
GPkit: a Human-Centered Approach to Convex Optimization
in Engineering Design

Edward Burnell
Massachusetts Institute of

Technology
Cambridge, MA, USA

eburn@mit.edu

Nicole B. Damen
University of Nebraska
Omaha, Nebraska, USA
ndamen@unomaha.edu

Warren Hoburg
National Aeronautics and

Space Administration
Houston, TX, USA
whoburg@mit.edu

ABSTRACT
We present GPkit, a Python toolkit for Geometric and Signo-
mial Programming that prioritizes explainability and incremen-
tal complexity. GPkit was designed through an ethnographic
approach in the firms, classrooms, and research labs where it
became part of the fabric of daily engineering work. Organi-
zations have approached GPkit both in ways which centralize
design work and in ways which distribute it, usecases which
emerged from and inspired new toolkit features. This two-
way flow between mathematical structure and practitioner
knowledge resulted in several novel contributions to the for-
mulation and interpretation of convex programs and to our
understanding of early-stage engineering design. For example,
dual solutions (often considered incidental) can be more valu-
able to a design process than the “optimal design” itself, and
we present novel algorithms and design methods based on this
insight.

Author Keywords
convex optimization; human-centered design; design models;
geometric programming; modeling languages; toolkits

CCS Concepts
•Human-centered computing → User studies; Usability
testing; Collaborative interaction; User interface toolkits;
Open source software; Field studies; •Theory of computa-
tion → Convex optimization; •Computing methodologies
→ Optimization algorithms;

INTRODUCTION
Central to the work of many engineers is a "design model" that
quantifies parameters of their designs and implements inter-
actions amongst these parameters. Common types of design
model include parameterized CAD assemblies which construct
a shape from geometric constraints [35], spreadsheets which
calculate performance [51, 42], and “design codes”, small
pieces of software which take in a desired performance and
put out a design that achieves it [38].
ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, or contractor of the national government. As such, the Government retains
a nonexclusive, royalty-free right to publish or reproduce this article, or to allow oth-
ers to do so, for Government purposes only. Permission to make digital or hard copies
for personal or classroom use is granted. Copies must bear this notice and the full ci-
tation on the first page. Copyrights for components of this work owned by others than
ACM must be honored. To copy otherwise, distribute, republish, or post, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.

CHI’20, April 25–30, 2020, Honolulu, HI, USA

© 2020 ACM. ISBN 978-1-4503-6708-0/20/04. . . $15.00

DOI: https://doi.org/10.1145/3313831.3376412

In engineering organizations design models often serve as
loci for understanding what will be built, while encoding (and
sometimes concealing) decisions on why [57, 35]. As such,
design models are an important arena for intra-organizational
design politics: it is often within and around these models that
design participants’ perspectives clash and coalesce [35, 6].
Any design model used by an organization has its outsiders and
insiders, spectators and maintainers, and formal and informal
power structures [35, 26].

Design models are subject to the agency and affordances of
the “material” (e.g. Solidworks, Excel, FORTRAN) from
which they are made [54, 34, 6, 39]. The influence of a design
model’s material is felt especially in a a design process’ earliest
stages, where the work is predominantly conceptual and lacks
physical prototypes to reference [57, 21]. The effects of early-
stage design model materials are typically examined through
experimental outcomes [66, 67, 10], but some materials have
not been studied in this way.

“Mathematical programs” are a type of design code, common
in aerospace engineering, whose output achieves a desired per-
formance while striving to minimize a chosen “cost” parameter
[43]. Their research focuses on formulations, algorithms, and
performance on benchmark models; published observations of
effects on design and organizational outcomes are rare. This
is doubly true for convex mathematical programs. Recent
work (most notably by Boyd et al. and other contributors on
open-source modeling toolkits [18, 13, 62] and solvers [15,
44]) has made convex programs more broadly accessible, but
there are still few engineering organizations that use convex
programs as a design model material.

This work sought to make convex programs more useful in en-
gineering organizations and to study their effects as a material
for early-stage design models. It did so by embracing a par-
ticipatory human-centered framework focused on validating
workers’ knowledge [26] and using connections between that
knowledge and the mathematics of optimization to develop
GPkit, a toolkit for convex Geometric Programs. GPkit was
used by many engineers and researchers during its develop-
ment [68, 33, 46, 36, 16, 48, 27, 17, 49, 11, 28, 14, 1, 32, 60,
53, 64, 2], which resulted in features that are:

• technically and conceptually simple but with important user-
experience benefits (e.g. using physical units to type-check
symbolic equations),

1

https://doi.org/10.1145/3313831.3376412

• technically simple but conceptually complex (e.g. an object-
oriented syntax for representing a set of “all potentially
desirable airplane wings”),

• conceptually simple but technically complex (e.g. an algo-
rithm for efficiently computing optimal performance trade-
offs with bounded error), and

• some both conceptually and technically complex (e.g. an
algorithm for efficiently approximating a set of “all poten-
tially desirable airplanes” with bounded error).

Organizations approached these features in ways both central-
ized (one firm-wide design model with a few developers) and
distributed (design models developed independently by dozens
of engineers from shared resources). This work’s main contri-
bution is our field observations of these outcomes alongside
the toolkit features they emerged from and inspired.

BACKGROUND
This section contextualizes GPkit by comparing it to alter-
native software, design process concepts, and optimization
techniques.

Usecases
Several in-depth comparisons between GPkit and alternative
design model materials have been published by Ozturk, Bur-
ton, and Hoburg for an aerospace audience [48, 29, 11]. To
summarize, in an aerospace design setting, GPkit’s potential
alternatives are programs written

1. by individual engineers to explore a conceptual design space
(often in spreadsheets or scripting languages such as MAT-
LAB or Python),

2. by subsystem teams to validate their decisions before a
design review (often using a scripting language to wrap
analysis codes implemented in C or FORTRAN), and

3. by system engineering teams to guide tradeoffs between
subsystems (often using a library such as openMDAO [24]
to connect black-box subsystem models).

GPkit has focused particularly on usecase (2), seeing the
agency of design models in the rhetorical arena of a design
review as important and underexplored.

Design Process
Frameworks for early stages of product and system design,
such as Pahl and Beitz’ [50] approach to engineering design
and Ulrich, Eppinger and Yang’s process for product design
and development [63], are often based on the notion of an
iterative and progressive design specification.

Following them we consider the formation of a design model
as an iterative design process (Figure 1). First, the model is re-
alized as a (Concept) in the (Modeler)’s mind, who formulates
it as a (GPkit) model. Next, it is translated into the low-level
representation needed by a numerical (Solver), and the convex
optimization problem (or sequence of problems) is solved.
GPkit then parses the returned solution and presents it back to
the modeler. If the solution has any apparent errors then the
modeler will seek to fix these errors in either their concept or

Modeler Concept GPkit Solver

formulation generationrefinement

repair
presentation

parsing

Figure 1. Schematic representation of the design modeling process.
Dashed lines represent actions taken after a solution has been generated.

its formulation (the “repair” arrow). However, even without
apparent errors the modeler is not finished, and will seek to
refine their concept after having reflected upon its results (the
“refinement” arrow) [59]. Either way the cycles continues for
as long as the design model is used.

