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Abstract. Answer set programming (ASP) is a declarative logic programming
paradigm geared towards solving difficult combinatorial search problems. While
different logic programs can encode the same problem, their performance may
vary significantly. It is not always easy to identify which version of the program
performs the best. We present a system PREDICTOR (and its algorithmic back-
end) for estimating the grounding size of programs, a metric that can influence
a program’s performance. We evaluate an impact of PREDICTOR when used as a
guide for rewritings produced by the ASP rewriting tool PROJECTOR. The results
demonstrate potential to this approach.
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1 Introduction

Answer set programming (ASP) [3] is a declarative (constraint) programming paradigm
geared towards solving difficult combinatorial search problems. ASP programs model
problem specifications/constraints as a set of logic rules. These logic rules define a
problem instance to be solved. An ASP system is then used to compute solutions (an-
swer sets) to the program. ASP has been successfully used in scientific and industrial
applications.

Intuitive ASP encodings are not always the most optimal/performant making this
programming paradigm less attractive to novice users as their first attempts to problem
solving may not scale. ASP programs often require careful design and expert knowledge
in order to achieve performant results [13]. Figure 1 depicts a typical ASP system archi-
tecture. The first step performed by systems called grounders transforms a non-ground
logic program (with variables) into a ground/propositional program (without variables).
Expert ASP programmers often modify their ASP solution targeting the reduction of
grounding size of a resulting program. Size of a ground program has been shown to be
a predictive factor of a program’s performance, enabling it to be used as an “optimiza-
tion metric” [13]. Intelligent grounding techniques [10] utilized by grounders such as
GRINGO [14] or IDLV [5] also keep such a reduction in mind. Intelligent grounding pro-
cedures analyze a given program to produce a smaller propositional program without
altering the solutions. In addition, researchers looked into automatic program rewriting
procedures. Systems such as SIMPLIFY [8,9], LPOPT [1,2], PROJECTOR [15] rewrite
non-ground programs targeting the reduction of the grounding size. These systems are
meant to be prepossessing tools agnostic to the later choice of ASP solving technology.
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Tools such as SIMPLIFY, LPOPT, and PROJECTOR, despite illustrating promising
results, often hinder their objective. Sometimes, the original set of rules is better than
the rewritten set, when their size of grounding is taken as a metric. Research has been
performed to mitigate the negative impact of these rewritings. Mastria et al. [ 18] demon-
strated a novel approach to guiding automatic rewriting techniques performed in IDLV
using machine learning with a set of features built from structural properties and do-
main information. Calimeri et al. [6] illustrated truly successful application of a pro-
gram rewriting technique stemming from LPOPT by incorporating its procedure inside
the intelligent grounding algorithm of grounder IDLV. It was achieved by making a de-
cision on whether to apply an LPOPT rewriting based on the current state of grounding.
IDLV accurately estimated the impact of rewriting on grounding and based on this infor-
mation decided whether to perform a rewriting. This synergy of intelligent grounding
and a rewriting technique demonstrates the best performant results. Yet, it makes the
transfer of rewriting techniques laborious assuming the need of tight integration of any
rewriting within a grounder of choice. Here we propose an algorithm for estimating
the size of grounding a program based on (i) mimicking an intelligent grounding pro-
cedure documented in [10] and (ii) techniques used in query optimization in relational
databases (see, for instance, Chapter 13 in [19]). We then implement this algorithm in a
system called PREDICTOR. This tool is meant to be used as a decision support mecha-
nism for ASP program rewriting systems so that they perform a possible rewriting based
on estimates produced by PREDICTOR. This work culminates in the integration of tools
PREDICTOR and PROJECTOR depicted in Figure 2. We illustrate the true success of this
synergy by extensive experimental analysis. It is important to note that PREDICTOR 1is
a stand alone tool and can be used as part of any ASP inspired technology where its
functionality is of interest.

We start by introducing the subject matter terminology. The key contribution of the
work lays in the development of formulas for estimating the grounding size of a logic
program based on its structural analysis and insights on intelligent grounding proce-
dures. First, we present the simplified version of these formulas for the case of tight
programs. We trust that this helps the reader to build intuitions for the work. Second,
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the formulas for arbitrary programs are given. We then describe the implementation
details of system PREDICTOR. We conclude by experimental evaluation that includes
incorporation of PREDICTOR within system PROJECTOR.

