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ABSTRACT As the backbone of many real-world complex systems, networks interact with others in
nontrivial ways from time to time. It is a challenging problem to detect subgraphs that have dependencies
on each other across multiple networks. Instead of devising a method for a specific scenario, we propose
a generic framework to discover subgraphs in multiple interdependent networks, which generalizes the
classical subgraph detection problem in a single network and can be applied to more practical applications.
Specifically, we propose the Graph Block-structured Gradient Hard Thresholding Pursuit (GB-GHTP)
framework to optimize interdependent networks with block-structured constraints, which enjoys 1) a
theoretical guarantee and 2) a nearly linear time complexity on the network size. It is demonstrated how
our framework can be applied to three practical applications: 1) evolving anomalous subgraph detection
in dynamic networks, 2) anomalous subgraph detection in networks of networks, and 3) connected dense
subgraph detection in dual networks. We evaluate our framework on large-scale datasets with comprehensive
experiments, which validate our framework’s effectiveness and efficiency.

INDEX TERMS Subgraph detection, sparse optimization, interdependent networks.

I. INTRODUCTION
A graph1 G = (V,E) refers to a set of entities, denoted as
nodes V, along with some connections between node pairs,
represented by edges E. Due to its generic structure, graphs
have the capability to model various applications, includ-
ing the natural sciences, social sciences, and engineering
[1]–[3]. A canonical challenging problem in graph analytics
is the detection of subgraphs. Subgraph detection is useful in
many fields, such as intrusion detection in computer networks
[4], [5], disease outbreak detection [6], event detection in
activity networks [7], [8], and traffic congestion detection
[9], [10]. In this paper, we focus on subgraph detection in
attributed networks, in which nodes in a graph are associated
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1In this article, the terms graph and network are used interchangeably.

with attributes. Assume a node i is associated with an attribute
vector wi ∈ RP; then the attribute matrix defined on the
whole graph can be denoted as W ∈ RP×N , where |V| = N .
Subgraph detection in attributed networks usually refers to
a problem that finds a subset of nodes whose attributes are
anomalous or significant compared to those nodes outside of
the subset [11]. The problem simultaneously deals with the
structure of a network (e.g. connectivity, density, compact-
ness or isomorphism) and its attributes on nodes. Generally,
the typical subgraph detection problem in isolated attributed
networks can be formulated as a combinatorial optimization
problem as follows:

min
S⊆V

F(S),

s.t. S satisfies some predefined topological constraints

(1)
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FIGURE 1. Examples of interdependent networks. (a) Dynamic Networks: black dashed lines describe implicit temporal
dependencies or consistencies. (b) Network of networks: black dashed lines are bridges across networks; social
networks can be viewed as a network of networks with explicit connections between communities. (c) Dual networks:
two networks share the same nodes but have different edge sets that represent different relationships.

where F(·) is a user-specified objective function depending
on applications, and S is any subset of V of a network.
The subgraph to be found is determined by the definition
of F(·), which has different definitions in different applica-
tions. However, in reality, networks rarely appear in isola-
tion. It is common that real-world systems interact with each
other. For example, diverse critical infrastructures are coupled
together, such as systems of food and water supplies, fuel,
communications, financial transactions and power generation
and transmission [12]. Specifically, thermal power stations
forming the nodes of a power grid require fuel supplied via
road or pipe networks and are also controlled by the nodes
in a communication network. Although the transportation
network does not depend on the power grid to function,
the communication network does. Thus cascading failures
of a system can originate from the deactivation of a critical
number of nodes in either the power grid or the communi-
cation network. If the two networks are treated in isolation,
this important feedback effect cannot be seen, which fur-
ther affects the location of malfunctioning nodes. However,
jointly detecting significant nodes in both power grid and
communication networks can provide deep insight into the
functionality dependencies between the two networks.

In the following, we introduce interdependent networks to
model multiple networks with dependencies across different
networks. Interdependent networks are comprised of multi-
ple networks {G1, . . . ,Gk , . . . } and dependency edges E0,
where Gk

= (Vk ,Ek ) and E0 is the set of dependencies
between networks. The elements in E0 are determined by a
specific application. For example, in the example of power
grid, the edge set E0 refers to connections between thermal
power stations and road or pipe network. Vk and Ek refer
to nodes and edges of the k th network. Multiple networks
interacting with each other appear in almost every aspect of
science and technology. For instance, a dynamic network can
be viewed as multiple networks with implicit node-level tem-
poral dependency, in which each network represents a snap-
shot of the dynamic network at a specific timestamp. In such
networks, every node’s attributes in the current timestamp
implicitly depend on attributes in the previous timestamp
(as shown in Fig. 1a). Another trivial example of

interdependent networks is the web-scale social network con-
sisting of many communities. In such networks, communities
can be viewed as small networks or blocks that have explicit
connections between each other (as shown in Fig. 1b), which
technically form a network of networks. A nontrivial example
of interdependent networks is the dual networks built from
the citation dataset, where one network builds the coau-
thorships among researchers, and the other network models
the research interests between researchers. Both networks
have identical node sets (researchers), whereas the edge sets
represent the coauthorships and research interest similarities.
An example of dual network is shown in Fig. 1c.

Because of the ubiquity of attributed interdependent
networks, it is useful to propose generic methods to solve
the problem of subgraph detection in interdependent net-
works. Correspondingly, subgraph detection inmultiple inter-
dependent networks can be framed as a block-structured
optimization problem with multiple topological constraints
on blocks:

min
Sk⊆Vk

F(S1, . . . , SK ) = f (S1, . . . , SK )+
∑
i6=j

g(Vi,Vj),

s.t. Sk satisfies some predefined topological constraints

(2)

where f (·) is a user-specified function to capture signals
on nodes of interdependent networks, and g(Vi,Vj) models
dependencies between network Gi and network Gj. Sk is a
subset of nodes in the k th networkGk , k = 1, . . . ,K .K refers
to the number of networks in the interdependent networks.
For example, subgraph detection in a dynamic network finds
a sequence of subsets of nodes in a sequence of blocks,
where the detected subgraphs in each block must satisfy
a predefined topological constraint and subgraphs at two
consecutive timestamps share some consistency on attributes
[4]. K denotes the number of timestamps in this scenario.
It is readily concluded that the vanilla subgraph detection
problem (1) is a special case of problem (2) when the number
of networks (blocks) is 1.

Problem (2) is built on discrete space. Since the solutions
for combinatorial optimization with topological constraints
are undeveloped, we naturally turn to nonconvex optimization
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(optimization techniques for continuous space) for help.
To make nonconvex optimization suitable for our scenario,
the relaxation of problem (2) from discrete space to con-
tinuous space is needed. Then, we can apply a series of
nonconvex optimization techniques, such as stochastic gra-
dient descent and Adam [13]. However, due to exponen-
tially many solutions of subgraph detection in interdependent
networks, it is infeasible to search the exact solution for a
large network (e.g. |V| ≥ 10, 000) with brute force in an
acceptable time [4], [14]. Hence, most existing methods for
addressing this problem find an approximation or suboptimal
solution heuristically within an acceptable runtime, which
attempts to balance effectiveness and efficiency. To the best
of our knowledge, most related studies on subgraph detection
in interdependent networks focus on a specific application
and lack generality. Furthermore, they are heuristic-driven
without any theoretical guarantee. In this paper, we explore
possible solutions for graph block-structured optimization
by leveraging sparse optimization theories and approximate
projections for graph-structured sparsity, aiming to provide
a generic framework for subgraph detection problems in
interdependent networks with tractable computation as well
as provable theoretical guarantees. The contributions of our
research can be summarized as follows:
• Design of a framework for graph block-structured
optimization. We propose a novel generic frame-
work, named Graph Block-structured Gradient Hard
Thresholding Pursuit (GB-GHTP), for the graph
block-structured optimization problem, which is effi-
cient and useful for approximately solving a broad of
class of subgraph detection problems in interdependent
networks in nearly linear time on the network size.

• Theoretical guarantees. We analyze the theoretical
properties of our proposed framework and prove that
the framework enjoys a good convergence rate and a
tight error bound on the quality of the results. The time
complexity of our algorithm is also be analyzed, which
is nearly linear with the network size and has provably
good efficiency.

• Comprehensive experiments in multiple practical
applications. We demonstrate that our framework can
be applied to three practical applications: 1) evolving
anomalous subgraph detection in dynamic networks,
2) anomalous subgraph detection in networks of net-
works, and 3) connected dense subgraph detection in
dual networks. Comprehensive experiments are con-
ducted on both synthetic and real-world datasets to val-
idate the effectiveness and efficiency of our framework.

The remaining parts of this paper are organized as
follows. Section II discusses related work relevant to our
research. Section III introduces the relaxation and formula-
tion of our problem. Section IV presents an efficient frame-
work for general graph block-structured optimization and
its theoretical properties. Section V shows how to model
three practical applications as graph block-structured opti-
mization problems and solve them with our framework.

Comprehensive experiments on synthetic and real-world
datasets are presented in Section VI. Section VII concludes
the paper and describes future work.

