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Abstract

Charged black holes in anti-de Sitter space become unstable to forming charged scalar
hair at low temperatures T < T.. This phenomenon is a holographic realization of su-
perconductivity. We look inside the horizon of these holographic superconductors and
find intricate dynamical behavior. The spacetime ends at a spacelike Kasner singularity,
and there is no Cauchy horizon. Before reaching the singularity, there are several inter-
mediate regimes which we study both analytically and numerically. These include strong
Josephson oscillations in the condensate and possible ‘Kasner inversions’ in which after
many e-folds of expansion, the Einstein-Rosen bridge contracts towards the singularity.
Due to the Josephson oscillations, the number of Kasner inversions depends very sensi-
tively on T, and diverges at a discrete set of temperatures {T,} that accumulate at T,.
Near these T,, the final Kasner exponent exhibits fractal-like behavior.
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1 Introduction

Over a decade ago, a holographic realization of superconductivity was found [1-3]. Charged
black holes, such as the Reissner-Nordstrom anti-de Sitter (RN AdS) solution, dually describe
nonzero density states of matter. Such black holes were shown to become unstable to forming
charged scalar hair at low temperatures T < T,. The hairy solutions spontaneously break the
U(1) symmetry of the theory, leading to the physics of superconductors and superfluids. Since
that time, holographic superconductors have been extensively studied [4,5]. However, to the
best of our knowledge, the effect of the charged condensate on the black hole interior, beyond
the horizon, has not been systematically studied. This paper aims to fill this gap.

The well-studied exterior of a holographic superconductor is relatively simple: a ‘lump’ of
scalar field is localized close to the horizon, held in place by the gravitational pull towards the
interior of AdS combined with electrostatic repulsion from the horizon. We will find that, in
contrast, the interior exhibits intricate dynamics which can be divided up into several different
epochs. We will characterize these epochs both analytically and numerically. We will also prove
that there cannot be a smooth Cauchy horizon. Instead, the solutions approach a spacelike
singularity at late interior time.

Before describing these different regimes, we should clarify our motivation. Of course the
reason there has been little interest in the solution behind the horizon is that it is not clear how
this region of the geometry is reflected in the dual symmetry-broken phase of matter. While
certain entanglement in the thermofield double state is captured by a transhorizon extremal
surface [6], these surfaces do not probe far enough beyond the horizon to see the regimes that
we will describe (cf. [7]). In the spirit of the recent works [8,9], we hope that the existence
of nontrivial classical dynamics behind the horizon will help to motivate and guide the search
for a more powerful holographic understanding of the black hole interior.

Just below the critical temperature, the scalar field is uniformly small everywhere outside
the horizon. Inside the horizon, we will see that the dynamics cleanly separates into epochs
that we call the collapse of the Einstein-Rosen (ER) bridge, Josephson oscillations, Kasner,
and in some cases, Kasner inversions. We now explain this terminology. The solution re-
mains close to RN AdS until one approaches the inner horizon. At that point the direction
along the Einstein-Rosen bridge shrinks very rapidly while the two transverse directions are
essentially unchanged. This is the collapse of the Einstein-Rosen bridge, similar to that seen
previously for a neutral scalar field [9]. Following this, we find that the scalar field undergoes
rapid oscillations which are analogous to Josephson oscillations in a superconductor. When
these oscillations end, the solution resembles the Kasner solution, which is a homogeneous,
anisotropic cosmology where the metric components are all power laws and the scalar field is
logarithmic [10].

Our Kasner solutions have a single free exponent p, which takes values —1/3 < p, < 1.
The value of p, after the oscillations depends on temperature. When p, is positive it remains
constant all the way to the singularity. This corresponds to g,, continuing to decrease to zero.
However if —1/3 < p, < 0, g,, starts growing and after many e-folds of expansion there is a
transition to another Kasner regime. Most of the negative exponents get mapped to positive
values, so g, again decreases to the singularity. We call this phenomenon a ‘Kasner inversion’.
However a small neighborhood of p, = —1/3 is mapped to new negative values. This occurs
because in these cases the inversion is so sudden that additional Josephson oscillations in the
scalar field are induced. In such cases the expansive dynamics then continues for many e-folds
until it reaches a second Kasner inversion where the process repeats. Each time, the range of
temperatures for which p, remains negative becomes smaller and smaller. For a discrete set
of temperatures {T,}, there are an infinite number of Kasner inversions, making the final p,
extremely sensitive to the temperature. These special T, accumulate at T, showing that the
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onset of superconductivity is accompanied by extremely intricate interior dynamics.*

We will present approximate analytic solutions for each of the different interior epochs,
and confirm their accuracy by matching to numerical solutions. These include the collapse of
the ER bridge given by (17) and Fig. 3, the scalar oscillations given by (21) and Fig. 4, and
the Kasner inversion given by (32) and Fig. 9. Away from T, the interior solution typically has
less structure, but there are still some critical temperatures where there are an infinite number
of Kasner inversions. We thus obtain a fairly complete picture of the classical solution inside
a holographic superconductor.

To obtain our approximate analytic solutions, we first study the numerical solutions to see
which terms in the field equations are small in a given epoch. We then drop those terms and
solve the remaining equations analytically. The self-consistency of this procedure is established
by checking that the dropped terms are small on the analytic solution (and parametrically so
in certain limits). Finally, we verify that the numerical solutions indeed match our analytic
approximations in each epoch. Although we cannot justify a priori why the terms we drop are
negligible, the analytic approximations provide considerable insight as they explain compli-
cated behavior in terms of a few parameters.