This iterative perspective emphasizes the importance of ex-
plainability [58] (presenting results with as much context and
causality as possible) and incremental complexity (encour-
aging models to be made more complex one step at a time).
Both principles are also important within an engineering or-
ganization, where repairs and refinements emerge through
collaborative explanation and reformulation.

Optimization
Mathematical programs can be described as finding minima of
a “cost” function f (x) over a particular domain. For example,
the minimum of f (x) = x2 differs if the domain is “all real
values of x” (Figure 2a) or “all real values of x greater than
0.5” (Figure 2b). This can be written generally as

minimize
x

f(x)

subject to x ∈ S
(1)

where S is that optimization’s “feasible set” [5]. S can be un-
derstood as the space of all potentially desirable answers: it is
possible that any x in S might be an optimum, and the purpose
of optimization is to return one which is. Each dimension of
x is a “free variable” in the sense that it is not known before
optimization, even though it may be heavily restricted by S.

This formulation affords both f (x) and S equal importance,
but it can be useful to move all complexity into the latter. For
any optimization, a new free variable can be introduced as the
cost (y in Figure 2c) and the original (potentially complex)
cost function can be added to S as the inequality f (x) ≤ y,
forming a new feasible set S∗ = S∩ (f (x) ≤ y). where the
new “constraint” must also be met by all potentially desirable
answers. This transformation (called the “epigraph problem
form” [8]) allows us to consider the set of potentially desirable
answers as the defining property of a mathematical program,
fitting the engineering design intuition of “what a design space
looks like depends on what you’re going for”.

Convex Optimization
An mathematical program is “convex” when S∗ is convex, de-
fined geometrically as “all points on any line between two
points in S∗ are themselves in S∗”. If S∗ is described by con-
straints, its convexity can also be derived from theirs: if each
constraint represents a convex set, S∗ is also convex. Certain
forms of constraint have been established as convex, and much

2

f(x) = x2

f(x*=0) = 0 S = { x ≥ 0.5 }

f(x,y) = y

A (left) a simple optimization: a cost function (dots),
 feasible set (solid) and optimal point (star)
B (right) a constraint which restricts the feasible set

C an optimization equivalent to (B) but with a new
 constrained variable representing the cost function

S = { x ≥ 0.5,
 y ≥ x2 }

Figure 2. Visual representations of optimization.

research in convex optimization has been done on develop-
ing new forms or applying existing ones to engineering and
operations problems [8].

Convexity can thus be considered a limitation on the types of
constraints in a mathematical program. In return it provides
benefits and guarantees for optimization algorithms. For ex-
ample, it is straightforward to show that convex programs have
only global optima. This is important because most algorithms
for non-convex programs cannot make global claims about
their solutions: instead of returning a point with the lowest
possible cost, they often return a local optimum (an answer
whose cost is not lowest in the entire set, just in a finite piece
of it). Being able to guarantee that each design returned is
a best-possible realization of their convex design model is
immensely useful to those seeking to convince other design
participants of their perspective.

Convexity also scales to large problems more readily than
non-convex optimization. It is possible to solve convex opti-
mization problems with thousands of free variables and con-
straints on a personal computer in seconds, while methods for
non-convex optimization may struggle to solve in hours for
merely dozens of free variables [8].

Strong Duality
Another property associated with convexity is strong Lagrange
duality, by which a “primal program” can be transformed into
a “dual program” whose optima correspond exactly. Dual
programs optimize over free variables which each correspond
to a primal constraint, and solving them gives the derivative
of the optimal cost with respect to those constraints. That
is, if the cost (as in Figure 2c) is equal to the variable y and
every constraint in the primal is of the form gi(x)≤ ci (where
each ci is a “fixed” variable not being optimized over), the
dual solutions are equal to dy

dci
. This interpretation of a dual

solution’s values as trade-offs between cis and the overall cost
has led them to be called “shadow prices” [8].

Geometric Programs
A Geometric Program is a type of convex program with strong
Lagrange duality whose objectives and constraints are con-
structed of posynomials, which are expressions defined by

p(x) =
M

∑
i=1

ci

N

∏
j=1

x
ai, j
j (2)

where each x j is a free variable whose domain is real numbers
greater than 0, each ai, j is a fixed real number, and each c is
a fixed real number greater than 0. Geometric Programs are
mathematical programs of the form

minimize
x

p0(x0,x1..,x j)

subject to p1(x0,x1..,x j)≤ 1,
..,

pk(x0,x1..,x j)≤ 1

(3)

where p0, ..pk are posynomials [7]. These posynomial con-
straints are not directly convex; rather, ln(p(ez)) is convex
in z, and x = ez can be calculated after solving. Geometric
Programs also be expressed in terms of exponential cone con-
straints [2].

Modeling Languages
For over 50 years Geometric Programs have been recognized
as particularly suited to engineering equations [65]. The rel-
atively recent introduction of optimization toolkits that do
not require a background in numerical methods [23, 40] has
made Geometric Programs accessible to a broader community.
These toolkits, often called “modeling languages”, abstract
away the solvers behind convex optimization with syntaxes
in which constraints can be written more “naturally”. [18]
Such a syntax reduces situations where the model received by
the solver is not as the modeler intended [22], lowering the
expertise barrier [23] for using convex optimization, allowing
engineers to utilize the results of optimization researchers [62].
Unlike the assignment operator of a conventional program-
ming language (such as z = 0.5) which directly assigns the
results of a calculation to a variable, constraint specifications
in a modeling language are represented only symbolically until
the model is passed to a solver, at which point all free variables
are simultaneously converged to an optimal point.

The Catastrophe of Delayed User Feedback
That free variables’ values are not available in the code where
they are declared or used but only after solving presents a user
experience catastrophe [56]. When users make typos which
render a constraint syntactically valid but substantively incor-
rect, they will not know of the error until the entire model is
solved, and even then won’t know which constraint caused
it. Attempts to find the offending constraint via “printf de-
bugging” [52] (placing print statements to isolate the error)
falter because users have been abstracted away from (and may
not have debugging experience with) the solver code in which
those variables become numeric.

3

Field Site Users GPkit Design Models Use Type
Class project with (under)graduate students 16 Electric “air taxi” service Mixed
Aerospace R&D firm of 100-500 employees 12 Costing and sizing for airplane projects Distributed
University researchers 10 Passenger jets, solar planes, other vehicles Distributed
Industry-government-university initiative 10 Hybrid propulsion topologies Mixed
Transportation startup of 150-250 employees 7 Pre-production system engineering Centralized
Class project with (under)graduate students 3 Gas-powered high-altitude surveillance drone Centralized

Table 1. Overview of field sites. The “Users” column is an approximation of active weekly users during the period of study.

Receiving a nonsensical “solution” after a simple typo and
not being able to find its cause is the primary way we’ve
seen optimization toolkits lose new users. Even for those
patient enough to dig in and find the error it takes time to
recover perceptions of the toolkit’s dependability. Like the
static checks of a compiled programming language [4], any
errors that can be raised during constraint specification, before
solving, make repair iterations faster and more fluid.

Accessing Dual Solutions and Shadow Prices
Modeling languages for convex optimization typically make
dual solutions accessible to users through either a vector of
values or directly via the relevant constraint [23, 18], but
surprisingly tend not to not suggest or encourage their use
during model development.