II. RELATED WORK
A. SUBGRAPH DETECTION IN ATTRIBUTED NETWORKS
Subgraph detection in attributed networks often refers to find-
ing those nodes and edges whose behaviors are significantly
different from the behaviors of those outside the subgraphs
[11]. The detected subgraphs are usually supposed to satisfy
some constraints, such as connected subgraphs, dense sub-
graphs, compact subgraphs, subgraphs with regular shapes
(e.g., circles and rectangles), and subgraphs that are isomor-
phic to a query graph. There are a large number of applica-
tions or problems concerned with subgraph detection. They
can be listed as follows: detection of subnetwork biomarkers
[15], detection of road traffic congestion events, detection
of abnormally high breakage in a distribution network [16],
detection of disease outbreaks [6], [17], and event detection
in social networks [6], [7]. According to the dynamics of
attributes, attributed graphs fall into two categories: static
graphs and dynamic graphs. A typical example of a static
graph is the molecular structure of proteins and nanomateri-
als, whose molecular structure does not change over time [2],
[3]. Social networks are a good example of dynamic graphs,
in which friendship links are added or removed at any time;
thus, the graph changes over time. For subgraph detection in
static networks, thosemethods can be further divided into two
parts, which handle spatial networks and complex networks.
For spatial networks like a street network, most studies are
statistical approaches. These methods typically assume that
the attributes (e.g., traffic volumes in a street intersection)
follow some distribution in Euclidean space. The goal is then
to detect whether there exists a subarea where the attributes
are in the same distribution but with a higher density param-
eter. For example, expectation-based statistics can be used
to scan subsets and find anomalous space areas [18], while
these methods do not consider any topological constraints.
Others consider graph structures and propose the graph scan
method [19] to detect connected subgraphs. Some studies also
extend the graph scan method and introduce soft constraints
on temporal consistency to find dynamic patterns [20]. The
graph scan methods and their variants use the LTSS property,
which rules out subgraphs that are suboptimal and dramat-
ically reduces the search space [19]. For subgraph detection
in static complex networks, the nonparametric heterogeneous
graph scan was proposed to detect events in heterogeneous
social networks [6] and can be used for civil unrest predic-
tion, rare disease outbreak detection, and early detection of
human rights events. All of the above methods are statisti-
cal approaches and cannot provide any theoretical guaran-
tee. Alternatively, a class of subgraph detection problems
can be framed as a general submodular (but not monotone)
maximization problem and used to detect activity in net-
works [7]. Another work relaxes the nonconvex constraints
to convex and introduces the constraints as a regularization
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term, which provides a performance bound [17]. However,
the method is not scalable to large graphs (≥ 1, 000 nodes).
For subgraph detection in dynamic networks research, topo-
logical constraints on graphs and attributes’ dependencies
between different timestamps are considered. Meden [21]
mines the heaviest dynamic subgraph (region) with the maxi-
mum score defined on nodes and edges. NetSpot [14] defines
smoothness between different timestamps. Both methods
prune most instances to be searched and make themselves
scalable. Dynamic GraphScan [20] uses expectation-based
statistics and soft consistency constraints, which are efficent
and can scale with the instance size. These methods for
dynamic networks are statistical approaches without theoret-
ical guarantees and are designed for some specific scenarios,
which restricts their applications. The aforementioned algo-
rithms [4]–[6], [9], [10] mainly leverage statistical theories,
which cannot optimize on raw data and thus rarely give any
theoretical guarantee for optimization.

B. STRUCTURED SPARSE OPTIMIZATION
In the past decade, sparsity has arisen as an important tool
in many fields, such as statistics, signal processing, and
machine learning. In many settings, sparsity is useful because
it enables us to identify structures in high-dimensional data
while still remaining a mathematically tractable concept [22].
Structured sparsity models refer to a class of sparsity models
that discover patterns in high-dimensional data with prior
knowledge about their structures. Recently, a number of
structured sparsity models defined through trees [23], groups,
clusters, and paths [24] have been proposed. Generally,
an optimization problem based on a structured sparsity model
can be defined as

min
x∈Rn

f (x) s.t. supp(x) ∈M (3)

where f : Rn
→ R is a differentiable objective function,

the support set supp(x) denotes the set of indices of nonzero
entries in x, and M is the sparsity model and represents a
family of structured supports, i.e., M = {S1, S2, . . . , SL},
where Si ⊆ [n] = {1, 2, . . . , n} satisfies a certain structure
constraint (e.g., groups, trees or clusters). For example, a
k-sparsity model is defined asM = {S ⊆ [n]||S| ≤ k}.
Structured sparse optimization can be implemented by two

main methods: 1) encoding the structured sparsity model as
an induced norm and embedding it into the objective func-
tion, where the induced norm is usually non-Euclidean and
nonsmooth. Or we can 2) leverage a projection oracle on M,
which is defined as

P(b) = argmin
x∈Rn

‖b− x‖22 s.t. supp(x) ∈M (4)

and decompose the problem into two subproblems, including
the optimization of f (x) independent of the structured sparsity
constraints and the projection problem (4). Most methods via
a projection oracle require exact solutions to the projection
problem (4), which are usually unavailable. For instance,
if we require the connectivity of the supp(x), the projection

oracle is reduced from prize collection Steiner tree problem
that is NP-hard. However, when we use an approximate
projection, the theoretical guarantees of those methods no
longer hold. A recent approach named Graph-CoSaMP [22],
[25], attempts to introduce an approximation framework for
sparsity structured models defined via graphs and provide a
theoretical guarantee, in which an efficient approximate pro-
jection algorithm that runs in nearly linear time is proposed.
There are two components in the approximate projection
algorithm, including head and tail approximate projections,
which provide a theoretical guarantee as long as they are
utilized jointly. Although Graph-CoSaMP shows good per-
formance for finding trees or clusters in data with graph struc-
tures, it is only applicable in linear regression or compressive
sensing. Some works have generalized Graph-CoSaMP and
proposed algorithms for graph-structured sparsity optimiza-
tion problems [24], [26], [27]. They evaluate their methods in
the problems of connected subgraph detection and interesting
subspace detection. Reference [24] proposed Graph-IHT and
Graph-GHTP to solve the structured optimization problem on
a single graph. These methods are variants of iterative hard
thresholding (IHT) and gradient hard thresholding pursuit
(GHTP) [28], respectively, in which the projection oracle is
approximately solved by the head and tail approximations.
References [26], [27] used the same idea as [24] on match
pursuit (MP) and designed the Graph-MP and SG-Pursuit
methods. Graph-MP aims for subgraph detection, while the
task of SG-Pursuit detects subspace. Our work generalizes
the aforementioned ideas in [24], [26], [27] in that we can
solve combinatorial optimization problems with topologi-
cal constraints via structured sparsity optimization. Other
works such as [5], [10] have been designed for uncovering
specific-shape subgraphs via nonparametric statistics, which
do not possess the ability to run on raw data. More impor-
tantly, those works only handle structural constraints defined
on an isolated network (i.e. M defined on a single graph
in problem (3)). We propose a generic framework to solve
general optimization problems on multiple networks with
interdependency. Thus, previous methods [24], [26], [27] are
special cases of our framework when constraints are defined
on a single network.

The aforementioned methods, IHT and MP, are two
classical algorithms for general sparse optimization prob-
lems. GHTP is an improved method based on IHT and GHTP,
which iterates between 1) a standard gradient descent step
and 2) a hard thresholding step [28]. Our framework follows
the iterative scheme of GHTP and integrates the approximate
projection oracles head and tail in Graph-CoSaMP. Then
we generalize GHTP from the trivial sparse optimization
problem to a generic problem setup of graph block-structured
optimization, and propose a framework to optimize structured
data with multiple blocks, which can be deployed to detect
subgraphs across interdependent networks. In this setting,
structured optimization on single graph is a special case of our
framework for multiple-block-structured optimization when
the number of blocks is 1.
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C. NETWORK ANALYSIS
Complex systems can be modeled as complex networks,
which usually encompass many subsystems that interact with
or depend on each other. These networks composed of mul-
tiple interdependent networks are also known as multilayer
networks, networks of networks or multiplex networks [29].
Studies in this field mostly study static and evolving sta-
tistical characteristics of networks, which ignore attributes
on nodes and edges. Recent works [12], [30], [31] have
studied the percolation properties of networks with interde-
pendency on each other, which can be utilized to analyze
the robustness of networks. In particular, [31] discussed the
vulnerability of interdependent spatially embedded networks.
Furthermore, epidemics in interdependent networks, which
can depict disease transmission, were studied in [32], [33].
Apart from the percolation properties of networks, another
network application is data transmission, which is critical in
the era of the Internet. The references [34], [35] studied the
fractional factor problem on fractional critical deleted graphs,
which can help make better decisions for dividing large data
packets into small packets and improve the digital commu-
nication efficiency. The molecular structures in microbiol-
ogy or nanomaterials can be expressed as a network, where
genes, proteins, cells or atoms are denoted as nodes, and the
connected elements are regarded as edges. Then, researchers
could calculate the topological indices of molecular struc-
tures, which are definitions from graph theory, to test the
chemical, physical [3], biological [2], [15], and pharmaceu-
tical [2] properties of various materials. These conclusions
have promising application prospects in bioengineering and
nanoscience.

There are many other research lines in this field. For
example, a framework has been established to study the com-
munity structure of time-dependent networks, which handles
various types of links (multiplexity) and multiple scales [36].
As a special network structure, ontology has attracted much
attention. Researchers presented an efficient partial multi-
dividing ontology algorithm to obtain a semantic matching
set of concepts and rank them according to their similarities
[37]. It must be noted that all of the studies in this part do
not involve features on nodes or edges, which is the largest
difference from our work.

III. PROBLEM FORMULATION
The problem (2) is nonlinear, combinatorial, and nonconvex.
To make use of advanced numerical optimization techniques,
such as the stochastic gradient descent and coordinate descent
method, which have been proven to be impressively simple,
efficient, and effective in nonconvex problems (e.g. deep
learning) [13], we first reformulate the original combinato-
rial problem (2) as an equivalent 0-1 integer programming
problem:

min
xk∈{0,1}Nk

f (x1, x2, . . . , xk )+
∑
i6=j

g(x i, x j),

supp(xk ) ∈Mk , k = 1, . . . ,K (5)

where xk denotes binary variables of nodes in the k th block,
supp(xk ) refers to the set of indices of nonzero entries in
xk , which represents a subset of nodes in block k , and Mk
represents all possible subsets of nodes that satisfy the topo-
logical constraint on graph Gk . The set composed of the
supports supp(xk ) refers to a subgraph whose corresponding
variables x have values of 1 s and minimize the objective
function. To make it easy to solve the problem (5) and take
advantage of existing advanced numerical optimizationmeth-
ods, the domain can be further relaxed from x ∈ {0, 1} to
x ∈ [0, 1] (i.e., from integer to continuous), and then the
problem becomes a numerical optimization problem with
graph-structured sparsity constraints that are nonconvex and
combinatorial. We detail the formal problem setting in the
following.

