering with its position and call it a level rank of a

predicate. For example, p, q, r, s is one possible ordering for program Π2. This ordering

associates level ranks 1, 2, 3, 4 with predicates p, q, r, s, respectively.

We now introduce some intermediate formulas for constraining our estimates. These

intermediate formulas are inspired by query optimization techniques in relational databases,

e.g., see Chapter 13 in [19]. These formulas keep track of information that helps us to

guess what the actual values may occur in the grounded program without storing these

values themselves. Let p[i] be an argument. We track the range of values that may occur

at this argument. To provide intuitions for a process we introduce, consider an intelli-

gent grounding of Π2 consisting of rules (3), (5), (7), and rules

s(2, 1, 1)← r(2), p(2), p(1), q(1, 1). (10)

s(2, 1, 1)← r(2), p(2), p(2), q(2, 1). (11)

This intelligent grounding produces rules (10), (11) in place of rule (8). Variable X
from rule (8) is only ever replaced with object constant 2. Intuitively, this is due to

the intersection oc(p[1]) ∩ oc(r[1]) = {2}. We model such a restriction by consider-

ing what minimum and maximum values are possible for each argument in an intel-

ligently grounded program (compliant with described principle; all modern intelligent

grounders respect such a restriction). We then use these values to define an “upper re-

striction” of the argument size for each argument.

For a tight program Π , let p[i] be an argument in Π; R be

set {r | r ∈ Π, H(r)0 = p, and H(r)i is a variable}. By ↓t-test (p[i]) we denote an esti-

mate of a minimum value that may appear in argument p[i] in Π:

↓t-test (p[i]) = min
(

oc(p[i]) ∪

{max
(

{↓t-test (p
′[i′]) | p′[i′] ∈ args(r,H(r)i)}

)

| r ∈ R}
)

The function ↓t-testis total because the rank of the predicate occurring on the left hand side

of the definition above is strictly greater than the ranks of all of the predicate symbols p′

on the right hand side, where rank is understood as a level rank defined before (multiple

level rankings are possible; any can be considered here). By ↑t-test (p[i]) we denote an

estimate of a maximum value that may appear in argument p[i] in tight program Π . It

is computed using formula for ↓t-test (p[i]) with min, max, and ↓t-test replaced by max,

min, and ↑t-test, respectively.

Now that we have estimates for minimum and maximum values, we estimate the

size of the range of values. We understand the range of an argument to be the number

of values we anticipate to see in the argument within an intelligently grounded program

if the values were all integers between the minimum and maximum estimates. It is

possible that our minimum estimate for a given argument is greater than its maximum

estimate. Intuitively, this indicates that no ground rule will contain this argument in its

head. The number of values between the minimum and maximum estimates may also

be greater than the number of object constants in a considered program. In this case,

6 Nicholas Hippen, Yuliya Lierler

we restrict the range to the number of object constants occurring in the program. We

compute the range, ranget-test(p[i]), as follows:

min
(

{max(
{

0, ↑t-test (p[i])− ↓
t-t
est (p[i]) + 1

}

), |oc(Π)|}
)

Recall, program Π2. The operations required to compute the minimum estimate for

argument s[1] in Π2 follow:

↓t-test (r[1]) = min
(

oc(r[1])
)

= 2

↓t-test (p[1]) = min
(

oc(p[1])
)

= 1

↓t-test (s[1]) = min(oc(s[1])∪

{max
({

↓t-test (r[1]), ↓
t-t
est (p[1])

})

}) = min(∅ ∪ {2}) = 2

We compute ↑t-test (s[1]) to be 2. Then, ranget-test(s[1]) is

min({max
({

0, ↑t-test (s[1])− ↓
t-t
est (s[1]) + 1

})

, |oc(Π2)|})

= min({max
({

0, 2− 2 + 1
})

, 4}) = 1

We presented formulas for estimating the range of values in program’s arguments. We

now show how these estimates are used to assess the size of an argument understood

as the number of distinct values occurring in this argument upon an intelligent ground-

ing. We now outline intuitions behind a recursive process that we capture in formulas.