From the perspective of the design process above, the dual
solution can be incredibly useful. The relative importance of
each constraint to a particular solution’s optimality is fully
explained by the dual solution’s “shadow prices”. Constraints
with a shadow price of zero could be removed without chang-
ing the solution at all, while those with surprisingly large or
small shadow prices are likely erroneous, providing an oppor-
tunity for triage to speed repair iterations. In a “refinement”
iteration, shadow prices can be interpreted as “model risk”, or
the dependence of a design model’s conclusions on each of
its assumptions. Interpreted in this way, a list of constraints
ranked by the magnitude of their shadow price helps prioritize
potential refinements.

In geometric programs, shadow prices can also be used to
determine derivative of the cost with respect to each fixed
variable (those which are not free to be changed during opti-
mization) [29]. These can present even clearer feedback to a
design participant than shadow prices: if a potentially com-
plex design parameter such as a propeller’s efficiency has been
modeled as a constant, but the cost is extremely dependent on
this parameter, it may be worth developing a more complex
model to refine the risk of that assumption being incorrect.

Disciplined Convex Programming (DCP)
Disciplined Convex Programming [23] is both a method for
constructing certificates of a set’s convexity, and a syntax for
formulating convex constraints. DCP works by creating a
tree of operators with known conditions for convexity and
checking if this tree can be formulated as convex. This allows
non-convex constraints to raise errors during their creation,
providing pre-solve feedback to users on the mathematical
reasons a constraint is invalid. As discussed above, this kind
of immediate feedback is scarce in a modeling language, mak-

ing the “discipline” of Disciplined Convex Programming a
powerful aid to a model’s development process.

METHODS
One of the best methods for gaining insight into user inter-
actions is to observe users as they interact with systems of
interest, but as noted by Olsen “simple usability testing is not
adequate for evaluating complex systems” [45]. Exploring the
consequences of convex design models would benefit most
from expert users who are familiar enough with the toolkit
to place a wide range of stringent demands on them [55].
However due to their novelty the vast majority of workers are
novice users whose interactions will contain a mixture of gen-
uine errors arising from intentional behavior, and false errors
arising during familiarization. These learning behaviors of
novice users are insightful for system design and development
but muddy the waters when exploring consequences of convex
design models for engineering organizations.

Additionally, while the agency [34] of a design model’s mate-
rial is most apparent in people’s interactions with each other,
i.e. organizational practices, [20], these are difficult to create in
a more controlled environment. In a lab study participants are
likely to be strangers, lack experience in collaborative design
modeling, and have a limited period of interaction. Some par-
ticipant groups in Breneman’s excellent study of collaborative
satellite design show the scattered focus and poor outcomes
that can occur in such contexts [3]. Similarly, lab experiments
with convex optimization have shown with individual novice
users that the underlying mathematics of a design model can
affect design outcomes [10], but have struggled to show any
change in this effect with pairs of novice users [37].

These considerations steered work on GPkit to proceed by re-
cruiting users, working with them to understand the impact of
GPkit on their design models, and then observing throughout
continued engagement how this new design model material af-
fected organizations and designs. Observations that informed
GPkit were carried out across various research groups, class-
rooms, and industrial firms (see Table 1).

With users at each of these sites, the first author took field notes
through in-person and digital observations [19], conducted
informal usability tests, and worked with them to form shared
understandings of their practice. This was done to gain insight
into what they wanted to express when they made design
models, the ways in which they expressed those with each
material, and why those were their methods and goals.

GPkit’s development process also provided insight through
material dialogues between the first author and users. Toolkit
features often began as a way of asking a user “is this (syntax,

4

algorithm) what you meant when you said that about your
work?”. In using that feature the user questioned often found
an expressivity different from what they or the first author
had expected, and communicated this in how they used and
reflected on it [59]. This created a space in which each could
share knowledge and build concepts for design work and con-
vex programs that were interdependent, requiring the previous
conceptions of each to change simultaneously [26]. Features
which emerged from such spaces often felt spontaneous, each
party feeling it wasn’t really their idea, and were often the
features most obviously responsible for organizational change.

RESULTS

Organizational Outcomes
All field sites (see Table 1) used GPkit to validate decisions
presented in design reviews. In one case this was its exclusive
use: two researchers were funded to construct a GPkit model
by a firm hoping to convincingly validate its existing design.
Field sites were split between using it in ways which central-
ized design work, in ways which distributed it, or both. The
differences between sites reveal how GPkit may change engi-
neers’ interactions with their design models and each other,
particularly by increasing the amount of direct feedback on
modeling decisions.

Distributed Usecase
At the aerospace research and development firm, GPkit was
primarily contrasted with an in-house MATLAB toolkit. Most
design models made with either were developed by an in-
dividual modifying copies of others’ code to represent their
particular design prompt, testing their ideas for design oppor-
tunities, and then validating their conclusions in a series of
team meetings. The firm trained dozens of conceptual design
engineers to develop GPkit models and interactive demon-
strations in hopes of creating a horizontal culture of sharing
models and using them across new projects. They also de-
veloped a toolchain for interactive visualizations of GPkit
models in presentations, with one designer describing his pri-
mary usecase as “leading an audience through novel design
spaces”. Through these presentations GPkit’s introduction has
increased group discussion of detailed design model decisions.
Overall GPkit complements the MATLAB toolkit, which has
a great deal of organizational trust but is less amenable than
GPkit to extremely novel design spaces and interactive use
during a presentation.

The increased discussion of detailed design model decisions
was echoed when GPkit was introduced to academic contexts,
where design presentations are typically larger, longer, and
less frequent than at the aerospace firm. Academic use of
GPkit has been also been distributed and propagated in similar
ways, though with a wider variety of toolkits in competition
or complement.

Centralized Usecase
GPkit has also lent itself to more centralized approaches, as
shown by a transportation startup’s use. There a small “sys-
tems engineering” team developed a GPkit design model, then
established biweekly meetings with each subsystem team to
build consensus on a particular subsystem’s representation in

that model. Updates to the system model and its current re-
sults results were then disseminated across teams on a monthly
basis to build organizational consensus. The firm developed
an internal website to interactively run the system model and
encourage all design participants to explore its design space.
Development of this system design model helped bridged a
communication gap between higher-level managers and sub-
system engineers that had been startling at our first site visit.
At that time, subsystem engineers had said they felt unheard
when they suggested practical but less glamorous or novel tech-
nologies, while managers said that too many engineers didn’t
realize the necessity of riskier technologies for their product
category. System engineers, making models for the managers
but eating lunch with the subsystem engineers, felt caught in
between. The structure of the GPkit design model’s develop-
ment assured subsystem engineers that they could express the
manufacturing and maintenance costs of risky technologies,
while also reassuring managers that they could express the
market and sales costs of conventional ones.

The first use of GPkit in an aerospace design classroom also
centralized the work of design modeling. Several students
took on the role of system engineers and built consensus with
their peers to deviate from the requested solar-power archi-
tecture to a gas-powered one (see Observation D below for
more details). Some of these students then reused their GPkit
design code for manufacturing in the next semester’s “build”
class, through which the gas-powered surveillance drone pro-
posed the previous semester was built and successfully flown
(video at youtu.be/HMu3x5WxpeM). Teaching staff expressed
surprise that the final build adhered so closely to the GPkit
model’s weight estimates.