As usual, one expects this interior solution will break down near the singularity and require
stringy or quantum corrections. Large curvatures can also arise in limiting cases where the ER
bridge collapse or Kasner inversions become arbitrarily sudden. In holography we can control
when these corrections become important by taking the two parameters of the dual gauge
theory, N and the coupling constant A, very large. This will often be enough to ensure that
such corrections remain small until we are late into the final Kasner epoch or very close a
limiting Kasner inversion.

2 Review of holographic superconductors

A minimal holographic superconductor is described by gravity coupled to a Maxwell field and
a charged, massive scalar field with action [1-3]

s= f d4x¢§[R+6—%Fz—gab(aa¢—iqAa¢)(ab¢+iqAb¢)—m2¢2}. ®

We have set the AdS radius and gravitational coupling to one. The Maxwell field is dual to the
current of a global U(1) symmetry in the field theory. The scalar field ¢ is dual to an operator
O with charge g under this global symmetry, and scaling dimension A = % +4/ % + m?2.

We will be interested in planar black hole solutions of the form

ZZ

ds® = le (—f(z)e_)‘(‘z)dt2 + % +dx?+ dyz) : 2)

The AdS boundary is at z = 0 and the singularity will be at 2 — 00. At a horizon, f(z4) = 0.
The horizon defines the temperature

1
T =_—|f’ —2(z3)/2 3
4Tt|f (z)le 3)

The scalar field and scalar potential take the form

¢ =¢(2), A=%(z)dt. )

!The sequence of Kasner regimes resembles the well-known BKL approach to spacelike singularities [11]. How-
ever, our results do not follow from previous analyses: The oscillations induced by the charge of the scalar field
are essential to explain how the number of Kasner epochs depends sensitively on the black hole temperature.
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The defining feature of a holographic superconductor is that the operator O condenses
below some critical temperature T., spontaneously breaking the global symmetry. For the
model (1), T, depends on q and A as shown in [12]. Below the critical temperature in the
bulk, the scalar field develops a nonzero normalizable falloff at the boundary, without a source,
so thatasz — 0

¢ — Ppyz”, (5)

with ¢ (1) o< (O). The remaining radial functions should have the leading asymptotic behavior:
f—1,x = 0,® — u. This behavior fixes the normalization of time on the boundary as well
as the chemical potential u.

The equations of motion are

2,2
zze-x/Z(ex/%p')’ 299 ¢ ©
x/2 / 2 XH2
zze?‘/z(e fé (m q efq’ )(P, )
1’ _ 2 "2
o= fz¢‘1’+(¢) (8)
i
ezt (L ) —2m? ¢+t (@ —12. ©

The equations of motion also fix the phase of ¢ to be constant, so we can choose ¢ to be real.
Previous works have solved these equations in the black hole exterior z > z;,. To continue
behind the horizon it is simple to go to ingoing coordinates [9], and the equations of motion
for f, y, ¢,® do not change.

3 Proof of no inner horizon

In the absence of the charged condensate, e.g. ¢y = 0 for T > T, the bulk solution is
the charged RN AdS black hole. The interior of RN AdS has an inner Cauchy horizon and
a timelike singularity. In recent work we have shown that neutral scalar fields generically
destroy the inner horizon and lead to a spacelike singularity [9]. Here we establish a stronger
result for charged scalar fields: smooth Cauchy horizons never form.

An important new ingredient for the case of a charged scalar field is that several terms in
the equations of motion (6) — (9) have inverse factors of f in them. At any horizon, f vanishes.
It is easily seen that if the variables are real analytic at the horizon, i.e. admit a power series
expansion, then ¢ or & must also vanish at the horizon. The series expansion at the horizon
furthermore shows that ¢ can only vanish on the horizon if it vanishes everywhere. Therefore,
in the presence of a nonzero condensate ¢, the potential & must vanish on all horizons. We
now show that it is not possible for ® to simultaneously vanish on both an inner and an outer
horizon.

On our ansatz for the fields, the action (1) is invariant under z — Az,
¥ — x —6logA,® — A%2®, with f and ¢ not changing. The associated conserved quantity Q

is [13] ,
eX
=" (e7*f) —e?0'®. (10)
22

The fact that Q" = 0 follows from the equations of motion. Since Q is constant, its value must
agree on horizons, where f = & = 0 (with a nonzero ¢). It follows that if there were two
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horizons, at z,; and z7, we would need

e—x/Zf/
22

e—x/Zf/
22

(11)

2y 2z

However, this is impossible because f’ is negative on an outer horizon and positive on an inner
horizon. Therefore, in the absence of an inner horizon, we can anticipate that the interior
geometry will end at a spacelike singularity.

Note added: This proof has been extended to spherical horizons in the recent paper [14].

4 Dynamical epochs inside the horizon

Beyond the horizon of the holographic superconductor, the radial coordinate g is timelike. In
this section we will describe several distinct dynamical regimes that can occur as the interior
geometry evolves from the horizon to the spacelike singularity. These are (i) the collapse
of the Einstein-Rosen bridge, (ii) Josephson oscillations of the condensate and (iii) a Kasner
cosmology, sometimes with transitions that change the Kasner exponents. We will give analytic
descriptions of each of these regimes in certain limits, that match numerical results. Fig. 1
gives an overview of these different dynamical epochs, while Fig. 2 shows a zoom into the
collapse and oscillation regimes.

