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ABSTRACT: Knowledge of interaction parameters and Kuhn length for a polymer/solvent pair is a foundation of polymer physics
of synthetic and biological macromolecules. Here, we demonstrate how to obtain these parameters from the concentration
dependence of solution viscosity. The centerpiece of this approach is the scaling relationship between solution correlation length
(blob size) ξ = lgν/B and the number of monomers per correlation blob g for polymers with monomer projection length l. The values
of parameter B and exponent v are determined by solvent quality for the polymer backbone, chain Kuhn length, and types and
strength of monomer−monomer and monomer−solvent interactions. Parameter B assumes values Bg, Bth, and 1 for exponent v =
0.588, 0.5, and 1, respectively. In particular, we take advantage of the linear relationship between specific viscosity ηsp in the
unentangled (Rouse) regime and the number of correlation blobs Nw/g per chain with the weight average degree of polymerization,
Nw, and g = B3/(3ν − 1)(cl3)1/(1 − 3ν) as a function of monomer concentration, c, and the corresponding B parameter. The values of the
B parameters are extracted from the plateaus of normalized specific viscosity ηsp(c)/Nw(cl

3)1/(3ν − 1) or their locations as a function of
the monomer concentration c in different solution regimes. The extension of the approach to entangled polymer solutions provides a
means to obtain the chain packing number, Pe, and to complete the set of parameters {Bg, Bth, Pe} (a system “fingerprint”) uniquely
describing static and dynamic solution properties of a polymer/solvent pair. This approach is illustrated for solutions of
poly(ethylene oxide) in water, poly(styrene) in tetrahydrofuran and toluene, poly(methyl methacrylate) in ionic liquids, and sodium
carboxymethylcellulose in water at high salt concentrations.

■ INTRODUCTION

The scaling approach1 has transformed our understanding of
polymers by highlighting a universality in system properties
and by classifying them in terms of characteristic power laws of
monomer concentration and chain degree of polymeriza-
tion.1−13 This approach relies on the existence of a
characteristic microscopic length scale defining macroscopic
system properties. In polymer solutions, it is the solution
correlation length (correlation blob size);1−3,12,14 for chains
and networks undergoing deformation, it is the size of a
tension blob,15−19 while in the case of polymer brushes, it is
the distance between chain grafting points.20−24 The common
feature among all these systems is that on length scales smaller
than the characteristic length scale, chain conformations
remain unperturbed by the surrounding environment or by
applied external forces. Furthermore, scaling allows a universal
data representation independent of polymer-specific properties
such as Kuhn length and monomer−monomer and monomer−

solvent affinity that are implicitly taken into account by a
scaling exponent v relating the characteristic length scale ξ with
the number of monomers in it, ξ ∼ gν.1,12,14

In polymer solutions, one can be even more quantitative by
representing data in terms of the ratio c/c*, of monomer
concentration c to the chain overlap concentration c*, by
hiding system-specific properties in the c* definition.1,12,14

Unfortunately, this representation breaks down at monomer
concentrations where chain conformations on length scales of
the solution correlation length change from those at overlap
concentration and specific features of the polymer/solvent pair
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(Kuhn length and interaction parameters) become important.
At these concentrations, the scaling approach settles on
qualitative power law analysis of different solution regimes.
Here, we show how to overcome these shortcomings and
transform the scaling approach into a quantitative tool by
obtaining chain Kuhn length and polymer/solvent-specific
parameters, which we call B parameters, from analysis of the
viscosity data. In particular, knowledge of these parameters
allows us to calculate solution correlation length and use it to
represent solution viscosity in a universal form by expressing it
in terms of the number of correlation blobs per chain.
Extending this approach to entangled polymer solutions, we
obtain the chain packing number Pe and complete the set {Bg,
Bth, Pe} of system-specific parameters. This set provides a
means to quantitatively describe static and dynamic solution
properties of a polymer/solvent pair in different concentration
regimes. We begin with a brief overview of the scaling model of
semidilute polymer solutions.