Mixed Usecases
Other field sites mixed the centralized and decentralized use-
cases. In the design class after the gas-powered drone, GP-
kit adoption started with distributed use but became fairly
centralized by the end of the semester. In the government-
industry-academia initiative, some participants collaborated on
a centralized design model while others developed individual
models. During a mid-cycle progress review presentation, gov-
ernment officials expressed a preference for distributed mod-
els’ dual-solution-based scaling laws over centralized models’
complex comparisons of propulsor topologies.

Toolkit Features and Observations
This section discusses exemplary GPkit features and observa-
tions accompanying their development.

Observation A: Variable Declaration Comments
Comments that users added to their code were used to gain
insight into their understanding of the design model. One
repeat observation was of the comments added to variable
declarations to provide additional information about that
variable, for example “S = Variable() # [ft**2] wing
surface area”.

Feature A: Variable Metadata
While some modeling frameworks do not capture a variable’s
name as a code object [13], GPkit brought these variable
metadata directly into the code: “S = Variable(‘S’,

5

https://youtu.be/HMu3x5WxpeM

units=‘ft**2’, label=‘wing surface area’)”.
Then, “paving the desire paths”[41], we used this information
wherever possible.

Adding variable names and labels allowed GPkit to provide a
default solution presentation that could be understood without
referencing the original code (note S, its units, and its label in
Figure 3), helping users more quickly see errors and giving
them something which could be shown immediately to other
design participants.

Incorporating variables’ units and the corresponding unit al-
gebra enabled errors to be raised whenever users attempted to
add variables or create a constraint whose units were incompat-
ible. As previously working models stopped solving, we heard
some complaints. But unit checking provided immediate error
feedback on constraints, and even the last holdouts came to
actively appreciate it when it saved them from typos. Units
also reduced metrication errors, removing the risk of changing
a variable’s unit. Units were still fairly new when the gas-
powered drone mentioned above was proposed, and students
spent an hour checking that the automatic unit conversions
were being done correctly as they prepared to present to their
client; later users rarely thought about such concerns.

Observation B: Modeling Gravity
During development of a (different) solar plane, gravity was
modeled as a fixed variable g (instead of a united constant),
and at “+4” was the most sensitive fixed variable. As a bit
of a joke (and to get it to stop showing up in fixed-variable
sensitivity tables), researchers modeled the slight difference in
gravity at high altitude; to their surprise this lead to changes
in their design.

Feature B: Sensitivity Tables
As part of the default presentation of results GPkit summarizes
the dual solution (returned by the solver automatically), show-
ing the “sensitivities” of fixed variables and constraints (note A
and the fuel-burn constraints in Figure 3). As with the shadow
prices of strong Lagrange duality, sensitivities correspond to
d log(y)
d log(ci)

, where y is the cost and ci is a fixed variable whose
value is known before solving. This means that sensitivities
correspond to a local power-law fit: in the situation above, the
cost was locally proportional to g4, so decreasing gravity by
ε% decreased the cost by exactly (4× ε)% (for sufficiently
small epsilon; sensitivities are only exactly true exactly at a
solution). By showing these sensitivities to users, GPkit helps
them repair erroneously large or small fixed-variable depen-
dencies (which might not be clear in the primal solution) to
prioritize refinements of their design model.

Observation C: Plotting Along
Solution tables are the atomic result of convex programs. The
features mentioned above increase their usefulness for present-
ing to other design participants, but numerical plots showing
multiple solutions at once are still more commonly used for
that purpose, in part because of their rhetorical weight [47, 31].
The vast majority of user generated solutions are made specif-
ically for plots comparing trade-offs between performance
parameters, and most such visualizations use a conservative
number of manually specified points on a rectangular grid in

Cost

1.091 [lbf]

Free Variables

| Aircraft
W : 144.1 [lbf] weight

| Aircraft.Wing
S : 44.14 [ft**2] surface area
W : 44.14 [lbf] weight
c : 1.279 [ft] mean chord

| Mission.FlightSegment.AircraftP
Wburn : [0.274 0.272] [lbf] fuel burn
Wfuel : [1.09 0.272] [lbf] fuel weight

| Mission.FlightSegment.AircraftP.WingAero
D : [2.74 2.72] [lbf] drag force

Sensitivities

| Aircraft.Fuselage
W : +0.97 weight

| Aircraft.Wing
A : -0.67 aspect ratio

rho : +0.43 areal density

Tightest Constraints

| Aircraft
+1.4 : .W >= .Fuselage.W + .Wing.W

| Mission
+1 : Wfuel[0] >= Wfuel[1] + Wburn[0]

+0.75 : Wfuel[1] >= Wfuel[2] + Wburn[1]
+0.5 : Wfuel[2] >= Wfuel[3] + Wburn[2]

| Aircraft.Wing
+0.43 : .W >= S*.rho

Figure 3. Example of a results table in GPkit.

6

A Initial solutions
 and sensitivities B Initial bounds

D Additional solutions
 decrease errorC Minimum-error estimate

Figure 4. Visual explanation of the Autosweep algorithm.

an attempt to avoid inaccuracy and perceptible discontinuities
between solution points.

Feature C: Autosweep
For plots in which the independent axes are fixed variables
and the only dependent axis is cost we can solve for it with
optimal efficiency through the use of dual solutions. Because
of convexity, variable sensitivities at corners of the grid de-
fine hyperplanes which lower-bound the cost inside, and the
hyperplanes constructible from those corners upper bound it.
Any solved points are exact, so these upper and lower bounds
intersect at those corners. Figure 4 illustrates this in two di-
mensions with one independent fixed variable as the horizontal
axis and the dotted parabola representing the (unknown by the
algorithm) optimal cost. Averaging upper and lower bounds
results in an estimate whose inaccuracy is equal to half the
vertical distance between upper and lower bounds. If this isn’t
accurate enough, the estimate can be optimally improved by
solving at points of maximum vertical distance, iterating until
the desired accuracy is achieved. Note that any straight or
planar portions of the cost function are completely described
by just their boundary points. This algorithm needs very few
solutions to describe predictable portions of the design space.
Between its improved solution placement and the ability for
users to directly specify their desired accuracy this algorithm
is faster and more precise than naive gridding. Because of its
iterative nature it can also be used as an online algorithm for
real-time design space exploration.

Observation D: Shifting Costs and Constraints
As mentioned in Centralized Usecase above, GPkit was used
in an aerospace design classroom where the “client” requested
a solar-powered surveillance drone that could loiter for as
long as possible at high altitude above a target location. Stu-
dents debated this specification, realizing the airplanes their
model returned were large enough to present transportation

and deployment difficulties. Could it make sense to consider
architectures other than solar power? After some consterna-
tion at going against the client’s instructions, they developed a
model for propulsion by a gasoline engine and changed their
cost function, solving instead for the lightest gas-powered
plane that could loiter for at least 6 days.