2 Preliminaries

An atom is an expression p(ty, ..., tx), where p is a predicate symbol of arity & > 0
and %y, ..., t; are terms — either object constants or variables. As customary in logic
programming, variables are marked by an identifier starting with a capital letter. We
assume object constants to be numbers. This is an inessential restriction as we can map
strings to numbers using, for instance, the lexicographic order. For an atom p(t1, ..., t))
and position i (1 < i < k), we define an argument denoted by pli]. By p(t1, ..., tx)°
and p(ty, ..., )" we refer to predicate symbol p and the term ¢;, respectively. A rule is
an expression of the form

Qg 4= A1y ooy Ay NOE Qg1 -2y NOL Q. (D)

where n > m > 0, ag is either an atom or symbol L, and a4, ..., a,, are atoms. We refer
to ag as the head of the rule and an expression to the right hand side of an arrow symbol
in (1) as the body. An atom a and its negation not a is a literal. To literals a1, ..., ap,
in the body of rule (1) we refer as positive, whereas to literals not a,,+1, ..., not a, we
refer as negative. For a rule r, by H(r) we denote the head atom of . By BT (r) we
denote the set of positive literals in the body of . We obtain the set of variables present
in an atom a and a rule r by vars(a) and vars(r), respectively. For a variable X
occurring in rule r, by args(r, X) we denote set

{pli] | a € BT (r),a" = p, and a’ = X}.
A rule r is safe if each variable in r appears in BT (r). Let r be a safe rule
p(A) < q(A, B),r(1, A),not s(B). 2)

Then vars(r) = {A, B}, args(r, A) = {q[1],r[2]}, and args(r,B) = {q[2]}. A
(logic) program is a finite set of safe rules. We call programs containing variables non-
ground.

For a program I1, oc(pli]) denotes the set of all object constants occurring in {H(7)* |
r € IT and H(r)? = p}; whereas oc(II) denotes the set of all object constants occurring
in the head atoms of the rules in II. For instance, consider a program, named I1;:

p(1). p(2). r(3). ©)
q(X,1) < p(X). ©)
Then, oc(p[l]) = {1,2}, oc(q[1]) = 0, oc(q[2]) = {1} and oc(II;) = {1,2,3}. The
grounding of a program II, denoted gr(II), is a ground program obtained by instan-

tiating variables in II with all object constants of the program. For example, gr(I1;)
consists of rules in (3) and rules

q(1,1) <= p(1). q(2,1) « p(2). Q)
q(3,1) < p(3). (6)
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Given a program [I, ASP grounders utilizing intelligent grounding are often able to
produce a program smaller than its grounding gr(IT), but that has the same answer sets
as gr(IT). For instance, a program obtained from gr(I1;) by dropping rule (6) may be a
result of intelligent grounding. The ground extensions of a predicate within a grounded
program I7 are the set of terms associated with the predicate in the program. For in-
stance, in gr(II1), the ground extensions of predicate g is the set {(1,1), (2, 1), (3,1)}
of tuples. For an argument p[i] and a ground program I7, we call the number of distinct
object constants occurring in the ground extensions of p in I] at position ¢ the argument
size of p[i]. For instance, for program gr(II;) argument sizes of p[1], ¢[1], and ¢[2] are
3, 3, and 1, respectively.

The dependency graph of a program IT is a directed graph G;; = (N, E) such
that NV is the set of predicates appearing in IT and F contains the edge (p, q) if there is
arule r in IT in which p occurs in BT () and ¢ occurs in the head of r. A program IT
is tight if G 7 is acyclic, otherwise the program is non-tight [11]. For instance, consider
program I15 constructed from I7; by extending it with rules:

r(2). r(4). (N
s(X,Y, Z) < r(X),p(X),p(Y), (Y, Z). ®

Program II5 is the program II, extended with the rule:
qV,X) «+ s(X,Y, 2). )

Figure 3 shows the dependency graphs Gz, (left) and Gz, (center). Program II; is
tight, while program I/3 is not.