Let p[i] be an argument. If p[i] is such that predicate p has no incoming edges in the

program’s dependency graph, then we estimate the size of p[i] as |oc(p[i])|. Otherwise,

consider rule r such that H(r)0 = p and H(r)i is a variable. Our goal is to estimate the

number of values variable H(r)i may be replaced with during intelligent grounding. To

do so, we consider the argument size estimates for arguments in the positive body of the

rule that contain variable H(r)i. Based on a typical intelligent grounding procedures,

variable H(r)i may not take more values than the minimum of those argument size es-

timations. This gives us a possible estimate of the argument size relative to a single rule

r. The argument size estimate of p[i] with respect to the entire program may be then

computed as the sum of such estimates for all rules such as r (recall that rule r satis-

fies the requirements H(r)0 = p and H(r)i is a variable). Yet, the sum over all rules

may heavily overestimate the argument size. To milder the effect of overestimation we

incorporate range estimates discussed before into the described computations.

For a tight program Π , let p[i] be an argument in Π; R be the set

{r | r ∈ Π, H(r)0 = p, and H(r)i is a variable}.

By St-t
est(p[i]) we denote an estimate of the argument size p[i] in tight program Π . This

estimate is computed as follows:

St-t
est(p[i]) = min

({

ranget-test(p[i]), |oc(p[i])|+
∑

r∈R

min
(

{St-t
est(p

′[i′]) | p′[i′] ∈ args(r,H(r)i)}
)

})

We can argue that the function St-t
est is total in the same way as we argued that the

function ↓t-test is total.

Estimating Grounding Sizes of Logic Programs under Answer Set Semantics 7

The following illustrates the computation of the argument size estimates for argu-

ment s[2] in program Π2, given that ranget-test(s[2]) = 2 and oc(s[2]) = ∅:

St-t
est(p[1]) = |oc(p[1])| = 2

St-t
est(q[1]) = min(ranget-test(q[1]), {|oc(q[1])|+

min
(

{St-t
est(p[1])}

)

}) = min({2, 0 +min({2})}) = 2

St-t
est(s[2]) = min

(

ranget-test(s[2]),
{

|oc(s[2])|+min
(

{St-t
est(p[1]), S

t-t
est(q[1])}

)})

= 2

Arbitrary (nontight) program case: To process arbitrary programs (tight and non-tight),

we must manage to resolve the circular dependencies such as present in sample pro-

gram Π3 defined in the section on preliminaries. We borrow and simplify a concept of

the component graph from [10]. The component graph of a program Π is an acyclic

directed graph Gsc
Π = 〈N,E〉 such that N is the set of strongly connected components

in the dependency graph GΠ of Π and E contains the edge (P,Q) if there is an edge

(p, q) in GΠ where p ∈ P and q ∈ Q. For tight programs, we identify its component

graph with the dependency graph itself by associating a singleton set annotating a node

with its member. Figure 3 (right) shows the component graph for program Π3. For a

program Π , we obtain an ordering on its predicates by performing a topological sort-

ing on its component graph. We associate each node in this ordering with its position

and call it a strong level rank of each predicate that belongs to a node. For example,

{p}, {r}, {q, s} is one possible topological sorting of Gsc
Π3

. This ordering associates the

following strong level ranks 1, 2, 3, 3 with predicates p, r, q, s, respectively.

Let C be a node/component in graph Gsc
Π . By PC we denote the set

{r | p ∈ C, r ∈ Π, and H(r)0 = p}.

We call this set a module. A rule r in module PC is a recursive rule if there exists an

atom a in the positive body of r so that a0 = p and predicate p occurs in C. Otherwise,

rule r is an exit rule. For tight programs, all rules are exit rules. It is also possible to have

modules with only recursive rules. For instance, the modules in program Π3 contain

P{p} = {p(1). p(2).}; P{r} = {r(2). r(3). r(4).};

and P{q,s} composed of rules (4), (8), and (9). The rules rules (8) and (9) are recursive.

