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Abstract

In this work, we generalize the graph-theoretic techniques used for the holographic en-
tropy cone to study hypergraphs and their analogously-defined entropy cone. This allows
us to develop a framework to efficiently compute entropies and prove inequalities satis-
fied by hypergraphs. In doing so, we discover a class of quantum entropy vectors which
reach beyond those of holographic states and obey constraints intimately related to the
ones obeyed by stabilizer states and linear ranks. We show that, at least up to 4 parties,
the hypergraph cone is identical to the stabilizer entropy cone, thus demonstrating that
the hypergraph framework is broadly applicable to the study of entanglement entropy.
We conjecture that this equality continues to hold for higher party numbers and report
on partial progress on this direction. To physically motivate this conjectured equiva-
lence, we also propose a plausible method inspired by tensor networks to construct a
quantum state from a given hypergraph such that their entropy vectors match.
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1 Introduction

The study of entanglement entropy in holography, as originated by the Ryu-Takayanagi (RT)
formula [1] and its covariant generalization [2], has had a profound impact on the concep-
tualization and formulation of the holographic duality, from energy conditions [3–6] and c-
theorems [7–9] to the emergence of spacetime itself [10–13]. In addition, connections to
random stabilizer states and bit threads have led to progress in better understanding the form
of holographic states and their entanglement structure [14–17]. All of these ideas continue to
be quite promising research directions.

A natural question to ask regarding holographic entanglement entropy is what constraints
it obeys. Because of its geometric nature, it satisfies stronger entropy inequalities than those
of generic quantum states. The first of these inequalities to be discovered was the monogamy
of mutual information (MMI),

I3(A : B : C) := S(A) + S(B) + S(C)− S(AB)− S(AC)− S(BC) + S(ABC)≤ 0, (1)

originally proven on time-reflection symmetric Cauchy slices [18], and later covariantly [19].
By utilizing graph-theoretic techniques, several more inequalities were discovered in [20] and
used to define the holographic entropy cone of all entropy vectors allowed for holographic
states with a classical geometric dual. At present, the complete set of holographic entropy
inequalities obeyed by time-reflection symmetric states is known for up to and including 5
parties [20, 21], and while a general time-dependent proof remains an open question, all of
them have been shown to be obeyed covariantly in specific situations [22,23].

Recently, there has also been much work in attempting to characterize holographic entan-
glement and streamline the discovery of entropy inequalities by endowing entropy space with
additional structures and studying useful reparameterizations thereof [24–28]. Progress along
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these lines holds the potential to improve our understanding of the meaning of holographic
constraints and aid in the computational tractability of finding and proving new holographic
entanglement entropy inequalities.

The original motivation of the holographic entropy cone work, however, was only par-
tially accomplished in the form of new constraints for holographic states. It was unsuc-
cessful in finding new inequalities which could have been true for all quantum states, as in
particular all holographic inequalities discovered from MMI onward are violated by Green-
berger–Horne–Zeilinger (GHZ) states for sufficiently high party number [29]. The possibility
to adapt holographic entanglement techniques to find results true for more general quantum
states remains a tantalizing research direction, with some progress in the study of entangle-
ment of purification [30,31], and its multipartite and conditional extensions [32–34].

In this work, we generalize the graph-theoretic techniques of [20] to the setting of hyper-
graphs1 in order to capture richer, higher-partite entanglement structures. In doing so, we find
a set of entropy vectors which contains the holographic entropy vectors as a strict subset. We
show that the contraction map proof method for holographic entropy inequalities generalizes
appropriately to hypergraphs, and use this generalization to prove new inequalities different
from those obeyed by holographic states. We establish that the resulting hypergraph entropy
cone is the same for up to 4 parties as the stabilizer entropy cone defined in [37], which is itself
also equivalent to the cone defined by all balanced linear-rank inequalities [37,38]. Addition-
ally, we make significant progress in extending these equivalences to higher party number,
which we formulate in conjectural form.

The organization of the paper is as follows. In section 2, we review known results and
techniques from the holographic entropy cone that are relevant for this work, and briefly re-
view certain inequalities from the context of stabilizer states and linear ranks which turn out
to be pertinent to hypergraphs. We introduce hypergraphs in section 3, with an emphasis
on the features that we subsequently exploit. In the first part of this section, we prove req-
uisite extensions of the holographic techniques from graphs to hypergraphs, and use these
generalizations to prove some of the inequalities mentioned in the preceding section. In the
second part, we construct extreme ray realizations in the form of hypergraphs to demonstrate
completeness of the hypergraph cone for 4 parties and thereby show that it is identical to the
4-party stabilizer cone, and detail progress for 5 parties. In section 4, we propose a plausible
prescription for constructing quantum states from a given hypergraph that exactly reproduce
the hypergraph entropies as subsystem entropies. Finally, we conclude in section 5 with some
conjectures about the equivalences of the hypergraph cone to both the stabilizer cone and the
cone of balanced linear rank inequalities, as well as a discussion of potential future directions.

2 Review of Entropy Inequalities

In this section, we review the tools and methods used to derive entropy inequalities that apply
to holographic states with a classical bulk dual. Subsequently, we briefly review several classes
of entanglement entropy inequalities that are true for known subclasses of quantum states,
with an eye towards assessing their validity for hypergraph entropies. Those familiar with the
holographic entropy cone, stabilizer states, and linear rank inequalities may skim this section
for terminology or jump to topics which are less familiar.

1It bears mentioning at this point that the graph and hypergraph states described here are not the same as the
graph and hypergraph states discussed in the context of, for example, [35,36]. The construction methodology and
connection to entanglement entropies differs greatly between the two formulations.
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2.1 The Holographic Entropy Cone

Holographic states are a special subclass of quantum states whose bulk duals are classical
geometries. For such states, the entanglement entropy S(A) of a boundary subregion A is
given by the RT formula

S(A) =
Area(A)

4G
, (2)

where A is the minimal-area bulk surface homologous to A and anchored to its boundary, i.e.
∂A = ∂ A. The success of the holographic entropy cone methods lies in the ability to convert
this holographic principle to simple combinatorial and graph constructions.

Holographic states admit simple descriptions of their entropies in terms of graphs, where
entropies of subsystems are given by minimal cuts that separate their representative vertices
from those of the complement. Notably, not all quantum states admit such a description. In this
discrete language, we can then import the machinery of graph theory to prove entropy inequal-
ities based on the minimality of cuts. Later, we ask which entropic constraints remain valid
if one promotes graphs to hypergraphs, and find that we are able to probe non-holographic
entanglement structures while preserving consistency with universal quantum inequalities.

In this section, we review the basic tools used for constructing the holographic entropy cone
as applied in [20, 21], and which will be useful in our subsequent analysis of the hypergraph
entropy cone. Note that some of the following definitions and results concern standard graphs
only; thus, when discussing hypergraphs in section 3, only suitable generalizations of these
will continue to hold.

2.1.1 Graph Models

All graphs considered in this paper are undirected. An undirected graph is a pair (V, E) consisting
of a set of vertices V and a set of edges E which connect pairs of vertices. Formally, edges are
cardinality-2 subsets of V , and thus the edge set E is easily seen to be a subset E ⊆ ℘(V ),
where ℘(V ) denotes the power set of V . The degree of a vertex v ∈ V is the number edges
in the graph that contain v. To each edge, we can associate a numerical weight via a function
w : E → R≥0. The weight |F | of a subset of edges F ⊆ E is defined to be the sum of the
individual weights: |F |=

∑

f ∈F w( f ).

A cut is a bipartition of the vertex set V into a set W ⊆ V and its complement W û ⊆ V , and
can thus be uniquely specified by W alone. Pictorially, one thinks of a cut as splitting the graph
by means of cutting all edges bridging between W and its complement. With this intuition,
one defines the set of cut edges of W to be

C(W ) = {(v, v′) ∈ E : v ∈W, v′ ∈W û}. (3)

The cut weight |C(W )| is defined as the sum of the weights of the cut edges. We say that a
subset of vertices W ⊆ V is colored by a set X given a map b : W → X , and refer to b as a
coloring. A standard choice of coloring will be the set [n+ 1] := {1, . . . , n+ 1}. Because the
motivation behind these graph models is to encode the entanglement structure of quantum
states, we introduce the following nomenclature and definition of a discrete entropy via the
min-cut prescription (see Figure 1):

Definition 2.1. Let (V, E) be an undirected graph with non-negative edge weights. One defines
a subset of the vertex set ∂ V ⊆ V to be boundary (external) vertices, and assigns to them a
coloring via a map b : ∂ V → [n+ 1], where n ∈ Z+ is interpreted as the number of subsystems
of interest in a pure quantum state on n + 1 parties. The remaining vertices are called bulk
(internal) vertices. Given a subset I ⊆ [n], the discrete entropy of I is defined by the cut of
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Figure 1: A simple graph with boundary vertices A, B, C , O and 2 bulk vertices a, b.
The entropy of subsystem A is given by the minimal cut that separates A from B, C , O.
On the left, all edge weights are equal and the min-cut is simply given by the partition
of the vertex set into {A} and its complement. The cut is graphically represented
by the blue arc, and equivalently specified by the cut edges, colored green. With
different edge weights as in the right figure, the min-cut becomes {A, a}.

minimum total weight, or min-cut, that contains precisely those boundary vertices colored by I,
i.e.

S(I) :=min
�

|C(W )| : W ∩ ∂ V = b−1(I)
	

. (4)

We will often use subsets I ⊆ [n] to refer to their unique pre-image b−1(I) in ∂ V . In
reference to vertices, we will use the terminology of boundary and external interchangeably,
and similarly for bulk and internal. The quantum mechanical interpretation of the graph is
accomplished by identifying the n+ 1 boundary vertices as the avatars of the subsystems of a
pure quantum state on n+1 parties. To account for general mixed states, we take n boundary
vertices as the subsystems of interest and relegate the remaining one, usually labeled by O, to
stand for the purification of the state. Bulk vertices do not correspond to physical subsystems;
instead, they encode the entanglement structure of the quantum state. As was shown in [20],
any holographic geometry can be turned into a graph whose discrete entropies match the
boundary von Neumann entropies computed via the RT prescription and, conversely, graphs of
the form described above can be realized geometrically with matching entropy vectors. There-
fore, entanglement entropies of holographic states may be equivalently studied by considering
graph models with the appropriate discrete entropies.

A general linear entropy inequality may be written

L
∑

l=1

αlS(Il)≥
R
∑

r=1

βrS(Jr), (5)

where L, R denote the number of terms on the LHS and RHS respectively, Il , Jr are the subsys-
tems appearing in the inequality with non-zero coefficient, and αl , βr are positive coefficients.
For concreteness, one might have in mind e.g. strong subadditivity (SSA),

S(AB) + S(BC)≥ S(ABC) + S(B) (6)

for which L = R= 2 and non-trivial coefficients have αl = βr = 1. To study this inequality one
may consider graphs with no more than n+ 1 = 4 boundary vertices {A, B, C , O}. To set the
stage for future constructs, we define n occurrence vectors for the LHS and RHS of an inequality
as

x (i)l := 1[i ∈ Il], (7)

y(i)r := 1[i ∈ Jr], (8)
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where i ∈ [n+1] refers to each of the boundary vertices and 1[i ∈ Il] is the indicator function,
equaling one when i ∈ Il and zero otherwise. Each of the n + 1 vectors x (i) (y(i)) is a bit
string of length L (R). For example, in the case of SSA, one has the following bit strings as the
occurrence vector for the LHS:

xA = (1, 0), (9)

xB = (1, 1), (10)

xC = (0, 1), (11)

xO = (0, 0). (12)

2.1.2 The Contraction Map Method

We now review the method of proof by contraction developed in [20] as a tool to prove inequal-
ities obeyed by discrete entropies on graphs. The derivation of this result is also outlined as it
will be relevant to our hypergraph generalization. We first introduce the notion of a weighted
Hamming norm ‖·‖α on the space of m-dimensional bit strings x ∈ {0,1}m. For non-negative
weights αl collected into a vector α ∈ Rm

≥0, this is defined as

‖x‖α =
m
∑

l=1

αl x l . (13)

The contraction map method can then be stated as follows:

Theorem 2.1. Let f : {0, 1}L → {0,1}R be a ‖·‖α-‖·‖β contraction, i.e.




x − x ′






α
≥




 f (x)− f (x ′)






β
∀x , x ′ ∈ {0,1}L . (14)

If f
�

x (i)
�

= y(i) for all i = 1, . . . , n+ 1, then (5) is a valid entropy inequality on graphs.

Suppose we have computed the minimal cuts for each of the subsystems Il . The proof
of Theorem (2.1) boils down to cutting and pasting intersections of these minimal cuts and
subsequently arguing about minimality with respect to the new configuration. Bit strings are
a bookkeeping tool to encode all possible such intersections of min-cuts. Note that the domain
of the contraction map includes all bit strings. This is because an exhaustive contraction map
f must be true for all combinatorial possibilities coming from inclusion/exclusion of vertices
as specified by bit strings. When searching for f , the only explicit constraint is the image of
the n+1 occurrence vectors. The rest are left implicit by recursively considering the image of
nearby bit strings.

Proof. Let Wl be the minimal cut that gives the discrete entropy of the subsystem Il , i.e.
S(Il) = |C(Wl)|. The cut associated with a bit string x is defined by W (x) =

⋂

l W x l
l , where

the notion of inclusion/exclusion arises from declaring that W 1
l :=Wl and W 0

l :=W ûl . In other
words, W (x) is the intersection of minimal cuts Wl for subsystems included by x and their
complements W ûl when excluded. We can piece together the minimal cut for the Il subsystem
on the LHS by the following expression for bit strings x ∈ {0,1}L ,

Wl =
⋃

x:x l=1

W (x) . (15)

We now associate a cut Ur to each subsystem Jr that appears on the RHS of (5) by using
the contraction map f to pick which cuts W (x) to include in the definition of Ur :

Ur =
⋃

x: f (x)r=1

W (x) . (16)
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By construction, f maps occurrence vectors f
�

x (i)
�

= y(i), and thus Ur provides a cut for
Jr . The crux of this is the inclusion of specific W (x (i)) cuts in the union above. For a given
occurrence vector, the cut W (x (i)) is essentially the minimal set of vertices that includes only
the ith boundary vertex. For Ur to be a valid cut for subsystem Jr , it must contain all boundary
vertices that make up Jr , and only those. The condition that f (x (i))r = 1 on the occurrence
vectors when building up Ur means that we are taking a union of minimal cuts for these parties,
thereby ensuring that every boundary vertex belonging to Jr is in Ur .