3 System PREDICTOR

The key contribution of this work is the development of system PREDICTOR (its algo-
rithmic and software base), whose goal is to provide estimates for the size of an “intel-
ligently” grounded program. PREDICTOR is based on the intelligent grounding proce-
dures implemented by grounder DLV [10]. The key difference is that, instead of building
the ground instances of each rule in the program, PREDICTOR constructs statistics about
the predicates, their arguments, and rules of the program. This section provides formu-
las we developed in order to produce the estimates backing up the computed statistics.
We conclude with details on the implementation.



Estimating Grounding Sizes of Logic Programs under Answer Set Semantics 5

Argument size estimation Tight program case: The estimation formulas are based
on predicting argument sizes. To understand these it is essential to talk about an order in
which we produce estimates for predicate symbols/arguments. Given a program II, we
obtain such an ordering by performing a topological sorting on its dependency graph.
We associate each node in this ordering with its position and call it a level rank of a
predicate. For example, p, q, 7, s is one possible ordering for program I7,. This ordering
associates level ranks 1, 2, 3, 4 with predicates p, g, r, s, respectively.

We now introduce some intermediate formulas for constraining our estimates. These
intermediate formulas are inspired by query optimization techniques in relational databases,
e.g., see Chapter 13 in [19]. These formulas keep track of information that helps us to
guess what the actual values may occur in the grounded program without storing these
values themselves. Let p[i] be an argument. We track the range of values that may occur
at this argument. To provide intuitions for a process we introduce, consider an intelli-
gent grounding of 75 consisting of rules (3), (5), (7), and rules

5(2,1,1) < r(2),p(2),p(1), ¢(1,1). (10)
5(2,1,1) < 7(2),p(2),p(2),4(2,1). (1D
This intelligent grounding produces rules (10), (11) in place of rule (8). Variable X
from rule (8) is only ever replaced with object constant 2. Intuitively, this is due to
the intersection oc(p[1]) N oc(r[1]) = {2}. We model such a restriction by consider-
ing what minimum and maximum values are possible for each argument in an intel-
ligently grounded program (compliant with described principle; all modern intelligent
grounders respect such a restriction). We then use these values to define an “upper re-
striction” of the argument size for each argument.
For a tight program I7, let p[i] be an argument in I7; R be
set {r | r € II, H(r)" = p, and H(r) is a variable}. By |5, (p[i]) we denote an esti-
mate of a minimum value that may appear in argument p[é] in I7:

4 (pli)) = min (oc(pli)) U
{maz ({4, G0 | V7] € args(rH(r))} ) | 7 € R))

The function JL7,is total because the rank of the predicate occurring on the left hand side
of the definition above is strictly greater than the ranks of all of the predicate symbols p’
on the right hand side, where rank is understood as a level rank defined before (multiple
level rankings are possible; any can be considered here). By 117, (p[i]) we denote an
estimate of a maximum value that may appear in argument p[i] in tight program I7. It
is computed using formula for |tY, (p[i]) with min, max, and |7, replaced by maux,
min, and 17, respectively.

Now that we have estimates for minimum and maximum values, we estimate the
size of the range of values. We understand the range of an argument to be the number
of values we anticipate to see in the argument within an intelligently grounded program
if the values were all integers between the minimum and maximum estimates. It is
possible that our minimum estimate for a given argument is greater than its maximum
estimate. Intuitively, this indicates that no ground rule will contain this argument in its
head. The number of values between the minimum and maximum estimates may also

be greater than the number of object constants in a considered program. In this case,
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we restrict the range to the number of object constants occurring in the program. We
compute the range, range’?(p[i]), as follows:

min ({mazx ({0,155, (plil)— Lz, (pli]) + 1}), loc(1D)]})

Recall, program I15. The operations required to compute the minimum estimate for
argument s[1] in H2 follow:

W (r mm(oc(r [1])) =
cst (P n(OC(p [1]) =
est( [ ]) (OC(S[” U

)
{max({ 1e5 (r[1]): Yoz (1D })}) = min(D U {2}) = 2

We compute 1%, (s[1]) to be 2. Then, rangel?(s[1]) is

min({maz ({0, 7, (s[1])— 1z (s[1]) + 1}), [oc(1T2)[})
=min({maz({0,2—-2+1}),4}) =1