To the surprise of teaching staff an optimized gas-powered
architecture was both capable of 6 days endurance and much
more amenable to manufacturing. The underlying design
model stayed mostly the same, changing only its cost function
and propulsion and fuel models, which helped the client un-
derstand the tradeoffs and fully buy in to the new architecture.

Feature D: Modularity and Convexity
What came out of this observation was not just GPkit syntax
but an appreciation for the synergy between convex modeling
and engineering practice.

By asking users about how they used cost functions, we
learned that their value was not in returning the “best result”,
but rather in getting a better understanding of the set of po-
tentially desirable designs by collapsing it along a particular
axis. We observed engineers optimizing for multiple perfor-
mance parameters, each generating a “paragon” optimal by
that metric [49]. Comparison of these paragons gave a sense of
possibilities for their design [48]. Sometimes even a singular
and quantifiable goal (such as the expected profit of a product),
was thanklessly complex to represent, leading engineers to a
preference for discussing paragons. While many mathematical
programs’ structure or method of solving is built around the
cost function, in convex design models we have often found
that all performance parameters are viable cost functions. As a
result, after the events above occurred we standardized setting
cost functions as the last pre-solve step.

We also found that because constraints can represent equations
describing a design’s function as well as those describing its
form, constraints and entire models (e.g. an aircraft’s wing
spar) are often reusable across projects.

Observation E: Where Constraints “Belong”
We repeatedly heard GPkit users refer to where constraints
“belonged”. This was done explicitly in “#TODO” comments
apologizing for a constraint’s misplacement, in “#NOTE”
comments justifying its presence, and in design discussions
(“does the fuel burn constraint belong here [with the fuel
model] or there [with the airplane drag constraints]?”). It
was also done implicitly, with “belonging” represented by
the clustering of constraints into named categories. Con-
straints were generally described as “belonging” either to
categories arising from a hierarchy of the design’s physi-
cal layout (wing, fuselage) or from the disciplinary hier-
archy (aerodynamics_eqs, structural_eqs) common in
non-convex aerospace design codes.

Feature E.1: Named Object-Oriented Constraint Sets
We found that such categories could be well represented as
a tree of custom objects; for example, an Airplane instance
containing Wing and Fuselage instances. Although most users
had not written object-oriented code prior to GPkit, adop-
tion of this feature was surprisingly rapid; the object-oriented

7

Figure 5. Sankey diagram displaying a model’s constraint tree (left is towards the root) and the sensitivity of each named constraint set object (thicker
is more sensitive). Discontinuous increases in thickness at a particular object indicate the sensitivity of the unnamed constraints inside it.

framework seemed to fit their experience and intuition, and
introduction of a hierarchy lowered the number of variables
available in each constraint’s and made the interlinking of
subsystems more repairable and explainable. With this new
layer of abstraction, engineers felt more comfortable repairing,
refining and explaining design models spanning multiple files,
and began creating “stub models” with fixed variables and no
constraints to be refined later if the model was sensitive to one
of those variables [48].

Feature E.2: Constraint Set Boundedness Verification
These objects (Wing, Fuselage) provided another way to check
constraint’s correctness before solving, by asking users to
specify which variables they expected to be upper or lower
unbounded by instances of that object class. For example, a
WingStructure instance might be expected to not put a lower
bound on b (representing the wing’s length), because a van-
ishingly short wing structure would be perfect in its weight-
lessness. However WingStructure ought to upper bound b,
because a too-long wing would bend and snap. If a WingStruc-
ture instance imposed a lower bound or lacked an upper bound
on b, GPkit would warn the user and suggest they either repair
their model or refine their expectations for WingStructure. Be-
cause variables in a model are typically both upper and lower
bounded (if they’re not the model is generally infeasible), we
explained these bounds checks to users by relating them to a
jigsaw puzzle where objects’ upper-bounded “tabs” and lower-
bounded “notches” fit together to form a design model without
any unmatched tabs or notches.

Observation F: “An Engine With a Stick Attached”
A researcher in the industry-government-university initiative
came to us with a frustrated certainty that the jet engine com-
ponent of their design model was “too brittle”: “The plane is
being entirely designed around the engine! [...] changing the
plane model doesn’t change the optimal engine at all; changing
the optimal engine model completely changes the plane. It’s
like an engine with a stick attached.” Part of their frustration

was that, while they had become certain of this by solving
for various points, they did not know how to convince their
colleague who was developing the engine model.

Feature F: Sankey Diagrams of the Dual Solution
By summing all constraint sensitivities in a named constraint
set we calculate the effect changing those variables simultane-
ously would have on cost. The diagram in Figure 5 shows both
the hierarchy of a model (see Feature E.1) and the relative sen-
sitivities of each named constraint set. For the engineer who’d
come to us, seeing this exact diagram felt like a vindication;
here was clear indication of their design model’s sensitivity to
the engine to the exclusion of the rest of the airplane. After
further finding that the basic lift constraint in the Airplane
object was responsible for most of the rest of its sensitivity,
their initial heated description of their design model as “an
engine with a [lift-providing] stick attached” seemed quite apt.

We also developed Sankey diagrams for variables, showing
the portion of a variable’s total sensitivity coming from each
constraint. Free variables always have zero sensitivity (if
they’d be better at a higher or lower value, that would by
definition be their optimal value), but seeing how positive
and negative sensitivities across constraints sum to that zero
explains which constraints are responsible for that variable’s
value. This is particularly helpful if a free variable’s optimal
value is either unexpected (repair cycle) or part of a design
debate (refinement cycle).

Observation G: Shared Tooling
Early in the gas-powered-drone class project, the model found
a curious way of flying; accelerating as it increased in alti-
tude, but unexpectedly keeping the same speed even as it spent
fuel and became lighter. The culprit turned out to be one
variable, the Reynolds number (a non-dimensional characteri-
zation of aerodynamics), which had been incorrectly specified
as a scalar rather than a vector variable. The model was thus,
correctly, trying to find an optimal single Reynolds number it

8

could maintain across all modes of flight, making the plane’s
airspeed a function only of its altitude. Years later, the idea of
this plane striving to achieve a perfectly consistent Reynolds
number is still considered extremely comedic by some of the
original teaching staff.

Feature G: Vectorization Environments
To make such mistakes less likely, we built upon Tony Tao’s
work [61] exploring simultaneous optimization of a fleet of air-
planes. Instead of designing one plane for multiple flight states
(e.g. climbing, cruising, landing), he modeled one set of manu-
facturing tools shared by multiple airplanes, each with multiple
flightstates, thus adding another dimension to a typical “multi-
point” design problem. In GPkit we introduced vectorization
environments to add a dimension to variables in any subtree of
the constraint hierarchy. This made adding such abstractions
straightforward; what had been one airplane and flight state
could, with a few lines of code, become multiple flight states
which shared an airplane, and with another few lines multiple
planes with shared tooling. As with object-oriented constraint
sets, the introduction of this method encouraged users to make
significantly larger models. Vectorization made adding new
modes of flight, new missions, and new structural loading
cases much simpler, though it required care in model construc-
tion to ensure variables were partitioned to permit the desired
vectorization. On one project, the Wing model had to be split
into WingStructure (which stayed in Airplane) and WingAero
(which went into a new AirplanePerformance object) so that a
single Airplane could have a vectorized AirplanePerformance
for each of its flight states.