Given a networkG = (V,E,W ), whereV = {1, · · · ,N } is
the ground set of nodes,E ⊆ V×V is the ground set of edges,
W = [w1, · · · ,wN ] ∈ RP×N is the feature matrix defined on
nodes, and wi ∈ RP is the feature vector of node i, the node
set V has a multiple-block structure and can be decomposed
to K disjoint subsets (blocks): V = V1

∪ · · · ∪ VK , where
Nk = |Vk

| refers to the size of the node set of blockVk . After
relaxation of the domain from 0, 1 to [0, 1], the subgraph
detection problem with multiple blocks can be formulated
as the following general graph block-structured optimization
problem:

min
x=(x1,...,xK )

F(x) = f (x1, · · · , xK )+
K∑
i6=j

g(x i, x j),

s.t. supp(xk ) ∈Mk (G, sk ), k = 1, · · · ,K (6)

where the vector x ∈ RN is partitioned into multiple disjoint
blocks x1 ∈ RN1 , · · · , xK ∈ RNK , F(·) is a continuous
differentiable and convex function, supp(xk ) denotes the sup-
port set of vector xk , Mk (G, sk ) denotes all possible subsets
of vertices in G that satisfy a certain predefined topological
constraint on block k . The functions f (·) and g(·) are defined
based on the feature matrix W , and can be used to formulate
the cost function and dependencies among blocks respec-
tively.

One example of topological constraints for defining
Mk (G, sk ) is a connected subgraph, and we can formally
define it as follows:

Mk (G, sk ) = {S|S ⊆ Vk ; |S| ≤ sk ;GS is connected.} (7)

where sk is an upper bound of the number of S and defined
by users, S ⊆ Vk , and GS refers to the induced subgraph
by S. The topological constraints can be any graph-structured
sparsity constraints on GS , such as connected sub-
graphs, dense subgraphs, and compact subgraphs [27].
Moreover, we do not restrict all supp(x1), · · · , supp(xK ) sat-
isfying an identical topological constraint. An illustration
of the problem formulation for connected subgraph
detection in interdependent networks can be found in
Fig. 2.
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FIGURE 2. Illustration of connected subgraph detection in interdependent
networks. In this example, the interdependent networks with 3 blocks
{G1,G2,G3} are given. The dashed lines represent the connections
across different networks, and solid lines represent connections between
nodes in the same network. These two types of lines may characterize
different relationships in practical applications. Those red nodes are what
we are interested in, and their corresponding entries in vector x should
be nonzero, while others should be 0 s once the F (x) is minimized.

IV. METHODOLOGY
A. PRELIMINARIES
The relaxed problem (6) is hard to solve due to its nonconvex
topological constraints. Intuitively, we could apply projected
gradient descent to find an approximate solution, in which
we first 1) optimize the objective function independent of
the topological constraints, and then 2) project the interme-
diate solution to the feasible space that satisfies the topo-
logical constraints. The projection can be defined as (4).
However, this trivial projection oracle is NP-hard for popular
network-structural constraints. For example, for connected
subgraphs, P(x) can be reduced from the prize collecting
Steiner tree (PCST) problem, which is known to be NP-hard
[25]. If we consider an approximation of the projection ora-
cle P(x), the projected gradient descent algorithm becomes
a heuristic algorithm with a slow convergence rate [25].
Fortunately, there exist some approximation methods for this
NP-hard projection problem that provide the possibility to
perform theoretical analysis. In the following, we introduce
the approximate projection method that our method depends
on. Note that any other approximate projection methods can
also be applied to our framework as long as they provide a
theoretical guarantee.

1) APPROXIMATE ALGORITHMS FOR THE PROJECTION
ORACLE P(x)
There are two major components related to the support of the
topological constraint ‘‘supp(x) ∈ M(G, s)’’, including head
and tail projections [22]. The key idea is that, suppose we
can find a good intermediate solution x that does not satisfy
these topological constraints, these two types of projections
can be used to find good approximations of x in the feasible
space defined by M(G, s).
• Tail approximation (T(x)): Find an S ⊆ V such that

‖x − xS‖2 ≤ cT · min
S ′∈M(G,sT)

‖x − xS ′‖2 (8)

where cT ≥ 1, sT = 5s, and xS is the restriction of x to
indices in S: we have (xS )i = xi for i ∈ S and (xS )i = 0
otherwise.When cT = 1, T(x) returns an optimal solution
to the problem:minS ′∈M(G,s) ‖x−xS ′‖2. When cT > 1, T(x)

returns an approximate solution to this problem with the
approximate factor cT.

• Head approximation (H(x)): Find an S ⊆ V such that

‖xS‖ ≥ cH · max
S ′∈M(G,sH)

‖xS ′‖2 (9)

where cH ≤ 1 and sH = 2s. When cH = 1, H(x) returns
an optimal solution to the problem: maxS ′∈M(G,s) ‖xS ′‖2.
When cH < 1, H(x) returns an approximate solution to
this problem with the approximate factor cH.

It can be readily proven that T(x) = H(x) = P(x) when
cT = cH = 1. Although the head and tail projections are
NP-hard when we restrict cT = 1 and cH = 1, these two
projections can still be implemented in nearly linear time
when approximate solutions with cT > 1 and cH < 1 are
allowed. Moreover, the joint utilization of both head and tail
projections is critical in the design of approximate algorithms
for network topology-related optimization problems [22],
[24]–[26]. It is claimed that these two approximations can
be generalized to graph-structured sparsity models that are
defined on different graph topological constraints, such as
density, k-core, radius, cut, or various others, as long as their
corresponding head and tail projections are available [26].

2) GRADIENT HARD THRESHOLDING PURSUIT
As mentioned in Section II, the gradient hard thresholding
pursuit is an iterative method for the sparsity constrained
convex optimization problem, which is defined as

min
x∈Rn

f (x) s.t. ‖x‖0 ≤ s

In the iterative procedures, a sequence of intermediate
s-sparse vectors x0, x1, . . . from an initial sparse approxima-
tion x0 (typically x0 = 0) are generated. At the ith iteration,
the GHTP can be divided into three steps

1) x̃i = xi−1 − η∇f (xi−1), this step applies the gradient
descent at the point xi−1 with step size η;

2) �i = P(supp(x̃i)), the s coordinates of the vector xi that
have the largest magnitude are selected as the support;

3) xi = argmin
x

f (x) supp(x) ∈ �i, a vector that minimizes

the objective function is returned.
The first step of GHTP is a standard gradient descent; the
second step gives a direction in which pursuing the min-
imization will be most effective; and the third step, often
referred to as debiasing, has been shown to improve the per-
formance in some algorithms [28]. These steps continue until
the algorithm reaches a terminating condition, e.g., on the
change in the objective function or the change in the estimated
minimum from the previous iteration.

GHTP has proven its performance in optimization for the
vanilla s-sparsity model. However this algorithm cannot
handle optimization problems with graph block-structured
constraints that are described in problem (6) due to the
unavailability of the exact solution for the projection ora-
cle in step 2) of GHTP. Meanwhile, the aforementioned
head and tail approximations provide us with an effective
and efficient method for achieving the approximation
for the graph-structured sparsity model. Inspired by these
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Algorithm 1 Graph Block-Structured Gradient Hard
Thresholding Pursuit (GB-GHTP)

Input: Input graph G, maximum subgraph size sk on
each block, and step size η.
Output: The estimated vector x̂ and the corresponding
connected subgraph S.
Initialization, i = 0, x i = (x1,i, . . . , xK ,i) = 0, bi =
(b1,i, . . . , bK ,i), 9 =

⋃K
k=19

k , k = 1, . . . ,K .
1: repeat
2: for k = 1, . . . ,K do
3: �k

← H(∇xkF(x
i)) F Head projection

4: 0k ← supp(xk,i − η · (∇xkF(x
i))�k )

5: end for
6: bi← argminx∈Rn F(x) s.t. supp(x

k ) ⊆ 0k (10)
7: for k = 1, . . . ,K do
8: 9k

← T(bk,i) F Tail projection
9: xk,i+1← (bk,i)9k

10: end for
11: i← i+ 1
12: until halting condition holds
13: return x̂ = x i and S = G9

two algorithms, we generalize the GHTP algorithm to
graph block-structured optimization by integrating head and
tail approximate projections, and propose a novel frame-
work named as Graph Block-structured Gradient Hard
Thresholding Pursuit. We claim that GB-GHTPmaintains the
good optimization power as theGHTPmethod, efficiency and
effectiveness of head and tail approximate projections, and
provides a theoretical guarantee. The key idea of GB-GHTP
is to alternatively search for a close-to-optimal solution by
solving easier subproblems for graphGwith K blocks in each
iteration i until convergence. We will describe the GB-GHTP
algorithm in detail and its theoretical properties in the rest of
this section.

B. GRAPH BLOCK-STRUCTURED GRADIENT HARD
THRESHOLDING PURSUIT
The GB-GHTP algorithm generalizes the graident hard
thresholding pursuit algorithm to our problem, where
multiple graph block-structured constraints are imposed on
the variables. We outline the procedures of GB-GHTP in
Algorithm 1. This algorithm also follows the scheme
described in the gradient hard thresholding pursuit.
We decompose it into three steps:

1) (Lines 2 ∼ 5) alternatively use head projection for
partial derivative on each block and find a tentative
gradient update to obtain a potentially good direction,
in which pursuing optimization will be most effective;

2) (Line 6) optimizes the objective function in the union
of sets 0k ;

3) (Lines 7 ∼ 10) alternatively apply tail projection to
project the intermediate results to a feasible space,
where the final results satisfy some topological con-
straints.