We presented formulas for estimating the range of values in program’s arguments. We
now show how these estimates are used to assess the size of an argument understood
as the number of distinct values occurring in this argument upon an intelligent ground-
ing. We now outline intuitions behind a recursive process that we capture in formulas.
Let p[é] be an argument. If p[i] is such that predicate p has no incoming edges in the
program’s dependency graph, then we estimate the size of p[i] as |oc(p[i])|. Otherwise,
consider rule 7 such that H(r)® = p and H(r)* is a variable. Our goal is to estimate the
number of values variable H(r)* may be replaced with during intelligent grounding. To
do so, we consider the argument size estimates for arguments in the positive body of the
rule that contain variable H(r)?. Based on a typical intelligent grounding procedures,
variable H(r)? may not take more values than the minimum of those argument size es-
timations. This gives us a possible estimate of the argument size relative to a single rule
r. The argument size estimate of p[i] with respect to the entire program may be then
computed as the sum of such estimates for all rules such as r (recall that rule r satis-
fies the requirements H(r)® = p and H(r)® is a variable). Yet, the sum over all rules
may heavily overestimate the argument size. To milder the effect of overestimation we
incorporate range estimates discussed before into the described computations.

For a tight program I7, let p[i] be an argument in IT; R be the set
{r|r€II, H(r)° = p, and H(r)" is a variable}.

By S'%(p[i]) we denote an estimate of the argument size p[i] in tight program I7. This
estimate is computed as follows:

St (pli]) = man { ranget(pli)). loc(pli)]+
>~ min({SELW/ 1) | 9'[i] € args(r H(r))}) })

reR

We can argue that the function S

o 1 total in the same way as we argued that the
function L%, is total.
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The following illustrates the computation of the argument size estimates for argu-
ment s[2] in program I1, given that range?(s[2]) = 2 and oc(s[2]) = 0:

Sear(p[1]) = loc(p[1])] =2

Sear(all]) = mm(mngeebt( (1)) {loc(q[1])[+
min({S¢s; (p[1)})}) = min({2,0 + min({2})}) =

St t

est(s 2]) min (Tangeest(s[2 )7

[ |
{loc(s[2))| + min ({2 (pl1), S (a1)}) }) =2

Arbitrary (nontight) program case: To process arbitrary programs (tight and non-tight),
we must manage to resolve the circular dependencies such as present in sample pro-
gram II5 defined in the section on preliminaries. We borrow and simplify a concept of
the component graph from [10]. The component graph of a program II is an acyclic
directed graph G5¢ = (N, E) such that N is the set of strongly connected components
in the dependency graph Gy of IT and FE contains the edge (P, Q) if there is an edge
(p,q) in G; where p € P and g € Q. For tight programs, we identify its component
graph with the dependency graph itself by associating a singleton set annotating a node
with its member. Figure 3 (right) shows the component graph for program I75. For a
program [I, we obtain an ordering on its predicates by performing a topological sort-
ing on its component graph. We associate each node in this ordering with its position
and call it a strong level rank of each predicate that belongs to a node. For example,
{p},{r}, {q, s} is one possible topological sorting of 77, . This ordering associates the
following strong level ranks 1, 2, 3, 3 with predicates p, , q, s, respectively.

Let C' be a node/component in graph G'77. By Pc we denote the set
{r|peC,rec, and H(r)° = p}.

We call this set a module. A rule r in module P¢ is a recursive rule if there exists an
atom a in the positive body of 7 so that a” = p and predicate p occurs in C. Otherwise,
rule r is an exit rule. For tight programs, all rules are exit rules. It is also possible to have
modules with only recursive rules. For instance, the modules in program I3 contain

Py ={p(1). p(2).}; Py ={r(2). r(3). r(4).}
and Py, s, composed of rules (4), (8), and (9). The rules rules (8) and (9) are recursive.
In the sequel we consider components whose module contains an exit rule. For a
component C' and its module P¢, we construct a partition My, ..., M,, (n > 1) in the

following way: Every exit rule of P is a member of M. A recursive rule 7 in P¢ is a
member of My, (k > 1) if

— for every predicate p € C occurring in B+ (r), thereis arule v’ in M7 U...U My_1,
where H(r')? = p and
— there is a predicate ¢ occurring in BT (1) such that there is a rule r”” in M},_, where
H(r")® =q.
We refer to the unique partition created in this manner as the component partition of
C; integer n is called its cardinality. We call elements of a component partition groups
(the component partition is undefined for components whose module does not contain
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an exit rule). The component partition of node {g, s} in Gy, follows:

My = {q(X,1) < p(X).}
My ={s(X,Y,Z) « r(X),p(X),p(Y),q(Y,Z).}
Mz = {q(Y, X) « s(X,Y, Z).}.