Observation H: Flight Envelopes
While the concept of a feasible set originates in optimization,
we have found it quite intuitive to engineers. A graduate
student using GPkit once explained to us that they did not
wish to specify an objective function because they did not
want to solve for a particular point. Rather, they wanted to
solve for all designs which fit their requirements. Instead of
building a design model to ask “at what altitude and speed
does a single-bladed helicopter fly best?”, they wanted to ask
“at what altitudes and speeds can a single-bladed helicopter be
flown at all?”.

Feature H: Design Space Approximation
Because of this request, GPkit has an efficient design space
approximation algorithm, similar to that for autosweep. By
selecting a simplex in the given dimensionality (a triangle
in 2D; see Figure 6), we can solve from each corner for the
nearest edge of the feasible set. Because the feasible set must
be convex, the simplex formed by these feasible points is
an inner approximation of the feasible set, while the area
contained by the perpendicular tangents of those points is an
outer one. As with autosweep, averaging the two forms an
estimate with minimum inaccuracy, reducable as desired by
additional solves at the most inaccurate points. If solving a
point outwards returns a certificate of dual infeasibility the
design space is unbounded in that direction, and because of
convexity that direction will be unbounded for all points.

A Initial nearest-feasible
 solutions B Initial bounds

D Additional solutions
 decrease error

C Minimum-error estimate

Figure 6. Visual representation of design space approximation.

DISCUSSION
In this section we will explore how this work fits within the
HCI literature, but first we should discuss its limitations [12].
Convex programs are fundamentally limited as a material
for design models, and this is a limited study of a particular
toolkit in a few field sites. While our methods produced a
wealth of information and insights that could otherwise not
have been obtained they are sensitive to selection biases, and
our ethnographic methods were not rigorously planned but of-
ten emerged from necessity or opportunity. To alleviate issues
of physical distance the we made an effort to provide up-to-
date documentation and discussions online, but not everyone
was equally able or willing to communicate their experiences
back to the first author, which marginalized them in the de-
velopment process. Further many of the above features (unit
analysis, variable metadata, sensitivity analysis) are present in
other programming languages or engineering design toolkits,
though as far as we know they are novel to convex optimization
toolkits.

GPkit as a Toolkit
Toolkits have been defined by Greenberg as providing a “vo-
cabulary and set of building blocks” which “give people a
‘language’ to think about these new interfaces, which in turn
allows them to concentrate on creative designs.” [25]. Ledo
et al. [12] extended this to define toolkits as “generative plat-
forms designed to create new interactive artifacts, provide easy
access to complex algorithms, enable fast prototyping of soft-
ware and hardware interfaces, or enable creative exploration
of design spaces”. We have done several of these with GPkit,
giving engineers the ability to rapidly build and improve inter-
active explorations of convex design spaces. GPkit is thus an
“artifact contribution”, where “new knowledge is embedded
in and manifested by artifacts and the supporting materials
that describe them”, as demonstrated via the case studies and
observations above [12].

9

GPkit as a User Interface System
This work also follows in the footsteps of other user interface
systems [45]. GPkit falls under each of the three limitations
of usability experiments, being a tool for expert users doing
non-standard tasks over a time period of months or years. As
with previous papers using this framework [30] we consider
GPkit in Olsen’s framework for User Interface Systems [45]:
it introduces a new task to a preexisting group of users (en-
gineering designers) in a preexisting situation (early stage
design), but (unlike in Olsen), GPkit also seeks to change that
situation, changing the ways in which computers are used in
these organizations as part of the its development.

Value Added by UI Systems Architecture
GPkit sets up “paths of least resistance” [45, 9] for explaining
design codes; this results in models that can be more amenable
to iterative improvement than alternatives, allowing users to
derive related solutions with reduced development viscosity
and build on common infrastructure. Convex programs have
been inaccessible to most engineering organizations, but by
making them accessible, GPkit helps increase the scale of their
design models from dozens of free variables to thousands. GP-
kit thus lowers the threshold and raises the ceiling for design
codes. The “Moving Targets” present in any use-motivated
work [9] have been a fuel for the development of GPkit; we
have encouraged our users to change their goals and expecta-
tions as they use it so they might adopt previously untenable
organizational practices.

CONCLUSION
Much can be gained by integrating user experience and the
mathematics of convexity. Our original goal was to understand
and develop convex optimization as a material for engineering
design models, so we adopted an explicitly human-centered
framework and attempted to align practitioners’ knowledge of
their work with the way they used GPkit. We found convex
design models to be powerful tools that can contain the hopes
and concerns of many design participants. In this paper we
have presented several of the novel algorithms (such as de-
sign space approximation and autosweep) and visualizations
(such as Sankey sensitivity diagrams) that resulted from this
approach. We have also developed insights into the user ex-
perience of design models and the methods by which users
iteratively repair and refine them. The utility and ease of use
of GPkit has led it to be woven into the fabric of several engi-
neering organizations, changing their practices of engineering
design. By drawing from a breadth of research areas and
practitioner experiences, it has also opened up new avenues
for HCI research in design models, convex optimization, and
organizational outcomes.

ACKNOWLEDGEMENTS
This study was supported in part by an award by the MIT-
Sensetime Fund and the National Science Foundation under
grant #1854833. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the funders.

EB: Without the creative ferment of the Convex Engineer-
ing Group this work could never have happened; cheers to
Cody Archer, Arthur Brown, Michael Burton, Lochie Ferrier,
Philippe Kirschen, Berk Ozturk, and Ali Saab. Shouts out to
David Anderson, who started with me on this research direc-
tion while we were undergraduates, and to Maria Yang, who
gave me a place from which to start again. To Ambika Kamath,
whose reminder that “There’s room for solidity and for ambi-
tion” kept me going. Thanks also to those who handled early
drafts, some already listed but including also Dr. Hong-en
Chen and Katy Gero, whose questions and critiques carried us
over the finish line. A particularly special thanks goes to the
members of my family (Nevin, Michael, and Nevin) who with
patient exasperation tolerated my lack of foresight as I finished
this paper’s first submission amidst Yellowstone campsites.

Finally, we would like to acknowledge our kindly critical re-
viewers, whose efforts in understanding our oddball first sub-
mission and suggesting improvements made a stark difference
in its quality.

REFERENCES
[1] Sara Achour and Martin Rinard. 2018. Time Dilation

and Contraction for Programmable Analog Devices with
Jaunt. In ACM SIGPLAN Notices, Vol. 53. ACM,
229–242.

[2] Akshay Agrawal, Steven Diamond, and Stephen Boyd.
2019. Disciplined geometric programming.
Optimization Letters (2019), 1–16.

[3] Jesse Austin-Breneman, Tomonori Honda, and Maria C
Yang. 2012. A study of student design team behaviors in
complex system design. Journal of Mechanical Design
134, 12 (2012), 124504.

[4] Nathaniel Ayewah, William Pugh, David Hovemeyer,
J David Morgenthaler, and John Penix. 2008. Using
static analysis to find bugs. IEEE software 25, 5 (2008),
22–29.

[5] Brian Beavis and Ian Dobbs. 1990. Optimisation and
stability theory for economic analysis. Cambridge
university press.