In the sequel we consider components whose module contains an exit rule. For a

component C and its module PC , we construct a partition M1, ...,Mn (n ≥ 1) in the

following way: Every exit rule of PC is a member of M1. A recursive rule r in PC is a

member of Mk (k > 1) if

– for every predicate p ∈ C occurring in B
+(r), there is a rule r′ in M1∪ ...∪Mk−1,

where H(r′)0 = p and

– there is a predicate q occurring in B
+(r) such that there is a rule r′′ in Mk−1, where

H(r′′)0 = q.

We refer to the unique partition created in this manner as the component partition of

C; integer n is called its cardinality. We call elements of a component partition groups

(the component partition is undefined for components whose module does not contain

8 Nicholas Hippen, Yuliya Lierler

an exit rule). The component partition of node {q, s} in Gsc
Π3

follows:

M1 = {q(X, 1)← p(X).}
M2 = {s(X,Y, Z)← r(X), p(X), p(Y), q(Y, Z).}
M3 = {q(Y,X)← s(X,Y, Z).}.

For a component partition M1, . . . ,Mk, . . . ,Mn, by M
p[i]
k we denote the set

{r | r ∈Mk, H(r)0 = p, and H(r)i is a variable};

and by M
p[i]
1...k we denote the union

⋃k

j=1 M
p[i]
j . For instance, for program Π3 and its

argument q[1]:

M
q[1]
1...3 = {q(X, 1)← p(X). q(Y,X)← s(X,Y, Z).}

We now generalize range and argument size estimation formulas for tight programs

to the case of arbitrary programs. These formulas are more complex than their “tight

versions”, yet they perform similar operations at their core. Intuitively, formulas for

tight programs relied on argument ordering provided by the program’s dependency

graph. Now, in addition to an order provided by the component dependency graph,

we rely on the orders given to us by the components partitions of the program.

In the remainder of this section, let Π be a program; p[i] be an argument in Π; C
be the node in the component graph of Π so that p ∈ C; n be the cardinality of the

component partition of C; and j be an integer such that 1 ≤ j ≤ n.

If the module of C does not contain an exit rule, then the estimate of the range of

an argument p[i], denoted rangeest(p[i]), is assumed 0 and the estimate of the size of

an argument p[i], denoted Sest(p[i]), is assumed 0.

We now consider the case when the module of C contains an exit rule.

By ↓est(p[i]) we denote an estimate of a minimum value that may appear in argument

p[i] in program Π:

↓est(p[i]) =↓
gr
est(p[i], n)

↓grest(p[i], j) = min(oc(p[i]) ∪ {↓ruleest (p[i], j, r) | r ∈M
p[i]
1...j})

↓ruleest (p[i], j, r) = max
({

↓splitest (p[i], p′[i′], j) | p′[i′] ∈ args(r,H(r)i)
})

↓splitest (p[i], p′[i′], j) =

{

↓grest(p
′[i′], j − 1), if p′ in the same component as p

↓est(p
′[i′]), otherwise

We note the strong similarity between the combined definitions of ↓grest (p[i], j) and

↓ruleest (p[i], j, r) compared to the corresponding “tight” formula ↓t-test (p[i]). Formula for

↓splitest (p[i], p′[i′], j) serves two purposes. If the predicate p′ is in the same component as

predicate p, we decrement the counter j (intuitively bringing us to preceding groups in

component partition). Otherwise, we simply use the minimum estimate for p′[i′] that is

due to the computation relevant to another component.