■ THE SCALING MODEL
The scaling model of polymer solutions relies on the existence
of a characteristic length scalesolution correlation length
ξdefining a length beyond which all interactions are
screened.1,12,14 This results in a chain with a degree of
polymerization N (the number of chemical monomers per
chain) on length scales larger than the solution correlation
length (blob size) ξ each containing g chemical monomers to
behave as an ideal chain of N/g blobs with size (square root of
the mean-square end-to-end distance)

ξ=R N g( / )0.5 (1)

The degree of polymerization N in a monodisperse system of
chains with molar mass M and made of monomers with molar
mass M0 is equal to N = M/M0. Throughout the paper, we
express all parameters in terms of chemical monomers.
Inside the correlation blobs, chain statistics is determined by

polymer−polymer and polymer−solvent interactions, which
are manifested in the hierarchical blob structure shown in
Figure 1a. In polymer solutions under good solvent conditions,
correlation blobs are made of thermal blobs with size Dth and
having gth monomers each. On length scales smaller than the

thermal blob size, r < Dth, polymer−polymer interactions are
weak, and the conformation of a section of a chain consisting
of gr monomers is that of an ideal chain with monomer
projection length l, which for a carbon backbone is equal to
0.255 nm, and Kuhn length b

= = < ≤r lbg lg B b r D/ , forr r th th
0.5

(2)

The parameter Bth = (l/b)0.5 < 1 characterizes chain bending
rigidity and is inversely proportional to the square root of the
number of monomers per Kuhn length, b/l. Thus, knowing the
value of the Bth parameter, we can calculate chain Kuhn length,
b = lBth

−2, in the solution.
On length scales Dth < r ≤ ξ, polymer−polymer interactions

are dominant, and chain statistics is that of a self-avoiding walk
of thermal blobs

ξ= = < ≤r D g g lg B D r( / ) / , forth r th
v

r
v

thg (3)

where v = 0.588 is the self-avoiding walk exponent. Taking into
account eq 2, we can express the parameter Bg in terms of the
number of monomers per thermal blob and chain Kuhn length
as follows

= =B lg D lg b/ ( / )th th thg
0.588 0.176 0.5

(4)

Thus, depending on the number of monomers per thermal
blob gth, determining solvent quality for the polymer backbone
and the number of monomers per Kuhn length b/l, Bg could be
larger or smaller than unity.
By changing monomer concentration, one changes the

number of blobs per chain and their structure on the length
scale of the solution correlation length, ξ. To account for this, a
scaling relationship between ξ and g is written in the following
general form

ξ = νlg B/ (5)

where the exponent v = 0.588 or 0.5, and the B parameter is
equal to Bg or Bth depending on the solution concentration
regime as discussed below.
Concentration dependence of the correlation blob ξ and the

number of monomers in it g follows from the space filling
conditionthe monomer concentration inside the blobs is
equal to the solution monomer concentration, c = g/ξ3. This
expresses solution correlation length

ξ = ν ν ν− −lB cl( )1/(3 1) 3 /(1 3 ) (6)

and the number of monomers per correlation volume

= ν ν− −B clg ( )3/(3 1) 3 1/(1 3 )
(7)

as functions of monomer concentration, c, and the
corresponding B parameter.
The chain overlap concentration (crossover concentration to

the semidilute solution regime) is obtained by extrapolating
the number of monomers per correlation length to the chain
degree of polymerization, g = N,

* = ν−c l B N3
g
3 (1 3 )

(8)

Thus, eq 8 correlates the interaction parameter Bg with the
chain overlap concentration c*, the degree of polymerization
N, and monomer projection length l.
In semidilute polymer solutions c > c*, crossover

concentrations between different solution concentration
regimes are determined by comparing correlation blob size ξ

Figure 1. (a) Schematic representation of hierarchy of length scales in
semidilute polymer solutions in a good solvent. Correlation blobs with
size ξ contain thermal blobs with size Dth. (b) Concentration
dependence of the number of monomers g per correlation blob. c* -
chain overlap concentration, cth - thermal blob overlap concentration,
and c** - crossover concentration to the concentrated solution
regime. Insets show the chain structure on the length scales of
correlation blobs. Logarithmic scales.
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with thermal blob size Dth and chain Kuhn length b. Figure 1b
illustrates different regimes of the dependence of the number
of monomers per correlation length on monomer concen-
tration together with the corresponding structures of chains of
blobs and crossover concentrations. Thermal blobs start to
overlap at monomer concentration c = cth where g(cth) = gth or
ξ(cth) = Dth. Solving for concentration, we have

= −c l B B B( / )th th th
v3 3

g
1/(2 1)

(9)