[6] Daniel Beunza and David Stark. 2004. Tools of the trade:
the socio-technology of arbitrage in a Wall Street trading
room. Industrial and corporate change 13, 2 (2004),
369–400.

[7] Stephen Boyd, Seung-Jean Kim, Lieven Vandenberghe,
and Arash Hassibi. 2007. A tutorial on geometric
programming. Optimization and Engineering (2007).

[8] Stephen Boyd and Lieven Vandenberghe. 2004. Convex
Optimization. Cambridge University Press, New York,
NY, USA.

10

[9] Randy Pausch Brad Myers, Scott E Hudson. 2000. Past,
present, and future of user interface software tools. 7
(2000), 3–28. Issue 1. DOI:
http://dx.doi.org/10.1145/344949.344959

[10] Edward Burnell, Michael Stern, Ana Flooks, and
Maria C Yang. 2017. Integrating Design and
Optimization Tools: A Designer Centered Study. In
ASME 2017 International Design Engineering Technical
Conferences and Computers and Information in
Engineering Conference. American Society of
Mechanical Engineers Digital Collection.

[11] Michael J Burton and Warren W Hoburg. 2017.
Solar-Electric and Gas Powered, Long-Endurance UAV
Sizing via Geometric Programming. In 18th
AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference. 4147.

[12] Jo Vermeulen Nicolai Marquardt Lora Oehlberg
David Ledo, Steven Houben and Saul Greenberg. 2018.
Evaluation strategies for HCI toolkit research. In ACM
SIGCHI Conference on Human Factors in Computing
Systems. ACM, 18.

[13] Steven Diamond and Stephen Boyd. 2016. CVXPY: A
Python-embedded modeling language for convex
optimization. Journal of Machine Learning Research 17,
83 (2016), 1–5.

[14] Luis Diez, George-Pantelimon Popescu, and Ramón
Agüero. 2016. A geometric programming solution for
the mutual-interference model in hetnets. IEEE
Communications Letters 20, 9 (2016), 1876–1879.

[15] Alexander Domahidi, Eric Chu, and Stephen Boyd.
2013. ECOS: An SOCP solver for embedded systems. In
2013 European Control Conference (ECC). IEEE,
3071–3076.

[16] Aidan Dowdle and Marija Ilić. 2017. Interconnected
state-space modeling for turboelectric aircraft. In 2017
North American Power Symposium (NAPS). IEEE, 1–6.

[17] Aidan P Dowdle, David K Hall, and Jeffrey H Lang.
2018. Electric Propulsion Architecture Assessment via
Signomial Programming. In 2018 AIAA/IEEE Electric
Aircraft Technologies Symposium (EATS). IEEE, 1–21.

[18] Iain Dunning, Joey Huchette, and Miles Lubin. 2015.
JuMP: A modeling language for mathematical
optimization. arXiv preprint arXiv:1508.01982 (2015).

[19] Robert M Emerson, Rachel I Fretz, and Linda L Shaw.
2011. Writing ethnographic fieldnotes. University of
Chicago Press.

[20] Martha S Feldman and Wanda J Orlikowski. 2011.
Theorizing practice and practicing theory. Organization
science 22, 5 (2011), 1240–1253.

[21] Sebastian K Fixson and Tucker J Marion. 2012.
Back-loading: A potential side effect of employing
digital design tools in new product development. Journal
of Product Innovation Management 29 (2012), 140–156.

[22] Robert Fourer, David M Gay, and Brian W Kernighan.
1987. AMPL: A mathematical programming language.
Citeseer.

[23] Michael Grant, Stephen Boyd, and Yinyu Ye. 2006.
Disciplined convex programming. In Global
optimization. Springer, 155–210.

[24] Justin Gray, Kenneth Moore, and Bret Naylor. 2010.
OpenMDAO: An open source framework for
multidisciplinary analysis and optimization. In 13th
AIAA/ISSMO Multidisciplinary Analysis Optimization
Conference. 9101.

[25] S. Greenberg. 2007. Toolkits and interface creativity.
Multimedia Tools and Applications) 32 (2007), 139
–159. Issue 2. DOI:
http://dx.doi.org/10.1007/s11042-006-0062-y

[26] Davydd J Greenwood and Morten Levin. 2006.
Introduction to action research: Social research for
social change. SAGE publications.

[27] David K Hall, Aidan Dowdle, Jonas Gonzalez, Lauren
Trollinger, and William Thalheimer. 2018. Assessment
of a Boundary Layer Ingesting Turboelectric Aircraft
Configuration using Signomial Programming. In 2018
Aviation Technology, Integration, and Operations
Conference. 3973.

[28] Monowar Hasan, Sibin Mohan, Rodolfo Pellizzoni, and
Rakesh B Bobba. 2018. A design-space exploration for
allocating security tasks in multicore real-time systems.
In 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 225–230.

[29] Warren Woodrow Hoburg. 2013. Aircraft design
optimization as a geometric program. Ph.D. Dissertation.
University of California, Berkeley.

[30] & Marquardt N. Houben, S. 2015. Watchconnect: A
toolkit for prototyping smartwatch-centric cross-device
applications. In ACM Conference on Human Factors in
Computing Systems. ACM, 1247–1256.

[31] Sarah Kaplan. 2011. Strategy and PowerPoint: An
inquiry into the epistemic culture and machinery of
strategy making. Organization Science 22, 2 (2011),
320–346.

[32] Pasha Khosravi, Yitao Liang, YooJung Choi, and Guy
Van den Broeck. 2019. What to Expect of Classifiers?
Reasoning about Logistic Regression with Missing
Features. arXiv preprint arXiv:1903.01620 (2019).

[33] Philippe G Kirschen, Edward Burnell, and Warren
Hoburg. 2016. Signomial programming models for
aircraft design. In 54th AIAA Aerospace Sciences
Meeting. 2003.

[34] Bruno Latour. 1992. Where are the missing masses, the
sociology of mundane artefacts. Bijerker, WE & Law,
J.(1992). Eds., Shaping Technology/Building Society:
Studies in Sociotechnical Change. MIT Press,
Cambridge (1992), 255–258.

11

http://dx.doi.org/10.1145/344949.344959
http://dx.doi.org/10.1007/s11042-006-0062-y

[35] Paul M Leonardi. 2011. When flexible routines meet
flexible technologies: Affordance, constraint, and the
imbrication of human and material agencies. MIS
quarterly 35, 1 (2011), 147–167.

[36] Ramon Leyva. 2016. Optimal sizing of Cuk converters
via Geometric Programming. In IECON 2016-42nd
Annual Conference of the IEEE Industrial Electronics
Society. IEEE, 2480–2485.

[37] Eunice Lin. 2017. Collaboration in design optimization.
Master’s thesis. Massachusetts Institute of Technology.

[38] Gloria Mark. 2002. Extreme collaboration. Commun.
ACM 45, 6 (2002), 89–93.

[39] Nolwenn Maudet, Germán Leiva, Michel
Beaudouin-Lafon, and Wendy Mackay. 2017. Design
Breakdowns: Designer-Developer Gaps in Representing
and Interpreting Interactive Systems. In Proceedings of
the 2017 ACM Conference on Computer Supported
Cooperative Work and Social Computing. ACM,
630–641.