We now show that defined functions ↓est, ↓
gr
est, ↓

rule
est and ↓splitest are total. Consider

any strong level ranking of program’s predicates. Then, by rank(p) we refer to the

corresponding strong level rank of a predicate p. The following table provides ranks

associated with expressions used to define functions in question:

Estimating Grounding Sizes of Logic Programs under Answer Set Semantics 9

Expression Rank

↓est(p[i]) ω · (rank(p) + 1)
↓grest(p[i], j) ω · rank(p) + j
↓ruleest (p[i], j, r) ω · rank(p) + j

↓splitest (p[i], p′[i′], j) ω · rank(p) + j

where ω is the smallest infinite ordinal number. It is easy to see that in definitions

of functions ↓est, ↓
gr
est, and ↓ruleest the ranks associated with their expressions do not

increase. In definition of ↓splitest in terms of ↓est, the rank decreases. Thus, the defined

functions are total.

By ↑est(p[i]) we denote an estimate of a maximum value that may appear in argu-

ment p[i] in program Π . It is computed using formula for ↓est(p[i]) with min, max,

↓est, ↓
gr
est, ↓

rule
est , and ↓splitest replaced with max, min, ↑est, ↑

gr
est, ↑

rule
est , and ↑splitest , re-

spectively. The range of an argument p[i], denoted rangeest(p[i]), is computed by the

formula of ranget-test(p[i]), where we replace ↓t-test and ↑t-test with ↓est and ↑est, respec-

tively.

We define the formula for finding the argument size estimates, Sest(p[i]), as follows:

Sest(p[i]) = Sgr
est(p[i], n)

Sgr
est(p[i], j) = min

({

rangeest(p[i]), |oc(p[i])|+
∑

r∈M
p[i]
1...j

Srule
est (p[i], j, r)

})

Srule
est (p[i], j, r) = min

({

Ssplit
est (p[i], p′[i′], j) | p′[i′] ∈ args(r,H(r)i)

})

Ssplit
est (p[i], p′[i′], j) =

{

Sgr
est(p

′[i′], j − 1), if p′ is in the same component as p

Sest(p
′[i′]), otherwise

We can argue that the function Sest is total in the same way as we argued that the

function ↓est is total.

Program size estimation Keys We borrow the concept of a key from relational

databases. For some predicate p, we refer to any set of arguments of p that can uniquely

identify all ground extensions of p as a superkey of p. We call a minimal superkey a

candidate key. For instance, let the following be the ground extensions of some predi-

cate q:

{〈1, 1, a〉, 〈1, 2, b〉, 〈1, 3, b〉, 〈2, 1, c〉, 〈2, 2, c〉, 〈2, 3, a〉}

It is easy to see that both {q[1], q[2]} and {q[1], q[2], q[3]} are superkeys of q, while

{q[1]} is not a superkey. Only superkey {q[1], q[2]} is a candidate key. A primary key

of a predicate p is a single chosen candidate key. A predicate may have at most one

primary key. (For the purposes of this work, the primary key is manually determined.)

It is possible that some predicates do not have primary keys specified. To handle such

predicates, we define key(p) to mean the following:

key(p) =

{

the primary key of p, if p has a primary key

{p[1], ..., p[n]}, otherwise

where n is the arity of p. We call an argument p[i] a key argument if it is in key(p). For

a rule r, by kvars(r) we denote the set of its variables that occur in its key arguments.

10 Nicholas Hippen, Yuliya Lierler

Rule size estimation We now have all the ingredients to provide an estimate for

grounding size of each rule in a program. We understand a grounding size of a rule

as the number of rules produced as a result of intelligently grounding this rule. For a

rule r in a program Π , the estimated grounding size, denoted Sest(r), is computed as

follows:

Sest(r) =
∏

X∈kvars(r)

min
(

{Sest(p[i]) | p[i] ∈ args(r,X)}
)

Implementation Details System PREDICTOR
1 is developed using the Python 3 pro-

gramming language. PREDICTOR utilizes PYCLINGO version 5, a Python API sub-

system of answer set solving toolkit CLINGO [12]. The PYCLINGO API enables users to

easily access and enhance ASP processing steps within Python code, including access

to some data in the processing chain. In particular, PREDICTOR uses PYCLINGO to parse

a logic program into an abstract syntax tree (AST) representation. After obtaining the