As monomer concentration increases further, solution
correlation length becomes comparable with the chain Kuhn
length ξ(c**) = b and the number of monomers per
correlation blob g(c**) = b/l at concentration c = c**.
Rewriting these conditions in terms of system parameters, we
arrive at

** =c l Bth
3 4

(10)

This is a crossover concentration to the concentrated solution
regime. At monomer concentrations c > c**, chains are rodlike
on length scales smaller than the Kuhn length. For such chain
conformations, the solution correlation length ξ is given by eq
6 with parameter B = 1 and exponent v = 1, ξ = (cl)−0.5, and g =
(cl3)−0.5 as shown in Figure 1b.
Thus, knowing crossover concentrations c*, cth, and c** or

parameters Bg and Bth, we can calculate the concentration
dependences of the solution correlation length and the number
of monomers per blob according to eqs 6 and 7. Below, we will
show how these parameters can be obtained from analysis of
solution viscosity.
As in the case of static chain properties, the scaling model of

chain dynamics in semidilute solutions assumes that
exponential screening of the hydrodynamic interactions
between chains takes place at the characteristic length scale
ξH proportional to the solution correlation length, ξH ≈ ξ, with
the proportionality coefficient on the order of unity.2−4,12,14,25

In the interval of monomer concentrations c < c**, chain
dynamics is that of a chain of N/g correlation blobs with an
effective friction coefficient ζ per blob. The friction coefficient
is estimated by taking into account that on the length scales
smaller than hydrodynamic correlation length ξH, there is a
strong hydrodynamic coupling between the motion of chain
sections with g monomers. This results in the effective friction
coefficient ζ ≈ ηsξH in solutions with solvent viscosity ηs and
the Zimm relaxation time4,12,14 of the correlation blob τξ ≈
ηsξ

3/kBT, where kB is the Boltzmann constant and T is the
absolute temperature.
At concentrations c > c**, there are two different length

scalessolution correlation length ξ, determining the length
scale of the screening of hydrodynamic interactions, and Kuhn
length, b, defining chain statistics. A chain can be effectively
viewed as a chain of Kuhn segments each containing gb = b/l of
the chemical monomers. The segment friction coefficient is
calculated by summing up contributions from all correlation
blobs within a Kuhn length. This results in the concentration-
independent friction coefficient, ζ ≈ ηsξb/gl ≈ ηsb (neglecting
logarithmic corrections), and the relaxation time of a Kuhn
segment τb ≈ ηsb

3/kBT.
In the framework of the scaling approach, the longest chain

relaxation time in unentangled (Rouse) and entangled solution
regimes can be written as follows

τ τ= +N N N( )(1 / )R e (11)

where τR(N) = τsNs
2 is the Rouse relaxation time of a chain of

Ns = N/g correlation blobs with characteristic relaxation time τs
= τξ or Ns = Nl/b Kuhn segments with τs = τb for monomer
concentrations c < c** and c** < c, respectively.
The solution specific viscosity ηsp = (η − ηs)/ηs is estimated

from the product of the terminal or plateau shear modulus

=
<

≤

−

−
G k Tc

N N N

N N N

, for

, for

e

e e
B

1

1
(12)

and the chain relaxation time (eq 11) as follows

η τ
η

= = +
≤ **

** <

−
G

N N N
g c c

cbl c c
(1 ( / ) )

, for

, fors
esp
2

1

2
(13)

It is important to make a couple of comments before
proceeding further. (i) In eqs 11−13, we use an “=” sign, which
means that we absorb all numerical coefficients into the
definition of the B parameters determining the number of
monomers per correlation blob and the number of monomers
between entanglements as discussed below. (ii) In deriving
expressions for chain relaxation time and solution viscosity, we
use the original de Gennes approach resulting in ηsp ∼ N3 in
the entangled solution regime. A stronger N-dependence η ∼
N3.4 is observed in well-entangled polymer melts, N > 10Ne,
and is proven to be due to tube length fluctuations.4,14

The number of monomers between entanglements Ne is
calculated by using the Kavassalis−Noolandi conjecture26−28
in good solvents for the polymer or the Rubinstein−Colby
conjecture11,13,29 in θ solvents and marginally good solvents.
This analysis is overviewed in the Supporting Information, and
here, we only present the final results. In a good solvent with
cthb

