2008.02015v2 [cs.LO] 7 Aug 2020

arxiv

Under constideration for publication in Theory and Practice of Logic Programming 1

Modular Answer Set Programming as a
Formal Specification Language

PEDRO CABALAR

University of Corunna, Spain
(e-mail: cabalar@udc.es)

JORGE FANDINNO

University of Potsdam, Germany
(e-mail: fandinno@uni-potsdam.de)

YULIYA LIERLER

University of Nebraska Omaha, USA
(e-mail: ylierler@unomaha.edu)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

In this paper, we study the problem of formal verification for Answer Set Programming (ASP),
namely, obtaining a formal proof showing that the answer sets of a given (non-ground) logic
program P correctly correspond to the solutions to the problem encoded by P, regardless of the
problem instance. To this aim, we use a formal specification language based on ASP modules, so
that each module can be proved to capture some informal aspect of the problem in an isolated
way. This specification language relies on a novel definition of (possibly nested, first order)
program modules that may incorporate local hidden atoms at different levels. Then, verifying
the logic program P amounts to prove some kind of equivalence between P and its modular
specification.

KEYWORDS: Answer Set Programming, Formal Specification, Formal Verification, Modular
Logic Programs.

1 Introduction

Achieving trustworthy Al systems requires, among other qualities, the assessment that
those systems produce correct judgments! or, in other words, the ability to verify that
produced results adhere to specifications on expected solutions. These specifications may
have the form of expressions in some formal language or may amount to statements in
natural language (consider English used in mathematical texts). Under this trust-oriented
perspective, Al systems built upon some Knowledge Representation (KR) paradigm start
from an advantageous position, since their behavior is captured by some declarative

L Bthics Guidelines For Trustworthy Al High-level Expert Group on Artificial Intelligence set up by
the European Commission.
https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai.

2 Pedro Cabalar, Jorge Fandinno and Yuliya Lierler

machine-interpretable formal language. Moreover, depending on its degree of declarativ-
ity, a KR formalism can also be seen as a specification language by itself.

Answer Set Programming (ASP; Niemel 1999; Marek and Truszezytiski 1999) is a well-
established KR paradigm for solving knowledge-intensive search/optimization problems.
Based on logic programming under the answer set semantics (Gelfond and Lifschitz 1988)
the ASP methodology relies on devising a logic program so that its answer sets are
in one-to-one correspondence to the solutions of the target problem. This approach is
fully declarative, since the logic program only describes a problem and conditions on
its solutions, but abstracts out the way to obtain them, delegated to systems called an-
swer set solvers. Thus, it would seem natural to consider an ASP program to serve a
role of a formal specification on its expected solutions. However, the non-monotonicity
of the ASP semantics makes it difficult to directly associate an independent meaning
to an arbitrary program fragment (as we customary do, for instance, with theories in
classical logic). This complicates assessing that a given logic program reflects, in fact,
its intended informal description. And yet, ASP practitioners do build logic programs
in groups of rules and identify each group with some part of the informal specifica-
tion (Erdogan and Lifschitz 2004; Lifschitz 2017). Moreover, modifications on a program
frequently take place within a group of rules rather than in the program as a whole.
The safety of these local modifications normally relies on such properties in ASP as
splitting (Lifschitz and Turner 1994; Ferraris et al. 2011).

With these observations at hand, we propose a verification methodology for logic pro-
grams, where the argument of correctness of a program is decomposed into respec-
tive statements of its parts, relying to this aim on a modular view of ASP in spirit
of (Oikarinen and Janhunen 2009; Harrison and Lierler 2016). In this methodology, a
formal specification II is formed by a set of modules called modular program, so that
each module (a set of program rules) is ideally small enough to be naturally related
to its informal description in isolation. This relation can be established using quasi-
formal English statements (Denecker et al. 2012; Lifschitz 2017) or relying on classical
logic (Lifschitz et al. 2018). The same specification II may serve to describe different
(non-modular) ASP programs encoding the same problem. Each such program P re-
spects given priorities involving efficiency, readability, flexibility, etc. As usual in Formal
Methods (Monin 2003), verification then consists in obtaining a formal proof of the cor-
respondence between the verified object (in our case, the non-modular encoding P) and
its specification (the set II of modules matching the informal aspects of that problem).
It is important to note that the formal specification language used is subject to two
important requirements: (i) dealing with non-ground programs; and (ii) capturing stable
models of these programs using an expression that can be formally manipulated. For (i),
we could use Quantified Equilibrium Logic (Pearce and Valverde 2008) but for (ii) the
equivalent formulation in (Ferraris 2011) is more suitable, as it captures stable models
of a program as a second-order logic formula? the SM operator.

Once a modular specification is guaranteed (related to its informal description/proved
to be correct with respect to its informal description), we expect that arguing the correct-
ness of the replacement of some of its module by a different encoding is reduced to arguing

2 The need for second-order logic is not surprising: the stable models of a logic program allow us to
capture a transitive closure relation.

)

Modular Answer Set Programming as a Formal Specification Language 3

PP @

(X

(a) Graph G1 (b) Dependency graph for I},

Fig. 1: A pair of graphs used in the examples.

some kind of equivalence between modules without affecting the rest of the correctness
proof. The difficulty here appears when auziliary predicates are involved. These predicates
are quite common to improve the solver performance in a given encoding P but, more im-
portantly, they are sometimes indispensable in the specification II to express some prop-
erty that the ASP language cannot directly capture otherwise (Gongalves et al. 2016). In
both cases, their presence must be taken into account when proving correctness which,
in its turn, normally depends on their local use in some part of the program.

In this paper, we extend the modular language from (Harrison and Lierler 2016) to

allow for a hierarchical tree of modules and submodules, each of them possibly declaring
its own set of public and hidden predicates at different levels. We use this extension
as a language for formal specifications. For illustration, we consider a logic program
encoding the well known Hamiltonian Cycle (HC) problem. We start by providing a
formal specification of the HC problem using the hierarchy of modules and relate it to
the informal description of the problem. We then formally prove the correspondence
between the HC logic program and its hierarchical specification. This constitutes the
argument of correctness for the considered logic program. We also provide an example
of module replacement that is verified through an equivalence proof that disregards the
existing auxiliary predicates.
Paper outline: Section 2 provides a running example of the HC problem encoding and
presents our methodology. In Section 3, we revisit the SM operator and extend it with
hidden predicates. Section 4 presents our modular logic programs, while Sections 5 and 6
explain their use for formal verification, illustrating the proposed methodology on the
running example.

2 Motivating example and methodology

We consider a well-known domain in the ASP literature: the search of Hamiltonian cycles
in a graph. A Hamiltonian cycle is a cyclic path from a directed graph that visits each
of the graph’s vertex exactly once. For instance, Figure la depicts graph G, whose
unique Hamiltonian cycle is marked in double lines, whereas Listing 1 presents a possible
encoding of the problem in the language of ASP solver CLINGO (Gebser et al. 2007). The
#show directive is used to tell CLINGO which predicates (we call these public) should
appear in the obtained answer sets: in this case, only predicate in/2 that captures the
edges in the solution. Now, if we add the facts in Listing 2 corresponding to graph G,
and instruct CLINGO to find all the answer sets we obtain the output in Listing 3, which
is the only Hamiltonian cycle in the graph. ASP practitioners usually explain Listing 1

Pedro Cabalar, Jorge Fandinno and Yuliya Lierler

Listing 1: Encoding of a Hamiltonian cycle problem using CLINGO.

vertex(X):- edge(X,Y).

vertex(X):- edge(Y,X).

{ in(X,Y) }:- edge(X,Y).

r(X,Y):- in(X,Y).

r(X,Y):- r(X,Z2), r(Z,Y).