100

Intermediate Kasner J

—-100
L L L | L | L | L | L |
10 10° 10° 0% 107 10 10% 10%

2/ 2y

Figure 1: Journey through the inside of a holographic superconductor. At a value of
z close to the inner horizon of AdS RN, zg;,/g,, (black) experiences a large kick at
which g, (blue) becomes very small. We call this the collapse of the Einstein-Rosen
bridge. Immediately afterwards, the scalar field ¢ (orange) goes through a series of
Josephson oscillations, imprinting a series of short steps on zg;,/g;,. This all occurs
at relatively small z/z4, (orange shaded region, shown also in Fig. 2). The oscilla-
tions settle down to an intermediate Kasner regime with exponent pitm. This Kasner
epoch lasts for an exponentially long range of z/z5, (but short proper time) before
receiving yet another kick (whenever pitnt < 0) after which the interior has a final
Kasner exponent with p, = —p;"*/(2p™ + 1) > 0 (blue shaded region). The scalar

t
field derivative inverts: z¢’ — 2/(z¢’). Here g =1, m> =—2 and T/T. = 0.986.

4.1 Simplified interior equations of motion

The regimes beyond the horizon are most cleanly identified in the limit where the scalar field
is small. This will be the case, for example, just below the critical temperature T.. Figs. 1
and 2 are in this limit, as is most of our analytic discussion that follows. In §4.4 we show how
the Einstein-Rosen bridge collapse and Josephson oscillations become less distinct at lower
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Figure 2: The shaded orange region of Fig. 1. The same colors have been used, but
300 ¢ /z is plotted instead of z¢’ to highlight the oscillations and their amplitude.
The imprint of the oscillations on the metric are clearly visible. Here g = 1, m? = —2
and T/T. = 0.986.

temperatures. At temperatures close to T, the effect of the scalar field is small until the so-
lution comes close to the would-be inner horizon of RN AdS. At that point there are strong
nonlinearities that lead to novel dynamics. One can verify numerically (and validate a posteri-
ori) that by the time the interesting dynamics kicks in, the following terms in the equations of
motion can be dropped: the mass terms of the scalar field and the charge term in the Maxwell
equation.2 The equations (6) — (9) then become

<1>’—E e—%/2 (12)
—x/2 —x/2 /
e 7‘2 f( x ff.b , (13)
Z
£ qfi $202+(9')%, a4
22\ 1 12
(e z3 f) =Z(E§—z—4)e_7f/2. (15)

Here E, is the constant electric field in this regime. The electric field is in the spacelike t
direction, while ® should be thought of as a component of the vector potential inside the
horizon, with the z coordinate being ‘time’. The term on the right hand side of the Maxwell
equation (6) is therefore a Josephson electric current in the interior, due to the condensate ¢
and vector potential . The Josephson current is dropped in (12) because it does not backreact
significantly on the electric field in the regimes we are about to describe.

2It is not simply ¢ being small close to T, that allows terms to be dropped. Rather, we will see in the solutions
below how nonlinear dynamics can result in certain quantities becoming exponentially large compared to others.
In §4.5 this will also occur away from T,. Substituting these behaviors into (6) — (9) reveals that the mass terms
are negligible. We will be dropping additional terms as we proceed further beyond the horizon. As noted in the
introduction, the behaviors that allow us to do this are not obvious a priori. Our methodology throughout has been
to find self-consistent analytic approximations guided by numerical exploration.

6


https://scipost.org
https://scipost.org/SciPostPhys.10.1.009

Scil SciPost Phys. 10, 009 (2021)

4.2 Collapse of the Einstein-Rosen bridge

The physics here is similar to that discussed recently for a neutral scalar field in [9]. A small
nonzero scalar triggers an instability of the would-be inner Cauchy horizon. The instability is
stronger for small values of the scalar, indicating the nonlinear nature of the dynamics. The
essential phenomenon is that as g;; approaches its would-be zero at the Cauchy horizon, it
suddenly undergoes a very rapid collapse to become exponentially small. In [9] we called this
the collapse of the Einstein-Rosen bridge.

As in [9], for vanishingly small scalar field the instability becomes so fast that the z coor-
dinate can be kept essentially fixed. Let z = z, + 02, so that f, y, ¢, P are now functions of
6z while any explicit factors of z in the equations are set to z,. The constant z, will be close
to the inner horizon of RN-AdS. Furthermore, in this limit the potential & is large compared
to its derivative in this regime (we will verify this after the fact). Thus in (13) and (14) we
can set & = &, a constant (it is important to keep the E, term in (15) however). With these
approximations, equation (13) can be solved explicitly as

z /2
¢ = ¢, cos (quof exf_dz + Lpo) . (16)

*

Here ¢, and ¢, are constants. Note that if f develops a zero then one has the expected
logarithmic oscillations close to the inner horizon seen in studies of the linear instability of
this horizon.

Perhaps remarkably, the scalar field oscillations in (16) drop out of the remaining equations
for f and y. This is because q2q52<1>(2) +e Xf2(p")? = qquféi in (14). These equations are
then seen to be identical to those of a neutral scalar field that were solved in [9]. In particular,
the metric component g,, is found to be given by

2,252
s 2q° ¢ s

=00 (17)
boglE2-12

C% log(get) + &t = _Cg(z —2,),

and ¢, > 0 and 2, are further constants of integration. For z < z,, g;; o< (2, —2) is linearly
vanishing, as in the approach to an inner horizon, but for z > z, we see that instead of vanish-
ing or changing sign, g,, o< e (¢/ «*(==%) is nonzero but exponentially small. This collapse
occurs over a coordinate range Az = (c;/c5)?.