3 ≥ 1 (which is equivalent to the condition Bg ≤ Bth
4 − 6v),

applying the Kavassalis−Noolandi conjecture, we obtain

=
≤ **

** <− −N P
g c c

c lb c c

, for

( ) , for
e e

2
2 3

(14)

where Pe is the packing number (the number of entanglement
strands per tube diameter). In a θ or marginally good solvent
with cthb

3 < 1 (Bg > Bth
4 − 6v), calculations in the framework of

the Rubinstein−Colby approach lead to

=
≤

< ≤− −
N P

c b g c c

B cl c c b

( ) , for

( ) , for
e e

th th

th th

2
3 2/3

2 3 4/3 3
(15)

Note that in the concentration interval cb3 > 1, the number of
monomers between entanglements Ne is given by eq 14.
Before using eq 13 for analysis of experimental data, we have

to account for system polydispersity.14 This is done by
averaging eq 13 over a distribution of chain degrees of
polymerization. The details of these calculations are given in
the Supporting Information. For a Schulz−Zimm distribu-
tion30,31 of chain degrees of polymerization, this analysis
results in

η = + + +
+

≤ **

** <

−
N

k k
k

N
N

g c c

cbl c c
1

( 3)( 2)
( 1)

, for

, for
w

w

e
sp 2

2 1

2

(16)
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where Nw is the weight average degree of polymerization, and
parameter k ≡ 1/(Đ − 1) depends on the system dispersity
index Đ ≡ Nw/Nn.

14

■ ANALYSIS OF EXPERIMENTAL DATA

Our approach for obtaining the B parameters is based on the
observation that in the Rouse regime of unentangled chains,
Nw < Ne, specific viscosity is inversely proportional to the
number of monomers in the correlation blob

η = <N g N N/ , forw w esp (17)

At chain overlap concentration c = c*, the number of
monomers per correlation blob g = Nw, and specific viscosity
ηsp = 1. These conditions define a reference point for
calculations of the B parameters and crossover concentrations
cth and c**. Taking into account the concentration dependence
of g given by eq 7 and shown in Figure 1b, we can normalize
specific viscosity ηsp by a factor Nw (cl3)1/(3ν − 1) with the
scaling exponent v determined by the blob type to eliminate
the concentration dependence in the corresponding solution
regime. This data representation allows us to obtain values of
the B parameters from the resulting plateau values and
crossover concentrations cth and c** from the locations of the
plateaus or from the B parameters (see eqs 9 and 10). For
example, at monomer concentrations c* < c < cth on length
scales on the order of solution correlation length, chain
statistics is that of a self-avoiding walk with exponent v = 0.588
and g ∼ (cl3)−1.31 as shown in Figure 1b, resulting in a
concentration-dependent part of the normalization factor
(cl3)1.31, while for the concentration interval cth ≤ c ≤ c**, it
is a random walk with v = 0.5 and g ∼ (cl3)−2 for which the
specific viscosity normalization factor is (cl3)2.

The approach outlined above is applied to poly(ethylene
oxide) in water (PEO),32 poly(styrene) in tetrahydrofuran
(PS-THF)33 and toluene (PS-Toluene),34,35 poly(methyl
methacrylate) in ionic liquids [C4(mim)][TFSI] (PMMA-I)
and [C8(mim)2][TFSI]2 (PMMA-II),36 and sodium carbox-
ymethylcellulose (NaCMC) in 0.1 M NaCl aqueous
solution.37 At such high salt concentrations, the properties of
polyelectrolyte solutions are similar to solutions of neutral
polymers in a good solvent.10 The complete data analysis for
each polymer/solvent pair is given in the Supporting
Information.
The main steps of the approach are illustrated in Figure 2 for

the selected data sets of poly(styrene) in tetrahydrofuran with
Nw = 5769, poly(methyl methacrylate) in ionic liquids, and
sodium carboxymethylcellulose in water, of which the
concentration dependences of the specific viscosity are
shown in Figure 2a. In Figure 2b,c, we demonstrate how
different crossover concentrations and values of the B
parameters are determined from the replotted specific viscosity
data. Figure 2b presents normalized specific viscosity ηsp/Nw
(cl3)1.31 as a function of monomer concentration. The
parameters Bg are obtained from the plateau values Cp,
indicated by the dashed lines, as

= =− + −B C Cp
v

pg
1/3 0.255

(18)

with v = 0.588, the exact exponent for a self-avoiding walk.
Figure 2c shows normalized specific viscosity data ηsp/Nw