:- not r(X,Y), vertex(X), vertex(Y).

:- in(X,Y), in(X,Z2), Y !'= Z.
:- in(X,Y), in(Z,Y), X !'= Y.
#show in/2.

Listing 2: Facts describing graph G;.

edge(a,b). edge(b,c). edge(c,d). edge(d,a). edge(d,c).

Listing 3: Output by CLINGO for program composed of lines in Listing 1 and 2.

Answer:
in(a,b)

1
in(b,c) in(c,d) in(d,a).

Listing 4: Alternative code to lines 4-6 in Listing 1 (Marek and Truszczynski 1999).

ra(Y)
ra(Y)

- in(a,¥Y).
:- in(X,Y), ra(X).

:- not ra(X), vertex(X).

in groups of rules. Rule 3 is used to generate all possible subsets of edges, while Rules 7-8
guarantee that connections among them are linear. Rules 4-5 are meant to define the
auxiliary predicate r (for “reachable”) as the transitive closure of predicate in. To assign
this meaning to r, we implicitly assume that this predicate does not occur in other rule
heads in the rest of the program. Predicate r is then used in Rule 6 to enforce that
any pair of vertices are connected. Rules 4-6 together guarantee that facts for in form a
strongly connected graph covering all vertices in the given graph.

Methodology. The methodology we propose for verifying the correctness of some logic
program under answer set semantics consists of the following steps:

Step 1.

Step 1I.
Step III.

Step IV.

Step V.

Decompose the informal description of the problem into independent (natural
language) statements S;, identifying their possible hierarchical organization.
Fix the public predicates used to represent the problem and its solutions.
Formalize the specification of the statements as a non-ground modular pro-
gram II, possibly introducing (modularly local) auxiliary predicates.
Construct an argument (a “metaproof” in natural language) for the correspon-
dence between IT and the informal description of the problem.

Verify that the given logic P program adheres to the formal specification II.
The result of this step is a set of formal proofs.

Note that the first four steps are exclusively related to the formal specification II of the
problem, while the particular program P to be verified is only considered in Step V,
where formal verification proofs are produced.

Modular Answer Set Programming as a Formal Specification Language 5

Now, back to Hamiltonian cycle problem, a possible and reasonable result of Step I is
the hierarchy of statements:

1. A Hamiltonian cycle G’ of graph G must be a subgraph of G that contains all
vertices of GG, that is:
(a) G’ has the same vertices as G, and
(b) all edges of G’ also belong to G.
2. A Hamiltonian cycle G’ of graph G is a cycle that visits all vertices of G exactly
once, that is:
(a) no vertex has more than one outgoing/incoming edge on G’, and
(b) G’ is strongly connected.

The choice for public predicates (Step II) is, of course, arbitrary, but must be decided to
compare different encodings (as also happens, for instance, when we fix a benchmark).
Here, we choose predicates edge/2 and in/2 to encode the edges of the input graph G
and the Hamiltonian cycle G’, respectively. To prove the correctness of the encoding in
Listing 1, we resume the rest of our methodological steps later on, in Sections 5 and 6.
For instance, Step III is shown in Section 5, where we define a formal specification ITy
that happens to comprise the same rules as Listing 1 but for the one in line 8. The
main difference is that rules in II; are grouped in modules corresponding to the above
hierarchy. A set of propositions in Section 5 are used to establish the correspondence
between II; (Step IV) and the informal statements. The already mentioned strong rela-
tion between Listing 1 and II; is not something we can always expect. As happens with
refactoring in software engineering, encodings usually suffer a sequence of modifications
to improve some of their attributes (normally, a better efficiency) without changing their
functionality. Each new version implies a better performance of the answer set solver,
but its correspondence with the original problem description becomes more and more
obscure (Buddenhagen and Lierler 2015). For instance, it might be noted that program
in Listing 1 produces an excessively large ground program when utilized on graphs of non
trivial size. It turns out that it is enough to require that all vertices are reachable from
some fixed node in the graph (for instance a). Thus, rules 4-6 of Listing 1 are usually
replaced by rules in Listing 4. The answer sets with respect to predicate in are iden-
tical, if the graph contains a vertex named a. In this sense, verifying an ASP program
can mean establishing some kind of equivalence result between its formal specification
in the form of a modular program and the final program obtained from the refactoring
process (Lierler 2019). This is tackled in Section 6 and constitutes Step V.

3 Operator SM with hidden predicates

Answer set semantics has been extended to arbitrary first-order (FO) theories with the
introduction of Quantified Fquilibrium Logic (Pearce and Valverde 2008) and its equiv-
alent formulation using the second-order (SO) operator SM (Ferraris et al. 2011). These
approaches allow us to treat program rules as logical sentences with a meaning that
bypasses grounding. For instance, rules in Listing 1 respectively correspond to:

Vay(edge(z,y) — vertex(x)) (1)
Yy (edge(y, x) — vertex(x)) (2)

6 Pedro Cabalar, Jorge Fandinno and Yuliya Lierler

Vay(——in(z, y) A edge(z,y) — in(z,y))
Vay(in(z,y) - r(z,9))

Vayz(r(z,z) Ar(z,y) = r(z,y))
Vay(—r(z,y) A vertex(z) A vertex(y) — L)
Vayz(in(x,y) Nin(z,z) AN=(y = z) — 1)
Vayz(in(x, z) Ain(y, z) A—=(z =y) — 1)

As we can see, the correspondence is straightforward except, perhaps, for the choice rule
in line 3 of Listing 1 that is represented as formula (3) (see Ferraris 2005 for more details).
We name the conjunction of sentences (1)-(8) as our encoding P;.

We now recall the SM operator from (Ferraris et al. 2011), assuming some familiarity
with second order (SO) logic. We adopt some notation: a letter in boldface inside a for-
mula denotes a tuple of elements also treated as a set, if all elements are different. Quan-
tifiers with empty tuples (or empty sets of variables) can be removed: I)F = VOF := F.
Expression pred(F) stands for the set of free predicate names (different from equality)
in a SO formula F. If p and ¢ are predicate names of the same arity m then p < ¢
is an abbreviation of Vx(p(x) — ¢(x)), where x is an m-tuple of FO variables. Let
p and g be tuples pi1,...,p, and q1,...,q, of predicate symbols or variables. Then
P<aqa:=({p1 <q@)A --Apn < qn), and p < q is an abbreviation of (p < q) A—(q < p).
Given a FO formula F, its stable model operator with intensional predicates p (not in-
cluding equality) is the SO formula

SMp[F] = F/\ﬁE!U((U<p)AF*), (9)
with U = Uy, ..., U, distinct predicate variables not occurring in p and:
F if F'is an atomic formula without members of p
Ui(t) if F'is p;(t) for p; € p and t a tuple of terms
F* .= G*® H* it F=(G® H) and ® € {A,V}
(G* - H*)N(G—H) it F=(G— H)
Qx (G™) if F=QxG and Q € {V,3}

Predicate symbols occurring in F' but not in p are called extensional and are interpreted
classically. In fact, if p is empty, it is easy to see that SMy[F] coincides with F. We
say that an interpretation Z over a signature P is an answer set of a FO formula F
(representing a logic program) when it is a Herbrand model of SMp[F] and p = pred(F).
When F is a logic program, answer sets defined in this way correspond to the traditional
definition based on grounding (Ferraris et al. 2011). It is common to identify Herbrand
interpretations with sets of atoms corresponding to its predicates and their extensions.
For a Herbrand interpretation Z over set P of predicates and set S C P, we write Z|5 to
denote the restriction of Z to S. As usual, the extent of a predicate p in interpretation Z,
written p?, collects every tuple of Herbrand terms t for which p(t) holds in Z.