For small values of the scalar field at the horizon, i.e. as T — T., numerical solutions to
the equations of motion are found to be well fit by (16) and (17) at the collapse of the ER
bridge. See Fig. 3 below. The fitting shows that ¢;/c, ~ 0.796(2) (1 — T /T.)'/?, for numerics
with m? = —2 and q = 1. Therefore Az — 0 as T — T, so that the collapse becomes very fast
in this limit. This justifies the approximation of restricting attention to z ~ z,. The vanishing
of ¢c;/cy as T — T, is expected because in this limit z,,z, — 27, the inner horizon of RN AdS,
while E,, ®,,c, will go to their nonzero values on the RN AdS inner horizon. Therefore in
this limit ¢; o< ¢, — 0, from (17) and the fact that the scalar field condensate vanishes like
(T.—T)Y? as T — T.. While z, = z, = z7 at T = T, the approach to this limit is quite slow.
For numerical fitting it is important to keep z, and z, independent.

To verify that it was consistent to neglect the variation in ®, from the equations above
that describe the collapse together with (12) one can show that over the collapse ' o< g;,.

The constant of proportionality is 2/(c, \/ z,[1—12/ (Eng )1) which is order one. Therefore
the variation over the collapse A® o< Ag,, ~ —g,.(2,), as g, is exponentially small after the
collapse. From (17) we have that g;.(z,) is of order cf up to logarithms. Therefore g,.(z,)
is also small, although not exponentially so, while & is set to a nonzero value by the RN-AdS
background. Therefore A®/® is small. Furthermore, we see that &' itself is very small at the
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Figure 3: Metric component g,, and scalar ¢ as a function of z close to the collapse of
the ER bridge. The solid gray line is numerical data and the black dotted curves are
fits to the expressions (16) and (17). These are at T /T, = 0.9936 and with m?=—2
and g = 1.

end of the collapse, where g, is decaying exponentially. This fact will simplify the following
epoch below.

Finally, it will be useful later to obtain the curvature at the collapse. As a first step, we
note that using the solution (17) for the metric, the scalar field (16) can be written as

2
¢ quocos( a —loggL(z)+<po) . (18)
¢0C2 2y gtt(z*)
Recall that ¢; /¢, is finite as ¢, — 0. The Ricci scalar at z can then be written as
2 4282 9 5
R=-12+ 79,2, cos( o1 —log 8::(2) +2ch) ) (19)
8::(2) $oCa \ 2. gee(2.)

At fixed small but nonzero ¢, g;, is exponentially small for z > z,. The curvature is therefore
exponentially large. Schematically R ~ e(*~%)/ 3 cos(z/¢ g). The limit ¢, — 0 is not uniform.
While at any nonzero ¢, there is a large maximum in the curvature right after the collapse,
strictly at ¢, = 0 the collapse is simply the smooth inner horizon of AdS RN. We can see this
by putting ¢; =0 in (17).

4.3 Josephson oscillations

The oscillations in the scalar field in (16) have a physical interpretation. Recall that inside
the horizon z is timelike while t is spacelike. The argument of the cosine in (16) can be
written as q ng dt, where the proper time dt = ,/g,,dz and the vector potential in locally
flat coordinates is A; = A,/,/8:;- A nonzero A; indicates a phase winding in the t direction.
The scalar condensate ¢ determines the superfluid stiffness. Equation (16) therefore describes
oscillations in time of the stiffness due to a background phase winding. This is precisely the
Josephson effect.® After the collapse of the ER bridge, these oscillations become (for T ~ T,)
the dominant feature in the solution over a regime that we will now describe.

3Recall that the Josephson current itself has been dropped in (12) because its backreaction on the Maxwell field
can be neglected (as we verify below). The current is present in the full Maxwell equation (6).
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Immediately after the collapse of the ER bridge described in the previous section, we have
seen that & o< e%/2 is very small. This allows a simplified description of the following regime,
wherein we may set e #*/2(E2 —12/z%) — 0 on the right hand side of (15). Thus

—x/2 1
ii;—:——, o=9,, (20)
V4 C3

with c¢5 constant. Matching onto the z > 2, side of the collapse, which has an overlapping
regime of validity with the oscillation regime, fixes c3 = 2(cy/ cf) X4/22/ (Eng' —12). Therefore
this constant becomes large as T — T.. Using (20), the equations of motion (13) and (15) can
then be solved in terms of Bessel functions. The scalar field is given by

(] (0]
¢ :C4J0 |q 0|C3 +C5Y0 |q 0|C3 ) (21)
222

222

These Bessel functions are oscillatory and continuously connect onto the oscillations (16) that
start in the collapse regime. As c; is large these oscillations are very fast. Because the scalar
field oscillations are no longer precisely sinuosoidal, they do backreact onto the metric and we
find that in this regime

z 242 .2 12
f =—f023exp{1J [§(¢’)2+q¢‘i—cs]d§} . (22)
2 . Z5

Here f, is a constant of integration. The Bessel functions should be inserted into this integral.
The integral can be done analytically in terms of Bessel functions. These describe the small
oscillations seen in zg;t /g in Fig. 2 above. At small T.— T, the functional forms (21) and
(22) are verified to fit numerical solutions to the full differential equations (6) — (9) all the
way from the collapse through to the subsequent Kasner regime. See Fig. 4 below.