(cl3)2 suitable for extracting crossover concentration cth, where
locations are pointed out by colored arrows. The values of the
parameter Bth are determined from the thermal blob overlap
concentration cth and parameter Bg

= ν ν ν− − −B c l B( )th th
3 (2 1)/(6 2)

g
1/(6 2)

(19)

Figure 2. Dependence of specific viscosity (a) and normalized specific viscosity (b) ηsp/Nw(cl
3)1.31, (c) ηsp/Nw(cl

3)2, and (d) ηsp/Nw(cl
3)3.93 on

chemical monomer concentration c expressed in moles of monomers per liter [M] for solutions of poly(styrene) with Nw = 5769 in tetrahydrofuran
(red circles) at 303 K, poly(methyl methacrylate) with Nw = 3061 in ionic liquids [C4(mim)][TFSI] (blue triangles) and [C8(mim)2][TFSI]2
(orange rhombs) at 298 K, and NaCMC with Nw = 889 in 0.1 M NaCl aqueous solutions (violet inverted triangles) at 298 K. Values of the system-
specific monomer projection lengths are given in Table 1. Lines and arrows of different colors in panels b−d show crossover concentrations and
plateau values used for calculations of the B parameters listed in Table 1.
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Note that values of the Bth parameter can also be calculated
from the intermediate plateau values Cp as Bth = Cp

−1/6. Values
of Bth obtained by this procedure are consistent with those
calculated using crossover concentration locations and Bg.
Substituting Bth into eq 10, we determine the crossover
concentration to the concentrated solution regime, c**.
Results of this analysis are summarized in Table 1.
Finally, the plot ηsp/Nw (cl3)3.93, where exponent 3.93 = 3/

(3ν − 1) for v = 0.588 corresponds to ηsp ∼ g−3, as a function
of monomer concentration (see Figure 2d) serves as a self-
consistency check that the crossover to the entangled solution
regime does not influence the location of the crossover
concentration into the thermal blob overlap regime. In
particular, this analysis points out that for the PS-THF system,
the observed minimum in Figure 2c is due to a crossover to the
entangled solution regime as discussed in the Supporting
Information.
Analysis of the data in Table 1 for the Kuhn length indicates

that packing of the solvent around the polymer backbone could
increase chain stiffness even for identical polymers as observed
for PMMA in ionic liquids. This is unique information, which
is difficult to obtain by other techniques. We can describe the
solvent quality by the number of monomers per thermal blob,
gth. This representation is more convenient than the value of
the second virial coefficient since it immediately indicates how
long a chain should be to experience binary polymer−polymer
interactions and swell. Specifically, the values listed in Table 1
point out that the NaCMC system is in the best solvent, while
PEO is in the worst one among the studied solutions.
Information summarized in Table 1 is used to calculate the
concentration dependence of the solution correlation length in
the different solution regimes as shown in Figure 3.
Due to the different concentration dependences of the

number of monomers per correlation blob (see eq 7) and the
number of monomers between entanglements Ne (eqs 14 and
15), we need to rescale solution viscosity to plot the data in
terms of the number of blobs per chain. For systems with cthb

3

≥ 1 (Bg ≤ Bth
4 − 6v), we have the following universal function for

solution-specific viscosity

λη = ̃ + ̃ ̃−N P N( /g)(1 ( /g) )w e wsp
4 2

(20)

where the multiplication factor λ = 1 for c ≤ c**, and λ = c/c**
for c** < c. The number of monomers per normalization blob
g̃ = g (eq 7) for c ≤ c**, and g̃ = Bth

−2(c**/c)2 for c** < c. We

can hide system polydispersity information by introducing the
apparent packing number

̃ = + + +P k k k P(( 1) /( 3)( 2))e e
2 1/4

(21)

This value is reported below if no information about system
polydispersity is given.
In the case of θ or marginally good solvents (cthb

3 < 1 or Bg >
Bth
4 − 6v), to account for different concentration dependences of

the number of monomers between entanglements Ne (see eqs
14 and 15) and the number of monomers per correlation blob
(eq 7), we have to perform the following transformations: (i)
introduce the normalized packing number

=P P c b( )e RC e th,
3 1/3

(22)

to reduce eq 15 to a form similar to eq 14 in the concentration
interval c ≤ cth and (ii) define the number of monomers in a
normalization blob g̃ = λgg with a rescaling factor