[40] M Mutacipc, K Koh, S Kim, and S Boyd. 2008. A
matlab toolbox for geometric programming. (2008).

[41] Carl Myhill. 2004. Commercial success by looking for
desire lines. In Asia-Pacific Conference on Computer
Human Interaction. Springer, 293–304.

[42] Bonnie A Nardi and James R Miller. 1991. Twinkling
lights and nested loops: distributed problem solving and
spreadsheet development. International Journal of
Man-Machine Studies 34, 2 (1991), 161–184.

[43] Jorge Nocedal and Stephen J Wright. 2006. Numerical
optimization. Springer Science+ Business Media.

[44] Brendan O’Donoghue, Eric Chu, Neal Parikh, and
Stephen Boyd. 2016. Conic optimization via operator
splitting and homogeneous self-dual embedding.
Journal of Optimization Theory and Applications 169, 3
(2016), 1042–1068.

[45] Dan R. Olsen. 2007. Evaluating User Interface Systems
Research. Proceedings of the 20th Annual ACM
Symposium on User Interface Software and Technology
(2007), 251–258. DOI:
http://dx.doi.org/10.1145/1294211.1294256

[46] Max MJ Opgenoord, Brian S Cohen, and Warren W
Hoburg. 2017. Comparison of Algorithms for Including
Equality Constraints in Signomial Programming.
Aerospace Computational Design Lab., Massachusetts
Inst. of Technology, TR-17-1, Cambridge, MA (2017).

[47] Thomas Østerlie, Petter G Almklov, and Vidar Hepsø.
2012. Dual materiality and knowing in petroleum
production. Information and organization 22, 2 (2012),
85–105.

[48] Berk Öztürk. 2018. Conceptual engineering design and
optimization methodologies using geometric
programming. Master’s thesis. Massachusetts Institute
of Technology.

[49] Berk Ozturk and Ali Saab. 2019. Optimal Aircraft
Design Deicions under Uncertainty via Robust
Signomial Programming. In AIAA Aviation 2019 Forum.
3351.

[50] Gerhard Pahl and Wolfgang Beitz. 2013. Engineering
design: a systematic approach. Springer Science &
Business Media.

[51] Kevin LG Parkin, Joel C Sercel, Michael J Liu, and
Daniel P Thunnissen. 2003. Icemaker™: an excel-based
environment for collaborative design. (2003).

[52] Michael Perscheid, Benjamin Siegmund, Marcel
Taeumel, and Robert Hirschfeld. 2017. Studying the
advancement in debugging practice of professional
software developers. Software Quality Journal 25, 1
(2017), 83–110.

[53] Ryan Pilgrim. 2017. Source Coding Optimization for
Distributed Average Consensus. arXiv preprint
arXiv:1710.01816 (2017).

[54] Alex Preda. 2006. Socio-technical agency in financial
markets: The case of the stock ticker. Social Studies of
Science 36, 5 (2006), 753–782.

[55] Prashanth Rajivan, Pablo Moriano, Timothy Kelley, and
L Jean Camp. 2017. Factors in an end user security
expertise instrument. Information & Computer Security
25, 2 (2017), 190–205.

[56] A Rizzo, O Parlangeli, E Marchigiani, and S Bagnara.
1996. The management of human errors in user-centered
design. ACM SIGCHI Bulletin 28, 3 (1996), 114–118.

[57] BF Robertson and DF Radcliffe. 2009. Impact of CAD
tools on creative problem solving in engineering design.
Computer-Aided Design 41, 3 (2009), 136–146.

[58] Wojciech Samek, Thomas Wiegand, and Klaus-Robert
Müller. 2017. Explainable artificial intelligence:
Understanding, visualizing and interpreting deep
learning models. arXiv preprint arXiv:1708.08296
(2017).

[59] D Schon. 1983. The reflective practitioner. How
professionals think in action. Temple Smith, London.

[60] Junnan Shan, Mario R Casu, Jordi Cortadella, Luciano
Lavagno, and Mihai T Lazarescu. 2019. Exact and
Heuristic Allocation of Multi-kernel Applications to
Multi-FPGA Platforms. In Proceedings of the 56th
Annual Design Automation Conference 2019. ACM, 3.

[61] Tony Shuo Tao. 2018. Design, optimization, and
performance of an adaptable aircraft manufacturing
architecture. Ph.D. Dissertation. Massachusetts Institute
of Technology.

[62] Madeleine Udell, Karanveer Mohan, David Zeng, Jenny
Hong, Steven Diamond, and Stephen Boyd. 2014.
Convex optimization in Julia. In High Performance
Technical Computing in Dynamic Languages
(HPTCDL), 2014 First Workshop for. IEEE, 18–28.

12

http://dx.doi.org/10.1145/1294211.1294256

[63] Eppinger Steven D Ulrich, Karl T and Maria C Yang.
2011. Product Design and Development. (2011).

[64] Bo Wu, Murat Cubuktepe, Suda Bharadwaj, and Ufuk
Topcu. 2019. Reward-Based Deception with Cognitive
Bias. arXiv preprint arXiv:1904.11454 (2019).

[65] Chin Chang Wu. 1976. Design and modeling of solar
sea power plants by geometric programming.
Carnegie-Mellon Univ., Pittsburgh, PA (USA).

[66] Maria C Yang. 2005. A study of prototypes, design
activity, and design outcome. Design Studies 26, 6
(2005), 649–669.

[67] Maria C Yang. 2009. Observations on concept
generation and sketching in engineering design.
Research in Engineering Design 20, 1 (2009), 1–11.

[68] Martin A York, Warren W Hoburg, and Mark Drela.
2017. Turbofan engine sizing and tradeoff analysis via
signomial programming. Journal of Aircraft 55, 3
(2017), 988–1003.

13

	Introduction
	Background
	Usecases
	Design Process
	Optimization
	Convex Optimization
	Strong Duality
	Geometric Programs

	Modeling Languages
	The Catastrophe of Delayed User Feedback
	Accessing Dual Solutions and Shadow Prices
	Disciplined Convex Programming (DCP)

	Methods
	Results
	Organizational Outcomes
	Distributed Usecase
	Centralized Usecase
	Mixed Usecases

	Toolkit Features and Observations
	Observation A: Variable Declaration Comments
	Feature A: Variable Metadata
	Observation B: Modeling Gravity
	Feature B: Sensitivity Tables
	Observation C: Plotting Along
	Feature C: Autosweep
	Observation D: Shifting Costs and Constraints
	Feature D: Modularity and Convexity
	Observation E: Where Constraints ``Belong''
	Feature E.1: Named Object-Oriented Constraint Sets
	Feature E.2: Constraint Set Boundedness Verification
	Observation F: ``An Engine With a Stick Attached''
	Feature F: Sankey Diagrams of the Dual Solution
	Observation G: Shared Tooling
	Feature G: Vectorization Environments
	Observation H: Flight Envelopes
	Feature H: Design Space Approximation

	Discussion
	GPkit as a Toolkit
	GPkit as a User Interface System
	Value Added by UI Systems Architecture

	Conclusion
	Acknowledgements
	References