As a small example, let F; be the conjunction of facts in Listing 2, F; denote a
conjunction of Fy, and (1) and let U be (£, V). Then, Fy is formed by the conjunction
of Vay((E(z,y) — V(z)) A (edge(x,y) — vertex(x))) and all atoms E(z,y), one per
each fact edge(z,y) in Fy. The answer sets of Fy are captured by the Herbrand models
of SMcqge vertex) [F1]. This formula has a unique model that minimizes the extension of

Modular Answer Set Programming as a Formal Specification Language 7

edge to the exact set of facts in F; (and not more) and the extension of vertex to be
precisely all nodes used as left arguments in those edges. If we take instead the formula
Fy := Py A Fy and q = pred(Fz) then SMq[F3] has a unique Herbrand model that has
the same atoms for predicate in as those in Listing 3 but, obviously, has also more atoms
for the remaining predicates in pred(F»). A simple way of removing (or forgetting) those
extra predicates in SO is adding their existential quantification. Given formula F we
define the answer sets of F' for p hiding predicates h as the Herbrand models of:

JH SM,,[F] (10)

where H is a tuple of predicate variables of the same length as h and Fﬁ is the result of
replacing all occurrences of predicate symbols from h by the corresponding predicate vari-
ables from H. We abuse the notation and write 3h SM[F] instead of (10) when it does
not lead to confusion. We call predicates in tuples p and h intensional and hidden, re-
spectively. For instance, Jedge vertex r SMq[F>] stands for the formula 3EV R SMy[F3]
where Fj is obtained from F, by replacing predicate symbols edge, vertez, r by vari-
ables F, V, R; and it has a unique Herbrand model that coincides with the one in
Listing 3. Thus, this model forms the unique answer set of F; for q hiding predicates
edge, vertex and r. This corresponds to the behavior produced by the #show directive
in Line 9 of the Hamiltonian cycle encoding. The following proposition states that the
existential quantifiers for hidden predicates filter out their information in the models.

Proposition 1. Let F be a formula, h a tuple of predicate symbols from F and let
S =pred(F)\ h. Then, T is a Herbrand model of (10) iff there is some answer set J
of F' such that T = Js.

4 Nested modular programs

As explained in the introduction, our specification language departs from the work on
modular logic programs by Harrison and Lierler (2016), where each module is a FO for-
mula whose semantics is captured by the SM operator. This choice is motivated by two
factors. First, it allows treating programs or modules with variables as FO formulas that
can be manipulated without resorting to the program grounding at all. This is crucial
is we wish to argue about the meaning of each module regardless of the particular in-
stance of the problem to be solved. Second, the SM operator captures the semantics of
the program also as a formula that, although including SO quantifiers, can be formally
treated using a manifold of technical results from the literature (including theorems on
splitting or constraints, for instance). To adapt this modular approach to our purposes
in this paper, we extend it in two ways: (i) handling auxiliary predicates inside modules
and (ii) introducing nested modules.

A def-module M is a pair (p : F'), where p is a tuple of intensional predicate symbols
and F is a FO formula. Its semantics is captured by the formula ®(M) ¢ SMy[F]. When
p is empty, we write F' in place of def-module (p : F') — indeed, ®(M) amounts to F.
On the contrary, when p = pred(F) all predicates in F' are intensional, so def-module
(pred(F) : F) represents the usual situation in a logic program F. If we leave some
predicates as extensional, then their extent is not “minimized.” For instance, rule (1)
alone, i.e., the def-module (edge, vertex : (1)), has a unique answer set () whereas in a

8 Pedro Cabalar, Jorge Fandinno and Yuliya Lierler

def-module (vertex : (1)) no assumption is made on extensional predicate edge, while
vertex collects precisely all left arguments of edge.

A modular program is a pair Il = (S, M), where S C P is the set of public predicate
symbols and M is the set of modules {Mj, ..., M,}, where M; (1 < i < n) is either a
def-module or another modular program (called subprogram of IT), so that all predicate
symbols occurring in IT are in P. A modular program can be depicted as a hierarchical
tree, whose leafs are def-modules. The interpretation of a modular program IT = (S, M)
is captured by the (recursively defined) formula:

(1) < Sh /\ {@(M;) | M; € M}

where h contains all free predicate symbols in ®(M;) that are not in S. Notice that, if M;
is a def-module (p : F), then ®(M;) = SMp[F] as we defined before, while if M; is a
subprogram, we apply the formula above recursively. We say that an interpretation Z is
a model of a modular program II, when it satisfies the formula ®(II). As in the previous
section, we say that interpretation Z over public predicate symbols S is an answer set
of a modular program II when it is a Herbrand model of II. Programs IT and II' are
said to be equivalent if they have the same answer sets. Under logic programming syntax
(like Listing 1), public predicates are declared via #show clauses. We sometimes allow the
def-module M = (p: F) as an abbreviation of the modular program (pred(F),{M?}).

We define defmods(P) as the set of all def-modules in IT at any level in the hierarchy.
Program IT = (S, M) is said to be flat when it does not contain subprograms, i.e., M
coincides with defmods(P). We call flat modular program (S, M) HL-modular, when its
set S of public predicates contains all predicate symbols occurring in M. HL-modular
programs capture the definition of modular programs from (Harrison and Lierler 2016).

To illustrate these definitions, we provide a modular program II; that will act later on
as a specification for encoding Py= (1)-(8) from Section 3. Program II; comprises the
same rules (1)-(7) (as we will see, (8) is actually redundant) but organizes them in the tree
of Figure 2. The tree contains 5 def-modules (the leaf nodes) and has three subprograms,
Iy, e and I1,., at different levels. Each modular program node (drawn as a thick line
box) also shows inside its set of public predicates. Note, for instance, how predicate r
is local to subprogram Il.,, = ({vertex,in},{(r : (4) A (5)),(6)}) that corresponds to
rules 4-6 in Listing 1 and intuitively states that relation ¢n forms a strongly connected
graph covering all vertices.

5 A formal specification language

Hamiltonian cycles constitute a good example of a typical use of ASP for solving a
search problem. Following (Brewka et al. 2011), a search problem X can be seen as a set
of instances, being each instance I assigned a finite set © x(I) of solutions. Under our
verification method, we propose constructing a modular program Ilx that adheres to
the specifications of X so that when extended with modular program II; representing
an instance I of X, the answer sets of this join are in one to one correspondence with
members in ©x (I). Then, we can use Ilx to argue, module by module, that each of its
components actually corresponds to some part of the informal description of the problem.
To illustrate these ideas we prove next that, indeed, program II; presented in Figure 2
and described in the last section is a formal specification for the search of Hamiltonian

Modular Answer Set Programming as a Formal Specification Language 9

Iy {edge,in}

[Hsg{vertex, edge, m}] [Hhc {vertez, m}]

[M1 = (vertez : (1) A (2))] [Mg = (in : (3))] [ch {vertez, zn}] (7)

(Ms=(r-)1 6)) (©

Fig. 2: Hierarchical structure of modular program II;.

cycles. We start by presenting the informal readings of all def-modules occurring in the
program — i.e., members of defmods(II;). The def-modules My, My and M3 intuitively
formulate the following Statements:

S1: “In any model of M, the extent of vertex collects all objects in the extent of edge.”
S2: “In any model of My, the extent of in is a subset of the extent of edge.”
S3: “In any model of M3, the extent of r is the transitive closure of the extent of in.”