For a component partition My, ..., My, ..., M,, by Mf[i] we denote the set
{r|re My, H(r)" = p,and H(r)" is a variable};

and by Mf[.i_]k we denote the union Ule M f . For instance, for program II3 and its
argument ¢[1]:

MY, = {q(X,1) « p(X). q(Y,X) + s(X,Y,Z).}

We now generalize range and argument size estimation formulas for tight programs
to the case of arbitrary programs. These formulas are more complex than their “tight
versions”, yet they perform similar operations at their core. Intuitively, formulas for
tight programs relied on argument ordering provided by the program’s dependency
graph. Now, in addition to an order provided by the component dependency graph,
we rely on the orders given to us by the components partitions of the program.

In the remainder of this section, let IT be a program; p[i] be an argument in IT; C'
be the node in the component graph of II so that p € C'; n be the cardinality of the
component partition of C’; and j be an integer such that 1 < j < n.

If the module of C does not contain an exit rule, then the estimate of the range of
an argument p[é], denoted range.s{p[i]), is assumed 0 and the estimate of the size of
an argument p[é], denoted Ses:(p[i]), is assumed 0.

We now consider the case when the module of C' contains an exit rule.

By lest(p[i]) we denote an estimate of a minimum value that may appear in argument
plé] in program IT:

Lest L)) =120 (pli], )
9" (pli], 5) = min(oc(pli]) U {J25<(pli], ,7) | r € MPILY)
rule(plil, j,r) = maa({ L2 li], p'['], 5) | P[] € args(r, H(r)")})

VP, B, 5) g .('[i'],7 — 1), if p’ in the same component as p
1], v, = . .

et Lest(P'[i']), otherwise

We note the strong similarity between the combined definitions of 7%, (p[i], ) and

1r%e(pli], j,r) compared to the corresponding “tight” formula |, (p[i]). Formula for

VP (pli], p'[i'], 7) serves two purposes. If the predicate p/ is in the same component as
predicate p, we decrement the counter j (intuitively bringing us to preceding groups in
component partition). Otherwise, we simply use the minimum estimate for p'[¢’] that is
due to the computation relevant to another component.

We now show that defined functions Jess, 197, 7€ and |*""*are total. Consider
any strong level ranking of program’s predicates. Then, by rank(p) we refer to the
corresponding strong level rank of a predicate p. The following table provides ranks

associated with expressions used to define functions in question:
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Expression Rank

Lest(pli]) w - (rank(p) +1)
est(plil, 7) w - rank(p) + j
Lesiewlil gor) | w-rank(p) +
¢i§i”(p[i}7p’ ['],4)] w - rank(p) +j

where w is the smallest infinite ordinal number. It is easy to see that in definitions
of functions s, |75,, and |7%¢ the ranks associated with their expressions do not
increase. In definition of izﬁ”m terms of |.s; the rank decreases. Thus, the defined
functions are total.

By Test(p [ ]) we denote an estimate of a maximum value that may appear in argu-
ment p[ ] in program I7. It is computed using formula for |.s: (p[i]) with min, maz,
Jests 120 Joue, and |2%) " replaced with maz, min, tese, 190, 1744, and 527, re
spectively. The range of an argument pl[i], denoted range.s(pli]), is computed by the
formula of rangetl(pli]), where we replace [}, and 1%, with |.s; and 1.4, TESpEC-
tively.

We define the formula for finding the argument size estimates, Ses: (p[¢]), as follows:

Sest (pli]) = SZplil, n)
SEuplil, ) = min({rangecsdpli]), loc(piD| + D SL(plil. j.r)})
rem?l,
Seat(plil, d.r) = main({ S (pl), p'[], 5) | P'[i'] € args(r, H(r)")})
ST N,7—1), ifp isinth t
S, 1), ) = D [z/,j ), ifp’is '1n e same component as p
Sest(P'[¢']), otherwise
We can argue that the function S, is total in the same way as we argued that the
function | is total.