To relate these cuts to the entropy inequalities, we expand the sum of entropies in terms of
these cuts. It will be useful to introduce the notation E(x , x ′) ⊆ E to denote the subset of the
original edge set that connect vertices in W (x) and W (x ′). The edges in E(x , x ′) cross Wl if and
only if x and x ′ differ in the l th bit. This allows us to decompose C(Wl) =

⋃

x ,x ′:x l 6=x ′l
E(x , x ′),

implying the key relation
|C(Wl)|=
∑

x ,x ′:x l 6=x ′l

�

�E(x , x ′)
�

�. (17)

This can be used to rewrite the LHS of (5) as

L
∑

l=1

αlS(Il) =
L
∑

l=1

αl |C(Wl)| (18)

=
L
∑

l=1

αl

∑

x ,x ′:x l 6=x ′l

�

�E(x , x ′)
�

� (19)

=
L
∑

l=1

αl

∑

x ,x ′

�

�x l − x ′l
�

�

�

�E(x , x ′)
�

� (20)

=
∑

x ,x ′

�

�E(x , x ′)
�

�

L
∑

l=1

αl

�

�x l − x ′l
�

� (21)

=
∑

x ,x ′

�

�E(x , x ′)
�

�





x − x ′






α
. (22)

Similarly, for the Ur cuts one has

R
∑

r=1

βr |C(Ur)|=
∑

x ,x ′

�

�E(x , x ′)
�

�





 f (x)− f (x ′)






β
. (23)

The contraction property of f then implies that
∑R

r=1 βr |C(Ur)| ≤
∑L

l=1αl |C(Wl)|.
Finally, the Ur were cuts for each of the subsystems Jr on the RHS of (5), but the weighted

sum of their weights is lower bounded by the discrete entropies S(Jr) by minimality. Putting
it all together, we conclude that

L
∑

l=1

αlS(Il) =
L
∑

l=1

αl |C(Wl)| ≥
R
∑

r=1

βr |C(Ur)| ≥
R
∑

r=1

βrS(Jr), (24)

and hence (5) is a valid entropy inequality.

Note that we do not currently know if the converse of Theorem 2.1 is true; that is, an
entropy inequality being valid may not imply the existence of a contraction map. We will say
that an inequality contracts on a graph if there exists a valid contraction map that proves it.
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2.1.3 Extreme Rays

Let us briefly review the geometric structure of the holographic entropy cone. An entropy
vector for a state on n parties is a vector in R2n−1 entropy space given by calculating the von
Neumann entropy of each subsystem associated to a non-empty subset of [n]. The set of all
such entropy vectors for holographic states forms the holographic entropy cone. This cone
is convex, i.e. it is closed under conical combinations, which are linear combinations with
non-negative coefficients. The holographic entropy cone is also polyhedral, which means that
there exists a finite set of vectors such that any other vector in it can be obtained as a conical
combination of the former. The minimal set of such vectors defines the extreme rays of the
cone and provide a complete characterization of it. A dual description of such a polyhedral
cone is attained by specifying its facets, which are the support hyperplanes that tightly bound
it. Each such facet specifies a half-space and may thus be written as a linear inequality. Every
facet is a codimension-1 span of a set of extreme rays, and similarly every extreme ray is a
1-dimensional intersection of facets2.

In order to obtain a complete characterization of an entropy cone for a given class of quan-
tum states, it is necessary to show that every point in that entropy cone can be realized in that
class. For holographic states, we are aided by the bulk/boundary duality: one does not need to
scan over all possible CFT states with geometric duals, but rather simply consider all possible
bulk geometries on which entropies may be computed using the RT prescription3. An algorith-
mic method to translate the geometric data necessary to calculate entanglement entropies via
RT into a graph form and vice versa was first described in [20]. Thus the question of whether
a given entropy vector is realizable holographically translates into a combinatorial problem of
finding a graph reproducing those entropies consistently via the min-cut prescription. We note
that this min-cut is a source-sink version of the problem, where we are separating boundary
vertices b−1(I) from their complement in ∂ V .

In applying this technique, it was shown that all extreme rays of the 3 and 4 party cones
bounded by subadditivity (SA), SSA and MMI can be realized by graphs and thus by holo-
graphic states. For 5 parties, five additional inequalities were found [20] and proven to be
a complete description of the holographic cone by explicit construction of graph realizations
of the corresponding extreme rays [21]. Some examples of graphs corresponding to extreme
rays for various numbers of parties are shown in Figure 2.

2.2 The Ingleton Inequality and Stabilizer States

The Ingleton inequality is a 4-party inequality of the form [40]

I(A : B|C) + I(A : B|D) + I(C : D)− I(A : B)≥ 0, (25)

where I(A : B|C) = S(AC)+S(BC)−S(ABC)−S(C) is the conditional mutual information of A
and B conditioned on C . Importantly, up to the usual permutation and purification symmetries
of the von Neumann entropy, the Ingleton inequality together with SA and SSA constitute the
set of all facets that bound the 4-party entropy cone of stabilizer states [37]. Briefly, stabilizer
states are states that can be created from the all-zeroes state with access only to phase, CNOT,
and Hadamard gates, in addition to measurements. These states are ubiquitous in the field
of quantum error correction [41]. The name is derived from the fact that any such state can
be equivalently described as the unique common vector stabilized (i.e. eigenvector of unit
eigenvalue) by some given set of operators built out of tensor products of Pauli matrices.

2Note that the converse is not true in either case. Not every codimension-1 span of extreme rays is a facet, nor
is every 1-dimensional intersection of facets an extreme ray.

3We remain agnostic as to whether these geometries are actually dominant saddles of natural gravity path
integrals. See [39] for more details on this issue.
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Figure 2: Graphs corresponding to extreme rays of the holographic entropy cone for
various numbers of parties. The entropies of these graphs may be realized geomet-
rically via multiboundary wormholes, where each edge corresponds to a wormhole
throat whose radius is given by the edge weight. The bottom-right figure features a
graph whose topology is non-trivial. Adapted from [20].

The strength of such a description is that specifying the operators is often much simpler than
specifying the state itself. As an example, consider the usual single-qubit Pauli operators. Then
the 3-party GHZ state,

|GHZ3〉=
1
p

2
(|000〉+ |111〉), (26)

is the unique state vector stabilized by the following set of operators acting on the Hilbert
space of 3 qubits:

I1 ⊗ Z2 ⊗ Z3, Z1 ⊗ Z2 ⊗ I3, X1 ⊗ X2 ⊗ X3. (27)

We refer the interested reader to [42] for a more detailed account of this class of states.
For holographic states, the Ingleton inequality is implied by MMI (1), thus giving strict con-

tainment of the 4-party holographic entropy cone within the 4-party stabilizer entropy cone.
These facts together make satisfaction or violation of the Ingleton inequality for subclasses of
quantum states an important distinguishing feature: if a state satisfies the Ingleton inequality,
it must lie within the 4-party stabilizer cone, and if it violates the Ingleton inequality, it must
lie outside the stabilizer cone for any party number4.

2.3 Linear Rank Inequalities

The ranks of linear subspaces of vector spaces obey certain relations known as linear rank in-
equalities. When applied to ranks, the Ingleton inequality is the simplest non-trivial example
of these, and the only one for 4 parties (cf. 4 vector subspaces) apart from the classic Shannon
inequalities [43]. All linear rank inequalities for 5 parties were found in [44] via a method
based on properties of random variables with common information (in this case, vector sub-
spaces with non-empty intersection) and partial progress has been made on more parties [45].

4Note that satisfying the Ingleton inequality is a sufficient condition for a quantum entropy vector to belong to
the stabilizer entropy cone only for 4 parties. Additional inequalities need to be obeyed for more parties.
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For a general number of parties, this set of inequalities naturally motivates a description of a
convex cone which will be called the classical linear rank (CLR) cone.

Our interest in linear rank inequalities comes from their relation to stabilizer states. In par-
ticular, stabilizer states have been shown to obey all balanced linear rank inequalities obtained
from common information [37, 38]. For up to 5 parties, this includes all linear rank inequal-
ities except for classical monotonicity. Quantum mechanically, we will thus be interested in
having SA and replacing monotonicity with weak monotonicity in the facet description of a
cone analogous to the CLR cone. By performing this replacement and further completing all
facet orbits according to the symmetries of the von Neumann entropy, we define the quantum
linear rank (QLR) cone.

For up to and including 4 parties, the QLR and stabilizer cones are equivalent, but the
extension of this equivalence to higher party number is not known due to the difficulty of
defining the stabilizer entropy cone. As explained above, it is known that the stabilizer cone
must be contained in the QLR cone for 5 parties, but whether additional inequalities are obeyed
by stabilizer entropies remains an open question.

3 The Hypergraph Entropy Cone

In this section, we first introduce the basics of hypergraphs and then proceed to extend the
contraction map method to hypergraphs. This allows us to show that hypergraph entropy
vectors lie inside a convex, polyhedral cone that we coin the hypergraph entropy cone. This
cone turns out to be bounded by inequalities that are familiar from the independently well-
studied contexts of stabilizer states and linear rank inequalities. A natural question that arises
is whether these valid inequalities are tight, i.e. whether they are facets of the hypergraph
entropy cone. We are able to prove tightness for small numbers of parties by explicitly con-
structing hypergraph realizations of the extreme rays that correspond to the dual polyhedral
description of the cones defined by those valid inequalities. We believe this remarkable agree-
ment is not accidental and investigate the connection between hypergraphs and these other
constructs of linear ranks and stabilizers both here and in the next section.

3.1 Definitions

A hypergraph (V, E) is a generalization of a standard graph in which edges are promoted to
hyperedges. A hyperedge is a subset of k ≥ 2 vertices and therefore the edge set E is now
a more general subset E ⊆ ℘(V ) with no cardinality restriction on its elements other than
containing at least two vertices5. We will refer to a hyperedge of cardinality k as a k-edge. Let
us define the rank of a hypergraph as the largest cardinality of hyperedges of non-zero weight
in the hypergraph. A hypergraph of rank k will be called a k-graph. We will assume that all
hypergraphs in the following discussion are of finite rank. In this language, standard graphs
and edges are 2-graphs and 2-edges, respectively. A hypergraph in which all hyperedges are
of the same cardinality k is said to be k-uniform.

Since hyperedges connect more than two vertices, we must revisit our rule for defining
when these are cut. For a general hyperedge e ∈ E and a given cut W , we include e in C(W )
if any two of its vertices are on opposite sides of the cut. This is captured by the following
definition (cf. analogous equation (3) for 2-graphs)

C(W ) = {e ∈ E : e ∩W 6= ;, e ∩W û 6= ;}. (28)

5Single-vertex edges do not contribute to cut weights and are thus irrelevant in the current context.
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Figure 3: On the left, the entropies of the state |GHZ3〉 are given by a hypergraph that
has 3 vertices and a single 3-edge shared among them. Since entropies are computed
by minimal cuts, when considering any proper, non-empty subset of vertices, the 3-
edge will contribute. Hence, notably, all such subsystems have the same entropy.
Similar properties hold for the state

�

�GHZ4

�

on the right. The entropy vector of
�

�GHZ4

�

is not realizable with 2-graphs. Indeed, one can easily verify that the 3-party
GHZ state, corresponding to a 3-edge, satisfies MMI, while 4-party and higher GHZ
states violate it.

To put it another way, e does not contribute if and only if all of its vertices belong to either W
or W û alone. The discrete entropy will continue to be given by the total weight of the minimal
cut. Just as in the 2-graph case, a hypergraph with n+ 1 boundary vertices will be thought of
as corresponding to an n-party quantum state6. The simplest hypergraph of physical interest
is one that describes the entropy of the 3-party GHZ state, which consists of a single 3-edge
encompassing all three vertices, as in Figure 3. Technically, the entropy vector of |GHZ3〉 is
realizable by a 2-graph without hyperedges, so one may consider

�

�GHZ4

�

the simplest state
that requires hypergraphs. Note that the typical graphical notation of lines connecting two
vertices is not suitable for hyperedges. Here, we will visualize hyperedges as subsets with
different colors.

3.2 Contraction Map Generalization

The proof-by-contraction method can be generalized by noting that it is no longer true that
the cut weight is given by a sum over edge weights

�

�E(x , x ′)
�

� as in equation (17). We now
need to include the contribution from higher k-edges, which will show up in (28). To do so,
let us first define an indicator function ik on k ≥ 2 binary bits b1, . . . , bk of the form

ik(b1, . . . , bk) =

¨

0 if b1 = · · ·= bk,

1 otherwise.
(29)

This can now be used to generalized the weighted Hamming norm introduced in (13) from
2-edges to k-edges. Consider k-many m-dimensional bit strings x1, . . . , xk, such that each
bit string x i ∈ {0,1}m consists of m binary bits x i

1, . . . , x i
m (note the use of upper and lower

indices). Then the weighted indicator function is defined as

ik
α(x

1, . . . , xk) =
m
∑

l=1

αl i
k(x1

l , . . . , xk
l ). (30)

The RHS is basically a sum over indicator functions, each of them acting on bits across all bit
strings. More explicitly, stacking the k bit strings of length m as the rows of a k ×m matrix,

6Our usage of the word “state" suggests that hypergraphs can indeed represent physical quantum states – we
take this as an assumption for now, and provide some motivation for it in later sections. Evidence supporting that
this prescription is still meaningful quantum mechanically will be 2-fold: for small party numbers, 1) we show that
the resulting entropy vectors lie strictly inside the quantum entropy cone (see section 3.3) and 2) we are able to
propose a plausible prescription to construct a quantum state given a hypergraph such that their entropies match
exactly (see section 4).
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one may think of the l th term in the sum as corresponding to the evaluation of the indicator
function on the k bits in the l th column. It is easy to see that i2

α(x , x ′) =




x − x ′






α
, thus

generalizing the weighted Hamming norm in (13) in a consistent way.
Define now E(x1, . . . , xk) as the set of all k-edges across all cuts in W (x1), . . . , W (xk)7,

where each of the latter are defined via inclusion/exclusion as in the proof of (2.1). For a cut
Wl of some subsystem Il , the contribution to |C(Wl)| coming from k-edges is

|Ck(Wl)|=
∑

(x1,...,xk):x i
l 6=x j

l

�

�E(x1, . . . , xk)
�

�, (31)

where the sum is over the set of all k-tuples of bit strings such that any two x i , x j of them differ
in their l th bit (which is the necessary and sufficient condition for a k-edge to be cut by Wl).
The total cut weight is then just the sum of the contributions from k-edges of every possible
cardinality k:

|C(Wl)|=
∑

k

|Ck(Wl)|=
∑

(x1,x2):x i
l 6=x j

l

�

�E(x1, x2)
�

�+
∑

(x1,x2,x3):x i
l 6=x j

l

�

�E(x1, x2, x3)
�

�+ . . . . (32)

As suggested by the decomposition above, we can break up the hard problem of studying
a candidate inequality on k-graphs into k − 1 simpler problems. Namely, one can just check
validity on all t-uniform graphs with 2≤ t ≤ k, so that only hyperedges of cardinality t appear
in each case. That this is a necessary condition is clear: an inequality can only possibly hold
on k-graphs if it is valid on all t-uniform hypergraphs of smaller or equal rank since the latter
are just a subclass of the former8. That it is sufficient follows from the decomposition into
fixed-rank contributions exhibited in (32): if the contribution to |C(Wl)| from each possible
rank t respects a given inequality, then by linearity of (32) the sum of all contributions for
2≤ t ≤ k will obey that inequality too.

It follows from these observations that the problem of proving inequalities for hypergraphs
should reduce to that of proving inequalities for k-uniform graphs (see Corollary 3.1.1 below
for a formalization and proof of this statement). Thus consider a candidate entropy inequality
of the form (5) and an arbitrary k-uniform graph. Then the LHS can be written as

L
∑

l=1

αlS(Il) =
L
∑

l=1

αl |Ck(Wl)| (33)

=
L
∑

l=1

αl

∑

(x1,...,xk):x i
l 6=x j

l

�

�E(x1, . . . , xk)
�

� (34)

=
L
∑

l=1

αl

∑

(x1,...,xk)

ik(x1
l , . . . , xk

l )
�

�E(x1, . . . , xk)
�

� (35)

=
∑

(x1,...,xk)

�

�E(x1, . . . , xk)
�

�

L
∑

l=1

αl i
k(x1

l , . . . , xk
l ) (36)

=
∑

(x1,...,xk)

�

�E(x1, . . . , xk)
�

� ik
α(x

1, . . . , xk), (37)

7This means that each k-edge belongs to every one of the W (x i) cuts in the sense of (28), such that its vertices
non-trivially intersect all of the W (x i).