These statements can be seen as achievements of each def-module in the sense of (Lifschitz 2017),
that are agnostic to the context where def-modules appear. This closely aligns with good
software engineering practices, where the emphasis is made on modularity /independence

of code development. An intuitive meaning of formulas (6) and (7) is self explanatory

given the underlying conventions of FO logic:

S(e): “In any model of (6), the extent of r contains each possible pair of vertices.”
S(7): “In any model of (7), the extent of in does not contain two different pairs with the
same left component.”

Statements S; and Sy translate into a joint Statement about module I1,4:
Ssg: “In any model Z of T, (vertez®, in”) is a subgraph of (vertez®, edge™).”
Similarly, we identify the following two combined statements:

Scn: “In any model of Il.,, the extent of in forms a strongly connected graph covering
all vertices.”

She: “In any model of Iy, the extent of in is a cycle visiting all vertices exactly once”
or equivalently “it induces a graph that is a Hamiltonian cycle.”

Note that each subcomponent of II; is small enough so that the verification of its corre-
sponding statement is a manageable and self-isolated task. Note also that statements Sq
and Sy, are the result of fixing the public vocabulary for the statements 1 and 2 identified
from the informal description in Section 2. Statements 1a and 1b in the informal descrip-
tion correspond to statements S; and Ss, respectively. Statements 2a and 2b correspond
to statements S(7) and S.,.

10 Pedro Cabalar, Jorge Fandinno and Yuliya Lierler

At this point, we have completed Step III for our example, with the modular pro-
gram II; and the informal statements to compare with. Now, Step IV consists on build-
ing claims about the correctness of the modules versus the statements. Proofs for the
correctness of statements Sy, Sz, S3, S() and S(7) are obtained using properties of the SM
operator and can be found in Appendix A. The formalization of Statement S(7) follows
from the general result below, if we just replace predicate names p and ¢ by in and r,
respectively. Its proof can also be found in Appendix A.

Proposition 2. Let formula F¥ be

Vay (p(z,y) = q(x,y)) AVayz(q(z, 2) Aq(z,y) = q(z,y)) (11)

For any arbitrary predicates p and q, any model I of def-module (q : F{¥) is such that the
the extent of q is the transitive closure of the relation constructed from the extent of p.

The next two results prove the correctness of S, and Sy, respectively, for I1.,, and IIj..

Proposition 3. Let F* be formula Vzy(—q(z,y)Av(z)Av(y) — L); FIP be formula (11);
11%P9 be a modular program ({v,p},{(q: F/*), F¥}), T be an interpretation, and {(vT,pt)
be a graph. Then, T is a model of TI°P4 iff for every pair a,b € vT of distinct vertices,
there is a directed path from a to b in (v, p?).

Proof sketch. We just show the left to right direction. The complete proof can be found
in Appendix A. Note first that F'¥ is classically equivalent to VYay(v(z) Av(y) — q(z,v)),
so any pair of vertices satisfies (a, b) € ¢Z. From Proposition 2, relation ¢ is the transitive
closure of pr. Hence, path from a to b exists in graph (vZ, pZ). O

Proposition 4. Let II*2? be as in Proposition 3, FP be formula Vzyz(p(x,y) A p(x,z) A
-(y = 2z) — 1), ILX? be modular program ({v,p}, {11, FP}) and I be an inter-
pretation of ILY?. Then, T is a model of graph IL;"* iff pt are the edges of a Hamil-
tonian cycle of (vI,p?) that is, the elements of p* can be arranged as a directed cycle

(v1,v2), (V2,v3),. .., (Vn,v1) 50 that vy, ..., v, are pairwise distinct and vI = {vy,...,v,}.

Proof sketch. Again, we show only the left to right direction. See Appendix A for the
complete proof. If 7 is a model of II;*?, the hypothesis in the enunciate implies that
for any pair vy, v,, € v of vertices, there is a directed path (v1,v2), (va,v3), (v3,v4), ...,
(Vm—1,vm) in (vZ,p?). Hence, there exists:

(U17U2)7 ('UQ,’U?,), ('U3,’U4), ceey (Um—lu ’Um)a (Um-i-luvm-l-l)u cv ey (Unu Ul) (12)

in graph (v?, p?) such that every vertex in vZ appears in it. Since Z is also a model of FP,
Statement S(7y (modulo names of predicate symbols) is applicable. This implies v; # v;
for all ¢ # j and, thus, that all edges in (12) are distinct. Therefore, (12) is a directed
cycle. Since this cycle covers all vertices of (v, p?), it is also a Hamiltonian cycle. O

Modular programs II., and IIj. coincide with modular programs II%?? and II,>?, when
predicate symbols v, p and q are replaced by vertez, in and r, respectively. Statements S,
and Sy follow immediately. Note also that modular programs II., and IIj. also preserve
their meaning inside a larger modular program mentioning predicate symbol 7 in other
parts. Indeed, symbol r is hidden or local (existentially quantified) so that its use else-
where in a larger modular program has a different meaning.

Modular Answer Set Programming as a Formal Specification Language 11

To complete the modularization of the Hamiltonian cycle problem, we develop the
encoding for a graph instance. Given a set E of graph edges, Mg denotes a def-module

(edge : /\{edge(a,b) | (a,b) € E}) (13)
The intuitive and formal meaning of def-module Mg is captured by the statement:
Sg: “In any model of Mg, the extent of edge is E.”

Now, the Hamiltonian cycle problem on a given graph instance with edges F is encoded
by I, (E) := ({in}, {II;, Mg}). To prove that II; (F) obtains the correct solutions, we
can now just simply rely on the already proved fulfillment of the statements for II;.

Proposition 5. Let G = (V,E) be a graph with non-empty sets of vertices V and
edges E, where every vertex occurs in some edge, and L be an interpretation over signa-
ture {in}. Then, T is an answer set of 111 (E) iff in® is a Hamiltonian cycle of G.

Proof sketch. We only showcase the left to right direction (see Appendix B for the rest).
Take interpretation Z to be an answer set of IT; (F). Then, there exists a Herbrand inter-
pretation J over signature in, vertez, edge so that J coincides with Z on the extent of in
and J is also a model of all submodules of II; (E). Thus, J adheres to Statements Sy,
She and Sk about these submodules. This implies that the extent in? forms a Hamil-
tonian cycle of (verter”,in”) (Statement Sy.) and that (vertez”,in”) is a subgraph
of (vertez?, edge”) (Statement S,,). These two facts imply that in” forms a Hamil-
tonian cycle of the graph (vertez?, edge‘7>. Moreover, vertez? and edgej respectively
coincide with sets V and E (Statements Sy and Sg). Therefore, in? forms a Hamiltonian
cycle of the graph (V, E) = G. Finally, recall that in? = inT, so the result holds. O

This result confirms that IT; is indeed a correct formal specification of the Hamiltonian
cycle problem, for any arbitrary graph instance F. Propositions 2-5 are, in fact, an
example of the application of Step IV of our methodology to the Hamiltonian cycle
problem. It is worth to mention that, in most cases, the decomposition in modules and
the properties of the SM operator allow us to replace the SM operator by a FO formula
(using Clark’s completion) or by the circumscription operator. This replacement greatly
simplify the effort of the proofs detailed in Appendix A.

6 Verification based on modular programs

The results in the previous section state that the answer sets of our modular specifica-
tion IT; correspond to the Hamiltonian cycles of a graph. However, in general, there is no
guarantee that the non-modular version of IT (i.e., the regular ASP program P formed
by all rules in II) has the same answer sets. Next, we introduce some general conditions
under which the answer sets of a modular program II and its non-modular version P
coincide. These results are useful for Step V of the proposed methodology.