1.5 2.0 25 3.0 3.5 4.0 1.5 2.0 25 3.0 3.5 4.0
z/zy z/zy

Figure 4: Josephson oscillations in the scalar field ¢ and corresponding imprint in the
metric derivative zf’/f. The solid gray line is numerical data and the black dotted
curves are fits to the expressions (21) and (22). These are at T/T, = 0.9936 and
with m? =—2and ¢ =1.

At large z the scalar field (21) tends to

2 TED
(i):%log(qe‘l.T;CB)'i‘C4+“', (23)

9
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with y; the Euler-Mascheroni constant. The logarithmic behavior indicates the onset of a
Kasner regime, that we describe in the following section. The constant c¢5 in (23) will determine
the Kasner exponent. It is therefore interesting to explicitly match this quantity back to the
solution at the collapse. Matching (21) and (16) gives

1/4
_(z*rrzc% qbg) ) (c2¢z_* 1 n)
Cs = o) sin Yo
8 Cl \/E ¢OC1 4
and similarly for c4. This expression is obtained by matching ¢ and its derivative in the regime
of overlapping validity and using the expressions for the constants in (17) and below (20). We

have furthermore expanded in the limit of ¢p, oc ¢; — 0 that applies as T — T.. The expression
(24) shows that c; is strongly oscillating with constant amplitude as T — T:

B
Cs =Asin(— + C) . (25)
1-T/T.

This form agrees with numerics over many oscillations. See Fig. 5 below. For m? = —2 and

(24)

2

—
N ——
———

S 0
*‘ T
-2
0.992 0.994 0.996 0.998 1.000
T/T.
Figure 5: Oscillations in a, = —+/8cs/m (which will determine the subsequent Kasner

exponent) as T — T.. The solid gray line is numerical data and the black dotted curve
is a fit to the expression (25). The numerics has m? = —2 and qg=1.

g = 1 we find B ~ 0.491(8) and C ~ 1.945(6). The amplitude depends only on the ratio
& = 27 /24 of the inner and outer horizon of the RN-AdS background at T = T:

4_ TPE(B+285+8%°
16q2(E24+&+1) -
For a scalar field with ¢ = 1 and m? = —2 this formula predicts A = 1.7388(6), which gives an
excellent match to the value we find numerically of A~ 1.7393(2).

We can again verify that it was self-consistent to treat ® as a constant in this regime. Using
(20) in the full Maxwell equation (6) gives

(26)

23 2
d = 2q2q>o?J f—sdz. 27)

Over most of the oscillatory regime, f is exponentially large and hence &’ is exponentially
small. This allowed the Josephson current to be ignored in the equations of motion. As the
Kasner regime is entered, ®’ is small compared to & by powers of (large) z. While the electric
flux is negligible upon entering into the Kasner regime, in Sec. 4.5 we will see that it can lead
to nontrivial inversion phenomena at large z.

10
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4.4 Collapse and oscillations at lower temperatures

In Fig. 6 we illustrate how the collapse of the Einstein-Rosen bridge and subsequent Josephson
oscillations become less dramatic as the temperature is lowered further below T..

40F

z/zy 22y

Figure 6: Evolution of z¢’ and —zg;,/g,, as a function of z for temperatures
T /T, =0.962 (solid), 0.934 (dashed), 0.899 (dotted) and 0.858 (dot-dashed). There
are fewer oscillations as the temperature is lowered and the jump in the derivative
of the metric becomes less dramatic. Numerics are with m? = —2 and q = 1.

4.5 Kasner epochs and inversions

We have seen that the oscillatory regime ends in a logarithmic scaling behavior (23). We will
shortly explain that this corresponds to a Kasner cosmology. However, this scaling does not
always continue all the way to the singularity. Instead, a phenomenon that we call ‘Kasner
inversion’ can occur, as we will also describe.

Beyond the oscillatory regime, the terms involving the charge q of the scalar field can be
neglected in (13) and (14) and the cosmological constant term can be neglected in (15). This
can be verified a posteriori on the solutions. The resulting equations can be solved in generality
(these are just the equations for a massless, neutral scalar field coupled to electromagnetism
and gravity without a cosmological constant). Firstly, one solves to find:

®=9, +Eof e 12z, (28)
—Z/Z EZ 1
fe 3 =(—°Je‘ﬂ2dz——) . (29)
z 4 C3

These are the same solutions as in (20), but with E, reinstated, as it will become important
again at larger z. This then leaves coupled equations for ¢ and y. We can eliminate y from
these equations to obtain a third order equation for ¢. Setting

$=v2 J %dz, (30)
then the equation becomes
w// /lp/
lpZ—I—ZW—ZZ’E:O. (31

11
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The general solution to this equation is

Z.