Table 1. Summary of Parameters for Studied Systemsa

system Nw Bg Bth cth [M] c** [M] b [nm] gth cthb
3 Pe

PEO 9091−90,909 1.12 0.62 0.35 6.30 0.88 846 0.15 7.2(1)

PS-THF 3750−75,000 0.61 6.7(2)

PS-Toluene 2558−227,000 0.74 0.42 0.33 3.27 1.41 536 0.56 4.4(1)

PMMA-I 3061 0.62 0.38 0.32 2.05 1.78 296 1.07 16.0(3)

PMMA-II 3061 0.72 0.41 0.25 2.70 1.55 712 0.56 10.3(3)

NaCMC 889 0.48 0.30 0.021 0.094 5.85 229 2.5 9.5(1)

aPEO − aqueous solutions of poly(ethylene oxide) with weight average molecular weights Mw = 4 × 105, 1 × 106, and 4 × 106 g/mol, monomer
molecular weight M0 = 44 g/mol, and monomer projection length l = 0.338 nm calculated using ChemDraw. PS-THF − tetrahydrofuran solutions
of poly(styrene) with Mw = 7.8 × 106, 1.8 × 106, 6.0 × 105, and 3.9 × 105 g/mol, M0 = 104 g/mol, l = 0.255 nm, and Đ = 1.1. PS-Toluene −
solutions of poly(styrene) in toluene with Mw between 2.66 × 105 and 2.36 × 107 g/mol, M0 = 104 g/mol, and l = 0.255. PMMA-I and PMMA-II
are solutions of poly(methyl methacrylate) in ionic liquids [C4(mim)][TFSI] and [C8(mim)2][TFSI]2, respectively, and with Mw = 3.061 × 105 g/
mol,M0 = 100 g/mol, l = 0.255 nm, and Đ = 1.74. NaCMC − aqueous solutions of sodium carboxymethylcellulose in 0.1 M NaCl withMw = 2.4 ×
105 g/mol, M0 = 270 g/mol, and l = 0.515 nm. Kuhn length b = lBth

−2 and the number of monomers in a thermal blob gth = (Bg/Bth)
2/(2v − 1) with

exponent v = 0.588. (1)Reported values correspond to the apparent packing number. (2,3)Values of the packing number are calculated by using eq 21
with k = 1/(Đ − 1) values obtained from Đ = 1.1 and Đ = 1.74 reported in refs 33 and 34 for PS-THF and PMMA systems, respectively.

Figure 3. Dependence of the solution correlation length ξ on
chemical monomer concentration c expressed in moles of monomers
per liter [M] for aqueous solutions of poly(ethylene oxide) (PEO)
with Nw = 9091 (black squares), 22,727 (black circles), and 90,909
(black triangles); tetrahydrofuran solutions of poly(styrene) with Nw
= 3750 (green circles), 5769 (red circles), 17,308 (blue circles), and
75,000 (black circles); poly(methyl methacrylate) in ionic liquids
[C4(mim)][TFSI] (blue triangles) (PMMA-I) and [C8(mim)2]-
[TFSI]2 (PMMA-II) (orange rhombs); and NaCMC in 0.1 M
NaCl solution (violet inverted triangles). The solution correlation
length is calculated using eq 6 with monomer projection lengths l and
values of the B parameters from Table 1.

Macromolecules pubs.acs.org/Macromolecules Article

https://dx.doi.org/10.1021/acs.macromol.0c02810
Macromolecules 2021, 54, 2288−2295

2292

http://pubs.acs.org/doi/suppl/10.1021/acs.macromol.0c02810/suppl_file/ma0c02810_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.macromol.0c02810/suppl_file/ma0c02810_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.0c02810?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.0c02810?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.0c02810?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.0c02810?fig=fig3&ref=pdf
pubs.acs.org/Macromolecules?ref=pdf
https://dx.doi.org/10.1021/acs.macromol.0c02810?ref=pdf


λ =

≤

< ≤

<

−

− −

c c

c c c c b

c b b c

1, for

( / ) , for

( ) , for

th

th th

th

g
2/3 3

3 2/3 3
(23)

This rescaling allows for a representation of the solution-
specific viscosity data in a universal functional form similar to
eq 20 with Pe in the expression for the apparent packing
number P̃e (eq 21) substituted by Pe,RC, the number of
monomers in the normalization blob g̃ = λgg, and multi-
plication factor λ defined as λ = λg