AST, PREDICTOR has an immediate access to internal rule structure of the program and

computes estimates for the program using the presented formulas. System PREDICTOR

is designed for integration with other systems processing ASP programs. It is distributed

as a package that can be imported into other systems developed in Python 3, or it can be

accessed through a command line interface. In order to ensure that system PREDICTOR

is applicable to real world problems, it supports ASP-Core-2 logic programs. For in-

stance, the estimation formulas presented here generalize well to programs with choice

rules and disjunction. Rules with aggregates are also supported. Yet, for such rules more

sophisticated approaches are required to be more precise at estimations.

4 Experimental Analysis

To evaluate the usefulness of PREDICTOR, two sets of experiments are performed. First,

an intrinsic evaluation over accuracy of the predicted grounding size compared to the

actual grounding size is examined. Second, an extrinsic evaluation of system PRD-

PROJECTOR– a tool resulting from system PROJECTOR enhanced by PREDICTOR– is

conducted. In particular, we investigate the utility of system PREDICTOR by integrating

it as a decision support mechanism into the ASP rewriting tool PROJECTOR. This inte-

gration is illustrated in Figure 2. Each time system PROJECTOR accounts a rule to which

its rewriting is applicable, it performs the rewriting. System PRD-PROJECTOR performs

the rewriting of PROJECTOR only if PREDICTOR predicts the reduction in grounding

size upon the rewriting. We measure the quality of PREDICTOR by analyzing the im-

pact it has on rewritings by PROJECTOR. We note that the extrinsic evaluation is of a

special value illustrating the usefulness and the potential of system PREDICTOR. It as-

sesses PREDICTOR’s impact when it is used in practice for its intended purpose as a

decision making assistant. The intrinsic evaluation has its value in identifying potential

future work directions and pitfalls in estimations. Overall, we will observe intrinsically

1 https://www.unomaha.edu/college-of-information-science-and-technology/

natural-language-processing-and-knowledge-representation-lab/software/predictor.

php

Estimating Grounding Sizes of Logic Programs under Answer Set Semantics 11

that our estimates differ frequently in order of magnitude from the reality. Yet, extrin-

sic evaluation clearly states that PREDICTOR performs as an excellent decision making

assistant for the purpose of improving rewriting tools when their performance depends

on a decision when rewriting should take place versus not.

Benchmarks were gathered from two different sources. First, programs from the

Fifth Answer Set Programming Competition [7] were used. Of the 26 programs in the

competition, 13 were selected (these that system PROJECTOR has preformed rewritings

on). For each program, the 20 instances (originally selected for the competition) were

used. One interesting thing to note about these encodings is that they are generally al-

ready well optimized. As such, performing projections often leads to an increase in

grounding size. Second, benchmarks were gathered from an application called ASPCCG

implementing a natural language parser [17]. This domain has been extensively studied

in [4] and was used to evaluate system PROJECTOR in [15]. In that evaluation, the au-

thors considered 3 encodings from ASPCCG: ENC1, ENC7, ENC19. We utilize the same

encodings and instances as in the evaluation of PROJECTOR. All tests were conducted

on Ubuntu 18.04.3 with an Intel® Xeon® CPU E5-1620 v3 @ 3.50GHz and 32 GB

of RAM. Furthermore, Python version 3.7.3 and PYCLINGO version 5.4.0 are used to

run PREDICTOR. Grounding and solving was done by CLINGO version 5.4.0. For all

benchmarks execution was limited to 5 minutes.

Intrinsic Evaluation Let S be the true grounding size of an instance in a program com-

puted by GRINGO. Let S′ be the grounding size predicted by PREDICTOR of the same

instance. We define a notion of an error factor on a program instance as S′/S. The

average error factor of a program/benchmark is the average of all error factors across

the instances of a program. Table 1 shows the average error factor for all programs. We

note that in our tests, keys were manually identified only for root predicate arguments.