8In passing we note that this agrees with the expectation that the inequalities obeyed by hypergraphs should
weaken as higher-cardinality edges become available. For example, an inequality that is valid for 3-graphs is
automatically valid for any standard 2-graph, because the latter is just an example of the former where all 3-edges
are trivial. The converse is not true: an inequality that is valid for 2-graphs will not necessarily hold on 3-graphs.
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and similarly for the RHS. The remainder of the proof of the contraction theorem for 2-graphs
then extrapolates identically to the case of k-uniform graphs. We therefore conclude that the
generalization of Theorem 2.1 can be stated as follows:

Theorem 3.1. Let f : {0,1}L → {0,1}R be an ik
α-ik
β

contraction:

ik
α(x

1, . . . , xk)≥ ik
β ( f (x

1), . . . , f (xk)) ∀x1, . . . , xk ∈ {0,1}L . (38)

If f
�

x (i)
�

= y(i) for all i ∈ [n+ 1], then (5) is a valid entropy inequality on k-uniform graphs.

Clearly, this immediately reduces to Theorem 2.1 for k = 2. An important and immediate
corollary is the following:

Corollary 3.1.1. If (5) contracts on k-uniform graphs, then it contracts on k-graphs.

Proof. By assumption, ik
α(x

1, . . . , xk)≥ ik
β
( f (x1), . . . , f (xk)) for all choices of k LHS bit strings

x1, . . . , xk ∈ {0, 1}L . This includes choices with repeated bit strings. Whenever only l ≥ 2 out
of the k bit strings on the LHS are distinct, the ik

α-ik
β

contraction reduces to an i l
α-i l
β

contraction.
Since among all subsets of k LHS bit strings one has all subsets of l distinct LHS bit strings for
every 2≤ l ≤ k, f is a contraction on all k-graphs.

Note that, as mentioned previously, a valid entropy inequality on k-graphs will not gen-
erally hold on k′-graphs with k′ > k. In the holographic case, we were only concerned with
2-edges, implying that holographic inequalities proven via the contraction method do not a
priori hold on general hypergraphs. Intuitively, as k increases the number of restrictions on
the contraction map also increases. This means that only weaker entropy inequalities will be
valid, opening up the cone to less stringent facets, which in turn implies that the hypergraph
cone is guaranteed to contain the holographic cone, as expected.

Theorem 3.1 alone is not very satisfying if one hopes to make general statements about
the entropies of hypergraphs of arbitrarily high rank. For example, if we want to interpret
hypergraphs as truly encoding the entanglement structure of some class of quantum states,
their entropies should satisfy universal entropy inequalities such as SA and SSA, obeyed by all
quantum states, regardless of their rank. To check such a fundamental consistency condition,
one ideally need not verify the validity of these inequalities for k graphs of arbitrarily large k.
Fortunately, the following result tightly bounds how high in rank one needs to go in order to
prove that a certain inequality is valid for hypergraphs of all ranks.

Proposition 3.1.1. If (5) contracts on R-graphs, then it is a valid inequality on all hypergraphs
of finite rank.

Proof. The crux of this proof is to show that for k > R, the ik-distance between a set of k bit
strings of length R is equal to the i t distance of a subset of at most t ≤ R of them. This will be
shown to be a consequence of the fact that the ik-distance saturates at a maximum value as k
increases above R. We then show that this reduces higher rank contraction map constraints to
rank R constraints.

Consider an arbitrary set of k ≥ R+1 distinct bit strings Zk = {x i ∈ {0, 1}R : i = 1, . . . , k}.
Define a subset C ⊆ [R] of RHS columns such that ik(x1

l , . . . , xk
l ) = 1 if and only if l ∈ C , and

note that ik
β
(x1, . . . , xk) =
∑

l∈C βl . Clearly, C is non-empty for any non-trivial inequality with
R ≥ 1, and its cardinality |C | ≥ 2 for any k ≥ 3. The k = 2 case, which may only occur for
R= 1, is trivial.

Write C = {l1, . . . , l|C |} for convenience and proceed to construct a subset S ⊆ Zk algorith-
mically as follows. First, pick two bit strings x j1 , x j2 ∈ Zk with the property that
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i2(x j1
l1

, x j2
l1
) = i2(x j1

l2
, x j2

l2
) = 1 for l1, l2 ∈ C and add them to S. These are two bit strings differ-

ing in the l th bit, which are guaranteed to exist so long as k ≥ 3. Then, for the next i3 ∈ C , look
at i2(x j1

l3
, x j2

l3
). If i2(x j1

l3
, x j2

l3
) = 0, then look for a third bit string x j3 giving i3(x j1

l3
, x j2

l3
, x j3

l3
) = 1,

which exists because l3 ∈ C , and add it to S. If instead i2(x j1
l3

, x j2
l3
) = 1, do nothing and go on

to look at the next l4 ∈ C . The process terminates once one goes over all elements in C , at the
end of which one ends up with a set S containing |S| ≤ R bit strings and with the property that
i|S|(x j1

lc
, . . . , x

j|S|
lc
) = 1 for all lc ∈ C . This implies that

i|S|
β
(x j1 , . . . , x j|S|) = ik

β (x
1, . . . , xk). (39)

By hypothesis, there exists a contraction map f : {0, 1}L → {0,1}R such that
im
α ( x̃

1, . . . , x̃m)≥ im
β
( f ( x̃1), . . . , f ( x̃m)) for all x̃1, . . . , x̃k ∈ {0,1}L and all m≤ R. In particular,

this implies i|S|α ( x̃
j1 , . . . , x̃ j|S|)≥ i|S|

β
(x j1 , . . . , x j|S|) where f ( x̃ js) = x js for all s = 1, . . . , |S|. Using

on the LHS the fact that the weighted indicator functions are monotonically
non-decreasing upon addition of extra points, and (39) on the RHS, one arrives at
ik
α( x̃

j1 , . . . , x̃ jk) ≥ ik
β
(x j1 , . . . , x jk). Since the set Zk was arbitrary, this shows that f is an ik

α-

ik
β

contraction. Additionally, since k ≥ R + 1 was also arbitrary, and f is already an im
α -im
β

contraction for all m ≤ R by assumption, one concludes that (39) is a valid inequality on all
hypergraphs.

Proposition 3.1.1 partially captures the intuition that one should not need to consider
arbitrarily large entanglement structures given a fixed party number in order to confirm the
validity of an entropy inequality. This is realized as a bound on the maximal rank k of k-graphs
one has to consider of the form k ≤ R, where R is generically smaller for smaller numbers of
parties. Indeed, we can slightly formalize this statement as follows. Given n parties, there
are 2n − 1 non-trivial combinations of parties or subsystems. For inequalities that only have
unit coefficients, a generic inequality can have at most 2n−1 − 1 terms on the RHS, or else
they will be violated by sufficiently high party GHZ states9. Including non-unit coefficients
will modify this bound by a multiplicative factor that depends on the ratio of the coefficients.
We hence expect that there is generally an O(2n−1 − 1) bound on the rank of the hypergraphs
to be considered for generic n-party inequalities after which the contraction maps begin to
trivialize.

However, on the basis of physical intuition, we expect that the bound should be stronger
than one exponential in the party number. Including the purifier, a general n-party quantum
state can only possibly accommodate at most (n+1)-party entanglement among the indivisible
subsystems. This leads to the expectation that k-edges, which are k-partite entanglement
structures of GHZk type, should not contribute anything new to an n-party hypergraph with
n + 1 < k. In particular, one would hope that any n-party hypergraphs should be reducible
to an entropically-equivalent one of rank at most n+ 1. As for inequalities, this would mean
that we only need to check the contraction property on up to (n+1)-graphs when considering
n-party inequalities. We phrase this intuition here as a formal conjecture:

Conjecture 3.1. If an n-party inequality of the form (5) contracts on (n+1)-graphs, then it is a
valid inequality on all hypergraphs of finite rank.

Although we will leave further investigation of this conjecture to future work, we briefly
point out a corollary of 3.1.1 which sharpens the sense in which the constraints on the con-
traction map coming from k-edges weaken as k increases. The result below shows that, except
for very specific choices of RHS bit strings, the contraction property is guaranteed on k-edges
by the contraction property of l-edges with l < k.

9Recall that a GHZk state results in all 2k − 2 non-trivial proper subsystems having the same entropy.
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Corollary 3.1.2. If f is an i l
α-i l
β

contraction for all m ≤ k − 1, then further demanding that

ik
α(x

1, . . . , xk) ≥ ik
β
( f (x1), . . . , f (xk)) is a non-trivial constraint on f if and only if

ik
β
( f (x1), . . . , f (xk)) > ik−1

β
( f (x i1), . . . , f (x ik−1)) strictly for any subset of k − 1 bit strings of

the original set of k bit strings.

Proof. This follows immediately from the observation in the proof of Proposition 3.1.1 that
given k RHS bit strings, one can always form a subset S of |S| ≥ k bit strings obeying (39).
Whenever |S| < k strictly, then that ik

α(x
1, . . . , xk) ≥ ik

β
( f (x1), . . . , f (xk)) holds follows from

the contraction property for m = |S| ≤ k − 1. Hence such constraint is only non-trivial (in
the sense of not being implied by m ≤ k − 1) if |S| = k, which happens if and only if all k
bit strings are needed for the weighted indicator function to preserve its value on the RHS. In
other words, one needs that ik

β
( f (x1), . . . , f (xk)) > ik−1

β
( f (x i1), . . . , f (x ik−1)) strictly for any

subset of k− 1 bit strings of the original set of k bit strings.

3.2.1 Polyhedrality

The contraction map technique only works to prove linear inequalities in the form of (5). Here,
we show that the hypergraph cone is polyhedral (and therefore convex), and hence one need
only consider such linear inequalities to completely characterize it.

In [20], the holographic entropy cone was shown to be polyhedral for any fixed party
number n, implying the existence of finitely many linearly independent entropy inequalities
for n-party holographic states. Polyhedrality is a remarkable property not necessarily shared
by other entropy cones, such as the Shannon entropy cone [38]. By borrowing the proof
techniques for 2-graphs from [20], we can prove that the hypergraph cone is also polyhedral.
The following lemma is key:

Lemma 3.1.1. Any entropy vector in the n-party hypergraph entropy cone can be realized by a
hypergraph with 22n−1 vertices.

Proof. Consider n parties i ∈ [n] and let In denote the set of 2n−1 non-trivial combinations of
parties or subsystems. We can then define a universal hypergraph with a vertex set V = {0,1}In

of all bit strings of length 2n − 1, whence |V | = 22n−1. The boundary vertices in this set are
precisely the occurrence vectors for each i; that is, they correspond to those bit strings x i

defined via x i
I = 1[i ∈ I ∈ In].

Now given an arbitrary n-party hypergraph, let WI be a min-cut giving the entropy of
subsystem I . Then for each x ∈ V , we define a cut W (x) using inclusion/exclusion as in the
proofs of Theorems 2.1 and 3.1: W (x) =

⋂

I∈In
W x I

I where W 1
I =WI and W 0

I =W ûI . The set

of W (x) for all possible x ∈ V partitions the hypergraph into 22n−1 subsets, some of which
may be empty. The idea is to map each of these subsets W (x) to a single vertex x ∈ V in
the universal hypergraph, which may alternatively be thought of as collapsing W (x) into a
single vertex in the given hypergraph. One then only needs to make sure that the entropies
can be appropriately preserved. To do so, let E(x1, . . . , xk) denote the set of k-edges on the
given hypergraph intersecting non-trivially every one of the cuts W (x1), . . . , W (xk). Note that
the x i are allowed to be equal, in order to account for the possibility of a k-edge having
multiple vertices in the same W (x i). Then define a k-edge containing vertices (x1, . . . , xk) in
the universal hypergraph with weight given by the sum of all k-edges across W (x1), . . . , W (xk)
so that w(x1, . . . , xk) =

∑

e∈E(x1,...,xk)w(e). Because the cuts WI are only concerned with the
hyperedges that cross the partition, it is clear that this indeed preserves the entropies.

Applying this lemma, the proof of polyhedrality of the hypergraph entropy cone is identical
to the proof of Proposition 7 in [20], so long as one replaces “graph" with “hypergraph." This
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proves that the hypergraph entropy cone is polyhedral and can thus be described by a finite
number of facets for any given finite number of parties. Moreover, convexity of the hyper-
graph cone is an immediate corollary, implying that the cone can be fully described by linear
inequalities.

3.2.2 A Geometric Aside: The Hypercube Picture

A potentially useful framing of Theorem 3.1 is to consider all possible bit strings x of m bits as
a labeling scheme for all vertices of an m-dimensional hypercube such that any two bit strings
differing only by the l th bit are connected by an edge along the l th dimension. Any two bit
strings, adjacent or not, can be used as generators of a “straight” line connecting them. The
quotes are used to emphasize that this line has to travel along the edges of the hypercube,
and will thus be piece-wise broken at any turning-vertex that has to be traversed to connect
the two vertices. This line follows a shortest-distance path which is highly non-unique for the
Hamming distance function ‖·‖. For any two bit strings x1 and x2, a third bit string x3 can be
said to be aligned between x1 and x2 if it lies along any such straight line through the latter.
This happens when the three bit strings saturate the triangle inequality





x1 − x2




≤




x1 − x3




+




x2 − x3




. (40)

This is naturally consistent with the intuition that the three bit strings are aligned and that, as
such, still span a 1-dimensional object. In contrast, if the triangle inequality is not saturated,
then they no longer span a line, but a 2-dimensional object. Geometrically, the increase in
dimensionality is due to the need to move in an additional direction, apart from (any one of)
the direction(s) from x1 to x2, to additionally reach x3. At the level of the bit string, this can
be seen as a consequence of there not existing a minimal sequence of bit flips from x1 to x2
that additionally realizes x3. One may picture the three bit strings as labeling the vertices of
a 2-dimensional polytope which is non-degenerate in the sense that it has dimension v − 1,
where v is its number of vertices (cf. the three aligned vertices, which form a degenerate
1-dimensional polytope).

Suppose one adds a fourth bit string x4 and asks whether the resulting 4-vertex polytope
is degenerate. From the geometric perspective, it will be degenerate if x4 can be reached by
following any of the paths that minimize the distance one has to travel to connect the other
x1, x2 and x3 vertices alone, and one may picture the fourth vertex as lying inside the 2-
dimensional polytope spanned by the other three vertices (cf. the traveling salesman problem
if one adds a city along one of the already optimal paths). In the language of bit strings, the
polytope is degenerate if any one of the minimal sequences of bit flips it takes to go from x1 to
x2 and x3 also realizes x4 along the way with no extra cost. More explicitly, this will happen
if and only if all bits in which x4 differs from each of the other three bit strings are a subset of
the bits in which the latter alone already collectively differ. Crucially, this is intimately related
to the indicator function ik

β
, which may now pictorially be thought of as measuring the volume

of a polytope specified by k hypercube vertices! More precisely, one has the following result:

Proposition 3.1.2. A set of k bit strings x1, . . . , xk span a (k − 1)-dimensional polytope if and
only if ik

β
(x1, . . . , xk)> ik−1

β
(x l1 , . . . , x lk−1) strictly for all subsets of k− 1 bit strings.