1 —1/(1-1/a?)
) y=2 (32)

—1/(1—a?)
—a D — —
(=) VD —y
The two constants of integration are 0 < a, < 1 (without loss of generality) and z;,,.
The solution (32) has the limiting behavior

1
Y —->—>1 as z>z,, (33)

o

Yoa, <1 as z<z,. (34)

These limits both describe Kasner cosmologies, as we now explain. Putting 1) = a, a constant,
into (30) and then solving for the metric variables gives

f=—sz?’+“2+---, ¢ =av2logz+---, y=2a%logz+ yx+---. (35)

Here fx, yx are constants. The limits in (33) and (34) require a > 1 as z2 > z;;, and a < 1 for
2 < 2;,. These conditions ensure that the Maxwell flux terms are unimportant in the Kasner
regimes where ® = &, + EKzl_O‘2 +ee

Changing the z coordinate to the proper time 7 (with T = 0 corresponding to z = 00),
using (35) the metric has the Kasner form [10,15]

ds? = —d7? + ¢, v?Prdt? + ¢, TP~ (dx2 + dyz) , ¢ =—pylogT. (36)

Here ¢, and c, are constants. The Kasner exponents obey p, +2p, =1 and pi + pf + 2p32( =1.
The single free exponent can be taken to be

_ a’—1

= 37
3+a2 (37)

Pt
The sign of p, determines whether the ER bridge grows (p, < 0) or contracts (p, > 0) as times
evolves. In terms of the Kasner exponent p,, the limits in (33) and (34) describe a ‘Kasner

inversion’ a — 1/a in which
Pt

_ 38
2p;+1 (38)

bt —
We see that p, changes sign in the inversion. Thus p, > 0 at 2 > z;;, and p; < 0 for z < z;,. In
particular p, > 0 towards the actual singularity as 2 — 00, and hence the ¢t direction contracts
at late times. This inversion and late time contraction is clearly seen in Fig. 1.

The late time regime with p, > 0 always exists. However, the intermediate time regime
with p; < 0 only exists if the constant z;, in (32) is sufficiently large that z < z;, is still within
the regime described by (32). If this is not the case, then the full solution can directly enter
the late time regime p, > O from the oscillating epoch. Matching the end of the oscillatory
epoch (23) with the Kasner regime (35) we have a = —\/§c5 /7. Whenever |a| < 1 from this
matching, there will be a Kasner inversion. The strong oscillations (25) of ¢ with temperature
mean that a oscillates between £1.56 (for ¢ = 1 and m? = —2) infinitely many times as
T — T,. There is therefore an infinite sequence of inverting and non-inverting cosmologies as
T — T.. The following Fig. 7 illustrates an interior evolution that does not exhibit a Kasner
inversion.

In Fig. 8 we show the value of the Kasner exponent p, after the inversion for all tempera-
tures up to T.. The strong oscillations near T, are shown in the blow-up of this region where
we plot the values of p, both before and after the inversion as a function of temperature. These
oscillations show an imprint of the Josephson oscillations on the structure of the singularity.
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Figure 7: An example of an interior evolution with no Kasner inversion, because the
intermediate Kasner exponent is already positive. Numerics with m? = -2, ¢ =1
and T/T. = 0.987. Compare with Fig. 1, that has a T /T, differing only by 0.001.

Fig. 8 also shows rapid variation of p, near T /T, ~ .6, illustrated more clearly in a second
blow-up plot. This can also be traced back to the Josephson oscillations. Although the number
of oscillations tends to decrease with decreasing temperature, as we saw in Fig. 6, it is not
monotonic and near T /T, ~ .6 there is a local increase in the number of oscillations. This
causes the intermediate p, to again oscillate below zero, triggering the inversion.

Numerical solutions to the equations of motion show that the inversions are well described
by (32). See Fig. 9 below. As a, — 0 the inversion becomes increasingly sharp and localized at
2 = 2;,. The location z;,/24, is found (numerically) to tend to a finite number as a, — 0. This
limit is more transparently described in a different coordinate system. The Kasner inversion
solution given by (28), (29), (30) and (32) can be written in terms of a different ‘radial’
coordinate r as

1—p2
2

2
dsz=gdt2—%+h(dx2+dy2), ¢ =i, + logr, (39)

where 5
E

r >, h=2 0

rf (rﬂ +r/3) o

0o

— 2
g:gg rl ﬁ(rﬂ+rf) . (40)

The Maxwell field is d®/dr = E,/h. It is easily seen that with 8 > 0, the limit r > r, gives
a Kasner solution with p, = —f/(2 + 8) < 0. This corresponds to the z < z;, limit discussed
above. The opposite limit of r < r, gives a Kasner solution with p, = 8/(2—f) > 0. Thus we
precisely recover the Kasner inversion (38) in these new coordinates. The fact that the scalar
in (39) takes the same form in both asymptotic regions is still consistent with (32) since the
coordinate transformation from g to r is different in the two regions.

The benefit of the new coordinates is that it is straightforward to take the limit f — 1,
which corresponds to a, — 0. The solution becomes

A

ds? = ————di2 + (7 + 7,)> (—@dﬁz +d%> +dy2) . p=¢nm. (4D
o (P + 7,)2 r

We introduced rescaled coordinates #,t,%,§ for clarity (i.e. to remove g, and E,). The

Maxwell potential is now & = &, —2/(# + #,). This solution describes a crossover from

p: = —1/3 at large 7, to p, = 1 at small 7. The solution (41) has a constant scalar field

and is in fact a special case of a class of known exact solutions in Einstein-Maxwell theory [16]

that can also exhibit Kasner inversion.*

“In general ds? = g2(1) |:—d'r2 + 72Pxdx? 4 72y dyz] + g(1)21%dt? and A, = (2k,/k,)"?/g(7) + ®,, with

13


https://scipost.org
https://scipost.org/SciPostPhys.10.1.009

Scil SciPost Phys. 10, 009 (2021)

1.0 - 4
0.8 B
_ 06} 1
s
0.4+ B
0.2 ]
0, 4
0 0.2 0.4 0.6 0.8 1.0
T/T,
1.0 + ‘ 1 1.0
0.8 = R 0.8 -
0.6 - 0.6+
0.4 1 0.4 -
s £
0 Vo ! [ 1 t LT
Vo H L O BRI R R R TR R
- i ¥ SRR TR TR
L i V) ! \ [HRCIT T
02 ¥ i ! o2p DR R
v '-’ y R R R R R R AR I
—04 ‘ ‘ ‘ ‘ ‘ ] —04 ‘ ‘ ‘ ‘ ‘
0.56 0.58 0.60 0.62 0.64 0.991 0.992 0.993 0.994 0.995 0.996
T/T. T/T.