The average error factor shown was rounded to make comparisons easier. An asterisk

(∗) next to a benchmark name indicates that not all 20 instances of this benchmark were

grounded within the allotted time limit. For instance, 19 instances of the Incremen-

tal Scheduling benchmark were successfully grounded, while the remaining instances

timed out. For the ∗ benchmarks we only report the average error factor assuming the

instances grounded successfully. We partition the results into three groups using the

average error factor. The partition is indicated by the horizontal lines on Table 1. First,

there are five programs where the estimates computed by PREDICTOR are, on average,

less than one order of magnitude over. Second, there are eight programs that are, on av-

erage, greater than one order of magnitude over. Finally, three programs are predicted

to have lower grounding sizes than in reality. It is obvious that the accuracy of system

PREDICTOR could still use improvements. In many cases the accuracy is drastically

erroneous. These results are not necessarily surprising. We identify five main reasons

for observed data on PREDICTOR: (1) Insufficient data modeling is one weak point of

PREDICTOR. Since we do not keep track what actual constants could be present in the

ground extensions of a predicate, it is often the case that we overestimate argument size

due to our inability to identify repetitive values. (2) Since we only identified keys for

root predicate arguments, many keys were likely missed. (3) System PREDICTOR has

limited support for such common language extensions as aggregates. (4) System PRE-

DICTOR is vulnerable to what is known as error propagation [16]. (5) While one might

12 Nicholas Hippen, Yuliya Lierler

Program Avg. Error Factor

Hanoi Tower 1.5

Nomystery 1.5

Perm. Pattern Match.∗ 3.8

Solitaire 4.3

Stable Marriage 3.7

Bottle Filling 4.9× 10
9

Inc. Scheduling∗ 1.1× 10
5

Labyrinth∗ 1.3× 10
1

Minimal Diagnosis 8.2× 10
3

Valves Location 1.3× 10
1

ASPCCG ENC1 2.9× 10
1

ASPCCG ENC7 1.3× 10
1

ASPCCG ENC19 2.2× 10
1

Knight Tour with Holes 1.9× 10
−4

Ricochet Robots 2.0× 10
−1

Weighted Sequence 6.0× 10
−3

Table 1: Average error factor for benchmark programs

typically expect PREDICTOR to overestimate due to its limited capabilities in detecting

repeated data, the underestimation on Knight Tour with Holes, Ricochet Robots, and

Weighted Sequence programs is not surprising due to the fact that these programs are

non-tight.

Extrinsic Evaluation Here, we examine the relative accuracy of system PREDIC-

TOR alongside PROJECTOR. In other words, we measure the quality of PREDICTOR by

analyzing the impact it has on PROJECTOR performance.

Let S be the grounding size of an instance of a program, where grounding is pro-

duced by GRINGO. Let S′ be the grounding size of the same instance in a modified

(rewritten) version of the program. In this context, the modified version will either be

the logic program outputted after using PROJECTOR or the logic program outputted af-

ter using PRD-PROJECTOR. The grounding size factor of a program’s instance is defined

as S′/S. As such, a grounding size factor greater than 1 indicates that the modification

increased the grounding size, whereas a value less than 1 indicates that the modification

improved/decreased the grounding size. The average grounding size factor of a bench-

mark is the average of all grounding size factors across the instances of a benchmark.

Table 2 (left) displays the average grounding size factor for PROJECTOR and PRD-

PROJECTOR on all benchmark programs. An asterisk (∗) following a program name

indicates that not all 20 instances were grounded. In these cases, the average ground-

ing size factor was only computed from instances where all 3 versions of the program

(original, PROJECTOR, PRD-PROJECTOR) completed grounding. A dagger (†) follow-

ing a program name indicates that there was a slight improvement for PRD-PROJECTOR,

however this information was lost for the precision shown.