Proof. Suppose ik
β
(x1, . . . , xk) = ik−1

β
(x l1 , . . . , x lk−1) for some subset of k − 1 bit strings. This

means that the lk
th bit string x lk happens to contribute nothing to the ik

β
function, such that

the latter trivializes down to an ik−1
β

function (cf. measuring a higher-dimensional volume

of a lower-dimensional object). This happens if and only if all bits in which xk differs from
each of the other k − 1 bit strings are a subset of the bits in which the latter alone already
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collectively differ. As explained above, this is precisely the situation in which the x lk bit string
labels a vertex inside the polytope defined by the bit strings x l1 , . . . , x lk−1 , thus not raising
its dimension and proving that the x1, . . . , xk vertices span a polytope of dimension at most
k− 2.

With this intuition, the statement of corollary 3.1.2 essentially says that the only constraints
on the contraction map from k-graphs that are not already provided by (k − 1)-graphs come
from choices of RHS vertices that generate full-dimensional polytopes. Because the indicator
function ik

β
effectively measures a (k − 1)-dimensional volume, it trivializes to an i l

β
function

with l < k if the object being measured is a polytope of lower dimension l − 1. Similarly,
Proposition 3.1.1 can be rephrased as saying that in an R-dimensional RHS hypercube, any
choice of vertices will give a polytope of dimension at most R − 110, and therefore any ik

β

function with k > R will trivialize to some i l
β

with l ≤ R.
This hypercube picture also appeared in [20], in which it was shown that Theorem 2.1

can equivalently be stated as requiring that a valid contraction map should never increase
the graph distance between two points on the hypercube. We suspect that a similar picture
naturally emerges here when interpreting the k-distance in Theorem 3.1 as in the discussion
above, and leave it for future exploration.

3.2.3 Explicit Analysis of Simple Inequalities

Here we look at some basic inequalities for small party numbers and walk the reader through
the logic involved in the application of the hypergraph contraction map method presented in
the previous section.

We begin by noting that any hope for an entropic interpretation of hypergraphs demands
that they satisfy SA, viz.

S(A) + S(B)≥ S(AB). (41)

In this simplest case, one can easily see that the RHS is too small to accommodate any contri-
bution to the distance function from k-edges with k ≥ 3. Noting that SA is valid for 2-graphs,
application of Proposition 3.1.1 implies that SA is indeed valid for all hypergraphs11. Because
2-graphs already fill up the cone defined by SA alone, it follows that SA is the only inequality
on 2 parties obeyed by hypergraphs.

We now move on to 3 parties, where 2-graphs are already entropically more restricted
than general quantum states because they satisfy MMI. While MMI is easily violated by hyper-
graphs, consistency with quantum mechanics still demands that SSA, given in (6), be a valid
inequality. Applying Proposition 3.1.1, we just need SSA to be valid on 2-graphs for it to hold
in general. Because SSA contains so few terms, its contraction map is completely determined
by its occurrence vectors, as in Table 1. It is then simple to verify by inspection that SSA indeed
holds for 2-uniform graphs.

Table 1: Tabular representation of the 2-graph contraction map for SSA.

AB BC B ABC
A 1 0 0 1
B 1 1 1 1
C 0 1 0 1
O 0 0 0 0

10Note that the hypercube is “hollow”.
11In fact, one might simply argue for the validity of SA as a trivial consequence of the minimality condition in

the definition of the discrete entropy (cf. SA in the holographic context).
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Perhaps unsurprisingly, neither MMI nor any of the other known holographic entanglement
entropy inequalities for higher party number are obeyed by generic hypergraphs. A simple
way of seeing this is to note that all of these inequalities happen to have more entropies on
the RHS than on the LHS when written as in (5). Any such inequality is immediately violated
by a GHZ state for a sufficiently high number of parties, corresponding to a single hyperedge
of sufficiently high cardinality. As an example, MMI has 4 terms on the RHS but only 3 on
the LHS, and is thus violated by GHZ states on 4 or more parties. It is instructive to see how
the unique 2-graph contraction map for MMI, shown in Table 2, captures this fact by failing to
obey the contraction property for 4-edges12.

Table 2: Tabular representation of the 2-graph contraction map for the holographic
inequality MMI, given in equation 1. It is easy to see by inspection that 3-edges still
obey the contraction property, so that MMI holds for 3-graphs. This is however no
longer true for 4-edges, which violate the contraction property already at the level of
the occurrence vectors. Indeed, these give an i4 distance of 3 on the LHS, but map
to an i4 distance of 4 on the RHS, thus not contracting.

AB BC AC A B C ABC
O 0 0 0 0 0 0 0

0 0 1 0 0 0 1
0 1 0 0 0 0 1

C 0 1 1 0 0 1 1
1 0 0 0 0 0 1

A 1 0 1 1 0 0 1
B 1 1 0 0 1 0 1

1 1 1 0 0 0 1

One may wonder whether, apart from SA and SSA, any other inequality that is not MMI
could hold on hypergraphs for 3 parties. The answer turns out to be negative and follows
from realizability of extreme rays and convexity, as usual. In particular, one notes that the
extreme rays of the cone whose facets are SA and SSA correspond to the entropies of Bell
pairs, 4-partite perfect tensors and the 4-partite GHZ state. Since all of these are realizable
by hypergraphs13, it follows that SA and SSA are the only facets that bound the hypergraph
entropy cone for 3 parties.

The simplest entropy inequality obeyed by hypergraphs that is not quantum mechanical
occurs at 4 parties and, interestingly, is the Ingleton inequality. The proof of this inequality
for hypergraphs is best obtained by direct implementation of the generalized contraction map
method explained in section 3.2. In Table 3, we show that the Ingleton inequality indeed holds
on 5-graphs, and because R = 5 for the Ingleton inequality, Proposition 3.1.1 establishes that
hypergraphs of arbitrary finite rank obey it as well.

3.3 Explicit Constructions of the Hypergraph Cone

To study the hypergraph entropy cone more systematically, we take two lines of inquiry. One
approach is to ask what candidate inequalities might bound the hypergraph cone and try to
prove them using the contraction map method. The other is to ask which candidate entropy
vectors may be inside the hypergraph cone and try to realize them using hypergraphs by solv-
ing a particular integer linear program. Although there are many drawbacks to this strategy,

12In producing this table, note that the only constraints on the contraction map f one starts with are the bit
strings corresponding to boundary vertices A, B, C , O and their images, which violate the contraction property of i4

by themselves. The remaining images of f were allowed to vary only subject to the contraction constraint, but the
i4 distance was already doomed to not contract. Nevertheless, the map shown does obey the contraction property
for the i2 and i3 distances, thus proving MMI on 3-graphs.

13Note that Bell pairs and perfect tensors are already realizable by holographic 2-graphs.
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Table 3: Tabular representation of a contraction map which proves that the Ingleton
inequality is valid on hypergraphs. The right-most column f10 is a compact decimal-
base representation of the map images understood as digits of a binary number (e.g.
100112 = 1910 for the occurrence image of A). Given an arbitrary inequality, with
entropies canonically ordered lexicographically and the map domain in increasing
order, the list of values of f10 is a succinct specification of the contraction map.

AB AC AD BC BD A B C D ABC ABD f10
O 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 1 1
0 0 0 1 0 0 0 0 1 0 2
0 0 0 1 1 0 0 0 1 1 3
0 0 1 0 0 0 0 0 0 1 1

D 0 0 1 0 1 0 0 1 0 1 5
0 0 1 1 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 1 1
0 1 0 0 0 0 0 0 1 0 2
0 1 0 0 1 0 0 0 0 0 0

C 0 1 0 1 0 0 0 1 1 0 6
0 1 0 1 1 0 0 0 1 0 2
0 1 1 0 0 0 0 0 1 1 3
0 1 1 0 1 0 0 0 0 1 1
0 1 1 1 0 0 0 0 1 0 2
0 1 1 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 1 1
1 0 0 0 1 0 0 0 1 1 3
1 0 0 1 0 0 0 0 1 1 3

B 1 0 0 1 1 0 1 0 1 1 11
1 0 1 0 0 0 0 0 1 1 3
1 0 1 0 1 0 0 0 0 1 1
1 0 1 1 0 0 0 0 0 1 1
1 0 1 1 1 0 0 0 1 1 3
1 1 0 0 0 0 0 0 1 1 3
1 1 0 0 1 0 0 0 0 1 1
1 1 0 1 0 0 0 0 1 0 2
1 1 0 1 1 0 0 0 1 1 3

A 1 1 1 0 0 1 0 0 1 1 19
1 1 1 0 1 0 0 0 1 1 3
1 1 1 1 0 0 0 0 1 1 3
1 1 1 1 1 0 0 0 0 1 1

improvements to it are scarce and only heuristic, which is one of the reasons why constructing
this and other entropy cones is hard. The most obvious limitation is that in principle we do
not actually have a systematic way of generating “good” candidate inequalities and entropy
vectors. In practice, however, we have found a powerful heuristic. The fact that hypergraphs
obey the Ingleton inequality, the simplest of the well-studied family of linear rank inequalities,
suggests a connection between hypergraphs and the QLR cone (see section 2.3). Exploiting
this connection turns out to be a remarkably fruitful direction and strongly suggestive that this
connection is no accident.

In what follows, we provide an explicit construction of the hypergraph entropy cone for 4
parties, which allows us to prove that it identically matches the QLR and stabilizer cones at
the same party number. For 5 parties, we take as candidate inequalities the facets of the QLR
cone and as candidate rays the extreme rays of the CLR cone14. We are able to realize all such
extreme rays and to partially prove all such inequalities, which strongly hints at an agreement

14Unfortunately, the polyhedral conversion from the facet description of the QLR to its extreme ray description
was out of the scope of our computational resources. We believe that, should one compute them, the extreme rays
of the QLR cone will also be good candidates and likely realizable by hypergraphs too.
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Figure 4: Hypergraphs corresponding to each symmetry orbit of extreme rays of
the 4-party QLR cone, which notably coincides with the stabilizer cone. We have
organized them by their labels as enumerated in [37] for the stabilizer cone. Similar
to the holographic case, note that very few bulk vertices are needed – in fact, at most
one. These are denoted by smaller, unlabeled points. As can be seen, some of the
families of extreme rays admit realizations with no hyperedges, while others (such
as the GHZ state) genuinely require hyperedges for their construction.

between the hypergraph and QLR cones for 5 parties15.

3.3.1 The 4-Party Hypergraph Cone

With the preliminaries in place, we are now ready to pursue hypergraph instantiations of the
extreme rays of the 4-party QLR cone defined by SA, SSA and Ingleton. Given that we have
proven these inequalities on hypergraphs and that we have also found such hypergraph real-
izations for all extreme rays, we are able to provide a complete description of the hypergraph
cone for 4 parties. Hypergraph representatives that realize these extreme rays are shown in
Figure 4. One may easily verify that they precisely reproduce the entropies of the extreme rays
of the 4-party stabilizer cone given in [37]. We hence conclude that the 4-party hypergraph
cone and the 4-party stabilizer cone coincide.

3.3.2 The 5-Party Hypergraph Cone

We have been able to construct hypergraphs that realize representatives of every single one of
the 162 orbits of extreme rays of the CLR cone for 5 parties, a complete description of which
was found in [44]. While an explicit listing of these hypergraph realizations in the present
paper would be rather cryptic and thus omitted, full details are available as supplemental

15Our proofs are partial because checking the contraction property on ik distance for all k ≤ R is computationally
costly when R is large. However, we are able to find contraction maps for all inequalities up to k = 5 and all but
four up to k = 6. In all cases, we find agreement with conjecture 3.1.
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material upon request. Here we simply note that the minimal number of bulk vertices needed
to realize all of these extreme rays is always very small: 5 rays are realized by hypergraphs
with zero bulk vertices, 27 with one, 105 with two and 25 with three, which is the largest
number of bulk vertices required.

Since hypergraphs reach all extreme rays of the CLR cone and additionally violate classical
monotonicity, we conclude that the hypergraph cone is strictly larger than the CLR cone. Note
that all facets of the CLR cone except monotonicity may still be valid inequalities in consistency
with our findings of extreme ray hypergraphs. This is indeed what seems to be true for all
those facets. In Appendix A, we report on progress towards proving the 31 inequivalent 5-
party QLR inequalities for hypergraphs16. The primary barrier to declaring all inequalities as
proven happens to be the computational cost of checking the contraction property on k′-graphs
with large k′ > k given a contraction map for some small k. Indeed, we observe that in practice
it suffices to find a contraction map on k-graphs with k = n = 5. Then, one checks that the
contraction property holds on higher ranks k′ > k too, as qualitatively expected from Corollary
3.1.2 and in suggestive agreement with Conjecture 3.1. Using Proposition 3.1.1, we have been
able to conclusively prove 14 out of all 31 inequalities that define the QLR cone. Moreover,
if one assumes the validity of Conjecture 3.1, our contraction maps also prove validity of 12
additional inequalities.

4 Hypergraphs as Quantum States

Up to this point, we have worked exclusively with entropy vectors, arguing that the discrete
entropy of hypergraph models either does or does not obey certain inequalities. To the extent
of what is known about the quantum entropy cone, this approach has allowed us to prove that
the hypergraph entropy cone is not only contained in the former, but strictly inside. This is of
course suggestive of the idea that the discrete entropy on hypergraphs really is computing the
entropies of actual quantum states.

In this section, we will support this notion in a more direct fashion by providing a pre-
scription for constructing quantum states from a given hypergraph, and conjecture that the
resulting state faithfully realizes the exact same entropy ray as the original hypergraph. In
doing so, we attempt to elevate hypergraphs from simply a diagrammatic representation of
entropy vectors to a detailed encoding of physical quantum states with prescribed entropic
properties. While we are as of yet unable to prove that the resulting state entropies always
match the discrete entropies of the given hypergraph, we provide some physical motivation
for our construction as well as perform non-trivial checks of it. Notably, the ingredients we
utilize are all operations allowed for stabilizer states, further hinting that the hypergraph cone
is intimately related to the stabilizer cone.

4.1 From Hypergraphs to Quantum States

The prescription for how to associate a quantum state to a given hypergraph is inspired by the
tensor network formalism. The strategy consists of interpreting the hypergraph literally as a
tensor network, where the rules that one associates to vertices and hyperedges are in principle
unknown. In what follows, we provide a set of “Feynman rules” which, we conjecture, allows
one to build a quantum state out of an arbitrary hypergraph whose subsystem von Neumann
entropies match the hypergraph discrete entropies.

Given a hypergraph GK with K = n+ 1 boundary vertices, a quantum state realization of

16The CLR cone consists of 33 inequalities, but one of them is monotonicity and two others are related by the
purification symmetry of quantum mechanics, reducing the list of inequalities to 31 for the QLR cone.
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Figure 5: Graphical representation of an AME(5, D) state. The local dimension of
each of the parties is D. For D = 2, one could think of each of the parties as being
a qubit. The key property of these AME states is that any subsystem looks maxi-
mally entangled. The given by 43 is reproduced when considering min-cuts of this
graph since at most, half of the edges need to be cut. When combined with GHZ
hypergraphs as in Figure 3, we can construct stabilizer states that reproduce a given
entropy vector, indicating that all hypergraphs have a physical realization.

it will be written
|GK〉= GI1···IK |I1, . . . , IK〉 , (42)

where each index Ii ranges over some basis of the local Hilbert space to be associated to the ith

party, and the Einstein summation convention is implicit. Because all the information about
the state |GK〉 is encoded in the tensor GI1···IK of basis coefficients, the latter alone will be used
to compactly specify a quantum state realization of a given hypergraph GK .