Figure 8: The Kasner exponent p, after the inversion as a function of T/ T,. The oscil-
lating regions have been blown up in the lower two figures. In the lower figures we
have also shown the Kasner exponent pitnt < 0 before the inversion as a dashed line.
The inversion that occurs when p}™ < 0 is visible. The accumulation of oscillations
as T — T. is described by (25). Towards zero temperature p, — 1. We comment

more on this in the discussion section.

As i < 7, in (41) the geometry tends towards a Kasner solution with p, = 1. This expo-
nent corresponds to a regular horizon, and would therefore lead to a smooth inner horizon of
our spacetime. The theorem in section 3 precludes this possibility. Therefore, in this particular
limit of a, — 0, the terms involving the charge of the scalar field — that are otherwise negli-
gible at large z — must become important at the inversion and prevent a, = 0 from inverting
to a new value of a,., = 00 (which corresponds to p, = 1). The simplest scenario for what
occurs when charge terms are important is that there is a repeat of the Einstein-Rosen bridge
described in section 4.2. Using results from that section, we can verify that the charge terms
indeed render a,.,, finite as @, — 0. Expression (24) gives the value of a,., = —v8/7 X cs
after the inversion/collapse, in the presence of charge terms. (Previously cs was related to a,,
but now we are applying this formula to a second collapse). Expressed in terms of quantities

g(1) =k, +k; 7% . The only constraint on the two constants k;, k, is that their product is positive. The exponents
must satisfy the usual constraints p. +p, +p, =1 and p?+p? +pf, =1.1Ifp, >0, g = k, as T — 0 and the Kasner
exponents do not change. But if p, < 0, g diverges in this limit. The metric near 7 = 0 is again of the Kasner form
but now with p, replaced with —p,/(2p, + 1), exactly as in (38).
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Figure 9: The Kasner inversion in the range a, ~ 0.070—0.130, with T /T, ~ 0.983.
The solid gray line is numerical data and the black dotted curve is a fit to the expres-
sion (32). The numerics are with m? = —2 and g=1.

that remain finite and nonzero at the collapse — using (17) and dropping the —12 term that
is unimportant at large z;, — from (24) we have that the magnitude of a,,, is bounded

Iy 2,5/2
_27in%n . (42)
qq)in

2

2
maX:;

2
|anew| <a

Here ®;, and E;, are the values of the potential and electric field at the inversion. At any
nonzero g, therefore, a,.,, cannot diverge even if a, — 0. The new Kasner exponent is there-
fore strictly less than one.

Fig. 10 gives an illustration of the bound (42) in action. The plots show the evolution of the
Kasner inversion/‘second collapse’ as a,, is tuned through zero, and the corresponding behavior
of o,y In Fig. 10 we furthermore see the appearance of an oscillation at the inversion, due
to the charge terms. These oscillations are to be expected once the inversion is described by
the equations in section 4.2. In fact, such oscillations are necessary to interpolate between
solutions with large positive and negative a,.,, that necessarily arise from the inversions of a,
small and positive and a, small and negative, on either side of the developing zero in a,. In
general it is difficult to see these oscillations numerically at inversions where z;, is typically
significantly larger than in Fig. 10. That is because the bound in Eq. (42) is saturated at very
large a,., in those cases, requiring the system to get to very small a, before the effects of
charge becomes important. That is, extremely precise tuning in T /T, is needed.

The appearance of additional oscillations at all inversions once a, gets sufficiently small
has a fascinating consequence for the structure of interior solutions. As we see in the bottom
plot in Fig. 10, the oscillation leads to the development of a zero in a,.,. We know that
Kasner solutions with |a,.,,| < 1 cannot continue asymptotically and so there must be a second
inversion in this case. As a,q, — O this second inversion must again become very steep and
ultimately lead to oscillations. These oscillations in turn seed further inversions. It is clear
that we are led to an infinite sequence of Kasner regimes and oscillatory Kasner inversions.
The number of distinct Kasner regimes would depend sensitively on T /T, in a fractal-like way,
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Figure 10: Approach to the bound (42) on a,., (top) and appearance of an os-
cillation at a Kasner inversion (bottom). In the upper left we plotted for tempera-
tures T /T, = 0.88462 (solid black), 0.88465 (dashed black), 0.88468 (dotted black),
0.88470 (dot-dash black), 0.88473 (solid gray) and 0.88476 (dashed gray), showing
the decrease in z¢’ after the inversion as the bound is approach. The lower figure has
T /T, = 0.884684 (solid black), 0.884676 (dashed black), 0.884669 (dotted black),
0.884661 (solid gray), 0.884652 (dashed gray) and 0.884644 (dotted gray) in order
to highlight the eventual emergence of oscillations after the second collapse. Notice
the extreme sensitivity of the new value a,,, on the temperature.

with additional very fine oscillations in temperature arising within the structure of (25), due
to these inversions.