We partition the results into three sets, indicated by the horizontal lines on Table 2

(left). We note that there are eight programs in which PRD-PROJECTOR reduces the

grounding size noticeably when compared to PROJECTOR, five programs in which PRD-

PROJECTOR does not impact the grounding size noticeably, and three programs in which

PRD-PROJECTOR increases the grounding size noticeably.

Estimating Grounding Sizes of Logic Programs under Answer Set Semantics 13

Program PROJ PRD-PROJ

Hanoi Tower 1.41 1.00

Inc. Scheduling∗ 1.14 1.12

Minimal Diagnosis 1.06 1.00

Solitaire 1.41 1.00

Stable Marriage 0.13 0.12

ASPCCG ENC1 0.63 0.49

ASPCCG ENC7 1.40 1.24

ASPCCG ENC19 1.58 1.04

Bottle Filling 1.36 1.36

Labyrinth∗ 1.11 1.11

Perm. Pattern Match.∗ † 0.13 0.13

Valves Location† 1.00 1.00

Weighted Sequence† 1.00 1.00

Knight Tour with Holes 0.80 0.90

Nomystery 0.62 1.00

Ricochet Robots 0.91 1.00

Program Svd. PROJ PRD-PROJ

Hanoi Tower 20 1.67 1.00

Inc. Scheduling 13 1.06 1.10

Minimal Diagnosis 20 1.04 1.00

Solitaire 19 1.32 0.99

Stable Marriage 19 0.18 0.17

ASPCCG ENC1 54 0.57 0.52

ASPCCG ENC7 57 1.37 1.28

ASPCCG ENC19 59 1.93 1.16

Bottle Filling 20 1.44 1.43

Labyrinth 16 5.26 5.27

Perm. Pattern Match. 16 0.14 0.14

Valves Location 3 1.03 0.93

Weighted Sequence 16 3.05 1.59

Knight Tour with Holes 1 0.50 2.45

Nomystery 7 1.23 1.00

Ricochet Robots 20 0.85 1.00

Table 2: Left: Average grounding size factors; Right: Average execution time factors

While we target improving the grounding size of a program, it is useful to also

compare the execution time of the programs, as that is ultimately what we want to

reduce. Let S be the execution time of an answer set solver CLINGO on an instance

of a benchmark. Let S′ be the execution time of CLINGO on the same instance in a

modified version of the benchmark. The execution time factor of a program’s instance

is defined as S′/S. The average execution time factor of a benchmark is the average

of all execution time factors across the instances of a benchmark. Table 2 (right) shows

the average execution time factor of programs rewritten with PROJECTOR and PRD-

PROJECTOR. Overall, the results illustrate the validity of PREDICTOR approach.

5 Conclusions

We introduced a method for predicting grounding size of answer set programs. To the

best of our knowledge this is the only approach for the stated purpose. We implement

the described method in stand-alone system PREDICTOR that runs agnostic to any an-

swer set grounder/solver pair. We expect this tool to become a foundation to decision

support systems for rewriting/preprocessing tools in ASP. Indeed, using PREDICTOR

as a decision support guide to rewriting system PROJECTOR improves the PROJEC-

TOR’s outcome overall. This proves the validity of the proposed approach, especially as

further methods for improving estimation accuracy are explored in the future. As such

system PREDICTOR is a unique tool unparalleled in earlier research ready for use within

preprocessing frameworks in ASP such as SIMPLIFY or LPOPT in a similar manner as

we illustrate its use here within the system PRD-PROJECTOR.

Acknowledgments We would like to thank Mirek Truszczynski, Daniel Houston, Liu

Liu, Michael Dingess, Roland Kaminski, Abhishek Parakh, Victor Winter, Parvathi

Chundi, and Jorge Fandinno for valuable discussions on the subject of this paper. The

work was partially supported by NSF grant 1707371.