Program size estimation Keys We borrow the concept of a key from relational
databases. For some predicate p, we refer to any set of arguments of p that can uniquely
identify all ground extensions of p as a superkey of p. We call a minimal superkey a
candidate key. For instance, let the following be the ground extensions of some predi-
cate ¢:

{<]" 17a>’ <1’ 27 b>7 <]"37 b>7 <2’ 17c>’ <27 27c>’ <2737 a>}

It is easy to see that both {¢[1], ¢[2]} and {q[1], ¢[2], q[3]} are superkeys of ¢, while
{q[1]} is not a superkey. Only superkey {q[1],¢[2]} is a candidate key. A primary key
of a predicate p is a single chosen candidate key. A predicate may have at most one
primary key. (For the purposes of this work, the primary key is manually determined.)
It is possible that some predicates do not have primary keys specified. To handle such
predicates, we define key(p) to mean the following:

key(p) the primary key of p, if p has a primary key
(& =
g {p[lh 7p[n]}7 otherwise

where n is the arity of p. We call an argument pli] a key argument if it is in key(p). For
arule r, by kvars(r) we denote the set of its variables that occur in its key arguments.
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Rule size estimation =~ We now have all the ingredients to provide an estimate for
grounding size of each rule in a program. We understand a grounding size of a rule
as the number of rules produced as a result of intelligently grounding this rule. For a
rule 7 in a program I, the estimated grounding size, denoted S.s:(r), is computed as
follows:

Sest(r) = H min({Sest(p[i]) | pi] € args(r,X)})

Xekvars(r)

Implementation Details System PREDICTOR! is developed using the Python 3 pro-
gramming language. PREDICTOR utilizes PYCLINGO version 5, a Python API sub-
system of answer set solving toolkit CLINGO [12]. The PYCLINGO API enables users to
easily access and enhance ASP processing steps within Python code, including access
to some data in the processing chain. In particular, PREDICTOR uses PYCLINGO to parse
a logic program into an abstract syntax tree (AST) representation. After obtaining the
AST, PREDICTOR has an immediate access to internal rule structure of the program and
computes estimates for the program using the presented formulas. System PREDICTOR
is designed for integration with other systems processing ASP programs. It is distributed
as a package that can be imported into other systems developed in Python 3, or it can be
accessed through a command line interface. In order to ensure that system PREDICTOR
is applicable to real world problems, it supports ASP-Core-2 logic programs. For in-
stance, the estimation formulas presented here generalize well to programs with choice
rules and disjunction. Rules with aggregates are also supported. Yet, for such rules more
sophisticated approaches are required to be more precise at estimations.

4 Experimental Analysis

To evaluate the usefulness of PREDICTOR, two sets of experiments are performed. First,
an intrinsic evaluation over accuracy of the predicted grounding size compared to the
actual grounding size is examined. Second, an extrinsic evaluation of system PRD-
PROJECTOR- a tool resulting from system PROJECTOR enhanced by PREDICTOR- is
conducted. In particular, we investigate the utility of system PREDICTOR by integrating
it as a decision support mechanism into the ASP rewriting tool PROJECTOR. This inte-
gration is illustrated in Figure 2. Each time system PROJECTOR accounts a rule to which
its rewriting is applicable, it performs the rewriting. System PRD-PROJECTOR performs
the rewriting of PROJECTOR only if PREDICTOR predicts the reduction in grounding
size upon the rewriting. We measure the quality of PREDICTOR by analyzing the im-
pact it has on rewritings by PROJECTOR. We note that the extrinsic evaluation is of a
special value illustrating the usefulness and the potential of system PREDICTOR. It as-
sesses PREDICTOR’s impact when it is used in practice for its intended purpose as a
decision making assistant. The intrinsic evaluation has its value in identifying potential
future work directions and pitfalls in estimations. Overall, we will observe intrinsically

! https://www.unomaha.edu/college-of-information-science-and-technology/
natural-language-processing-and-knowledge-representation-lab/software/predictor.
php
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that our estimates differ frequently in order of magnitude from the reality. Yet, extrin-
sic evaluation clearly states that PREDICTOR performs as an excellent decision making
assistant for the purpose of improving rewriting tools when their performance depends
on a decision when rewriting should take place versus not.