Furthermore, we utilize the block-coordinate descent
method with proximal linear update [38], [39] to solve the

problem (10). This method has been analyzed and applied to
both convex and nonconvex problems [40]–[42] and shows
good performance empirically. Block-coordinate descent is
a generalization of the alternating minimization method that
has been applied to a variety of problems, such as the
expectation-maximization (EM) algorithm [43]. In addition,
we utilize the proximal linear update that ensures the con-
vergence of the algorithm on convex problems with convex
constraints ‘‘supp(xk ) ⊆ 0k ’’. The proximal linear update in
our scenario is defined by

xk,t+1 = argmin
xk

F(x̂t )+ 〈∇xkF(x̂
k,t , x̂ 6=k,t ), xk − x̂k,t 〉

+
1

2αk,t
‖xk − x̂k,t‖2 s.t. supp(xk ) ⊆ 0k (11)

where αk,t serves as a step size and can be set as the reciprocal
of the Lipschiz constant of ∇xkF(x̂

k,t , x̂ 6=k,t ), and x̂k,t is an
extrapolated point that helps accelerate the convergence of
the proximal point update scheme:

x̂k,t = xk,t + ωt (xk,t − xk,t−1) (12)

where ωt ≥ 0 is an extrapolation weight. [44] suggests setting
hyperparameters ωt+1 = (ρt+1−1)/ρt+1, with ρ0 = 1, ω0 = 0,

and ρt+1 = (1+
√
1+ 4ρ2t )/2, to speed up the algorithm.

The objective function in problem (11) is simply the
second-order Taylor approximation of function F(·) with the
Hessian matrix replaced by the identity matrix. We can eas-
ily derive and implement the closed-form solution of the
objective function in problem (11) and then project it to the
feasible space, which is convex. Mathematically, the solution
of problem (11) is:

xk,t+1 = P
(
xk,t − αk,t · ∇xkF(x̂

k,t , x̂ 6=k,t )
)

(13)

where P(b) = argmin
xk∈Rn

‖b− xk‖22 s.t. supp(xk ) ⊆ 0k .

Note that the feasible set 0k is convex. The overall
block-coordinate gradient projection method on a convex
function with convex constraints (Algorithm 2) has a
sublinear rate of convergence [39], [40].

C. THEORETICAL ANALYSIS
In this section, we analyze the theoretical properties of
GB-GHTP. To guarantee the convergence of our framework
and the accuracy of estimates, we require the objective
function F(·) satisfying the weak restricted strong concvex-
ity (WRSC) condition, which is a variant of the restricted
strong convexity (RSC) [28] and defined as
Definition 1 (WeakRestrictedStrongConvexity(WRSC)): For some

ξ > 0 and 0 < δ < 1, a function F(·) has the weak restricted
strong convexity if for any x, y ∈ RN and S ∈ M with supp(x) ∪
supp(y) ⊆ S, the following inequality holds:

‖x − y− ξ∇SF(x)+ ξ∇SF(y)‖2 ≤ δ‖x − y‖2 (14)

where x = (x1, . . . , xK ), y = (y1, . . . , yK ), xk , yk ∈ RNk ,
k = 1, . . . ,K, topological constraint M can be expressed as
M(G, s) =

⋃K
k=1Mk (G, sk ), s =

∑K
k=1 sk , and the subgraph

in the k th block (i.e., Gk ) is Sk , which satisfies |Sk | ≤ sk , Sk ⊆
Vk , S =

⋃K
k=1 Sk , |S| ≤ s. Here, since constraints on blocks are

independent, we use the union sign ‘‘
⋃
’’ to denote the combined

modelM, in which x ∈M = {x|xk ∈Mk (G, sk ), k = 1, . . . ,K }.
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Algorithm 2 Block-Coordinate Descent Method With
Proximal Linear Update to Solve Problem (10)

Input: {G1, . . . ,GK
}

Output: x1,t , · · · , xK ,t

Initialization: t = 0, ε = 10−3, ρ0 = 1., ω0 = 0.
1: repeat
2: Choose index k ∈ {1, · · · ,K }
3: x̂k,t = xk,t + ωt (xk,t − xk,t−1)
4: Update xk,t+1← x̂k,t − 1

αk,t
∇xkF(x̂

k,t , x̂ 6=k,t )
5: Project xk,t+1 to feasible space by setting entries of
xk,t+1 to zero if the index of entry is not in set 0k .

6: Keep x j,t+1 = x j,t , for all j 6= k

7: ρt+1 = (1+
√
1+ 4ρ2t )/2,

8: ωt+1 = (ρt+1 − 1)/ρt+1,
9: Let t = t + 1

10: until
∑K

k=1 ‖x
k,t
− xk,t−1‖ ≤ ε

11: return {x1,t , · · · , xK ,t }

Remark 1: We can set different sk values for the k th block. In our
applications, s1 = · · · = sk = s′, i.e., we use the same upper bound
of subgraph size for all blocks.
Theorem 1: Given a graph block-structured constraint with K

blocks, M(G, s) =
⋃K
k=1Mk (G, sk ) and an objective function

F : RN → R satisfying the (ξ, δ,M(G, 5s))-WRSC condition.
If η > 0, then for any x ∈ RN that satisfies some topological
constraints, i.e., supp(x) ∈ M(G, s), the following inequality holds
in the iterations of GB-GHTP (Algorithm 1)

‖xi+1 − x‖2 ≤ α‖x
i
− x‖2 + β‖(∇F(x))I‖2, (15)

where
α0 = cH(1− δ)− δ, β0 = δ(1+ cH),

α =

√
2(1+ cT)
1− δ

(√
1− α20 +

(
1−

η

ξ
+

(
2−

η

ξ

)
δ

))
,

β =
1+ cT
1− δ

2η + ξ +

√
2β0
α0
+

√
2α0β0√
1− α20

 ,
cH = mink=1,...,K cHk , cT = maxk=1,...,K cTk , and I =
argmax
S∈M(G,8s)

‖(∇F(x))S‖2.

Proof: The proof is provided in Appendix B �
Remark 2: 1) The convergence of the GB-GHTP algorithm is

controlled by the shrinkage rate α < 1, which is satisfied if and
only if c2H > 1 − 1/(1 + cT)2 when δ is small. As proven in
[25], the approximation factor cH of any given head approximation
algorithm can be boosted to any arbitrary constant close to 1,
such that the above condition is satisfied. 2) According to the
WRSC condition, the function is Lipshcitz continuous, which further
implies that ‖(∇F(x))I‖2 must be bounded. In summary, Theorem 1
indicates the convergence of our algorithms.
Theorem 2: Suppose that x ∈ RN such that supp(x) ∈ M(G, s),

and F : RN → R is an objective function satisfying the
(ξ, δ,M(G, 8s))-WRSC condition. If α < 1, GB-GHTP returns an
x̂ such that supp(x̂) ∈ M(G, 5s) and ‖x̂ − x‖2 ≤ c‖(∇F(x))I‖2,
where c = 1+ β

1−α is a fixed constant. In addition, GB-GHTP runs
in time

O

((
T +

K∑
k=1

|Ek | log3 Nk

)
log

(
‖x‖2

‖(∇F(x))I‖

))
, (16)

where T is the time of solving the subproblem in Line 6
of the GB-GHTP. Furthermore, if T scales linearly with

N and |E|, then GB-GHTP scales nearly linearly with the network
size N and |E|.

Proof: The proof is provided in Appendix C �
Remark 3: We can run head and tail projections on blocks

in parallel, which reduces the time cost of each iteration to
(T + |E′| log3 N ′), |E′| log3 N ′ = maxk=1,...,K |Ek | log3 Nk .
As mentioned in the previous subsection, which was proved in
[40], the sublinear convergence rate O(1/t) can be established for
Algorithm 2. Hence, the iteration number of Algorithm 2 is O(d1/εe)
when error bound is ε. Then, it concludes that the time complexity
of Algorithm 2 (i.e., T ) is O(d1/εeN ), which further implies the
GB-GHTP algorithm scales nearly linearly with N and |E|.

V. EXAMPLE APPLICATIONS
In this section, we show three applications of our framework:
1) evolving anomalous subgraph detection in dynamic net-
works, 2) anomalous subgraph detection in networks of net-
works, and 3) connected dense subgraph detection in dual
networks. To apply our framework in these applications,
we need to formulate these applications to the context of the
graph block-structured optimization problem. Thus, we lever-
age the elevated mean scan (EMS) statistic to discover sub-
graphs whose features on vertices are anomalous/significant
compared to those background vertices. The EMS statis-
tic is used widely for detecting signals among node-level
numerical features on graphs [17], [45] and is defined as

wᵀx
√
xᵀ1

(17)

where x ∈ {0, 1}N , w denotes the attribute vector of all nodes
(here, we assume that each node only has one attribute).
wi ∈ R refers to the univariable feature of node i. Empiri-
cally, the EMS statistic can be maximized to precisely detect
significant subset of nodes in a network. To embed the EMS
statistic into our optimization framework, relaxation on its
input domain from {0, 1} to continuous space [0, 1] can be
introduced. Then we can detect subgraphs by minimizing the
negative relaxed EMS statistic, which is defined as

−
(wᵀx)2

xᵀ1
+

1
2
‖x‖2, where x ∈ [0, 1]N (18)

Note that the negative relaxed EMS statistic satisfies the RSC
condition, which implies the WRSC condition [26], [28].
Then Theorem 1 is established in our applications, i.e., the
deployment of the negative relaxed EMS statistic guarantees
the convergence of our framework.

A. EVOLVING ANOMALOUS SUBGRAPH DETECTION IN
DYNAMIC NETWORKS
Dynamic networks arise in many applications and it is an
important and challenging problem to detect subgraphs in
dynamic networks, which is usually NP-hard [4]. Generally,
attributes on nodes of a network evolve with time, and these
evolving phenomena can be characterized by three phrases:
emerging, spreading, and receding over a period of time.
The phrases usually represent an evolving event on networks
(e.g., Fig. 1a). Assume a dynamic network spreads over K
timestamps, i.e., we have K attributed networks (G1, . . . ,GK ),
k = 1, . . . ,K . The evolving subgraphs refer to a consec-
utive sequence of subgraphs (Si ∼ Sj, i ≥ 1, j ≤ K ,
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i ≤ k ≤ j, Sk ⊆ Gk ), which are connected (denoted as local
connectivity constraint) at each timestamp and two subgraphs at
consecutive timestamps share some overlap vertices (denoted
as temporal consistency constraint) [4]. Then, the evolving
anomalous subgraph detection in dynamic networks problem
can be formulated as a nonconvex optimization problem with
a convex objective function and block-structured constraints:

min
x1,...,xK

K∑
k=1

(
−
(wk

ᵀ
xk )2

xkᵀ1
+

1
2
‖x‖2

)
+ λ ·

K∑
k=2

‖xk − xk−1‖2,

s.t. supp(xk ) ∈Mk (G, s) (19)

where the first term is the summation of the negative relaxed
EMS, the second term is a soft constraint to ensure the tem-
poral consistency of detected subgraphs between timestamps
k and k − 1, and λ > 0 is a tradeoff parameter. The final
evolving subgraphs can be obtained from the support of xk ,
i.e., Sk = supp(xk ).