14 Nicholas Hippen, Yuliya Lierler

References

1. Bichler, M.: Optimizing non-ground answer set programs via rule decomposition. (2015),

Bachelor Thesis, TU Wien

2. Bichler, M., Morak, M., Woltran, S.: lpopt: A rule optimization tool for answer set program-

ming. In: Proceedings of International Symposium on Logic-Based Program Synthesis and

Transformation (2016)

3. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Commun.

ACM 54(12), 92–103 (2011)

4. Buddenhagen, M., Lierler, Y.: Performance tuning in answer set programming. In: Proceed-

ings of the Thirteenth International Conference on Logic Programming and Nonmonotonic

Reasoning (LPNMR) (2015)

5. Calimeri, F., Fusca, D., Perri, S., Zangari, J.: I-dlv: The new intelligent grounder of dlv.

Intelligenza Artificiale 11(1), 5–20 (2017)

6. Calimeri, F., Fusca, D., Perri, S., Zangari, J.: Optimizing answer set computation via

heuristic-based decomposition. In: International Symposium on Practical Aspects of Declar-

ative Languages. pp. 135–151. Springer (2018)

7. Calimeri, F., Gebser, M., Maratea, M., Ricca, F.: Design and results of the fifth an-

swer set programming competition. Artificial Intelligence 231, 151 – 181 (2016).

https://doi.org/https://doi.org/10.1016/j.artint.2015.09.008, http://www.sciencedirect.

com/science/article/pii/S0004370215001447

8. Eiter, T., Fink, M., Tompits, H., Traxler, P., Woltran, S.: Replacements in non-ground answer-

set programming. In: Proceedings of International Conference on Principles of Knowledge

Representation and Reasoning (KR) (2006)

9. Eiter, T., Traxler, P., Woltran, S.: An implementation for recognizing rule replacements in

non-ground answer-set programs. In: Proceedings of European Conference On Logics In

Artificial Intelligence (JELIA) (2006)

10. Faber, W., Leone, N., Perri, S.: The intelligent grounder of dlv. In: Correct Reasoning, pp.

247–264. Springer (2012)

11. Fages, F.: Consistency of Clark’s completion and existence of stable models. Journal of

Methods of Logic in Computer Science 1, 51–60 (1994)

12. Gebser, M., Kaminski, R., Kaufmann, B., Lindauer, M., Ostrowski, M., Romero, J., Schaub,

T., Thiele, S.: Potassco user guide. Institute for Informatics, University of Potsdam, second

edition edition (2015)

13. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Challenges in answer set solving. In:

Balduccini, M., Son, T. (eds.) Logic Programming, Knowledge Representation, and Non-

monotonic Reasoning: Essays in Honor of Michael Gelfond, vol. 6565, pp. 74–90. Springer

(2011)

14. Gebser, M., Schaub, T., Thiele, S.: Gringo: A new grounder for answer set programming. In:

Proceedings of the Ninth International Conference on Logic Programming and Nonmono-

tonic Reasoning. pp. 266–271 (2007)

15. Hippen, N., Lierler, Y.: Automatic program rewriting in non-ground answer set programs.

In: International Symposium on Practical Aspects of Declarative Languages. pp. 19–36.

Springer (2019)

16. Ioannidis, Y.E., Christodoulakis, S.: On the propagation of errors in the size of join results.

Tech. rep., University of Wisconsin-Madison Department of Computer Sciences (1991)

17. Lierler, Y., Schueller, P.: Parsing combinatory categorial grammar with answer set program-

ming: Preliminary report (2011), http://www.cs.utexas.edu/users/ai-lab/pub-view.php?

PubID=127116

Estimating Grounding Sizes of Logic Programs under Answer Set Semantics 15

18. Mastria, E., Zangari, J., Perri, S., Calimeri, F.: A machine learning guided rewriting approach

for asp logic programs. arXiv preprint arXiv:2009.10252 (2020)

19. Silberschatz, A., Korth, H.F., Sudarshan, S., et al.: Database system concepts, vol. 4.

McGraw-Hill New York (1997)