Benchmarks were gathered from two different sources. First, programs from the
Fifth Answer Set Programming Competition [7] were used. Of the 26 programs in the
competition, 13 were selected (these that system PROJECTOR has preformed rewritings
on). For each program, the 20 instances (originally selected for the competition) were
used. One interesting thing to note about these encodings is that they are generally al-
ready well optimized. As such, performing projections often leads to an increase in
grounding size. Second, benchmarks were gathered from an application called ASPCCG
implementing a natural language parser [17]. This domain has been extensively studied
in [4] and was used to evaluate system PROJECTOR in [15]. In that evaluation, the au-
thors considered 3 encodings from ASPCCG: ENC1, ENC7, ENC19. We utilize the same
encodings and instances as in the evaluation of PROJECTOR. All tests were conducted
on Ubuntu 18.04.3 with an Intel® Xeon® CPU E5-1620 v3 @ 3.50GHz and 32 GB
of RAM. Furthermore, Python version 3.7.3 and PYCLINGO version 5.4.0 are used to
run PREDICTOR. Grounding and solving was done by CLINGO version 5.4.0. For all
benchmarks execution was limited to 5 minutes.

Intrinsic Evaluation Let S be the true grounding size of an instance in a program com-
puted by GRINGO. Let S’ be the grounding size predicted by PREDICTOR of the same
instance. We define a notion of an error factor on a program instance as S’/S. The
average error factor of a program/benchmark is the average of all error factors across
the instances of a program. Table 1 shows the average error factor for all programs. We
note that in our tests, keys were manually identified only for root predicate arguments.
The average error factor shown was rounded to make comparisons easier. An asterisk
(*) next to a benchmark name indicates that not all 20 instances of this benchmark were
grounded within the allotted time limit. For instance, 19 instances of the Incremen-
tal Scheduling benchmark were successfully grounded, while the remaining instances
timed out. For the * benchmarks we only report the average error factor assuming the
instances grounded successfully. We partition the results into three groups using the
average error factor. The partition is indicated by the horizontal lines on Table 1. First,
there are five programs where the estimates computed by PREDICTOR are, on average,
less than one order of magnitude over. Second, there are eight programs that are, on av-
erage, greater than one order of magnitude over. Finally, three programs are predicted
to have lower grounding sizes than in reality. It is obvious that the accuracy of system
PREDICTOR could still use improvements. In many cases the accuracy is drastically
erroneous. These results are not necessarily surprising. We identify five main reasons
for observed data on PREDICTOR: (1) Insufficient data modeling is one weak point of
PREDICTOR. Since we do not keep track what actual constants could be present in the
ground extensions of a predicate, it is often the case that we overestimate argument size
due to our inability to identify repetitive values. (2) Since we only identified keys for
root predicate arguments, many keys were likely missed. (3) System PREDICTOR has
limited support for such common language extensions as aggregates. (4) System PRE-
DICTOR is vulnerable to what is known as error propagation [16]. (5) While one might
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Program Avg. Error Factor
Hanoi Tower 1.5
Nomystery 1.5

Perm. Pattern Match.x 3.8
Solitaire 4.3

Stable Marriage 3.7

Bottle Filling 4.9 x 10°
Inc. Scheduling 1.1 x 10°
Labyrinthx 1.3 x 10t
Minimal Diagnosis 8.2 x 103
Valves Location 1.3 x 10!
ASPCCG ENC1 2.9 x 10!
ASPCCG ENC7 1.3 x 10t
ASPCCG ENC19 2.2 x 10!
Knight Tour with Holes 1.9 x 10~ 7
Ricochet Robots 2.0x 107!

Weighted Sequence 6.0 x 1073
Table 1: Average error factor for benchmark programs

typically expect PREDICTOR to overestimate due to its limited capabilities in detecting
repeated data, the underestimation on Knight Tour with Holes, Ricochet Robots, and
Weighted Sequence programs is not surprising due to the fact that these programs are
non-tight.

Extrinsic Evaluation Here, we examine the relative accuracy of system PREDIC-
TOR alongside PROJECTOR. In other words, we measure the quality of PREDICTOR by
analyzing the impact it has on PROJECTOR performance.