4.1.1 Building Block Tensors

Observe that the graph structure of the neighborhood of any bulk vertex, meaning the vertex
and the hyperedges attached to it alone, is just that of a star graph. In other words, each k-
edge containing the given vertex may be thought of as a leg of the star between the vertex and
the other k− 1 vertices in the hyperedge. When considering discrete entropies given by min-
cuts, these two pictures are equivalent under the inclusion or exclusion of the given vertex.
Therefore one may think of an arbitrary hypergraph as a mosaic or network of star graphs glued
together in some non-trivial way so as to reproduce the correct entropic behavior. This intuition
motivates the search for a general quantum mechanical realization of general star graphs and
the gluing mechanism thereof. In hindsight of the proposed strategy, we now introduce two
ingredients which will be crucial in our construction of quantum states for a given hypergraph:
absolutely maximally entangled (AME) states [46] to realize the local entanglement around
bulk vertices and GHZ states [29] to capture the general behavior of a hyperedge.

A pure quantum state is said to be AME if it is maximally entangled for all bipartitions of the
system. These states are organized into subclasses AME(Ω, D) of pure states on Ω parties, each
having local Hilbert space dimension D. It is worth noting that while some such classes are
empty, there is always some D for which an Ω-partite AME state exists17 [48]. It immediately

17For example, there exists no quantum state in AME(4, 2) [47], but a qutrit system can be built to realize a
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follows from the definition that the von Neumann entropy S(I) of a subsystem I ⊆ [n] in an
AME(Ω, D) state is given by

S(I) =min{|I |,Ω− |I |} log D, (43)

where the cardinality |I | corresponds to the number of parties in I . The point of introducing
AME states is that their entropies precisely match those of a star graph withΩ edges of uniform
weight ω = log D. To see this, note that because a star graph just consists of a single bulk
vertex and 2-edges connecting it to each of the K boundary vertices, one need only consider
two candidates to minimal cuts for a given I ⊆ [Ω]: one that includes the bulk vertex, and one
that does not. Their respective cut weights are |I |ω and (Ω − |I |)ω, thus demonstrating the
agreement with (43) under the min-cut prescription in (4).

In general, the star graph that reproduces the local entropic structure of an arbitrary bulk
vertex will be one of non-uniform weights, and therefore the association of one edge to each
party would not immediately yield the entropies of an AME state. It is however a simple matter
to bring such a star graph into a form suitable for the use of AME states as well. One just needs
to think of a star graph that has ` edges of weightsωi and total weight Ω=

∑`
i=1ωi as arising

from a uniform star with Ω edges of unit weight grouped together in parallel into ` sets of
ωi edges18. By associating a state in AME(Ω, D) to the latter and coloring its Ω subsystems
non-injectively by i = 1, . . .` as dictated by the edge groupings, one precisely gets the desired
entanglement structure among colored parties19.

A rank-Ω tensor that corresponds to a state in AME(Ω, D) will be denoted by T I1···IΩ , with
every tensor index Ii = 1, . . . , D. If Ω is even, and if it exists for the given D, then T I1···IΩ is also
known as a perfect tensor. These tensors are defined as follows: consider a Hilbert space H
and an arbitrary bipartite factorization H =HA⊗HB. Then a perfect tensor T can be viewed
as a map HA→HB which is an isometry T †T = IA for any relevant choice of bipartition with
|HA| ≤ |HB|. Such tensors have gained prominence in recent years due to their appearance in
tensor networks and error correcting codes that serve as toy models of holography [49–51].
These tensor networks capture the leading order structure of the entanglement entropy of
holographic systems, namely that they obey the RT formula, and so it is perhaps not surprising
that they should appear in our attempt to convert hypergraphs to quantum states. As an explicit
state vector, any AME(Ω, D) state can be written in the form

|AME(Ω, D)〉=
1
p

ds

∑

k∈Zm
D

|k1〉A1
. . . |km〉Am

|φ(k)〉B , (44)

for some bipartition of the system into A= {A1, . . . , Am} and B = {B1, . . . , BΩ−m}with m≤ Ω−m
and



φ(k)
�

�φ(k′)
�

= δkk′ . Then the AME condition is the statement that the state in question
can be written in the above form for any bipartition A, B with 2m≤ Ω. We note here that this
abstract representation of an AME state does not fix its exact form: for instance, the application
of any set of Ω local unitaries acting on each of the subsystems would leave the form of (44)
unchanged. We will remain agnostic as to which choice of local basis is the correct one and
comment on the lack of uniqueness in our construction of states from hypergraphs shortly.

The introduction of GHZ states to account for hyperedges is motivated by the observation
made in section 3 that a Ω-partite qu-D-it GHZ state is entropically equivalent to a hypergraph
with a single Ω-edge of weightω= log D (see Figure 3). The tensor representation of any such
state will be denoted by T̃ J1···JΩ , with every tensor index Ji = 1, . . . , D. It is straightforward to

4-partite AME, implying that AME(4, 3) is non-empty [48].
18Here, as will be done henceforth, weights are assumed rational such that graph weights are rescalable to

integer numbers while preserving entropy rays.
19Different parties may end up with different local Hilbert space dimension, which will be given by Dωi .
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write this down for arbitrary Ω and D as

T̃ J1,··· ,JΩ =
1
p

D
δJ1···JΩ where δJ1···Jω :=

¨

1 if J1 = · · ·= JΩ,

0 otherwise.
(45)

The explicit state vector in the computational basis is

|GHZ(Ω, D)〉=
1
p

D

D−1
∑

i=0

|i〉1 . . . |i〉Ω . (46)

As defined, one may consider the case Ω = 2 as corresponding to a Bell pair between two
qu-D-its, which takes the form of the D-dimensional identity matrix 1D, up to a normalizing
prefactor 1/

p
D. Additionally, one notices that GHZ states of arbitrary local dimension D are

AME(Ω, D) states for both Ω ∈ {2,3}, but are no longer so for any Ω ≥ 4.

4.1.2 Hypergraph Feynman Rules

Since the hypergraph entropy cone is polyhedral, we will focus on hypergraphs with rational
weights, so that there always exists a finite scaling factor that allows us to uniformly scale
all weights to be integer-valued20. Starting with the rescaled hypergraph, one performs a
simple graph operation which can be easily seen to preserve all entropies while bringing the
hypergraph to a more convenient form. This operation consists of replacing every hyperedge
of weight ω by as many parallel hyperedges of unit weight, where by parallel we mean that
each of the latter ω hyperedges of unit weight consists of precisely the same subset of vertices
as the former. This manipulation sets the stage for a direct application of AME states to account
for the local entanglement structure of bulk vertices.

To make sense of the tensor network interpretation of hypergraphs, one not only needs
tensors, but also a prescription for contracting their indices. By associating AME tensors to bulk
vertices and GHZ tensors to hyperedges, the first part of this challenge is mostly resolved. To
attack the second part, note that a k-edge may be thought of as some virtual node consisting of
k legs between the node and each vertex21. To each leg one may assign a different index of the
GHZ tensor. Then, in a general situation in which a hyperedge meets a bulk vertex, one would
contract the appropriate GHZ tensor index with whichever AME tensor index corresponds to
that edge from the perspective of the vertex. For concreteness, here we summarize the rules
for building the tensor GI1···IK for a given hypergraph GK :

1. At each bulk vertex of degree d insert a rank-d AME tensor T I1···Id , and assign a different
tensor index to each one of the hyperedges containing it.

2. At each hyperedge of cardinality k insert a rank-k GHZ tensor T̃ J1···Jk , and assign a dif-
ferent tensor index to each one of the vertices it contains.

3. To every pair s = (e, v) ∈ E×V such that v ∈ e and v /∈ ∂ V , there correspond two tensor
indices: I(s) assigned to e for containing v (rule 1) and J(s) assigned to v for being
contained in e (rule 2). These two indices are contracted across a Hadamard matrix H
of the appropriate order.

4. To every pair s = (e, v) ∈ E × V such that v ∈ e and v ∈ ∂ V , there correspond a single
tensor index J(s) assigned to v for being contained in e (rule 2). This index is added to
the collective ith party index Ii of color i = b(v).

20Note that this only causes a scalar rescaling of its entropy vector, thus leaving the ray itself invariant.
21Because these are artificial notions which do not belong to the graph, note the use of the words node instead

of vertex, and leg instead of edge.
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One may worry that the contraction of indices I(s) = 1, . . . , DI and J(s) = 1, . . . , DJ in-
structed by step 3 may be ill-defined if their ranges happen to disagree, i.e. if DI 6= DJ . Because
Ω-partite GHZ tensors (45) exist for any D, the subtlety lies on how to choose D in a compati-
ble way across all AME tensor insertions. In fact, one just has to choose a value for D such that
the AME(d, D) class is non-empty for all degrees d of bulk vertices in the hypergraph22. Then,
all tensor insertions performed following rules 1 and 2 can be chosen to have local Hilbert
space dimension D, guaranteeing compatibility in rule 3 across Hadamard matrices of order
D.

In the examples we considered, the actual choice of local basis for the realization of the
tensor T in rule 1 was important for reproducing the correct entropy vector. As mentioned
below (44), we were unable to find a universal rule for which specific representative tensor
of a given AME class one should employ, but we observed that for each graph we considered,
there was always some consistent choice that yielded a state with the desired entropies. We
therefore believe that an appropriate completion of rule 1 that fixes this ambiguity should exist
and formulate the following conjecture:

Conjecture 4.1. There exists an appropriate refinement of rule 1 such that the entropies of all
subsystems of the K-party quantum state |GK〉 constructed from a hypergraph GK as described
above agree precisely with the entropies obtained via the min-cut prescription applied to GK , up
to a common scaling factor.

An analytical argument for this conjecture remains elusive, but explicit computations of all
hypergraphs so far have indeed yielded states whose subsystem entropies precisely match the
hypergraph discrete entropies. We provide some examples in the next section.

The connection to stabilizer states is also manifest in this procedure. Assuming that the
AME state inserted at every bulk vertex is a stabilizer state [52–54], the state generated by
these rules will be a contraction of stabilizer states (the stabilizer AME and GHZ states) and
a stabilizer gate (Hadamard), and hence the resulting state will either be a stabilizer state or
vanish. The validity of this conjecture would then immediately imply that hypergraph states
constructed in this fashion are stabilizer states, and therefore the hypergraph entropy cone
would be a subset of the stabilizer entropy cone. Note, however, that entropy vectors do not
uniquely specify quantum states; provided Conjecture 4.1 is correct, the method above would
produce a state with the correct subsystem entropies from any hypergraph, but it would not
necessarily generate every single stabilizer state within the hypergraph cone.

As a final remark, we note the connection between the construction above and holographic
tensor networks. Such tensor networks may be thought of as 2-graphs, in which case rule 2 on
standard edges reduces to the insertion of maximally entangled rank-d Bell pairs. Choosing
their tensors to be d-dimensional identity matrices, the index contraction dictated by rule 3
of two symmetric Hadamard matrices accross them then trivializes to the standard identity
map contraction of vertex tensor indices accross 2-edges. The upshot is a network of AME
tensors of uniform local dimension joined together across edges via direct index contractions.
In cases where the AME tensors are perfect tensors one then recovers the holographic tensor
networks appearing in [49], which themselves are special cases of the more general random
stabilizer tensor networks in [50, 51] obtained by replacing the perfect tensor or AME states
with random stabilizer states.

22A simple way to see that this is always possible is to pick an AME(d, Dd) state of arbitrary Dd for each degree-d
bulk vertex, and then insert a tensor product of L(D)/Dd copies of each at rule 1, where L(D) is the lowest common
multiple of all Dd considered.
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Figure 6: Two of the graphs that realize extreme rays of the 5-party holographic
entropy cone. Boundary vertices are labeled by their party while bulk vertices are
denoted by σi . Adapted from [21], these are rays 8 and 12 from left to right.

4.2 Explicit Constructions of Hypergraph States

As a warm-up, consider first the construction of standard 2-graph states, such as those which
realize the extreme rays of the holographic entropy cone. The simplest of these which is not
just a star graph (and thus realizable merely by a single AME state) is shown on the left of
Figure 6 (graph 8 in Figure 1 of [21])23. As per rule 1, this graph requires the insertion of two
4-partite perfect tensors which, as remarked at the end of the previous section, should just be
directly contracted along the 2-edge that connects the two bulk vertices.

The lowest-dimensional realization of a 4-partite perfect tensor is a 4-qutrit state whose
simplest tensor representation reads24

T i jkl =
1
3
δk,i⊕ jδl,i⊕2 j , (47)

where x ⊕ y := x + y (mod 3). Contracting two copies of this tensor on one respective index,
the desired tensor representation of a quantum state for this ray is

GOABCDE
R8

=
p

3 T oabkT cde
k , (48)

where in this case the collective indices are simply given by X = {x}. For concreteness, the
quantum state associated to GR8

may be written out explicitly as

�

�GR8

�

=
1

3
p

3

2
∑

i, j,m,n=0

δi⊕2 j,m⊕2n |i〉O | j〉A |i ⊕ j〉B |m〉C |n〉D |m⊕ n〉E . (49)

One then easily verifies that
�

�GR8

�

gives precisely the desired entropies corresponding to ray 8
in Table 3 of [21].

As a less trivial holographic example, consider now the construction of a quantum state
tensor GR12

for the graph on the right of Figure 6 (graph 12 in Figure 1 of [21]) . Every bulk
vertex in this graph has four edges of unit weight attached to it, corresponding again to the
insertion of 4-partite perfect tensors on each. After contracting their indices as instructed by
the edges structure, one is left with 12 free indices which are pairwise assigned to collective
indices for each party as dictated by rule 4. Using (47) for bulk vertices, one obtains

GABCDEO
R12

= 9 T i1 i2 i3 i4 T a1 b1c1
i1

T d1e1o1
i2

T a2 b2c2
i3

T d2e2o2
i4

, (50)

23We thank Michael Walter for the idea to use tensor networks to reproduce the entropies of this graph.
24As shown in section 4.1.1, note that this state realizes the entropies of graph 2 in Figure 1 of [21].
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where the index labels suggestively denote which collective boundary index each qutrit should
be associated to viaX= {x1, x2}. One can check that this state precisely reproduces the desired
entropy vector as well (cf. ray 12 in Table 3 of [21]).

For a simple yet interesting hypergraph state construction, we will look at the one in Figure
7, which realizes an extreme ray of the CLR cone for 5 parties. This hypergraph contains one
bulk vertex and three hyperedges (one of them a 2-edge), all of unit weight. The required
tensors for the 3-edge and the 5-edge are explicitly given by (45) with D = 2 for Ω = 3 and
Ω = 5, respectively. The bulk vertex has only degree 3, for which a simple choice of AME
representative is given by a 3-partite qubit GHZ state25. Applying the Hadamard contraction
across tensor indices, the desired state tensor can be written

GABCDEO
CLR5

= 2 T̃ cedo1 jσH jσ jh
T jhaih Hih iσ

T̃ iσ bo2 , (51)

where X= {x} for all collective indices except for O= {o1, o2}, and indices i and j have been
employed for tensors associated to the 3-edge and 5-edge, respectively. Explicitly, as a state,

�

�GCLR5

�

= 2×
1
p

8
δcedo1 jσH jσ jh

δ jhaih Hih iσ
δiσ bo2 |a; b; c; d; e; o1o2〉

=
1
p

2

1
∑

a,k,l=0

δk jσH jσ jh
δ jhaih Hih iσ

δiσ l |a; l; k; k; k; k l〉ABCDEO

=
1
p

2

1
∑

a,k,l=0

HkaHal |a; l; k; k; k; k l〉ABCDEO .