−1 for c ≤ c** and λ = (c/
c**) λg

−1 for c** < c.
By applying the criterion cthb

3 to the studied systems, we find
that for aqueous solutions of PEO, PS-Toluene, and PMMA-II,
it is smaller than unity (see Table 1), and it is bigger than unity
for PMMA-I and NaCMC. It cannot be determined for PS-
THF systems since we are unable to locate thermal blob
overlap concentration cth. This classification allows us to
determine how to represent viscosity data in a universal form
and to obtain the packing number. Figure 4 shows the
universal specific viscosity plots using the rescaling procedure

described above. It follows from this figure that all data sets
demonstrate qualitatively similar behavior.
For a small number of blobs per chain, system dynamics is

described by unentangled (Rouse) chain dynamics with
specific viscosity increasing linearly with the number of blobs
per chain. As the number of blobs per chain increases further,
we see a stronger dependence of the solution viscosity on the
number of blobs. In particular, at Nw/g̃ > 10 ÷ 30, there is a
crossover to an entangled solution regime with ληsp ∼ (Nw/g̃)

3.
The values of the packing numbers Pe, obtained by fitting
viscosity data to eq 20, are between 4.4 and 16.0. These values
appear to be small in comparison with those known for
polymer melts (Pe = 20−24).14 Note that for systems with
unreported dispersity, we report the apparent packing number,
P̃e.
All viscosity data sets shown in Figure 4 can be collapsed

together by plotting reduced viscosity as a function of the
number of entanglements per chain

λη ̃ = ̃ + ̃P N N N N/ ( / )(1 ( / ) )e w e w esp
2 2

(24)

where Ñe = P̃e
2g̃ is an effective number of monomers between

entanglements. This data representation is shown in Figure 5

together with data for melts of polyisobutylene38−40 and
polybutadiene.41 To superimpose solution and melt data, we
normalized melt viscosity η by ηR = η(Ñe)/2 half of the melt
viscosity at Nw = Ñe corresponding to the crossover from the
Rouse to the entangled melt regime (see the Supporting
Information). It follows from this figure that melt and solution
data overlap for Nw/Ñe < 10, while for Nw/Ñe > 10, the melt
viscosity data demonstrate clear departure from η ∼ (Nw/Ñe )

3

scaling dependence, approaching a stronger η ∼ (Nw/Ñe)
3.4

increase with the number of entanglements per chain. The
difference in crossovers between melts and solutions could be
due to a difference in the “softness” of the tube length
fluctuation mode in solutions and melts. Unfortunately, with
the available data, it is impossible to say with confidence where
the PEO data will show a dependence of viscosity similar to
melts, η ∼ (Nw/Ñe)

3.4. Addressing this issue requires additional
studies of solution rheology on samples with longer chains.

Figure 4. (a) Dependence of the normalized specific viscosity ληsp =
λ(η − ηs)/ηs on the number of blobs per chain Nw/g̃ for
tetrahydrofuran solutions of poly(styrene) with Nw = 3750 (green
circles), 5769 (red circles), 17,308 (blue circles), and 75,000 (black
circles); poly(methyl methacrylate) in ionic liquid [C4(mim)][TFSI]
(PMMA-I) (blue triangles); and NaCMC in 0.1 M NaCl solution
(violet inverted triangles). Multiplication factor λ = 1 for c ≤ c** and
λ = c/c** for c** < c. The number of monomers per blob g̃ = g is
given by eq 7 for c ≤ c** and g = Bth

−2(c**/c)2 for c > c**. Solid lines
are the best fits to eq 20 with P̃e as a fitting parameter. (b)
Dependence of the normalized specific viscosity ληsp on the number
of blobs per chain Nw/g̃ for aqueous solutions of poly(ethylene oxide)
(PEO) with Nw = 9091 (black squares), 22,727 (black circles), and
90,909 (black triangles); poly(methyl methacrylate) in ionic liquid
[C8(mim)2][TFSI]2 (PMMA-II) (orange rhombs); and toluene
solutions of poly(styrene) with Nw between 2558 and 227,000 (red
symbols). The number of monomers per blob g̃ = λgg where λg is
calculated according to eq 23, g is given by eq 7 for c ≤ c**, and g =
Bth
−2(c**/c)2 for c > c**. Multiplication factor λ = λg

−1 for c ≤ c** and
λ = (c/c**) λg

−1 for c** < c. Solid lines are the best fits to eq 20 with
P̃e, RC as a fitting parameter.