Let S be the grounding size of an instance of a program, where grounding is pro-
duced by GRINGO. Let S’ be the grounding size of the same instance in a modified
(rewritten) version of the program. In this context, the modified version will either be
the logic program outputted after using PROJECTOR or the logic program outputted af-
ter using PRD-PROJECTOR. The grounding size factor of a program’s instance is defined
as S’/S. As such, a grounding size factor greater than 1 indicates that the modification
increased the grounding size, whereas a value less than 1 indicates that the modification
improved/decreased the grounding size. The average grounding size factor of a bench-
mark is the average of all grounding size factors across the instances of a benchmark.
Table 2 (left) displays the average grounding size factor for PROJECTOR and PRD-
PROJECTOR on all benchmark programs. An asterisk (x) following a program name
indicates that not all 20 instances were grounded. In these cases, the average ground-
ing size factor was only computed from instances where all 3 versions of the program
(original, PROJECTOR, PRD-PROJECTOR) completed grounding. A dagger (1) follow-
ing a program name indicates that there was a slight improvement for PRD-PROJECTOR,
however this information was lost for the precision shown.

We partition the results into three sets, indicated by the horizontal lines on Table 2
(left). We note that there are eight programs in which PRD-PROJECTOR reduces the
grounding size noticeably when compared to PROJECTOR, five programs in which PRD-
PROJECTOR does not impact the grounding size noticeably, and three programs in which
PRD-PROJECTOR increases the grounding size noticeably.
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Program PROJ PRD-PROJ  Program Svd. PROJ PRD-PROJ
Hanoi Tower 1.41 1.00 Hanoi Tower 20 1.67 1.00
Inc. Scheduling* 1.14 1.12 Inc. Scheduling 13 1.06 1.10
Minimal Diagnosis 1.06 1.00 Minimal Diagnosis 20 1.04 1.00
Solitaire 1.41 1.00 Solitaire 19 1.32 0.99
Stable Marriage 0.13 0.12 Stable Marriage 19 0.18 0.17
ASPCCG ENC1 0.63 0.49 ASPCCG ENC1 54 0.57 0.52
ASPCCG ENC7 1.40 1.24 ASPCCG ENC7 57 1.37 1.28
ASPCCG ENC19 1.58 1.04 ASPCCG ENC19 59 193 1.16
Bottle Filling 1.36 1.36 Bottle Filling 20 1.44 1.43
Labyrinthx 1.11 1.11 Labyrinth 16 5.26 5.27
Perm. Pattern Match.x 1 0.13 0.13 Perm. Pattern Match. 16 0.14 0.14
Valves Locationf 1.00 1.00 Valves Location 3 1.03 0.93
Weighted Sequencet  1.00 1.00 Weighted Sequence 16 3.05 1.59
Knight Tour with Holes 0.80 0.90 Knight Tour with Holes 1~ 0.50 2.45
Nomystery 0.62 1.00 Nomystery 7 1.23 1.00
Ricochet Robots 0.91 1.00 Ricochet Robots 20 0.85 1.00

Table 2: Left: Average grounding size factors; Right: Average execution time factors

While we target improving the grounding size of a program, it is useful to also
compare the execution time of the programs, as that is ultimately what we want to
reduce. Let S be the execution time of an answer set solver CLINGO on an instance
of a benchmark. Let S’ be the execution time of CLINGO on the same instance in a
modified version of the benchmark. The execution time factor of a program’s instance
is defined as S’/S. The average execution time factor of a benchmark is the average
of all execution time factors across the instances of a benchmark. Table 2 (right) shows
the average execution time factor of programs rewritten with PROJECTOR and PRD-
PROJECTOR. Overall, the results illustrate the validity of PREDICTOR approach.

5 Conclusions

We introduced a method for predicting grounding size of answer set programs. To the
best of our knowledge this is the only approach for the stated purpose. We implement
the described method in stand-alone system PREDICTOR that runs agnostic to any an-
swer set grounder/solver pair. We expect this tool to become a foundation to decision
support systems for rewriting/preprocessing tools in ASP. Indeed, using PREDICTOR
as a decision support guide to rewriting system PROJECTOR improves the PROJEC-
TOR’s outcome overall. This proves the validity of the proposed approach, especially as
further methods for improving estimation accuracy are explored in the future. As such
system PREDICTOR is a unique tool unparalleled in earlier research ready for use within
preprocessing frameworks in ASP such as SIMPLIFY or LPOPT in a similar manner as
we illustrate its use here within the system PRD-PROJECTOR.
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