B. ANOMALOUS SUBGRAPH DETECTION IN NETWORK
OF NETWORKS
Our framework can also be applied to detect anomalous
subgraphs in networks. A large-scale static network with
many communities can be viewed as one instance of a net-
work of networks (trivial interdependent networks), where
each community is a small block of the network. When an
event is widespread in such large networks, it becomes very
challenging and time consuming to apply effective models to
detect the significant subgraphs. For example, one application
is rumor detection and tracking in social networks. It is
interesting and useful to identify a connected subgraph that
depicts how a rumor spreads across different communities in
a social network.

The most traditional approach is to partition a large net-
work into several small blocks and then process them individ-
ually and independently. However, this approach affects the
detection performance if those blocks are highly interdepen-
dent. By encoding the dependencies in our proposed frame-
work, we can detect subgraphs in each individual partition of
networks more efficiently without sacrificing performance.

Specifically, our proposed framework provides a feasible
solution for this scenario where node dependencies among a
large-scale network cannot be neglected. We can also lever-
age the relaxed EMS to detect signals on vertices. Then the
subgraph detection problem in the network of networks can
be formulated as follows:

min
x1,...,xK

K∑
k=1

(
−
(wk

ᵀ
xk )2

xkᵀ1
+

1
2
‖x‖2

)
+ λ ·

∑
i∈Vk1 ,j∈Vk2 ,k1 6=k2

eij · (xi − xj)2,

s.t. supp(xk ) ∈Mk (G, s) (20)

where the first term is the summation of the negative relaxed
EMS, the second term is a soft constraint on bridge vertices
of two networks (blocks) to ensure dependencies: if vertex
i and vertex j are connected but in two different networks

(i.e., edge (i, j) is a graph cut), eij = 1; otherwise, eij = 0.
xi and xj are ith and jth entries of x, and λ > 0 is a tradeoff
parameter.

C. CONNECTED DENSE SUBGRAPH DETECTION
IN DUAL NETWORKS
In real-life applications, there exist many dual networks,
in which one network represents the physical world and the
other network represents the conceptual world [46]. A typical
example of dual networks is citation networks. In the research
community, there are many collaborations between different
researchers and some of them share similar research inter-
ests. Two different networks can be constructed in this con-
text. One network models coauthor relationships, in which
vertices are authors and edges represent that two authors
coauthored one paper, i.e., physical interactions between
authors. Another network models the research interest sim-
ilarity between authors, in which an edge denotes that two
authors have similar research interests (an edge can be con-
structed by measuring the similarity of publications of two
researchers). The research interest network is conceptual. It is
interesting to find a group of active researchers in which
there exist collaborations between those researchers and their
research interests are similar. Three goals are considered in
this application. First, authors should be active, which can
be detected by maximizing some metric defined on authors’
features. Second, authors should have direct coauthorship
or indirect coauthorship via other authors. This goal can be
achieved by imposing a connected constraint on the coau-
thorship network. Last, we expect those authors to share
similar research interests, which can be reflected by dense
connections between authors on the research interest net-
work. Here, we give a formal formulation of dual networks.
Given two graphs G1(V,E1) and G2(V,E2) that have the same
node set, i.e., V but have different edge sets, i.e., E1 and E2.
For brevity, we also use G(V,E1,E2) to represent the dual
networks. The subgraphs induced by vertex set S ⊆ V in
the physical network and conceptual network are denoted
as G1

S and G2
S , respectively. Therefore, the connected dense

subgraph detection problem in dual networks can be defined
as follows
Definition 2: Given dual networks G(V,E1,E2), the connected

dense subgraph detection in dual networks refers to finding a set of
vertices such that their induced subgraphs satisfy:

1) G1
S is connected;

2) the density of G2
S is larger than a threshold α, denoted as

ρ(G2
S ) ≥ α;

3) the function defined on the network features is maximized.
Similar to the previous two applications, we use the EMS

statistic to detect significant nodes. We can formulate this
problem with a mathematical format and express it as an
optimization problem with constraints on two networks

min
x,y

(
−
(wᵀx)2

xᵀ1
+

1
2
‖x‖2

)
+

(
−
(wᵀy)2

yᵀ1
+
1
2
‖y‖2

)
+ λ‖x− y‖2

s.t. G1(supp(x)) is connected

ρ(G2(supp(y))) ≥ α (21)
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Algorithm 3 Graph Block-Structured Gradient Hard
Thresholding Pursuit With Parallelism

Input: {G1, . . . ,GK
}

Output: x1,t , · · · , xK ,t

Initialization: i = 0, xk,i = initial vectors, k =
1, . . . ,K , τ = number of processors, n = number of
blocks

1: repeat
2: �xk = H

(
∇xkF(x

1,i, . . . , xK ,i)
)
,∀k

3: 0k ← supp(xk,i − η · (∇xkF(x
i))�k ),∀k

4: t = 0, choose x0 ∈ RN , x0 = z0, and θ0 = τ
n

5: repeat
6: yt = (1− θt )x t + θtx t

7: Generate random set of blocks St ⊆ {1, . . . ,K }
8: zt+1 = zt

9: for k ∈ St do
10: zk,t+1 = argminz∈RNk

〈
∇ykF(y

t ), z− yk,t
〉
+

nθt
2τ

∥∥z− zk,t∥∥22 supp(zk ) ⊆ �xk

11: end for
12: x t+1 = yt + n

τ
θt (zt+1 − zt )

13: θt+1 =

√
θ4t +4θ

2
t −θ

2
t

2
14: let t = t + 1
15: until ‖x t − x t−1‖2 ≤ ε
16: 9xk = T(xk,i), xk,i = [xk,i]9xk ,∀k
17: let i = i+ 1
18: until

∑K
k=1 ‖x

k,i+1
− xk,i‖ ≤ ε

19: return {x1,i, · · · , xK ,i}

where x and y are associated coefficients with the physi-
cal network and conceptual network respectively. The first
and second terms are the negative relaxed EMS statistics of
two networks, and the third term is a penalty to make the
detected subgraphs in both networks as overlap as possible.
ρ(G2(supp(y))) denotes the density of the subgraph induced by
supp(y) in the conceptual network. To reduce the complexity
of the problem, we assume that the corresponding nodes on
both networks share the same features, i.e., the same w.
In addition, we devise a parallel version of our framework

(Algorithm 3) to speed up the computation by integrating
the APPROX algorithm, a randomized coordinate descent
method proposed in [47]. In Algorithm 3, the head projections
(Line 2), tail projections (Line 16), and steps from Line 9
to Line 11 are parallelizable. The block from Line 4 to
Line 15 can be run in parallel and boosts the convergence
rate of solving problem (10) from O(1/t) to O(1/t2), and the
theoretical proof and more details are provided in [47]. The
parallel part starts from x0 ∈ RN (Line 4) and generates three
vector sequences denoted as xt , yt , zt ≥ 0. In Line 6, yt is
defined as a convex combination of xt and zt . In Line 7, a set
of random blocks St are sampled and then Lines 9–12 are
performed in parallel.

VI. EXPERIMENTS
We evaluate our GB-GHTP framework in the aforemen-
tioned three practical applications on both synthetic and

TABLE 1. The statistics of datasets for the 1st application.

real datasets. The details of the experiments and the dis-
cussion of the results are reported in this section and are
organized by applications. For each application, we perform
experiments on both synthetic and real-world datasets. These
real-world datasets are 1) water pollution data, 2) traffic data,
3) biological data, and 4) citation data, which cover many
aspects of daily life and demonstrate that our framework has
extensive applications.

A. EVOLVING ANOMALOUS SUBGRAPH DETECTION
IN DYNAMIC NETWORKS
1) SYNTHETIC DATASETS
We construct network structures via the Barabási-Albert pref-
erential attachment model [48], which is used to generate
scale-free networks. In each synthetic instance, 7 networks
with the same structure are generated and represent obser-
vations of a network at different timestamps. To simulate
the dynamic process of attributes on a graph, we generate
subgraphs on all networks one by one with random walks.
The subgraphs of two consecutive timestamps must share
50% of node overlap, which characterizes the temporal
dependency of node attributes at different timestamps. The
univariate feature of each node in and not in the sub-
graph is generated in normal distributions N(µ, 1) and N(0, 1)
respectively. Fifty instances are generated for each setting
of µ = {3, 4, 5}. When µ is small, the signals on nodes
have more noise, and it is more difficult to distinguish
background nodes and anomalous nodes based on univariate
features.

2) REAL-WORLD DATASETS
1)Water PollutionDataset: a real-world network provided in the
Battle of the Water Sensor Networks (BWSN) [49]. Among
the nodes of the network, there were 25 nodes with chemical
contaminant plumes, which are distributed in the network
and produced a contaminated subarea. Each of nodes was
associated with a sensor, which reports 1 when the node is
polluted; otherwise, 0. The spread of pollution was monitored
by these sensors for a period of 8 hours and reported for
each hour. 2) Washington D.C. Road Traffic Dataset: a road
traffic dataset collected from June 1, 2013 to March 31,
2014 in Washington D.C. [50]. We use the data from 6AM to
10PM with a time resolution of 60 minutes (17 timestamps).
3) Beijing Road Traffic Dataset: the dataset contains the
real-time traffic conditions of four days. We use the data
between 5PM and 7PM of the first day with a time resolu-
tion of 10 minutes (a totally 12 timestamps) [26]. For both
traffic datasets, the difference between the reference speed
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TABLE 2. The results on synthetic datasets with different µ.

TABLE 3. The results on the Washington D.C. and Beijing datasets.

and current speed is used as the node feature, and the true
congested roads are provided. The statistics of all datasets are
provided in Table 1. The column ‘‘Nodes’’ gives the number
of nodes per graph in the dataset, and the column ‘‘Edges’’
describes the edge size. The columns ‘‘Timestamps’’ and
‘‘Resolution’’ describe the number of timestamps and the
time resolution of each dataset.