Figure 5. Dependence of the normalized specific viscosity ληsp/P̃e
2 on

the number of entanglements per chains Nw/Ñe for solutions of PEO
in water at 293 K, PS in THF at 303 K, PS in toluene at 298 K,
PMMA in ionic liquids at 298 K, and NaCMC in 0.1 M NaCl
aqueous solutions at 298 K. Notations are the same as in Figure 4.
The number of monomers between entanglements is calculated
according to Ñe = P̃e

2g̃. Viscosity data for melts of polyisobutylene at
490 K (open black squares) and polybutadiene at 298 K (open red
circles) are represented as normalized viscosity η/ηR vs Nw/Ñe.
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■ CONCLUSIONS

We have developed an approach for calculations of the B
parameters and crossover concentrations into different solution
regimes. This approach takes advantage of the linear
dependence of the specific viscosity on the number of
correlation blobs per chain in the Rouse regime (eq 17)
such that the values of the B parameters and crossover
concentrations are derived from plots of the concentration
dependence of the normalized specific viscosity ηsp/Nw (cl

3)1.31

and ηsp/Nw (cl
3)2 (see Figure 2b,c). The B parameters are then

used to calculate solution correlation length (Figure 3) and to
represent specific viscosity in terms of the number of blobs per
chain, Nw/g̃ (Figure 4). This universal data representation
provides a means to extract the packing number, Pe. After this
is done, we have a set of parameters {Bg, Bth, Pe} uniquely
describing a polymer/solvent pair (a system “fingerprint”).
Using this information, we evaluated the Kuhn length and the
number of monomers per thermal blob, describing the strength
of interactions for a given polymer/solvent pair as shown in
Table 1. Furthermore, by obtaining the concentration
dependence of the number of monomers between entangle-
ments, we collapsed viscosity data of polymer solutions and
melts (see Figure 5), highlighting the universality of their
behavior in regimes with Rouse and entangled chain dynamics.
Note that by assembling the set of parameters {Bg, Bth, Pe}

for different polymer/solvent pairs, one creates a library that
can be used for analysis and prediction of polymer solution
properties. In particular, it could be used to quantitatively
predict concentration dependence of chain size (eq 1),
correlation length (eq 6), relaxation time (eq 11), and solution
viscosity (eq 16) for polymers with a known molecular weight
distribution. We can also take advantage of the linear
dependence of the solution viscosity on the weight average
degree of polymerization Nw in the Rouse regime to obtain/
verify molecular weight.
Our approach breaks down at high monomer concen-

trations, cl3 ≥ 1, at which solvent distribution around the
polymers is influenced by the presence of neighboring chains.
At such high monomer concentrations, one also has to
consider the renormalization of the monomeric friction
coefficient to account for additional concentration depend-
ences of system viscosity and relaxation time. This was shown
to be important to correctly describe chain dynamics in
concentrated solutions of charged42 and neutral polymers and
melts.40

A two-parameter scaling approach to quantitatively describe
static and dynamic properties of entangled semidilute polymer
solutions was developed by Raspaud el al.43 and applied by
Musti et al. to DNA solutions.44 Their method is based on a
combination of osmometry, scattering, and rheological
techniques and assumes a priori that chain conformations on
length scales smaller than the solution correlation length
remain unchanged in the semidilute solution regime. The
obvious advantages of our approach are that it only requires
knowledge of the concentration dependence of solution
viscosity, is free of any a priori assumptions about chain
statistics on length scales of the solution correlation length, and
explicitly includes polymer dispersity.
At the end, we would like to comment that the developed

approach can be extended to polyelectrolyte solutions by
accounting for electrostatic blobs and their overlap concen-
tration10,45−48 as described in ref 49. It could also be applied to

the characterization of graft polymers.50,51 The obtained set of
parameters {Bg, Bth, Pe} could be used for quantitative analysis
of gel swelling data17,19 and thickness of polymer chains in
brush layers.21,22,24 The developed approach can be adapted to
obtain B parameters from osmotic pressure data in different
solution regimes. We hope that this work will inspire such
investigations.
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