In the rest of the section, we assume that I has the form (S, M). We also identify a reg-
ular program P with its direct modular version (pred(P), {(pred(P) : P)}). The flattening
of II is defined as flat(I) % (S, defmods(I1)). For example, flat(Ily(E)) = ({in}, {M;,
Mgy, M3, (6),(7),(13)}). We say that II is in a-normal form (a-NF) if all occurrences of a
predicate name in ®(II) are free or they are all bound to a unique occurrence of existential

12 Pedro Cabalar, Jorge Fandinno and Yuliya Lierler

quantifier. This happens, for instance, in II; (E). Still, any formula ®(II) can always be
equivalently reduced to a-NF by applying so-called a-transformations (i.e., choosing new
names for quantified variables). In our context, this means changing hidden (auxiliary)
predicate names in P until different symbols are used for distinct auxiliary predicates.
The next theorem states that, when modular program II is in a-NF, we can ignore its
recursive structure and instead consider its flat version.

Proposition 6. For any modular program II in a-NF, an interpretation Z is a model
of I1 iff T is a model of flat(I1).

Thus, since II; (E) is in o-NF, it is simply equivalent to flat(II;(E)). Next, we show
how to relate a flat program with a non-modular program that contains exactly the same
rules. We use this result to verify that program P; (corresponding to Listing 1) satisfies
the Hamiltonian cycle specification. To formalize this relation we focus on a syntax closer
to one of logic programs. Consider FO formulas that are conjunctions of rules of the form:

V(agsr A Aag A=appr A A= A ==Gmie1 Ao A=may = a1 V- Vag), (14)

where all a; are atoms and V stands for the universal closure of their variables. As
usual, the consequent and the antecedent of (14) are called head and body, respectively.
The conjunction agy1 A --- A a; constitutes the positive (part of the) body. A modular
program II is called simple if, for every def-module (p : F) € defmods(I1), formula F is
a conjunction of rules, and all head predicate symbols in F' are intensional (occur in p).
This is, in fact, the case of all def-modules we considered so far. Let int(IT) collect all
intensional predicates in II, that is int(II) & J{p | (p : F) € defmods(P)}. Then, we
form the directed dependency graph DG[II] by taking int(IT) as nodes and adding an edge
(p, q) each time there is a rule occurring in II with p in the head and ¢ is in the positive
body. For instance, the dependency graph of program IT; (F) is given in Figure 1b. This
graph has four strongly connected components, each one consisting of a single node.

A modular program II is coherent if it is simple, in a-NF, and satisfies two more con-
ditions: (i) every pair of distinct def-modules (p : F') and (p’ : F') in defmods(II) is such
that p Np’ = 0, and (ii) for every strongly connected component SCC in DGIII], there is
a def-module (p : F) € defmods(II) such that p contains all vertices in SCC. For example,
I, (E) is a coherent program. Now, let us collect the conjunction of all def-module for-
mulas in IT as F(II) & A{F | (p: F') € defmods(I1)}. We can observe, for instance, that
P ANF(Mg) = F(ILL(E)) A (8) = F(flat(I11(E))) A (8), that is, the modular encoding
of the Hamiltonian cycle problem and the non-modular one share the same rules but
for (8). We now obtain a similar result to Theorem 3 in (Harrison and Lierler 2016) but
extended to our framework. Together with Proposition 1, it connects modular programs
with logic programs as used in practice. The proof of this result together with the proof
of Theorem 2 below can be found in Appendix B.

Theorem 1. Let IT = (S, M) be a coherent modular program, p be int(II), and h be
pred(®(IT))\S. Then, (i) any interpretation T is a model of I1 iff T is a model of formula
Jh SMp[F(II)]; (it) any interpretation I is an answer set of I1 iff there is some answer
set J of F(II) such that T = Jjs.

As a result, we can now prove that program in Listing 1 satisfies the formal specifica-
tion II; which, as we saw, captures the Hamiltonian cycle problem.

Modular Answer Set Programming as a Formal Specification Language 13

Proposition 7. The answer sets of modular program I1;(E) coincide with the answer
sets of logic program Py A F(MEg) for intensional predicate symbol ‘in’ hiding all other
predicate symbols of the program.

Proof. Since modular program II;(F) is coherent, by Theorem 1, it is equivalent to
the formula to ¢ := 3h SM[F(II;) A F(Mg)] where h = (vertex,edge,r). Now, ¢ is
in its turn equivalent to IhSMy [F(II1) A (8) A F(Mg)] since F(II;) entails formula (8)
and def-module (8) has no intensional predicate symbols. Besides, formulas F(II;) A (8)
and Pj are identical. From Proposition 1, it follows that Herbrand models of ¢ are the
answer sets of Py A F(Mg) restricted to predicate in. (]

This proposition constitutes verification Step V that links an ASP encoding P; of the
Hamiltonian cycle problem to its formal specification as a modular program II;. At a
first sight, the effort may seem worthless, given that IT; and P; almost share the same
rules. But this is a wrong impression, since P; is actually an ideal case, i.e. the one closest
to II;, while the latter can still be used as a specification for other encodings. To show
how, let us take another encoding P; that results from replacing (4)-(6) in P; by rules
in Listing 4 respectively corresponding to:

Vy(in(a,y) — m(y)) (15)
Vay(in(z,y) A ra(z) = ra(y)) (16)
vy (—ra(y) A vertez(y) — L) (17)

Verifying program P] amounts to proving its adherence to II; and, for that purpose,
requires a proper modularization ITj of P/. In this case, that modularization is ob-
vious since the change is local to the module checking Hamiltonian cycles, II;.. We
define the modular programs II, := ({vertex,in},{(ra : (15) A (16)),(17)}), II},, =
({vertex, in}, {11}, (7),(8)}) and IT}, as the result of replacing IIj. by I} in II;. Even
though they use different auxiliary predicates, programs I, and II} . have the same in-
tuitive meaning (Statement Sjp.) as long as there exists some vertex a in the graph. One
would, therefore, expect that the correctness of I} . could be proved by checking some
kind of equivalence with respect to II,.. We formalize next this idea.

Given modular programs II,II; and IIp, we write II[II; /TI2] to denote the result of
replacing all occurrences of module Iy in I by II;. We also define ®(I1—-11;) < A{®(M) |
M e M,II; & defmods(M)}. For any finite theory I', two modular programs IT; and IIy
are said to be strongly equivalent with respect to context I' when any modular program II
with ®(IT — II;) = T satisfies that II and II[II; /T3] have the same answer sets.

Theorem 2. Two modular programs I1 and II' are strongly equivalent under context T
iff T = ®(IT) > ®(I1') holds for all Herbrand interpretations.

In our example, although II;. and IIj . are not equivalent in general, we can prove:
Proposition 8. Modules Il and IT},, are strongly equivalent w.r.t. T' = {vertez(a)}.
Proof sketch. Recall that ;. = (8). The rest of the proof follows two steps. First, given:

Ir ((Ms) A Vy(vertez(a) A vertez(y) — r(a,y))) (18)

we get vertex(a) = ®(II2,,) <> (18) and, furthermore, |= ®(II.) — (18) follows by instan-
tiation of Va with = = a. Second, we can prove (7) = (18) — ®(II.). O

14 Pedro Cabalar, Jorge Fandinno and Yuliya Lierler

7 Conclusions and future work

We presented a modular ASP framework that allows nested modules possibly containing
hidden local predicates. The semantics of these programs and their modules is specified
via the second-order SM operator, and so, it does not resort to grounding. We illustrated
how, under some reasonable conditions, a modular reorganization of a logic program can
be used for verifying that it adheres to its (in)formal specification. This method has two
important advantages. First, it applies a divide-and-conquer strategy, decomposing the
correctness proof for the target program into almost self-evident pieces. Second, it can
be used to guarantee correctness of a module replacement, even if interchanged modules
are non-ground and use different local predicates. In this way, correctness proofs are also
reusable. The need for second-order logic is inherent to the expressiveness of first-order
stable models but has the disadvantage of lacking a proof theory in the general case.
Yet, there are well-known specific cases in which the second-order quantifiers can be re-
moved. This is often the case of the SM operator so that we can use formal results from
the literature (splitting, head-cycle free transformations, relation to Clark’s Completion
or Circumscription — see (Ferraris et al. 2011)) to reduce the these second-order formu-
las to first-order ones. We also intend to exploit the correspondence between SM and
Equilibrium Logic to study general inter-theory relations (Pearce and Valverde 2004).