3) COMPARISON METHODS
Our method is compared with two state-of-the-art baselines:
Meden [21] and NetSpot [14]. Both algorithms prune the
subinterval space to speed up and are proposed to detect
significantly anomalous areas in dynamic networks.

4) PERFORMANCE METRICS
We use precision, recall, and F-measure to evaluate
the performance of all approaches. A higher F-measure
indicates better overall quality of the detected subgraph.
For synthetic datasets, the reported results of each setting
are averaged over 50 instances. Those metrics are defined
as follows

Precison =
SA
⋃
SB

SA

Recall =
SA
⋃
SB

SB

F-measure =
2× Precison× Recall
Precison+ Recall

where SA refers to the node subset returned by an algorithm
and SB denotes the ground set of nodes. Precision quantifies
the accuracy of detected nodes that actually belong to the true
subgraph. Recall reflects the coverage level of detected nodes
for the true subgraph. The F-measure provides a single score
that balances both the concerns of precision and recall in one
number and is able to measure how well a model is.

5) RESULTS
The results of all methods on synthetic and traffic datasets are
listed in Table 2 and Table 3. As shown in these two tables,
our method outperforms both baselines on synthetic data and
real-world data. Our approach has comparable precision to
other baselines and outperforms them substantially on all
datasets with the aspect of F-measure. Both baselines prun-
ing the search space are heuristic, which cannot guarantee

their performance and makes the results worse than ours.
We further describe our settings on traffic datasets to make
our results more intuitive. In traffic datasets, a road segment
corresponds to an edge in the network, and intersections are
nodes in the networks. The task is to find the most congested
area in the road network, i.e., which road segments and inter-
sections are congested. Here, we use the difference between
the average speed and reference speed of a road segment as
a feature on an edge. Then, the feature on a node is obtained
by taking average of features of the edges connected to the
node. Thus, a road segment with smooth traffic has a small
speed difference. Cars in a blocked road segment have a
low average speed, which makes the speed difference large.
Thus, we obtain the traffic condition of a road network by
monitoring the speed difference. Specifically, we define an
objective function based on the speed difference and find
the most congested area by maximizing the score. In such a
scenario, a higher precision means that more nodes detected
by an algorithm belong to the congested area, and a higher
recall means that more nodes in the congested area are found
in the results.

6) ROBUSTNESS ANALYSIS
We also analyze the robustness of these methods on the water
pollution dataset. Noise with different levels is injected into
the water pollution dataset. Specifically, K ∈ {2, 4, 6, 8, 10}
percent of nodes are selected randomly and their sensor val-
ues are flipped (i.e., 0 to 1, or 1 to 0). The goal of the task is
to detect connected subgraphs that correspond to the contam-
inated subarea at each timestamp. The results of robustness
validation are reported in Fig. 3. The precision of Meden is
lower than ours. NetSpot has a slightly higher precision per-
formance. However, it decreases drastically on recall when
noise increases. Our method has a more stable performance
on all metrics, which indicates its better robustness.

7) PARAMETER TUNING
We use strategies recommended by authors of those
approaches to tune parameters. For NetSpot, edges are
weighted by comparing their p-values to a significance level
threshold µ (0.01 recommended by the authors). To fit the
input to NetSpot, weights of nodes can be easily averaged
to obtain edge weights, which are used in the original paper
[14]. It can be shown that problems with node weights and
problems with edge weights are equivalent [21]. Our frame-
work in this application has two parameters, 1) sparseness
parameter s (an upper bound of the subgraph size on each
block) and 2) tradeoff parameter λ. The partial data are
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FIGURE 3. The results on Water Pollution dataset.

TABLE 4. The statistics of datasets for the 2nd application.

extracted as a training dataset, and a grid search is performed
to determine those two parameters. λ is selected in a range
with a fixed step size. The range of s varies in different
datasets. These two parameters are set to values 150/0.001,
1000/0.001, 200/0.001, 2000/0.001 on the synthetic, water
pollution, Washington D.C. and Beijing datasets, respec-
tively. Additionally, it is observed that the best setting for s
is approximately the half of the subgraph size (i.e., s ≈ 1

2 |S|).

B. ANOMALOUS SUBGRAPH DETECTION IN NETWORK
OF NETWORKS
1) SYNTHETIC DATASETS
As in the previous application, we use the Barabási-Albert
model to generate multiple networks with different network
sizes and then apply the random walk algorithm to select
10% of nodes as the ground-truth subgraphs. The attributes
of nodes in true subgraphs conform to a normal distribution
N(5, 1), while the attributes of the background nodes follow
normal distribution N(0, 1). Two synthetic datasets are gener-
ated to analyze the scalability in terms of nodes and edges,
which are denoted as SynNode and SynEdge.

2) REAL-WORLD DATASETS
1) Beijing Road Traffic Dataset: we use static network data per
timestamp from 5PM to 7PM in the previous experiment.
2) Wikivote Dataset2: a dataset contains all administrator
elections and vote history data, which is extracted from
the Wikipedia page edit history untill January 3, 2008.
3) CondMat Dataset3: the collaboration network is from the
e-print website arXiv and covers collaborations between
researchers who submitted papers to condense matter cat-
egory. For the Wikivote and CondMat datasets, true sub-
graphs with 1,000 nodes are generated by a random walk,

2https://snap.stanford.edu/data/wiki- Vote.html
3https://snap.stanford.edu/data/ca- CondMat.html

and the node attributes in true subgraphs follow the dis-
tribution N(5, 1); otherwise, N(0, 1). 4) DBLP Dataset4: the
collaboration graph of authors from DBLP computer science
bibliography. An edge between two authors represents at least
one collaboration, and the attribute of a node represents the
number of publications published by the author. The dataset
covers records ranging in time from 1995 to 2005. We apply
random walk to obtain subgraphs with 20,000 nodes and
inject anomalies as our true subgraph, as suggested by [28].
Table 4 gives the statistics of all datasets in this applica-
tion. For the SynNode dataset, we test graphs with differ-
ent sizes, which have nodes from 1,000 to 10,000 and the
edges are 3 times of the nodes. In the SynEdge dataset,
we keep nodes unchanged, and test different sizes of edges
from 300,000 to 1,000,000. The ‘‘Blocks’’ columns tell
us how many subnetworks in a network of networks. The
‘‘Processors’’ column gives the number of processors we used
in our parallel algorithm. We can see that our algorithm can
be scaled up to large networks with hundreds of thousands of
nodes and over one million edges.

3) COMPARISON METHODS
We use three baselines to validate the performance of our
framework: 1) AdditiveGraphScan [20], 2) EventTree [7],
and 3) LinearTimeSubsetScan (LTSS) [19]. AdditiveGraph-
Scan uses the expectation-based binomial (EBB) statistic to
detect anomalous subsets in graphs automatically. EventTree
reformulates the connected subgraph detection problem in
attributed networks as a prize collection Steiner tree (PCST)
problem and applies Goemans-Williamson algorithm to solve
it. The LTSS method uses the ‘‘linear time subset scanning’’
property of a function (Kulldorff’s spatial scan statistic and
extensions) to scan subsets and detect events.

4) PERFORMANCE METRICS
We use the same metrics (precision, recall and F-measure)
to evaluate the performance of all methods. Additionally,
runtimes of different methods are reported here to validate
the efficiency of our framework.

5) RESULTS
Experimental results on all real-world datasets are listed
in Table 5. From the comparison of different methods, we can

4http://konect.uni-koblenz.de/networks/dblpcoauthor
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TABLE 5. The results on the Beijing, Wikivote, CondMat and DBLP datasets. The runtime is measured in seconds.

FIGURE 4. Comparison of runtimes on synthetic datasets. Fig. (a) shows
our framework runs in nearly linear time w.r.t to the network size, where
|E| = 3|V|. Fig. (b) shows that our framework can be easily scaled up to
1,000,000 edges, where node size |V| = 100,000; by contrast,
AdditiveGraphScan runs over 10,000 seconds on all cases.

see that our original (serial version) and parallelized methods
both outperform all baselines in terms of F-measure except
on the CondMat dataset. Although our original method is not
efficient enough, it can scale to networks with hundreds of
thousands of nodes and over one million edges as heuristic
methods after parallelization. The reason why GB-GHTP
cannot excel EventTree and LTSS in runtime is that our
framework is an iterative method and requires more itera-
tions. Despite more iterations to run, our framework provides
a theoretic performance guarantee by compromising a small
amount of runtime. The result of AdditiveGraphScan on the
DBLP dataset is not reported since the method takes over
one day to finish one run and thus is infeasible to tune its
parameters.

6) SCALABILITY ANALYSIS
To analyze the scalability of different methods with respect
to the number of nodes and edges, we evaluate these methods
on synthetic datasets with different sizes. To run our method,
we partition the static network into multiple blocks with
METIS [51]. The runtimes of our framework compared with
other baselines are reported in Fig. 4. In AdditiveGraphScan,
a shortest path algorithm is used, which makes it not scalable
to very large datasets. Since our method is an iterative
algorithm, our serial method takes more time than some
heuristic methods. However after it is parallelized, the run-
time of our method can be reduced sharply (at least four
times faster than the original serial version). Meanwhile, our
framework can obtain comparable performance as those algo-
rithms devised for specific applications. It is believed that our
method could be more scalable if we utilize the computing
resources rationally based on network properties.

7) PARAMETER TUNING
For all parameters used in AdditiveGraphScan, EventTree,
and LTSS, we follow the same setting as [4], [19], [24].
To set parameters in our method, the same strategy as the

previous application is used. The sparseness parameter in this
experiment is set to be half of the size of a block. While
we set the trade-off parameter to be 0.0005 in the SynNode,
Wikivote and DBLP datasets, 0.001 in the SynEdge and
CondMat datasets, and 0.0001 in the Beijing dataset. We run
parallelized GB-GHTP on servers with multiple processors
to speed up the algorithm, and more details are provided
in Table 4, in which columns ‘‘Blocks’’ and ‘‘Processors’’
denote the number of subnetworks and processors used in our
experiments.