(52)

Written out,
p

8
�

�GCLR5

�

= |0000000〉+ |0011110〉+ |0100001〉+ |0111111〉

+ |1000000〉 − |1011110〉 − |1100001〉+ |1111111〉 ,
(53)

where, in order, the qubits correspond to A, B, C , D, E, O1 and O2. Once again, the entropies of
this state match exactly those of the entropy ray obtained by the min-cut prescription applied
to the hypergraph in Figure 7, whose computation we leave as an exercise for the reader.

5 Discussion and Future Directions

We have shown that hypergraphs are able to capture a larger entropy cone than graphs, thus
strictly containing the holographic entropy cone, while remaining consistent with universal
quantum inequalities. In particular, for up to 4 parties, we have found that the hypergraph
entropy cone is equivalent to the stabilizer and quantum linear rank cones. In the 5-party case,
we obtained compelling evidence that hypergraph entropies continue to obey and tightly satu-
rate all quantum linear rank inequalities. Assuming hypergraphs indeed correspond to physical
quantum states, our results suggest that hypergraphs can be a powerful tool to discover and
prove novel entropy inequalities, as well as construct explicit quantum states that realize a
given entropy vector.

In the spirit of extending the graph tools developed in [20] to study more general classes
of entanglement structures, one may wonder if hypergraphs could themselves admit an ad-
ditional upgrade. Going beyond hypergraphs could in principle provide a combinatorial tool

25Note that this is no longer the case for a k-partite GHZ with k ≥ 4. In particular, the 3-partite case is realizable
holographically by a star graph, which is the reason why the star associated to this bulk vertex admits a GHZ tensor
type of realization, otherwise used only for hyperedges. Higher-party GHZ states are not holographic, and thus
also not realizable by star graphs at all.
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Figure 7: A hypergraph that realizes one of the extreme rays of the 5-party CLR cone.
Boundary vertices are labeled by their party while the only bulk vertex is denoted by
σ.

to explore the full quantum entropy cone, regions of which are inaccessible to hypergraphs
already at 4 parties. A construction that breaks the Ingleton bound might also shed light on
whether there exist genuinely quantum 5-partite states (i.e. with non-monotonic entropies)
that violate the Ingleton inequality [28,37].

Below, we outline several other avenues of future study related to hypergraphs.

5.1 The Hypergraph Cone and Quantum States

Perhaps the most pressing issue is the question of realizability of all hypergraph entropies using
quantum states. We have made partial progress in this direction through proving the validity
of many of the QLR inequalities (including SA and SSA), as well as proposing a method to
explicitly write down a quantum state realizing the hypergraph entropies.

In section 3, we showed that the hypergraph and QLR cones are identical for up to 4
parties by demonstrating that all 4-party QLR inequalities are valid on hypergraphs (which
implies containment), and also that all extreme rays of the QLR cone are hypergraph-realizable
(which implies tightness). Additionally, in appendix A we exhibit contraction maps which
prove several of the QLR inequalities for 5 parties. In fact, we believe they are sufficient
to prove all of them, but are limited by the computational cost of checking the contraction
property for large hypergraph ranks. In particular, we have not found a failed contraction
map as of yet for any linear rank inequality for 5 parties or any evidence of non-convergence
of the proof technique. We are thus compelled to make the following conjecture:

Conjecture 5.1. The n-party hypergraph and QLR cones coincide for all n.

It is known that the CLR cone is strictly inside the classical cone and thus the quantum
cone [43]. It is unclear if the replacement of monotonicity by weak monotonicity in the CLR
cone, which defines the QLR cone, would allow for the latter to reach beyond the quantum
cone. We believe this is very unlikely26 and thus validity of Conjecture 5.1 would imply that
the hypergraph cone indeed encodes physically meaningful quantum state entropies.

On a more constructive direction, the prescription proposed in section 4 also suggests that
hypergraph entropies precisely correspond to those of a specific subset of quantum states.
This is already manifestly true at 4-parties, in which case we have shown that the hypergraph

26For instance, quantum states are able to violate all QLR inequalities that are not SA and SSA.

28

https://scipost.org
https://scipost.org/SciPostPhys.9.5.067


SciPost Phys. 9, 067 (2020)

and stabilizer entropy cones are equivalent since the latter coincides with the 4-party QLR
cone. For larger party number, it is known that stabilizer states obey all balanced linear rank
inequalities based on common information [37], but it is unclear if they fill up this cone or even
if they satisfy other more general linear rank inequalities that arise for n≥ 6 [55]. Therefore,
although little is known about the stabilizer entropy cone in terms of extreme rays already for
5 parties, it is known that these rays all lie inside the QLR cone. Appendix A provides strong
evidence to support that this property is shared by hypergraphs as well, and motivates the
following conjecture:

Conjecture 5.2. The n-party hypergraph and stabilizer cones coincide for all n.

An open question in quantum Shannon theory is whether the stabilizer and QLR cones are
the same for more than 4 parties. In the case that the n-party stabilizer cone is equivalent to
the n-party QLR cone, the two conjectures above naturally collapse to one.

If the hypergraph cone really is inside the quantum cone, the machinery developed in this
paper would provide an efficient way of computing entanglement entropies27 of some class of
quantum states (such as stabilizer states if Conjecture 5.2 holds) and a proof method for the
inequalities they obey. The ability to encode the entanglement structure of a given quantum
state in a hypergraph could then serve as a partial witness for whether a state belongs to that
class28.

Naturally, one could consider proving equality of all three of the hypergraph, stabilizer,
and QLR cones. Section 4 provides a construction possibly leading to equivalence of the first
two, which would prove Conjecture 5.2. As for Conjecture 5.1, it might be conceivable to
prove that hypergraph states obey all QLR inequalities with our methods. However, proving
that hypergraphs completely fill the QLR cone would require a better understanding of the
connection between hypergraphs and linear ranks.

Note added. Shortly after the completion of this work, it was shown in [56] that all hyper-
graph entropy vectors can be achieved by stabilizer tensor networks, hence proving contain-
ment of the hypergraph cone in the stabilizer cone. Soon after, it has been recently shown that
there exists a 5-party (6-qubit) stabilizer state which violates an entropy inequality that must
hold for all 5-party hypergraphs [57]. This proves that the hypergraph is strictly contained
within the stabilizer cone, and hence that both conjectures above are false.

5.2 Searching for New Hypergraph Inequalities

Thus far we have not put a premium on discovering new inequalities for hypergraph entropies,
rather relying on proving old inequalities true for potentially equivalent mathematical con-
structs. However, it may be the case that the classes of objects we considered are not equiva-
lent, as could happen starting at 5 parties for which the complete cone of stabilizer entropies
is not known. Regardless, in these cases, one should be able to echo the procedure used in the
holographic entropy cone to search for new inequality candidates that “slice off” extreme rays
that are impossible to construct, while leaving already constructed ones intact, and to run the
generalized contraction map algorithm on these new candidate inequalities. This is a promis-
ing future direction, though it may quickly become computationally intractable in the absence
of better linear/semidefinite programming techniques. As such, we leave this to future work.

One possible direction forward is to utilize the attention paid to hypergraphs in machine
learning [58] to aid in finding hypergraphs that realize extreme rays. It is quite possible that

27The complexity of computing entropies would reduce to that of computing min-cuts.
28Here we specify that it is a partial witness because there is a possibility that states that lie within the specified

cone are not of the specified type (i.e. it is only a necessary condition).
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machine learning techniques would allow deeper probes into higher party hypergraph entropy
cones than the standard analytic approaches.

5.3 Non-Holographic Bit Threads

A version of the max-flow min-cut theorem known as the Menger property also holds for
hypergraphs [59], where the minimal cut on hyperedge weights separating a source from
a sink is equal to the maximal flow allowable from the source to the sink. The extension of the
max-flow min-cut theorem to hypergraphs suggests a connection to the bit thread program of
[15,60]. The key insight in that area was the connection of threads to RT surfaces via the max-
flow min-cut theorem, in a manner that survives discretization of the bulk spacetime into graph
form. Therefore, some analog of bit threads should survive for hypergraphs, and it would be
interesting to study such properties in the context of quantum states or tensor networks. While
entropy inequalities appeared harder to prove in the thread formalism than with cuts [16,60],
they also usually offered some deeper insight into the structure and properties of holographic
states. It is conceivable that some analogous lessons about hypergraph states may be drawn
from a thread reformulation of our analysis.

One may then ask about the relationship between hypergraph techniques and the entan-
glement of purification conjectures of [30, 31] (and their multipartite and conditional ex-
tensions [32–34]), taking advantage of the their connection to bit threads [61–63]. In this
framework, the generalized contraction map can potentially be extended to study inequalities
related to the entanglement of purification for hypergraph states, assuming an appropriate
generalization of an entanglement wedge cross section as a partial cut of a hypergraph. This
generalization, for example, could describe a hypergraph for which some of the vertices have
been deleted, with hyperedges previously ending on those vertices rendered to be “dangling”.
The entanglement of purification question would then become one of how to complete the dan-
gling edges to minimize some source-sink cut, in strong analogy to holographic entanglement
of purification techniques.

5.4 Connections to Higher Derivative Gravity

It is possible that there is a connection between hypergraph states and ground or thermal states
of boundary theories dual to higher derivative gravity theories. At least in certain situations
[64], the entanglement entropy of a boundary subregion in these cases reduces to the Wald
entropy, which in particular contains a topological component. It is tempting to represent this
topological component as a hyperedge connecting all of the boundary subregions, and it would
be worth investigating a potential connection with the techniques used in this paper.
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A Proofs of Linear Rank Inequalities

Only the 24 genuinely 5-partite inequalities of the 5-party QLR are listed in Table 4, the other 7
corresponding to uplifted instances of SA, SSA and Ingleton, already proven for all hypergraphs
in section 3.2.3. The search for a contraction map is carried out with the LHS written in
its standard form, thus involving L terms, while the RHS is written in expanded form (βi
copies of Si with unit coefficient), thus involving βT =

∑R
i=1 βi terms. Writing the LHS in

standard form reduces the complexity of finding a contraction map by minimizing its domain,
without affecting the efficacy of the proof method. On the other hand, expanding out the RHS
maximizes the likelihood of finding a contraction map for a given valid inequality. Ideally,
considering Proposition 3.1.1, one would like a RHS with the least possible number of terms,
but this happens to be insufficient for some proofs. Basically, failure to find a contraction map
with the RHS in standard form does not preclude the existence of a contraction map with the
RHS in the expanded form. This already happens to be important for the proof of 5-partite
holographic entropy inequalities, for which the standard form is insufficient in some cases. To
be as general as possible, the choice here has been the conservative one of fully expanding
out the RHS, at the cost of not been able to fulfill the conditions of Proposition 3.1.1 for some
inequalities.

In most cases, these maps have been constructed by demanding the contraction property
on hypergraphs of low rank k ≤ 4. Quite generally, the k-distance for greater k then turns
out to automatically contract on those maps too. This agrees with the intuition drawn from
corollary 3.1.2. More importantly, in all cases we find supporting evidence for Conjecture 3.1
that validity of a k-party inequality on (k+1)-graphs implies its validity on all hypergraphs. As
a result, we expect the k-distance for all k larger than those listed in the last column of Table
4 to already contract on their respective maps in Tables 5 to 28. The only obstruction we have
found to performing such a check is its computational cost.

In the following tables, we provide a succinct representation of the proofs (i.e. contraction
maps) for the 24 genuinely 5-partite inequalities of the 5-party QLR cone. We have encoded
all relevant information compactly as follows. Note that an entropy inequality of the form
5 may alternatively be specified by the inward-pointing vector normal to the hyperplane in
entropy space corresponding to the saturation of that inequality. In other words, the linear
inequality 5 can be written as Q · S ≥ 0, where S is an arbitrary entropy vector and Q the
inequality vector referred to above. The order of the entries of S and Q is determined by
the standard lexicographic ordering of the power set of n parties (excluding the empty set),
namely {A, B, C , D, E, AB, AC , . . . , AC DE, BC DE, ABC DE}. Each table below is captioned by a
different inequality, specified in terms of the vector Q, and shows the corresponding contraction
map compactly encoded as described next. Recall that the contraction map is a function from
all possible 2L bit strings of length L to some set of bit strings of length R29. It can thus
be uniquely defined by the image of every bit strings in the domain. The image bit strings,
understood as digits of a binary number, can then be compactly expressed in their decimal-
base representation. Ordering all inequality entropies lexicographically and the LHS domain
bit strings in increasing binary order, an array of 2L base-10 numbers can thus be used to
uniquely specify the output of the contraction map on every input bit string (see the right-
most column of Table 3 for an example of this notation). The following tables provide the
integer arrays encoding the contraction map for each inequality, which should be read left-to-
right first.

29In all cases below R= βT , corresponding to the expanded form of the RHS.
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Table 4: Summary of the status of the proof by contraction of QLR inequalities on
hypergraphs. The numbering of inequalities corresponds to the labels used in Tables
5 to 28, which show those inequalities and their corresponding contraction map.
Columns L and R are the number of terms on the LHS and RHS of the inequality in
its standard form, respectively. Columns αT and βT give the value of

∑L
i=1αi and

∑R
i=1 βi , respectively. The last column lists the largest hypergraph rank k for which

the contraction property of the k-distance has been checked on the maps given below.
Inequalities for which this check has reached k = βT are valid for all hypergraphs
by Proposition 3.1.1 (underlined and bold), and those for which k ≥ 6 are plausibly
valid by Conjecture 3.1 (bold).