It is numerically extremely challenging to see these further inversions, but for
T /T, ~ 0.8846244786, which has a,., ~ 0.72 at the end of the first inversion, we see ev-
idence of a second inversion developing at zj,g) & 1.71 x 1020322,

5 Discussion

We have studied what happens inside the horizon of the simplest holographic superconductor.
We showed that the Cauchy horizon present for temperatures above the critical temperature
is always removed when T < T, and replaced by a spacelike singularity. For T close to T,,
the interior dynamics cleanly separates into different epochs which can be described as the
collapse of the Einstein-Rosen bridge, Josephson oscillations, and a Kasner regime. In some
cases, there can be a sequence of transitions between Kasner regimes as the singularity is
approached. At certain temperatures these transitions become very abrupt, re-enacting the
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collapse of the Einstein-Rosen bridge, seeding a new set of Josephson oscillations and leading
to a remarkable recursive structure as a function of z (for a given solution) and fractal structure
as a function of T /T, (the space of solutions).

Even a single abrupt collapse of the Einstein-Rosen bridge, at the would-be Cauchy horizon
as T — T, is sufficient to lead to an extreme sensitivity of the final Kasner exponent on the
temperature near T,. This was illustrated in Fig. 8. For any € > 0, the Kasner exponent cycles
through a finite range of values an infinite number of times as the temperature is lowered
from T, to T, — €. The accumulation of oscillations in the final Kasner exponent as T — T, is
due to an accumulation of oscillations in the scalar field just beyond the (now absent) inner
horizon of AdS RN. The destruction of the inner horizon becomes increasingly sudden as the
condensate vanishes as T — T,, leading to a divergent curvature just beyond the inner horizon
that we computed in (19). Eventually, then, string theoretic or quantum gravity effects will be
important at the inner horizon, potentially cutting off the infinite oscillations in temperature.

In Fig. 8 each solution (except for those with p, very close to one) approaches a fixed
Kasner epoch near the singularity. The infinite number of Kasner cycles arises by tuning an
external parameter — the temperature — rather than by time evolution. However, we have
also seen that these oscillations in temperature are not the whole story. The analytic result (25)
determines the oscillatory Kasner exponent after a first collapse of the Einstein-Rosen bridge.
However, this Kasner exponent is then subject to Kasner inversions. At certain temperatures,
these inversions can become sudden and seed further oscillations in such a way that the whole
process repeats itself an infinite number of times. This infinite repetition occurs at a discrete set
of temperatures {T,} close to where a, = 0 in Fig. 5, or p, = 1 in Fig. 8. These temperatures
T, accumulate at T,. We find it remarkable that the onset of the scalar outside the horizon is
associated with the most intricate dynamics inside. The chaotic sequence of Kasner epochs —
now as function of z — is rather reminiscent of the mixmaster singularity [11,17]. As noted in
the introduction, in contrast to the usual BKL analysis, the oscillations due to the charge of the
scalar field are essential for the dynamics in our case. In terms of temperature dependence,
this phenomenon is expected to lead to a very fine fractal structure superimposing itself on
Fig. 8. It would be extremely interesting to exhibit this structure explicitly in future work,
with either a more refined numerical approach or more powerful mathematical tools.

Further interesting questions for future work include the extent to which our results are
modified in theories with more general scalar potentials. The collapse and inversions in par-
ticular are nonlinear regimes that are likely sensitive to the potential. There are also models
of inhomogeneous holographic superconductors [18]. The fact that different spatial points
decouple near a spacelike singularity suggests that the behavior near the singularity in those
cases might be similar to the homogeneous solutions. It would be interesting to see if that is
the case. In some circumstances boundary time dependence should also translate into spa-
tial dependence in the interior that can be expected to exhibit pointwise decoupling near the
singularity.

In [9] we noted that the collapse of the ER bridge was associated with a critical interior
radius z. where g/ (z.) = 0. Such interior extrema can be associated to purely damped quasi-
normal modes (in the exterior) for fields with large mass M, with frequency & = —iM 1/ g, (2.)
[6]. We explicitly verified the existence of the corresponding quasinormal mode in that case.
In the present case of a gravitating charged scalar field each Kasner inversion comes with an
additional maxima of g,,. Could these lead to a plethora of overdamped modes? In general,
whether an extremum contributes to the late time decay of fields depends on analytic proper-
ties of the geodesics in the complex energy plane, which we do not have access to here given
our numerical backgrounds [19, 20]. From explicit studies of the quasinormal mode spec-
trum, we have only been able to identify a quasinormal mode associated to the first collapse.
This suggests that the other potential modes do not exist. We have also checked that higher
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dimensional surfaces that traverse the ER bridge and capture entanglement in the dual field
theory [6] do not have additional extrema associated with the Kasner inversions. We hope that
the intricate classical dynamics that we have found inside the horizon will motivate further
attempts to probe this region from the dual theory.

The fractal-like structure described above does not affect the global causal structure of our
solutions. The causal structure of AdS black holes without Cauchy horizons can be represented
by a Penrose diagram where it makes a difference whether the spacelike singularity bends
in toward the event horizon or out away from it. For T close to T,, the singularity in the
holographic superconductor bends away (i.e. upwards in the Penrose diagram) and is close
to the former Cauchy horizon. At intermediate temperatures the singularity comes down,
eventually changing convexity and approaching the event horizon as T — 0. This is consistent
with the p, — 1 behavior seen in Fig. 8, although different from the zero temperature limit
for neutral scalar fields discussed in [9]. The singular horizon at T = 0 was found in [21].
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