C. CONNECTED DENSE SUBGRAPH DETECTION
IN DUAL NETWORKS
1) SYNTHETIC DATASETS
We construct synthetic dual networks based on the Barabási-
Albert model (shorthand for SynDual). Two networks with
different densities are generated. In the synthetic dual net-
works, the edges to attach from a new node to existing
nodes are 3 and 10 respectively. The subset of true vertices
is selected with a biased random walk algorithm, which is
applied on the first network. To simulate the dense area in
the second network, the random walk algorithm considers
the degree distribution of a node in the second network
and accesses neighbor nodes that have a higher degree with
higher probabilities. This biased strategymakes the generated
subgraphs connected in the first network and dense in the sec-
ond network. Then the univariate feature values of back-
ground nodes and true nodes are randomly generated in
N(0, 1) andN(3, 1) distributions. The statistics about the gener-
ated dual networks can be seen in Table 6, which are averaged
on 10 instances.

2) REAL-WORLD DATASETS
1) Homo Dataset: We consider different types of genetic inter-
actions for organisms in the Biological General Respository
for Interaction Datasets (BioGRID, thebiogrid.org), a public
database that archives and disseminates genetic and protein
interaction data from humans and model organisms [52]. The
Homo dataset concerns Homo sapiens, and this multiplex
network makes use of 7 layers5. We extracted 2 of those
layers as our dual networks, which represent colocaliza-
tion and direct interactions among genes of Homo sapiens.
2) DBLP Datasets: We construct two dual networks from the
DBLP dataset [53], one for the data mining research com-
munity and one for the database reseach community. For the
data mining community, papers published in 5 data mining
conferences are included (KDD, ICDM, SDM, PKDD, and
CIKM) to construct the dual networks. The dataset contains

5https://comunelab.fbk.eu/data.php
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TABLE 6. The statistics of datasets for the 3rd application. Edges@#
refers to the number of edges in the network #. Density@# refers to the
density of network #.

4,102 authors and 7,194 papers and is denoted as DBLP-DM.
The first network is the collaboration network, in which
authors are the nodes and an edge represents that two authors
have coauthored a paper. The second network is the research
interest similarity network among authors, which is generated
based on the similarity of the terms in the titles of their
papers. We use the shrunk Pearson correlation coefficient
to compute the research similarity between authors [46].
The dual networks for the database community are similarly
constructed based on papers published in 3 database confer-
ences: SIGMOD, VLDB, and ICDE. This dataset is denoted
as DBLP-DB, in which 4,402 authors and 6,087 papers are
included. Note that for both datasets, only the top 30,000 pos-
itive correlations are introduced into the second network
as edges. The aforementioned prepossessing for the DBLP
dataset is the same as in reference [46]. The publications for
an author are counted and used as univariate features of the
author. Table 6 summarizes the statistics of all datasets.

3) COMPARISON METHODS
Two baselines are compared with our method: 1) DCS [46]
and 2) EventAllPair+ [7]. DCS is designed for finding
the densest connected subgraph in dual networks. However
this method does not consider attributes on nodes at all.
EventAllPairs+ algorithm finds a subset of vertices that have
large total weights and are sufficiently compact. It consid-
ers attributes but only handles a single network and cannot
guarantee connected and dense constraints.

4) RESULTS
We report performance of different methods on the synthetic
and Homo datasets in Table 7. As can be seen, since our
method considers the attributes on nodes and constraints
imposed on dual networks, it has much better results on all
metrics than other methods. Although the DCS can detect
subgraphs that are denser than ours, it only reflects structural
information while attributes on nodes are sometimes more
important and help find more meaningful patterns.

5) CASE STUDIES
In addition to measuring the performance of various meth-
ods, we are also interested in the ability of our framework
to infer meaningful patterns. Thus, we analyze some sub-
graphs detected by our method and DCS baseline on two real
datasets DBLP-DM and DBLP-DB. The subgraphs detected
by our method in the DBLP-DM dataset are shown in Fig. 5.
As you can see, in the collaboration network on the left,
the detected subgraph is connected. Most importantly, our
method can find some coauthor relationships between some
influential researchers in data mining. When drawing the
figures, we use a circle to represent an author and the radius
of a circle is decided by the number of publications of the
associated author. Then we can construct a collaboration
network among those most influential researchers in the data
mining field via our method. As shown in Fig. 5a, Jiawei Han
and Phillip S. Yu are the two most influential researchers in
the data mining community and they both published many
papers and had a large number of collaborations with other
researchers. It can also be seen in Fig. 5b, the more influential
a researcher is, themore research interest similarity they share
with other researchers, which is reflected by the phenomenon
that a node with larger radius has denser connections with
other nodes in the network.

The subgraphs detected by our method on DBLP-DB are
not drawn since there are many more nodes in the subgraphs
and are difficult to visualize. Instead we list some statistics
about our found subgraphs in Table 8 and describe some
interesting results.

In the DBLP-DM dataset, although the density of the
subgraph in the research interest network is higher than ours,
the subgraph detected by the DCS method includes many
authors whose publications are fewer than 5. From the pub-
lication distributions of authors in the detected subgraphs,
we can see that all of the authors (Fig. 6a) discovered by
our method published more than 10 papers in 5 data mining
conferences, while more than 50% of the authors (Fig. 6c)
discovered by the DCSmethod published fewer than 5 papers
and nearly 30% of the authors published only 1 paper. The
average publications of a researcher in the subgraph by DCS
are 8.13, while ours are 25.03. Our method finds collab-
orations between more influential researchers. Obviously,
it is more likely to track a hot research topic from more
influential researchers rather than those who only published
1 paper. We observe a similar phenomenon from the results
on the DBLP-DB dataset by comparing Fig. 6b with Fig. 6d.
The average number of publications of researchers in the

TABLE 7. The results on the Synthetic and Homo datasets. The column ‘‘Density@2’’ refers to the density of the detected subgraph induced from
the second network.
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FIGURE 5. The subgraphs detected by our method on the DBLP-DM dataset.

TABLE 8. Some statistics of results by DCS and GB-GHTP. Edges@# refers to number of edges in the # graph. The column ‘‘Avg Publications’’ refers to
average number of publications of authors in a detected subgraph.

FIGURE 6. The publication distribution on the DBLP-DM and DBLP-DB datasets. The figures in the top row describe the results by GB-GHTP.
The bottom figures describe the results by DCS.

subgraph detected by our method is 22.71. The average num-
ber of publications of researchers in the subgraph by DCS is
10.63. These two cases prove that it is not enough to detect
subgraphs that are densest and connected and it matters more
for us to consider attributes on nodes, rule out those nodes
that are not that important, and further detect some more
significant patterns.

The results of EventAllPairs+ are not listed because the
algorithm cannot guarantee connectivity in the collaboration
network and are unexplainable for their implications.

6) METRICS AND PARAMETER TUNING
We use the same strategies as the previous two applications
to evaluate the performance of the methods and decide the
parameters in our method. The parameters used in DCS are
recommended by the authors of the original paper (γ =
1.5). The parameter λ used in EventAllPair+ is selected
from the settings on the training dataset, which evaluates
1,501 and 901 on the SynDual and Homo datasets, respec-
tively As mentioned before, the parameters on DBLP-DM
and DBLP-DB are not listed because the results of the
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experiments are unexplainable. The sparseness parameter s
and tradeoff parameter λ in GB-GHTP are set to be 50/1.0,
250/1.0, 300/10.0 and 300/10.0 on the SynDual, Homo,
DBLP-DM and DBLP-DB datasets.

Implementation All experiments were conducted on 64-bit
machines with Intel(R) Xeon(R) CPU E5-2680 v4 @
2.40 GHz and 251 GB memory.

VII. CONCLUSIONS AND FUTURE WORK
This paper presents a graph block-structured optimization
based framework, to detect subgraphs in attributed inter-
dependent networks, which runs in nearly linear time with
respect to the network size and provides a theoretical guar-
antee. A parallel version of the framework is proposed to
improve its scalability. We evaluate our framework on three
applications. The results on both synthetic and real-world
datasets indicate that our framework enjoys better effective-
ness and efficiency than other baselines. Additionally, our
framework is not designed for a specific problem and can be
applied to more scenarios. For future work, we will deploy
our framework to more applications and networks with multi-
ple attributes. It is also worth exploring more powerful objec-
tive functions to capture interesting patterns on attributed
networks.

APPENDIX A LEMMAS
In the appendix, we first present two necessary lemmas and
then give the proof of Theorem 1 and Theorem 2.
Lemma 1: Assume that function F(·) is differentiable, if F(·)

satisfies the (ξ, δ,M)−WRSC condition, then for any x, y ∈ RN
with supp(x) ∪ supp(y) ⊆ S ∈ M, the following inequalities
hold [28]

1− δ
ξ
‖x − y‖2 ≤ ‖∇SF(x)−∇SF(y)‖2 ≤

1+ δ
ξ
‖x − y‖2,

F(x) ≤ F(y)+ 〈∇F(x), x − y〉 +
1+ δ
2ξ
‖x − y‖22.