Inequality L R αT βT Checked k
1 6 6 6 6 6
2 6 6 6 6 6
3 6 6 6 6 6
4 6 7 8 8 7
5 7 7 8 8 7
6 7 7 7 7 7
7 7 7 7 7 7
8 7 7 8 8 7
9 7 7 7 7 7

10 6 7 8 8 7
11 7 7 7 7 7
12 7 8 10 10 6
13 8 8 9 9 6
14 8 8 8 8 6
15 9 8 10 10 6
16 8 8 8 8 6
17 7 8 10 10 6
18 8 8 8 8 6
19 8 8 9 9 6
20 9 8 10 10 6
21 9 9 13 13 4
22 7 9 10 10 4
23 9 9 13 13 4
24 7 9 10 10 4

Table 5: Q1 = {0,−1,0,−1,0, 1,−1, 1,0, 1,1, 0,0, 0,0, 0,−1,0, 0,1, 0,0,−1,0, 1,0, 0,0,−1, 0,0}

0 1 1 3 4 5 0 1 2 3 3 11 6 7 2 3 1 5 5 1 5 21 1 5 0 1 1 3 4 5 0 1
4 0 5 1 6 4 4 0 6 2 7 3 38 6 6 2 5 1 13 5 4 5 5 1 4 0 5 1 6 4 4 0

Table 6: Q2 = {0,−1,0, 0,−1, 1,−1, 0,0, 0,0, 1,0, 1,0, 0, 0, 0, 1, 0,1,1, 0,−1,0,−1,0, 0,−1, 0,0}

0 2 1 3 1 3 3 7 1 3 5 7 3 11 1 3 4 6 5 7 0 2 1 3 5 7 21 5 1 3 5 7
2 6 3 7 3 7 11 3 0 2 1 3 1 3 3 3 6 38 7 6 2 6 3 7 4 6 5 7 0 2 1 3

Table 7: Q3 = {0,−1,0, 0,0, 1,−1,0, 0,1, 0,0, 0, 0,−1,0, 0,0, 1,0, 1,−1, 0,1, 1,0, 0,−1,−1, 0,0}

0 1 2 3 1 3 3 11 1 5 3 7 3 7 7 15 4 5 6 7 0 1 2 3 5 21 7 5 1 5 3 7
2 0 6 2 3 1 7 3 3 1 7 3 19 3 3 7 6 4 38 6 2 0 6 2 7 5 6 7 3 1 7 3
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Table 8: Q4 = {−2,−2, 0,0, 0,2, 1,1, 1,1, 1, 1, 0, 0, 0,−1,−1,−1, 0,0,0, 0,0, 0,−1, 0,0, 0,0, 0,0}

0 2 4 6 8 10 12 14 2 3 0 2 0 2 4 6 4 0 5 4 0 2 4 6 6 2 4 0 2 0 0 2
8 0 0 2 9 8 8 10 10 2 2 0 8 0 0 2 12 4 4 0 8 0 0 2 14 6 6 2 10 2 2 0
6 14 14 30 14 30 30 62 14 6 6 14 6 14 14 30 14 6 6 14 6 14 14 30 78 14 14 6 14 6 6 14
14 6 6 14 10 14 14 30 78 14 14 6 14 6 6 14 78 14 14 6 14 6 6 14 206 78 78 14 78 14 14 6

Table 9: Q5 = {−1,−2, 0,0, 0,2,−1, 1,1, 1,1, 1,0, 0,−1, 0,−1,−1, 0,0, 0,0, 0,0, 1,0, 0, 0, 0,−1, 0}

0 1 1 3 1 5 3 1 1 17 3 1 5 1 7 3 2 3 3 11 0 1 1 3 0 1 1 3 1 1 3 1
4 5 0 1 5 13 1 5 0 1 1 1 1 5 3 1 6 7 2 3 4 5 0 1 2 3 0 1 0 1 1 0
6 2 7 3 7 3 39 7 7 3 39 7 39 7 103 39 22 6 6 2 6 2 7 3 6 2 7 3 7 3 39 7
22 6 6 2 6 7 7 3 6 2 7 3 7 3 39 7 150 22 22 6 22 6 6 2 22 6 6 2 6 2 7 3

Table 10: Q6 = {−1, 0,−1,−1,0, 1,1, 1,1, 1, 0,−1, 1,0, 1,−1, 0,0,−1,0,−1,0, 0,0, 0,0, 0, 0, 0, 0, 0}

0 1 2 3 4 0 6 2 1 9 0 1 0 1 2 0 1 3 3 19 0 1 2 3 3 1 1 3 1 0 0 1
2 0 6 2 6 2 38 6 3 1 2 0 2 0 6 2 3 1 2 3 2 0 6 2 7 3 3 1 3 1 2 0
4 0 0 1 12 4 4 0 5 1 1 0 4 0 0 0 5 1 1 3 4 0 0 1 7 3 3 1 5 1 1 0
6 2 2 0 4 0 6 2 7 3 3 1 6 2 2 0 7 3 3 1 6 2 2 0 71 7 7 3 7 3 3 1

Table 11: Q7 = {0,−1,−1,−1,0, 1,1, 1,−1,1, 1,0, 0,1, 1,−1,−1, 0,0, 0,0, 0,0, 0,−1,0, 0,0, 0,0, 0}

0 1 1 9 2 3 0 1 4 0 5 1 6 2 4 0 2 3 0 1 3 19 1 3 0 1 1 0 2 3 0 1
4 0 5 1 0 1 1 0 5 1 37 5 4 0 5 1 6 2 4 0 2 3 0 1 4 0 5 1 0 1 1 0
2 0 0 1 6 2 2 0 6 2 4 0 70 6 6 2 6 2 2 0 2 3 0 1 2 0 0 0 6 2 2 0
6 2 4 0 2 0 0 0 4 0 5 1 6 2 4 0 14 6 6 2 6 2 2 0 6 2 4 0 2 0 0 0

Table 12: Q8 = {0,0, 0,−1, 0,0, 0,1,0,−1,0,−1,0, 0,0, 1,−1,1, 0,−1, 0,1, 2,1, 1,0,−1,0, 0,−2, 0}

0 1 1 3 3 7 7 15 1 3 3 19 7 15 23 7 4 5 5 7 7 15 39 47 5 7 7 23 23 7 55 39
4 5 5 7 7 15 23 7 5 7 7 23 71 79 87 71 20 21 21 23 23 7 55 39 21 23 23 7 87 71 119 103
16 17 17 19 1 3 3 7 17 19 19 147 3 7 7 3 20 21 21 23 5 7 7 15 21 23 23 19 7 7 23 7
20 21 21 23 5 7 7 7 21 23 23 19 7 15 23 7 28 29 29 31 21 5 23 7 29 31 21 23 23 7 55 39

Table 13: Q9 = {0,0, 0,0, 0,0, 0,−1,0,−1,0, 0,0,−1,0, 1,1, 0,0, 1, 1, 1, 1,−1,1,−1,−1, 0,−1, 0,0}

0 1 2 3 4 5 6 7 1 9 3 11 5 13 7 15 1 3 3 19 5 7 7 23 3 11 11 27 7 15 15 31
4 5 6 7 12 13 14 15 5 13 7 15 13 77 15 13 5 7 7 3 13 5 15 7 7 15 15 11 5 13 7 15
2 3 6 7 6 7 38 39 3 11 7 3 7 15 6 7 3 7 7 23 7 23 39 55 7 3 3 19 7 7 7 23
6 7 14 15 14 15 46 47 7 15 15 7 15 79 14 15 7 7 15 7 15 7 47 39 71 7 7 3 7 15 15 7

Table 14: Q10 = {0,0, 0,0, 0,0, 0, 0,−1,−1,−1, 0,−1, 0,0, 1,1,0, 1, 0, 0, 2, 1,1, 1,−2,0, 0,0,−2,0}

0 1 1 3 1 3 3 131 3 7 7 15 7 15 15 7 4 5 5 7 5 7 7 135 7 15 15 31 15 31 7 15
4 5 5 7 5 7 7 135 7 15 15 47 15 7 47 15 12 13 13 15 13 5 15 7 15 31 47 63 7 15 15 31
4 5 5 7 5 7 7 135 7 15 15 15 15 79 79 15 12 13 13 15 13 15 15 143 15 31 13 15 79 95 15 31
12 13 13 15 13 15 15 143 15 15 47 15 79 15 111 79 140 141 141 143 141 13 143 15 13 15 15 31 15 31 47 15

Table 15: Q11 = {0,0, 0,0, 0,0, 0, 0, 0,−1,−1,0, 0,0,−1, 1,1,0, 0,−1, 1,1,1, 1,1,−1,0,−1,0,−1, 0}

0 1 1 3 1 9 3 11 1 5 3 7 5 13 7 15 2 3 3 19 3 11 11 27 3 7 7 23 7 15 15 31
2 3 3 7 3 11 7 3 3 7 7 39 7 15 39 7 6 7 7 23 7 3 3 19 7 23 39 55 7 7 7 23
4 5 5 7 5 13 7 15 5 13 7 15 69 77 71 79 6 7 7 3 7 15 15 11 7 15 7 7 5 13 7 15
6 7 7 7 7 15 39 7 7 15 39 7 71 79 103 71 14 15 15 7 15 7 7 3 15 7 7 39 7 15 39 7

Table 16: Q12 = {−2, 0,0, 0,−2, 2,1, 1,1,−1,−1,2, 0,1, 1,0, 0,−2,−1, 0,0, 1,0,0, 0, 0, 0, 0, 0,−1, 0}

0 1 1 3 1 3 5 1 5 13 13 5 13 5 77 13 4 0 5 1 5 1 13 5 13 5 77 13 77 13 205 77
2 3 3 19 0 1 1 3 1 5 5 1 5 1 13 5 6 2 7 3 4 0 5 1 5 1 13 5 13 5 77 13
2 3 0 1 3 35 1 3 1 5 5 1 5 1 13 5 6 2 4 0 7 3 5 1 5 1 13 5 13 5 77 13
6 2 2 3 2 3 0 1 0 1 1 0 1 0 5 1 14 6 6 2 6 2 4 0 4 0 5 1 5 1 13 5
12 13 4 5 4 5 0 1 29 61 13 29 13 29 5 13 14 12 6 4 6 4 4 0 13 29 5 13 5 13 13 5
14 15 6 7 6 7 2 3 13 29 5 13 5 13 1 5 270 14 14 6 14 6 6 2 12 13 4 5 4 5 5 1
14 15 6 7 6 7 2 3 13 29 5 13 5 13 1 5 270 14 14 6 14 6 6 2 12 13 4 5 4 5 5 1
270 14 14 6 14 6 6 2 12 13 4 5 4 5 0 1 782 270 270 14 270 14 14 6 14 12 6 4 6 4 4 0
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Table 17: Q13 = {−1,−2,0, 0,0, 2,1, 1,−1,1, 1,1,−1, 0,0,−1,−1,0, 0,0, 1,0, 0,−1, 1,0, 0,0,−1, 0,0}

0 1 1 3 2 3 3 35 2 3 3 7 6 7 7 3 8 9 0 1 10 11 2 3 10 11 2 3 14 15 6 7
1 3 5 7 0 1 1 3 3 7 7 23 2 3 3 7 0 1 1 5 2 3 0 1 2 3 3 7 6 7 2 3
1 9 9 1 0 1 1 3 0 1 1 3 2 3 3 1 9 25 1 9 8 9 0 1 8 9 0 1 10 11 2 3
9 1 13 5 1 1 5 1 1 3 5 7 0 1 1 3 1 9 5 1 0 1 1 1 0 1 1 5 2 3 0 1
12 4 13 5 14 6 15 7 14 6 15 7 78 14 14 6 14 12 12 4 78 14 14 6 78 14 14 6 206 78 78 14
13 5 45 37 12 4 13 5 15 7 13 5 14 6 15 7 12 4 13 5 14 6 12 4 14 6 15 7 78 14 14 6
13 5 45 13 12 4 13 5 12 4 13 5 14 6 15 7 12 13 13 5 14 12 12 4 14 12 12 4 78 14 14 6
45 13 301 45 13 5 45 13 13 5 45 13 12 4 13 5 13 5 45 13 12 4 13 5 12 4 13 5 14 6 12 4

Table 18: Q14 = {−1, 0,−1, 0,0, 1,1, 1,0, 0,−1, 0,1, 0,−1,0, 0,0,−1,−1,1, 0,1, 1,1, 0, 0,−1, 0,−1,0}

0 1 1 3 1 5 3 7 2 3 3 19 3 7 7 23 1 9 3 11 5 13 7 15 3 11 11 27 7 15 15 31
2 3 3 11 0 1 1 3 10 11 11 27 2 3 3 19 3 11 11 27 1 9 3 11 11 27 27 59 3 11 11 27
4 5 0 1 5 13 1 5 6 7 2 3 7 5 3 7 5 13 1 9 13 77 5 13 7 15 3 11 5 13 7 15
6 7 2 3 4 5 0 1 14 15 10 11 6 7 2 3 7 15 3 11 5 13 1 9 15 11 11 27 7 15 3 11
2 0 3 1 3 1 35 3 6 2 7 3 7 3 3 7 0 1 1 3 1 5 3 7 2 3 3 11 3 7 7 15
6 2 7 3 2 0 3 1 14 10 15 11 6 2 7 3 2 3 3 11 0 1 1 3 10 11 11 27 2 3 3 11
6 4 2 0 7 5 3 1 14 6 6 2 15 7 7 3 4 5 0 1 5 13 1 5 6 7 2 3 7 5 3 7
14 6 6 2 6 4 2 0 142 14 14 10 14 6 6 2 6 7 2 3 4 5 0 1 14 15 10 11 6 7 2 3

Table 19: Q15 = {−1, 0,0,−2,−1, 1,1,2,−1,−1, 1,1, 1,1, 2,0,−1,0,−1,0, 0,0, 0,−1,−1,0, 0,0, 0,0, 0}

0 3 1 35 1 7 5 3 2 35 3 99 0 3 1 35 2 11 0 3 3 15 1 7 10 3 2 35 2 11 0 3
12 15 4 7 13 143 5 15 4 7 0 3 5 15 1 7 14 143 6 15 15 399 7 143 6 15 2 7 7 143 3 15
4 1 5 3 5 3 21 1 0 3 1 35 1 1 5 3 0 3 1 1 1 7 5 3 2 1 0 3 0 3 1 1
44 13 12 5 12 15 4 7 12 5 4 1 4 7 0 3 12 15 4 7 13 143 5 15 4 7 0 3 5 15 1 7
8 1 0 3 0 3 1 1 10 3 2 35 2 1 0 3 10 3 2 1 2 7 0 3 26 11 10 3 10 3 2 1
44 13 12 5 12 15 4 7 12 5 4 1 4 7 0 3 12 15 4 7 14 143 6 15 14 7 6 3 6 15 2 7
12 0 4 1 4 1 5 0 8 1 0 3 0 0 1 1 8 1 0 0 0 3 1 1 10 3 2 1 2 1 0 0
556 12 44 4 44 13 12 5 44 4 12 0 12 5 4 1 44 13 12 5 12 15 4 7 12 5 4 1 4 7 0 3

Table 20: Q16 = {0,−1, 0,−1,0, 1,−1, 1,0, 1,0, 0,1,−1,0, 0,0, 0,0, 1,−1,−1, 1,1, 1,0,−1, 0,0,−1,0}

0 1 1 9 1 3 3 11 2 3 3 11 3 19 11 27 1 5 5 13 3 7 7 15 3 7 7 15 7 23 15 31
1 3 3 1 3 7 7 3 3 7 3 3 7 23 3 19 3 7 1 5 7 23 3 7 7 23 3 7 23 55 7 23
8 9 9 13 0 1 1 9 10 11 11 9 2 3 3 11 9 13 13 77 1 5 5 13 11 15 15 13 3 7 7 15
0 1 1 5 1 3 3 1 2 3 3 1 3 7 3 3 1 5 5 13 3 7 1 5 3 7 7 5 7 23 3 7
2 0 3 1 3 1 7 3 10 2 11 3 11 3 3 11 0 1 1 5 1 3 3 7 2 3 3 7 3 7 7 15
3 1 7 3 7 3 135 7 2 3 3 3 3 7 7 3 1 3 3 1 3 7 7 3 3 7 3 3 7 23 3 7
10 8 11 9 2 0 3 1 42 10 10 11 10 2 11 3 8 9 9 13 0 1 1 5 10 11 11 15 2 3 3 7
2 0 3 1 3 1 7 3 10 2 2 3 2 3 3 3 0 1 1 5 1 3 3 1 2 3 3 7 3 7 3 3

Table 21: Q17 = {0,0,−1,0, 0,0, 0,0,−1, 0,−2, 0,0, 1,0, 1,1, 1,1, 0, 1,2,−1, 2,−1,−2, 0,−2,0, 0,0}

0 3 12 15 1 19 13 31 4 7 28 31 5 23 29 95 1 35 13 47 3 51 15 63 5 39 29 15 7 55 13 31
1 7 13 79 3 23 15 95 5 15 29 95 7 31 31 223 3 39 15 111 7 55 31 127 7 7 31 79 15 23 15 95
4 7 44 47 5 23 45 15 12 15 60 63 13 7 61 31 5 39 45 111 7 55 13 47 13 7 61 47 15 23 29 15
5 15 45 111 7 7 47 79 13 31 61 127 15 15 63 95 7 47 47 239 15 39 15 111 15 15 63 111 271 7 31 79
16 19 28 31 17 51 29 63 20 23 60 63 21 55 61 31 17 51 29 63 19 307 31 55 21 55 28 31 23 311 29 63
0 3 12 15 1 19 13 31 4 7 28 31 5 23 29 95 1 35 13 47 3 51 15 63 5 39 29 15 7 55 13 31
20 23 60 63 21 55 61 31 28 31 572 61 29 23 60 63 21 55 61 47 23 311 29 63 29 23 60 63 31 55 61 31
4 7 44 47 5 23 45 15 12 15 60 63 13 7 61 31 5 39 45 111 7 55 13 47 13 7 61 47 15 23 29 15