Our definition of contextual strong equivalence using hidden predicates is a variation of
strong equivalence (Lifschitz et al. 2001; Lifschitz et al. 2007). We leave it to future work
the relation to other program equivalence and correspondence notions (Eiter et al. 2005;
Oetsch and Tompits 2008; Oikarinen and Janhunen 2009; Aguado et al. 2019; Geibinger and Tompits 2019).
Another topic for future work is the extension of automated reasoning tools for ASP ver-
ification (Lifschitz et al. 2018) to incorporate modularity.

Acknowledgments. We are thankful to Vladimir Lifschitz and the anonymous review-
ers for their comments that help us to improve the paper. This work was partially sup-
ported by MINECO, Spain, grant TTC2017-84453-P and NSF, USA grant 1707371. The
second author is funded by the Alexander von Humboldt Foundation.

References

Acuapo, F., CABALAR, P., FANDINNO, J., PEARCE, D., PEREZ, G., AND VIDAL, C. 2019.
Forgetting auxiliary atoms in forks. Artificial Intelligence 275, 575—601.

BREWKA, G., NIEMELA, 1., AND TRUSZCZYNSKI, M. 2011. Answer set programming at a glance.
Communications of the ACM 54(12), 92-103.

BUDDENHAGEN, M. AND LIERLER, Y. 2015. Performance tuning in answer set programming.
In Proceedings of the Thirteenth International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR).

DENECKER, M., LIERLER, Y., TRUSZCZYNSKI, M., AND VENNEKENS, J. 2012. A Tarskian
informal semantics for answer set programming. In Technical Communications of the 28th
International Conference on Logic Programming (ICLP). 277-289.

EiTter, T., TompiTs, H., AND WOLTRAN, S. 2005. On solution correspondences in answer set
programming. In Proceedings of the Nineteenth International Joint Conference on Artificial
Intelligence (IJCAI'05), L. Kaelbling and A. Saffiotti, Eds. Professional Book Center, 97-102.

ERDOGAN, S. T. AND LIFSCHITZ, V. 2004. Definitions in answer set programming. In Proceedings
of International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR).
Springer-Verlag, 114-126.

Modular Answer Set Programming as a Formal Specification Language 15

FERRARIS, P. 2005. Answer sets for propositional theories. In Proceedings of International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR). 119-131.

FERRARIS, P. 2011. Logic programs with propositional connectives and aggregates. ACM
Transactions on Computational Logic 12, 4, 25.

FERRARIS, P., LEE, J., AND LIFSCHITZ, V. 2011. Stable models and circumscription. Artificial
Intelligence 175, 1, 236-263.

FERRARIS, P., LEE, J., LIFSCHITZ, V., AND PALLA, R. 2009. Symmetric splitting in the general
theory of stable models. In Proceedings of the Twenty-first International Joint Conference on
Artificial Intelligence (IJCAI’09), C. Boutilier, Ed. AAAI/MIT Press, 797-803.

GEBSER, M., KAUFMANN, B., NEUMANN, A.; AND SCHAUB, T. 2007. Conflict-driven answer

set solving. In Proceedings of 20th International Joint Conference on Artificial Intelligence
(IJCAI’07). MIT Press, 386-392.

GEIBINGER, T. AND TowmpiTs, H. 2019. Characterising relativised strong equivalence with
projection for non-ground answer-set programs. In Logics in Artificial Intelligence - 16th
European Conference, JELIA 2019, Rende, Italy, May 7-11, 2019, Proceedings. Lecture Notes
in Computer Science, vol. 11468. Springer, 542-558.

GELFOND, M. AND LIFSCHITZ, V. 1988. The stable model semantics for logic programming.

In Proceedings of the Fifth International Conference and Symposium of Logic Programming
(ICLP’88), R. Kowalski and K. Bowen, Eds. MIT Press, 1070-1080.

GONCGALVES, R., KNORR, M., AND LEITE, J. 2016. You can’t always forget what you want: On
the limits of forgetting in answer set programming. In Proceedings of 22nd European Confer-
ence on Artificial Intelligence (ECAI’16). Frontiers in Artificial Intelligence and Applications,
vol. 285. IOS Press, 957-965.

HARRISON, A. AND LIERLER, Y. 2016. First-order modular logic programs and their conserva-
tive extensions. Theory and Practice of Logic programming, 32nd Int’l. Conference on Logic
Programming (ICLP) Special Issue.

LIERLER, Y. 2019. Strong equivalence and program’s structure in arguing essential equivalence
between first-order logic programs. In Proceedings of the 21st International Symposium on
Practical Aspects of Declarative Languages (PADL).

LirscHITZ, V. 2017. Achievements in answer set programming. Theory and Practice of Logic
Programming 17, 5-6, 961-973.

LIFSCHITZ, V., LUHNE, P., AND SCHAUB, T. 2018. anthem: Transforming gringo programs into
first-order theories (preliminary report). CoRR abs/1810.00453.

LirscHITZ, V., PEARCE, D., AND VALVERDE, A. 2001. Strongly equivalent logic programs. ACM
Transactions on Computational Logic 2, 4, 526-541.

LirscHITZ, V., PEARCE, D., AND VALVERDE, A. 2007. A characterization of strong equiva-
lence for logic programs with variables. In Procedings of International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR). 188-200.

LirscHITZ, V. AND TURNER, H. 1994. Splitting a logic program. In Proceedings of the Eleventh
International Conference on Logic Programming. MIT Press, 23-37.

MAREK, V. AND TRUSZCZYNSKI, M. 1999. Stable models and an alternative logic programming
paradigm. In The Logic Programming Paradigm: a 25-Year Perspective, K. Apt, V. Marek,
M. Truszczynski, and D. Warren, Eds. Springer-Verlag, 375-398.

MonNIN, J. 2003. Understanding formal methods. Springer.

NIEMEL, I. 1999. Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25, 3-4, 241-273.

OETSCH, J. AND TowmpiTs, H. 2008. Program correspondence under the answer-set semantics:
The non-ground case. In Logic Programming, 24th International Conference, ICLP 2008,
Udine, Italy, December 9-13 2008, Proceedings, M. G. de la Banda and E. Pontelli, Eds.
Lecture Notes in Computer Science, vol. 5366. Springer, 591-605.

16 Pedro Cabalar, Jorge Fandinno and Yuliya Lierler

OIKARINEN, E. AND JANHUNEN, T. 2009. A translation-based approach to the verification of
modular equivalence. J. Log. Comput. 19, 4, 591-613.

PEARCE, D. AND VALVERDE, A. 2004. Synonymous theories in answer set programming and
equilibrium logic. In Proceedings of the 16th European Conference on Artificial Intelligence.
ECAT04. TIOS Press, Amsterdam, The Netherlands, The Netherlands, 388—-392.

PEARCE, D. AND VALVERDE, A. 2008. Quantified equilibrium logic and foundations for answer
set programs. In Logic Programming, 24th International Conference, ICLP 2008, Udine, Italy,
December 9-13 2008, Proceedings, M. G. de la Banda and E. Pontelli, Eds. Lecture Notes in
Computer Science, vol. 5366. Springer, 546—560.