Lemma 2: Assume that α0 = cH(1 − δ) − δ, β0 = ξ (1 + cH),
r i = xi − x, and �k = H(∇xkF(x

i)). Then

‖r i�c‖2 ≤
√
1− α20‖r

i
‖2 +

β0
α0
+

α0β0√
1− α20

 ‖(∇F(x))I‖2,
where I = argmax

S∈M(G,8s)
‖(∇F(x))S‖2. We assume that cH and δ are

constants such that α0 > 0.
Proof: Assume that 8 = (81, . . . , 8k ) = supp(x), xk ∈

M(G, sk ), k = 1, . . . ,K , and 0 = supp(r i) ∈ M(G, 6s). We first
bound the term ‖(∇F(xi))�‖2

‖(∇F(xi))�‖2 ≥

√√√√ K∑
k=1

c2Hk ‖(∇xkF(x
i))�k∗‖

2
2

≥ cH

√√√√ K∑
k=1

‖(∇xkF(x
i))8k ‖

2
2 = cH‖(∇F(x

i))8‖2

≥ cH‖(∇F(x
i))8− (∇F(x))8‖2 − cH‖(∇F(x))8‖2

≥
cH(1− δ)

ξ
‖r i‖2 − cH‖(∇F(x))I‖2

in which cH = mink=1,...,K cHk . The first ‘‘≥’’ follows from
the head approximation, and the last ‘‘≥’’ follows from

Lemma 1. The term ‖(∇F(xi))�‖2 can also be upper bounded
by

‖(∇F(xi))�‖2

≤
1
ξ
‖ξ (∇F(xi))� − ξ (∇F(x))� − r i� + r

i
�‖2 + ‖(∇F(x))�‖2

≤
1
ξ
‖ξ (∇F(xi))0∪� − ξ (∇F(x))0∪� − r i0∪�‖2 +

1
ξ
‖r i�‖2

+‖(∇F(x))�‖2 ≤
δ

ξ
‖r i‖2 +

1
ξ
‖r i�‖2 + ‖(∇F(x))I‖2

where the last inequality follows the WRSC condition.
Combining the two bounds yields the inequality:

‖r i�‖2 ≥ (cH(1− δ)− δ)‖r
i
‖2 − ξ (1+ cH)‖(∇F(x))I‖2 (22)

where α0 = cH(1 − δ) − δ, β0 = ξ (1 + cH). Assume 0 <

α0 < 1. To derive an upper bound of ‖r i�c‖2, two cases can
be considered.

• Case 1: If the right-hand side of (22) ≤ 0, i.e., α0‖r i‖2 ≤
β0‖(∇F(x))I‖2, we have

‖r i�c‖2 ≤ ‖r
i
‖2 ≤

β0

α0
‖(∇F(x))I‖2,

• Case 2: If the right-hand side of (22) > 0, i.e., α0‖r i‖2 >
β0‖(∇F(x))I‖2, we have

‖r i�‖2 ≥
(
α0 −

β0‖(∇F(x))I‖2
‖r i‖2

)
‖r i‖2,

Moreover, since ‖r i‖22 = ‖r
i
�‖

2
2 + ‖r

i
�c‖

2
2, we have

‖r i�c‖
2
2 = ‖r

i
‖
2
2 − ‖r

i
�‖

2
2,

‖r i�c‖ ≤ ‖r
i
‖2

√
1−

(
α0 −

β0‖(∇F(x))I‖2
‖r i‖2

)2
.

Denote ω0 = α0 −
β0‖(∇F(x))I‖2
‖r i‖2

. For a given 0 < ω0 < 1 and a
free parameter 0 < ω < 1, a straightforward calculation yields
that

√
1− ω20 ≤

1√
1−ω2

−
ω√
1−ω2

ω0.

√
1− ω20 ≤

1√
1− ω2

−
ω√

1− ω2
ω0 ⇔ ω2 + ω20 − 2ωω0 ≥ 0

Therefore, substituting into the bound for ‖r i�c‖2, we obtain

‖r i�c‖2 ≤ ‖r
i
‖2

(
1√

1− ω2
−

ω√
1− ω2

(
α0 −

β0‖(∇F(x))I‖2
‖r i‖2

))

=
1− ωα0√
1− ω2

‖r i‖2 +
ωβ0√
1− ω2

‖(∇F(x))I‖2

The coefficient preceding ‖r i‖2 determines the convergence
rate of our framework, and we can minimize the value of the
coefficient by setting ω = α0.

Therefore, combining the two cases yields the desired
results and proves the lemma. �
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APPENDIX B PROOF OF THEOREM 1
Proof: Denote �k = H(∇xkF(x

i)), 0k = supp(xk,i − η ·
(∇xkF(x

i))�k ), and r
i+1
= xi+1 − x; then, the term r i+1 can be

bounded as

‖r i+1‖2 = ‖x
i+1
− x‖2 ≤ ‖x

i+1
− bi‖2 + ‖x − b

i
‖2

=

√
‖x1,i+1 − b1,i‖22 + · · · + ‖x

K ,i+1 − bK ,i‖2

+‖bi − x‖2

≤

√
c2T1‖(b

1,i)∗ − b1,i‖22 + · · · + c
2
T1
‖(bK ,i)∗ − bK ,i‖22

+‖bi − x‖2

≤

√
c2T‖(b

1,i)∗ − b1,i‖22 + · · · + c
2
T‖(b

K ,i)∗ − bK ,i‖22
+‖bi − x‖2

= (1+ cT)‖b
i
− x‖2 (23)

where the first ‘‘≤’’ follows the tail projection and in the sec-
ond inequality cT = maxk=1,...,K cTk . The term ‖(x − b

i)0‖22 is
bounded as

‖(x − bi)0‖22 =
〈
bi − x, (bi − x)0

〉
=

〈
bi − x − ξ (∇F(bi))0 + ξ (∇F(x))0, (bi − x)0

〉
−

〈
ξ (∇F(x))0, (bi − x)0

〉
≤ δ‖bi − x‖2‖(b

i
− x)0‖2 + ξ‖(∇F(x))0‖2‖(b

i
− x)0‖2,

where the second ‘‘=’’ makes sense because (∇F(bi))S = 0,
which results from b being the solution to the problem in (10)
(Line 6) of GB-GHTP, and the last inequality can be obtained
from the WRSC condition. Then, we obtain the inequality

‖(x − bi)0‖2 ≤ δ‖x − b
i
‖2 + ξ‖(∇F(x))0‖2

which further gives the bound

‖x − bi‖2 = ‖(x − b
i)0‖2 + ‖(x − b

i)0c‖2

≤ δ‖x − bi‖2 + ξ‖(∇F(x))0‖2 + ‖(x − b
i)0c‖2

We obtain the following inequality after rearrangement

‖x − bi‖2 ≤
‖(x − bi)0c‖2

1− δ
+
ξ‖(∇F(x))0‖2

1− δ
(24)

Let 8 = supp(x) ∈M(G, s),

‖(xi − η(∇F(xi))�)8‖2 ≤ ‖(x
i
− η(∇F(xi))�)0‖2

as 0 = supp(xi− η(∇F(xi))�). By eliminating the contribution
on 8 ∩ 0, we derive

‖(xi − η(∇F(xi))�)8\0‖2 ≤ ‖(x
i
− η(∇F(xi))�)0\8‖2

We have the following inequality from the right-hand side

‖(xi − η(∇F(xi))�)0\8‖2

≤ η‖(∇F(x))�∪0‖2

+‖(xi − x − η(∇F(xi))� + η(∇F(x))�)0\8‖2 (25)

which is derived from the fact that 8 = supp(x). For the
left-hand side, we have

‖(xi − η(∇F(xi))�)8\0‖2

≥ −η‖(∇F(x))�∪8‖2

−‖(xi − x − η(∇F(xi))� + η(∇F(x))�)8\0‖2

+‖(bi − x)0c‖2 (26)

where the ‘‘≥’’ follows from the fact that bi0c = 0, x8\0 = x0c ,
and −x8\0 + (x − bi)0c = 0. Assume 810 is the symmetric
difference of the set 8 and 0. Combining (25) and (26),
we obtain

‖(bi − x)0c‖2 ≤
√
2‖(xi − x − η(∇F(xi))� + η(∇F(x))�)810‖2

+ 2η‖(∇F(x))I‖2 (27)

which follows that

‖(bi − x)0c‖2

≤
√
2‖(xi − x − η(∇F(xi))� + η(∇F(x))�)810‖2

+ 2η‖(∇F(x))I‖2

≤
√
2‖(xi − x − ξ (∇F(xi))� + ξ (∇F(x))�)810‖2

+
√
2(ξ − η)‖((∇F(xi))� − (∇F(x))�)810‖2

+ 2η‖(∇F(x))I‖2

=
√
2‖(r i�c + r

i
� − ξ (∇F(x

i))� + ξ (∇F(x))�)810‖2

+
√
2(ξ − η)‖((∇F(xi))� − (∇F(x))�)810‖2

+ 2η‖(∇F(x))I‖2

≤
√
2‖r i�c‖2 +

√
2‖(r i� − ξ (∇F(x

i))� + ξ (∇F(x))�)810‖2

+
√
2(ξ − η)‖((∇F(xi))� − (∇F(x))�)810‖2

+ 2η‖(∇F(x))I‖2

≤
√
2‖r i�c‖2+

√
2‖r i− ξ (∇F(xi))�∪0∪8 + ξ (∇F(x))�∪0∪8‖2

+
√
2(ξ − η)‖(∇F(xi))�∪0∪8− (∇F(x))�∪0∪8‖2

+ 2η‖(∇F(x))I‖2

≤
√
2‖r i�c‖2 +

√
2
(
1−

η

ξ
+

(
2−

η

ξ

)
δ

)
‖r i‖2

+ 2η‖(∇F(x))I‖2

where the first ‘‘≤’’ follows from the inequality 27. The third
‘‘≤’’ follows from the fact that ‖(r i�c )810‖2 ≤ ‖r

i
�c‖2. The

fourth ‘‘≤’’ follows from the fact that supp(r i) ⊆ �∪0∪8. The
last ‘‘≤’’ follows from the WRSC condition and Lemma 1.
Combining (23), (24), (28), and Lemma 2, the theorem is
established. �

APPENDIX C PROOF OF THEOREM 2
Proof: The following inequality holds in the ith iteration

‖xi − x‖2 ≤ α
i
‖x‖2 +

β

1− α
‖(∇F(x))I‖2 (28)

After t =
⌈
log

(
‖x‖2

‖(∇F(x))I‖2

)
/ log 1

α

⌉
iterations, GB-GHTP

returns an estimate x̂ that satisfies ‖x̂ − x‖2 ≤
(
1+ β

1−α

)
|(∇F(x))I‖2. The time complexities of both head and tail
approximations are O

(
|E| log3 N

)
. Then the time complex-

ity of one iteration in GB-GHTP is
(
T + |E| log3 N

)
. Since
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the total number of iterations is
⌈
log

(
‖x‖2

‖(∇F(x))I‖2

)
/ log 1

α

⌉
,

the overall time follows Theorem 2. �
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