Table 22: Q18 = {0,0, 0,−1,−1,0,−1, 1,1, 0,0,−1, 0,1, 1,1,−1, 1,0, 0,−1,1, 0,1, 0,0,−1, 0,0,−1,0}

0 1 1 9 2 3 3 11 2 3 3 11 10 11 11 27 1 5 5 13 3 7 7 15 0 1 1 9 2 3 3 11
1 3 3 1 3 19 3 3 3 3 35 3 2 3 3 19 3 7 1 5 7 23 3 7 1 3 3 1 3 19 3 3
2 3 0 1 6 7 2 3 6 7 2 3 14 15 10 11 3 7 1 5 7 23 3 7 2 3 0 1 6 7 2 3
3 7 1 3 7 23 3 19 2 3 3 3 6 7 2 3 7 23 3 7 23 87 7 23 3 7 1 3 7 23 3 19
4 5 5 13 6 7 7 15 6 7 7 15 14 15 15 11 5 13 13 141 7 15 5 13 4 5 5 13 6 7 7 15
0 1 1 5 2 3 3 7 2 3 3 7 6 7 7 3 1 5 5 13 3 7 1 5 0 1 1 5 2 3 3 7
6 7 4 5 14 15 6 7 14 6 6 7 46 14 14 15 7 15 5 13 15 7 7 15 6 7 4 5 14 15 6 7
2 3 0 1 6 7 2 3 6 2 2 3 14 6 6 7 3 7 1 5 7 23 3 7 2 3 0 1 6 7 2 3

Table 23: Q19 = {0,0, 0,0,−1, 0,0,−1,1,−1, 0,0,−1,0, 1,1, 1,0, 1,−1, 0,2, 1,−1,1,−2, 0,0, 0,−1,0}

0 1 1 17 3 7 7 23 2 3 3 19 7 39 23 55 2 3 3 19 7 15 15 7 6 7 7 23 15 47 7 39
2 3 3 19 7 23 71 87 6 7 7 23 23 55 87 119 6 7 7 23 15 7 79 71 22 23 23 7 7 39 71 103
1 9 9 25 7 15 15 31 3 11 11 27 15 47 31 63 3 11 11 27 15 47 7 15 7 15 15 31 47 175 15 47
0 1 1 17 3 7 7 23 2 3 3 19 7 39 23 55 2 3 3 19 7 15 15 7 6 7 7 23 15 47 7 39
16 17 17 25 1 3 3 19 18 19 19 27 3 7 7 23 18 19 19 27 3 7 7 3 22 23 23 31 7 15 7 7
18 19 19 27 3 7 7 23 22 23 23 19 7 23 23 55 22 23 23 31 7 7 15 7 150 151 22 23 23 7 7 39
17 25 25 281 3 11 11 27 19 27 27 25 7 15 15 31 19 27 27 25 7 15 3 11 23 31 31 27 15 47 7 15
16 17 17 25 1 3 3 19 18 19 19 27 3 7 7 23 18 19 19 27 3 7 7 3 22 23 23 31 7 15 7 7
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Table 24: Q20 = {0, 0,0,0, 0,0,−1,0,−1,−1,0,−1,0, 0,0, 2,−1, 2,1, 1,1, 1,1, 1,−1,−1,−2,−1,0, 0,0}

0 1 2 3 8 9 10 11 1 17 3 19 9 2511 27 2 3 6 7 10 11 14 15 3 19 7 23 11 27 15 31
8 9 10 11 24 25 26 27 9 25 11 27255727 59 10 11 14 15 26 27 30 31 11 27 15 31 27 59 31 27
3 7 7 71 11 15 15 79 7 23 23 87153131 95 7 23 23 87 15 31 31 95 263279279343 7 23 23 87
111515 7 27 11 31 15 15 31 31 23112715 31 15 31 31 23 31 15 15 31 271287287279 15 31 31 23
6 7 14 15 14 15 142143 7 23 15 31153114 15 14 15 30 31 30 31158159 15 31 31 15 31 15 30 31
141530 31 30 31 158159 15 31 31 15316330 31 526145423054230670158527 15 543 31 5433154230
15474711147111175239 47 15 15 79154747111 47 15 15 79 15 79143207303271271335 47 15 15 79
471515 47 15 47 1431753034727115471515 47 5594752715527156551438153037832715594752715

Table 25: Q21 = {−3, 0,−1, 0,0, 2,2, 1,2, 1,0,−2,−1, 1,0,−1,−1,0, 0,−1,−1,1, 0,2, 1,0, 0, 0, 0,−2, 0}

0 1 3 7 1 3 19 23 1 3 7 15 3 11 3 7 1 3 19 3 3 35 51 19 3 11 3 11 35 43 19 3
12 13 15 143 4 5 7 15 13 15 143 399 5 7 15 143 4 5 7 15 0 1 3 7 5 7 15 143 1 3 7 15
4 5 7 23 5 7 23 87 0 1 3 7 1 3 7 23 0 1 3 19 1 3 19 83 1 3 3 3 3 11 3 19

28 29 31 15 12 13 15 7 12 13 15 143 4 5 7 15 12 13 15 7 4 5 7 3 4 5 7 15 0 1 3 7
40 41 0 1 41 43 1 3 41 43 1 3 43 107 3 11 41 43 1 3 43 107 3 35 43 107 3 11 107 619 35 43
60 61 12 13 44 45 4 5 61 45 13 15 45 47 5 7 44 45 4 5 40 41 0 1 45 47 5 7 41 43 1 3
44 45 4 5 45 47 5 7 40 41 0 1 41 43 1 3 40 41 0 1 41 43 1 3 41 43 1 3 43 107 3 11

1084 60 28 29 60 44 12 13 60 61 12 13 44 45 4 5 60 44 12 13 44 45 4 5 44 45 4 5 40 41 0 1
48 16 51 19 49 17 179 51 16 0 19 3 17 1 51 19 49 17 179 51 51 19 435 179 17 1 51 19 19 3 179 51
60 28 63 31 52 20 55 23 28 12 31 15 20 4 23 7 52 20 55 23 48 16 51 19 20 4 23 7 16 0 19 3
52 20 55 23 53 21 51 19 20 4 23 7 21 5 19 3 48 16 51 19 49 17 179 51 16 0 19 3 17 1 51 19

1084 60 61 63 60 28 63 31 60 28 29 31 28 12 31 15 60 28 63 31 52 20 55 23 28 12 31 15 20 4 23 7
60 56 48 16 61 57 49 17 56 40 16 0 57 41 17 1 56 57 49 17 57 59 51 19 57 41 17 1 59 43 19 3

3132 1084 60 28 1084 60 52 20 1084 60 28 12 60 44 20 4 1084 60 52 20 60 56 48 16 60 44 20 4 56 40 16 0
1084 60 52 20 60 61 53 21 60 44 20 4 61 45 21 5 60 56 48 16 56 57 49 17 56 40 16 0 57 41 17 1
7228 3132 1084 60 3132 1084 60 28 3132 1084 60 28 1084 60 28 12 3132 1084 60 28 1084 60 52 20 1084 60 28 12 60 44 20 4

Table 26: Q22 = {−2, 0,−1, 0,0, 1,1, 2,1, 0,−1, 0,1, 0,−1,0, 0,−1,−2, 0,0, 1,1, 1,1, 0,0, 0, 0,−2, 0}

0 1 1 3 1 3 3 19 1 3 3 7 3 7 19 3 1 3 3 7 3 7 1 3 3 7 7 15 7 15 3 7
16 17 17 19 17 19 19 51 0 1 1 3 1 3 3 19 0 1 1 3 1 3 3 19 1 3 3 7 3 7 1 3
12 13 13 15 4 5 5 7 13 15 15 47 5 7 7 39 13 15 15 47 5 7 7 15 15 47 47 111 7 15 15 47
28 29 29 31 20 21 21 23 12 13 13 15 4 5 5 7 12 13 13 15 4 5 5 7 13 15 15 47 5 7 7 15
4 5 0 1 5 7 1 3 5 7 1 3 7 15 3 7 5 7 1 3 7 15 3 7 7 15 3 7 15 143 7 15
20 21 16 17 21 23 17 19 4 5 0 1 5 7 1 3 4 5 0 1 5 7 1 3 5 7 1 3 7 15 3 7
28 29 12 13 12 13 4 5 29 13 13 15 13 5 5 7 12 13 13 15 4 5 5 7 13 15 15 47 5 7 7 15
284 28 28 29 28 29 20 21 28 29 12 13 12 13 4 5 28 29 12 13 12 13 4 5 12 13 13 15 4 5 5 7
16 0 17 1 17 1 19 3 17 1 19 3 19 3 83 19 0 1 1 3 1 3 3 1 1 3 3 7 3 7 19 3
20 16 21 17 21 17 17 19 16 0 17 1 17 1 19 3 4 0 5 1 5 1 1 3 0 1 1 3 1 3 3 1
28 12 29 13 20 4 21 5 29 13 31 15 21 5 23 7 12 13 13 15 4 5 5 7 13 15 15 47 5 7 7 15
284 28 28 29 28 20 20 21 28 12 29 13 20 4 21 5 28 12 12 13 12 4 4 5 12 13 13 15 4 5 5 7
20 4 16 0 21 5 17 1 21 5 17 1 23 7 19 3 4 5 0 1 5 7 1 3 5 7 1 3 7 15 3 7
28 20 20 16 29 21 21 17 20 4 16 0 21 5 17 1 12 4 4 0 13 5 5 1 4 5 0 1 5 7 1 3
284 28 28 12 28 12 20 4 28 29 29 13 29 13 21 5 28 12 12 13 12 4 4 5 29 13 13 15 13 5 5 7
796 284 284 28 284 28 28 20 284 28 28 12 28 12 20 4 284 28 28 12 28 12 12 4 28 12 12 13 12 4 4 5

Table 27: Q23 = {−2, 0,0, 0,0, 1,0, 1,2,−1, 0,−1,−1, 0,−1,1,−1,0, 1,−2, 0,2, 2,1, 2,−1, 0,0,0,−3, 0}

0 3 1 7 3 23 7 55 3 15 7 79 15 63 79 31 8 11 9 15 11 31 15 63 11 271 15 335 31 319 15 287
8 11 9 15 11 31 15 63 11 31 15 15 1039 1087 1103 1055 24 27 25 31 27 63 31 31 27 287 11 271 1055 1343 1039 1311

48 51 49 55 51 183 55 695 0 3 1 7 3 23 7 55 56 59 57 63 59 55 63 183 8 11 9 15 11 31 15 63
56 59 57 63 59 55 63 567 8 11 9 15 11 31 15 63 120 123 121 127 123 51 127 55 24 27 25 31 27 63 31 31
8 11 9 15 1 7 3 23 11 79 15 207 7 31 15 15 72 75 73 79 9 15 11 31 75 335 79 463 15 287 15 271

24 27 25 31 9 15 11 31 27 95 11 79 15 63 79 31 88 91 89 95 25 31 27 15 91 351 75 335 31 319 15 287
56 59 57 63 49 55 51 183 8 11 9 15 1 7 3 23 120 123 121 127 57 63 59 55 72 75 73 79 9 15 11 31
120 57 56 59 57 63 59 55 24 27 25 31 9 15 11 31 2168 121 120 123 121 59 123 63 88 91 89 95 25 31 27 15

8 1 9 3 11 7 15 23 11 7 15 15 79 31 591 15 24 9 25 11 27 15 31 31 27 15 11 79 95 63 79 31
72 9 73 11 75 15 79 31 75 15 79 15 1103 1055 1615 1039 88 25 89 27 91 31 95 15 91 31 75 15 1119 1087 1103 1055
56 49 57 51 59 55 63 183 8 1 9 3 11 7 15 23 120 57 56 59 57 63 59 55 24 9 25 11 27 15 31 31
120 57 121 59 123 63 127 55 72 9 73 11 75 15 79 31 2168 121 120 123 121 59 123 63 88 25 89 27 91 31 95 15
24 9 25 11 9 3 11 7 27 15 11 79 15 15 79 7 88 73 89 75 25 11 27 15 91 79 75 207 31 31 15 15
88 25 89 27 73 11 75 15 91 31 75 15 79 31 591 15 120 89 121 91 89 27 91 11 89 95 73 79 95 63 79 31
120 57 56 59 57 51 59 55 24 9 25 11 9 3 11 7 2168 121 120 123 56 59 57 63 88 73 89 75 25 11 27 15
2168 56 120 57 121 59 123 63 88 25 89 27 73 11 75 15 6264 120 2168 121 120 57 121 59 120 89 121 91 89 27 91 11

Table 28: Q24 = {−2, 0,0, 0,0, 1,1, 1,1, 0,−1,0, 0,−2, 0,0, 0,0,−1, 1,−1, 1,1, 1,2, 0,−1,0, 0,−2, 0}

0 3 1 11 1 7 3 15 1 19 3 27 3 23 7 31 4 7 5 15 5 39 7 47 5 23 7 31 7 55 15 63
4 7 5 15 5 15 7 47 0 3 1 11 1 7 3 15 12 15 13 47 13 47 15 111 4 7 5 15 5 39 7 47
8 11 9 27 0 3 1 11 9 27 11 155 1 19 3 27 12 15 13 31 4 7 5 15 13 31 15 27 5 23 7 31
12 15 13 31 4 7 5 15 8 11 9 27 0 3 1 11 28 31 29 15 12 15 13 47 12 15 13 31 4 7 5 15
4 7 0 3 5 23 1 7 5 23 1 19 7 55 3 23 20 23 4 7 21 55 5 39 21 55 5 23 23 119 7 55
12 15 4 7 13 31 5 15 4 7 0 3 5 23 1 7 28 31 12 15 29 63 13 47 20 23 4 7 21 55 5 39
12 15 8 11 4 7 0 3 13 31 9 27 5 23 1 19 28 31 12 15 20 23 4 7 29 23 13 31 21 55 5 23
28 13 12 15 12 15 4 7 12 15 8 11 4 7 0 3 284 29 28 31 28 31 12 15 28 31 12 15 20 23 4 7
4 1 5 3 5 3 7 7 5 3 7 11 7 7 135 15 12 5 13 7 13 7 15 15 13 7 15 15 15 23 7 31
12 5 13 7 4 7 5 15 4 1 5 3 5 3 7 7 28 13 29 15 12 15 13 47 12 5 13 7 13 7 15 15
12 9 13 11 4 1 5 3 13 11 15 27 5 3 7 11 28 13 12 15 12 5 13 7 12 15 13 11 13 7 15 15
28 13 12 15 12 5 13 7 12 9 13 11 4 1 5 3 284 29 28 31 28 13 29 15 28 13 12 15 12 5 13 7
12 5 4 1 13 7 5 3 13 7 5 3 15 23 7 7 28 21 12 5 29 23 13 7 29 23 13 7 31 55 15 23
28 13 12 5 12 15 4 7 12 5 4 1 13 7 5 3 284 29 28 13 28 31 12 15 28 21 12 5 29 23 13 7
28 13 12 9 12 5 4 1 12 15 13 11 13 7 5 3 284 29 28 13 28 21 12 5 28 31 12 15 29 23 13 7
284 12 28 13 28 13 12 5 28 13 12 9 12 5 4 1 796 28 284 29 284 29 28 13 284 29 28 13 28 21 12 5
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