Modular Answer Set Programming as a Formal Specification Language 17

Appendix A Formalizing the meanings of def-modules for
the Hamiltonian cycle problem

In this section we argue about the correctness of statements introduced in Section 5. We
start by reviewing a series of results that are useful in proving such correctness and apply
them to our running example.

In this section, it is convenient for us to identify def-module M = (p : F') with the
formula ®(M) % SMp[F] that captures the semantics of M.

Strong equivalence and denials. Non-modular programs P, and P, are strongly equivalent
if for every traditional program P, programs P, U P and P, U P have the same answer
sets (Lifschitz et al. 2001). More in general, FO formulas F' and G are strongly equivalent
if for any formula H, any occurrence of F' in H, and any list p of distinct predicate con-
stants, SMp[H| is equivalent to SMp[H'], where H' is obtained from H by replacing F' by
G. Lifschitz et al. (2007) show that FO formulas F and G are strongly equivalent if they
are equivalent in SQHT™ logic—a FO intermediate logic (Pearce and Valverde 2008)
between classical and intuitionistic logics.

A formula of the form g(Body — 1) is intuitionistically equivalent to formula ﬁgBody.
We call formulas of both of these forms denials and identify the former with the latter.

Theorem 3 (Theorem 3; Ferraris et al. 2011). For any FO formulas F and G and ar-
bitrary tuple p of predicate constants, SMp[F A =G| is equivalent to SMp[F] A =G.

Theorem 3 can be understood in the following terms. A modular program II containing
a def-module of the form (p: F A —=G) is equivalent to the one resulting from IT by
replacing (p : F' A =G) with def-modules (p : F') and —=G. Thus, any denial semantically
translates into a classical first order formula. Now, the claims in Statement Sy and S
immediately follow from Theorem 3.

Tightness and completion. Although SM is defined on arbitrary formulas, we focus now
on the traditional syntax of logic program rules, that is, FO sentences of the form (14).
We say that a module is tight if its dependency graph is acyclic. For example, all modules
in program IIy, but I, (and those containing it) are tight.

A FO formula F is in Clark normal form (Ferraris et al. 2011) relative to the tuple p
of predicate symbols if it is a conjunction of formulas of the form

Vx(G — p(x)) (A1)

one for each predicate p € p, where x is a tuple of distinct object variables. We refer
the reader to Section 6.1 in (Ferraris et al. 2011) for the description of the intuitionis-
tically equivalent transformations that can convert a FO formula that is a conjunction
of formulas of the form (14) into Clark normal form. Here, we illustrate results of these
conversion steps on formulas stemming from the program II;. For instance, converting
formula

edge(a,a’) A ... A edge(c,c) (A2)

into Clark normal form results in the intuitionistically equivalent formula

Vazy((r=aAy=a')V--V(z=cAy=c"))—edge(z,y)) (A3)

18 Pedro Cabalar, Jorge Fandinno and Yuliya Lierler

Similarly, module IIg is intuitionistically equivalent to the formula
Vz(Fedge(z) — vertex(z)), (A4)
where Feyq4e(2) follows
Jry(edge(x,y) A z = x) V Jzy(edge(y,) A z = x).

The FO formula within def-module (3) is in Clark normal form.

The completion of a formula F' in Clark normal form relative to predicate symbols p,
denoted by COMP[F], is obtained from F by replacing each conjunctive term of the
form (A1) by

Vx(G + p(x)).

For instance, the completion of (A3) is
Vey((z=aAy=a")V--V(z=chy=c))+redge(z,y)), (A5)

while the completion of formula (A4) is
Vz(Fedge(z) < vertezx(z)). (A6)
The following theorem follows immediately from Theorem 11 in (Ferraris et al. 2011).

Theorem 4. Let SMy[F] be a tight def-module. Then, SMp[F] and COMP[F] are equiv-
alent.

Note that expression COMP[F] is a classical first order logic formula. Since formu-
las (A2) and (A3) are strongly equivalent, it follows that def-modules IIg and SMcgge[(A3)]
are equivalent, too. Similarly, def-module M; is equivalent to SO formula SMyepter [(A4)].
Thus, by Theorem 4, modules Mg and M; are equivalent to FO formulas (A5) and (A6),
respectively. These facts suffice to support the claims of Statements Sg and S;. Further-
more, also by Theorem 4, def-module M; is equivalent to FO formula

Vay((—=in(z, y) A edge(z,y)) < in(z,y)),

which, in turn, is equivalent to formula

Vay(in(z,y) — edge(x,y)).

It is easy to see now that the claim of Statement Sa holds.
The following proposition follows immediately from Theorem 4 and generalizes the last
claim.

Proposition 1. A tight def-module SM,[Vx(——p(x) A G — p(x))] is equivalent to for-
mula Vx(p(x) = G).

In other words, we can always understand a def-module consisting of a choice rule as
a reversed implication in FO logic.

Circumscription and transitive closure. The circumscription operator with the minimized
predicates p of a FO formula F is denoted by CIRC,[F] (Ferraris et al. 2011). The mod-
els of CIRCp[F] are the models of F' where the extension of the predicates in p is
minimal given the interpretation of remaining predicates is fixed. Interestingly, if F' is

Modular Answer Set Programming as a Formal Specification Language 19

a conjunction of rules of (14) without negation, then SMy[F] and CIRC,[F] are equiv-
alent. Proposition 2 follows directly from this observation and allows us to assert that
Statement S3 holds.

Let us now address the proofs of Propositions 3-5.

For a formula F' and a symbol ¢ occurring in it by (F)qQ we denote an expression
constructed from F' by substituting symbol ¢ with Q.

Proof of Proposition 3. Note that
I = g (Plg: FP)AR(FY)) = Jq (Plq: F)AF")

Let Z be an interpretation over signature p,v. Then, 7 is a model of II?P? iff there
is an interpretation J over signature p,q,v that agrees on Z on p,v and is a model
of (®(q : F{¥) A F"). Take such interpretation J, its ¢’ is the transitive closure of p*
(Proposition 2) and J is a model of F". Note also that F" is equivalent to

Vay(v(z) Ao(y) = q(z,y))- (A7)

T are such that they are also in binary relation ¢7

Consequently, any pair of elements in v
with each other. Left-to-right. Assume that Z is a model of II?P4. Then, any pair of ver-
tices satisfies (a,b) € ¢7 and, consequently, a path from a to b exists in graph (vZ,p?).
Right-to-left. Let Z be an interpretation of v and p such that there is a direct path ex-
ists connecting all pairs of vertices in (v, p). Let ¢ be the transitive closure of pZ.
From Proposition 2, this implies that J satisfies ®(q : F}’). Take now any two ver-
tices a,b € vZ. Then, there is a path (vg,v1), (v1,v2),. .., (Vs_1,v,) such that vy = a,
vy, = b and (v;_1,v;) € pT for all 1 < i < n. Since ¢7 is the transitive closure of pZ, it
follows that (a,b) € ¢7 and, thus, Z satisfies (A7). Consequently, Z is a model of IT’?¢. [

Proof of Proposition 4. Left-to-right. If T is a model of IT}*?, then Proposition 3 im-
plies that for any pair vy, v, € vZ of vertices, there are directed paths (v1,v2), (va,v3),
(v3,04)5 -+ (Vm—1,Vm) and (Vpmi1, Vma1)s- -, (n,v1) in (0T, pT). Hence, there exists:

(vla UQ), (UQ,'Ug), (v3vv4)7 cey (’Umfla vm)v (varla Um+1), LR (vn; vl) (12)

in graph (vZ,p?) such that every vertex in v? appears in it. Since Z is also a model
of F?, Statement S(7) (modulo names of predicate symbols) is applicable. This implies
v; # v; for all ¢ # j and, thus, that all edges in (12) are distinct. Therefore, (12) is
a directed cycle. Since this cycle covers all vertices of (v%,p?), it is also a Hamiltonian
cycle. Right-to-Left. If the elements of p? can be arranged as a directed cycle (vq,vs),
(va,v3), ..., (vn,v1) such that v = {vy,...,v,}, then it is clear that there is a path
between each pair of vertices. Consequently, 7 is a model of IT,*? (Proposition 3). Hence,
it only remains to check that Z satisfies F'P. Suppose, for the sake of contradiction, that
this is not the case. Then, there are (v;,v;) € p* and (v;,vg) € p* such that v; # vy,
which is a contradiction with the assumption that the elements of p? can be arranged as
a directed cycle. O

Proof of Proposition 5. Left-to-right. Assume that interpretation Z is an answer set
of IT; (E). Then, there exists an Herbrand interpretation [J over signature in, vertez, edge
so that J coincides with Z on the extent of in and J is also a model of all submodules
of IT; (E). Thus, J adheres to Statements S,g, Spe and Sg about these submodules. This

20 Pedro Cabalar, Jorge Fandinno and Yuliya Lierler

implies that the extent in” forms a Hamiltonian cycle of (vertez ,in”) (Statement Sj.)
and that (vertez”,in”) is a subgraph of (vertex?, edge”’) (Statement S,,). These two
facts imply that in? forms a Hamiltonian cycle of the graph (vertex edgej). Moreover,
vertez? and edge” respectively coincide with sets V and E (Statements Sy and Sg).
Therefore, in” forms a Hamiltonian cycle of the graph (V, E) = G. Finally, recall that
in? = inT, so the result holds. Right-to-left. Let H be Hamiltonian cycle of a graph
edges E. Let 7 be an interpretation over signature in such that in? are all edges in H
and let J be an interpretation over signature in, vertex, edge so that J coincides with 7
on the extent of in. Assume also that edge” are all edges in E and vertez” contains
exactly all objects occurring in the relation edge” . Clearly 7 adheres to Statements Ssgs
She and Sg about these submodules and, therefore, J is a model of II; (E). O

Appendix B Proofs of Theorems 1 and 2

Lemma 1. For any coherent flat program I with pred(I1) = p and h the hidden predi-
cates of I, and any interpretation I, the following conditions are equivalent:

e T is model of 3h SM,[F(IT)],
o 7 is model II1.

Proof. Let II = (S, M) with M = {(p1 : F1),...,(Pn : Fn)} be a flat modular program.
The proof is by induction on n. The base case is trivial. In the induction step, we assume
that for any coherent modular program with less than n modules the result holds. By
definition it follows that

n—1
Jh SMpTed(H)[]:(H) } = h SMpTed(H’)Upn[/\ F, N By :|7
i=1

where II' = (§', M\ {(pn : F»)}), where &’ is the set containing all predicates II'. By
the Splitting Theorem in (Ferraris et al. 2009) the latter is equivalent to

n—1
Ih (SMmd(H,)[A\ F } A SM,., [Fn]). (B1)
By the definition of F,
n—1
SMpred(H’)[/\ Fz :| = SMpred(H/)[]:(H/)]
i=1

and, by induction hypothesis, we get that Z is a model of SM,;.¢q(11) [F(II)] iff Zis a
model of IT'. By definition, the latter holds iff Z is a model of

n—1
/\ SMPi [Fl]
i=1

Hence,
n—1 n—1

SMmd(H,>[A F] and /\ SMy,[F}]
=1 i=1

Modular Answer Set Programming as a Formal Specification Language 21

are equivalent. This implies that (B1) is equivalent

h (n/\ SMp, [F}] A SMpn[Fn]>, (B2)

i=1

Finally, by definition, Z is a model of II iff 7 is a model of (B2). O

Proof of Theorem 1. By definition, Z is model of II = (S, M) iff 7 is a model of

o) = 3Jh N ®M)
MeM

Let us now define the degree of a modular program as follows
deg(Il) < 1+ max{ deg(M) | M € M}

with deg(M) = 0 for every def-module M. We now construct a proof by induction on
degree of a modular program. Let n be a degree of modular program IT. We state an
induction hypothesis as follows. For every modular program II' with deg(Il') < n, an
interpretation 7 is a model of II" iff Z is a model of 3hSMy [F(II')].

The base case follows from Lemma 1.

Let Mgep = {M € M | M is a def-module} be the set of all def-modules in M and
let II' = (S, M’) with

M/ def M def U U M//

(8", M) eEM\M ey

Obviously, if IT is not flat, then deg(I1") < deg(II) and, by induction hypothesis, we obtain
that Z is model of IT" iff 7 is a model of 3h SMp[F(II)]. The latter holds iff Z is a model
of Fh SMy, [F(II)] because

Fay = N F()

MeM
= N Fana N FM)
MeM et MeM\M gef
= N\ Fona N\ (A f(M'))
MeMgep MeM\M gep M eM”
MZ(S/,M//>
= A Fnna A F(M')
MeMgep (8", M YEM\ M qaes
M,GMH
= N\ Fm)
MeM'’
= F(IT).

Let us show now that Z is model of IT iff Z is model of II'. We can see that, Z is a model

22 Pedro Cabalar, Jorge Fandinno and Yuliya Lierler

of IT iff 7 is a model of

o) = 3h N &) (B3)
MeM
- Elh(A eann N\ @(M)) (B4)
MeM ey MeM\M gef
- Eh(A edna A WA @(M’)) (B5)
MeMer MeM\M 4 M emM”
M=(8"M")

where h' is a tuple containing all predicates occurring in M" that are not in S&’. Since
the program is coherent, then every predicate symbol occurring in two different modular
programs or def-modules does not occur in h’ and, thus, we obtain that (B5) is equivalent
to

EhEIh”(A (1) A A A <I>(M)) (B6)

MEM gy (8", M"YEM\ Mgy MEM

where h” is a tuple containing all predicates in h’ for all II' € M \ M. Since the
program is coherent, we also get that every predicate symbol occurring in h” also occurs
in h, and, thus, (B6) is equivalent to

Elh(A (1) A A A <I>(M)),
MeMaey (8" M"YeEM\ My MeM”
which in turn is ®(II'). This concludes the argument that Z is a model of IT iff 7 is a
model of II'. By arguments at the beginning of the proof it follows that Z is a model of
IT" iff Z is model of Fh SMp[F(IT")] iff 7 is model of 3h SMy[F(II)]. This concludes the
proof of (i) point of the theorem. The (ii) point follows from Proposition 1. O

Proof of Theorem 2. The left-to-right direction is immediate. For the right-to-left di-
rection, assume that IT and II’ are strongly equivalent under context I' and suppose,
for the sake of contradiction, that there is a Herbrand model Z of T" that does not sat-
isfy ®(II) <» ®(II"). Assume, without loss of generality, that Z is a model of I" and ®(IT)
but not of ®(II'). Let F be the conjunction of all formulas in I" and let II; = (S, M) and
Iy = (S, Ms), where S the set of all predicate symbols in the signature, M; = {F, II}
and My = {F, II'}. Then, Z is a model of ®(II;) = F A ®(II) but not of ®(Ily) =
FA®(IT). Since IT and II are strongly equivalent under context I and obviously F T,
we get that II; and Il have the same answer sets, so they have the same Herbrand
models, which is a contradiction with the assumption. O

