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ABSTRACT: Coarse-grained molecular dynamics simulations,
random phase approximation (RPA) approach, and scaling analysis
are used to study static and dynamic properties of concentrated
polyelectrolyte solutions of positively charged chains with the
degree of polymerization N+ = 400 and their mixtures with
negatively charged chains with degrees of polymerization N−
varying between 10 and 400. Simulations show that both the
effective chain Kuhn length and mean-square end-to-end distance
of a chain decrease with increasing monomer concentration,
pointing out screening of the electrostatic interactions by
surrounding chains. The structure factor S(q) has a characteristic
peak at intermediate wavenumbers q* which location moves toward smaller q values with decreasing monomer concentration. It is
demonstrated that the plateau in S(q) at a small q is controlled by system compressibility and increases with increasing degree of
polymerization of negatively charged chains. These results are in agreement with S(q) calculated in the framework of the RPA
approach considering a solution of neutral chains as a reference system. In the framework of this approach, the location of the
maximum in the scattering function at q* scales with monomer concentration as ρ−0.25. Analysis of the chain dynamics in the
mixtures of oppositely charged chains shows that chain relaxation is a combination of constraint release and chain reptation
processes. Constraint release is demonstrated to be the dominant mechanism in mixtures with negatively charged chains having
intermediate degrees of polymerization. The degree of polymerization Ne between entanglements of the tube and super tube for
charged systems is found to scale with concentration as Ne ∼ ρ−2 with corresponding packing numbers Pe = 18.45 ± 0.93. This is in
contrast with mixtures of neutral chains, where in addition to Ne ∼ ρ−2 scaling, the degree of polymerization between entanglements
of the super tube follows scaling Ne ∼ ρ−4/3 with packing number Pe = 6.64 ± 0.19.

■ INTRODUCTION
The last half century saw an unprecedented growth of research
dealing with properties of charged polymers−macromolecules
with ionizable groups, which upon dissociation in a solvent
with high dielectric permittivity release counterions into
solution, leaving charged groups on the polymer back-
bones.1−10 Solution properties of such polymers are manifes-
tations of a fine interplay between electrostatic interactions,
polymer−solvent affinity, and chain conformational entropy.
This interplay culminates in the appearance of a characteristic
length scale called the electrostatic blob, starting from which
electrostatic interactions become a dominant force responsible
for chain stretching. In dilute salt-free polyelectrolyte solutions,
this results in a linear increase in the chain size R ∼ N with its
degree of polymerization (DP) N and a crossover monomer
concentration c* to a semidilute solution regime to
demonstrate a strong N dependence such that c* ∼ N−2.
Numerical prefactors in the scaling expressions depend on the
fraction of ionized groups, solvent dielectric permittivity, and
solvent quality for the polymer backbone. In semidilute
solutions of overlapping chains, electrostatic interactions are
screened on length scales larger than the solution correlation

length with chain statistics to be that of a flexible chain with an
effective Kuhn length on the order of solution correlation
length. On length scales smaller than the correlation length,
sections of the chain remain stretched by unscreened
electrostatic repulsions between ionized groups.3,5,7

Replacing counterions with multivalent ions (i.e., Ca2+ and
Fe3+) or by oppositely charged polyelectrolytes promotes chain
complexation, associations, and/or collapse.6,8−16 In particular,
in the case of mixtures of oppositely charged chains,
electrostatic interactions between charged groups drive chains’
complexation and collapse with complex size in a dilute
solution increasing with the degree of polymerization as R ∼
N1/3.11 Equilibrium monomer density is determined by
optimization of the excluded volume interactions and
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fluctuation-induced electrostatic attraction with a characteristic
length scale of the density fluctuations having similar
dependence on the system parameters as an electrostatic
blob size. An increase in polymer concentration results in a
phase separation into a concentrated phase made of an
electroneutral mixture of oppositely charged chains and a
dilute phase of charge-balanced polyelectrolyte (PE) com-
plexes. The addition of salt screens electrostatic interactions by
decreasing the solubility of polyelectrolytes in solutions with
monovalent counterions while promoting the solubility of the
PE complexes broadening a single-phase concentration
regime.8−11

Electrostatic interactions significantly influence the dynamics
of charged polymers as well.5,17−21 In salt-free polyelectrolyte
solutions, they suppress the chain entanglement broadening
regime with unentangled chain dynamics such that the
entanglement concentration ce could be 2−3 orders of
magnitude above the overlap concentration c*. It turns out
that, for polyelectrolyte systems studied so far, chains begin to
entangle only at high polymer concentrations corresponding to
the concentration regime of overlapping electrostatic
blobs.22,23 At these concentrations, polymer dynamics is
similar to that in solutions of neutral polymers with
electrostatic interactions treated as perturbations.4 A similar
behavior is observed in solutions of oppositely charged chains.
In this case, the high concentration branch of the coexistence
curve corresponds to a concentrated solution regime.9,11,24 At
these concentrations, the electrostatic attractions between
oppositely charged chains, causing system phase separation
and defining equilibrium monomer density, are weak at length
scales comparable to the size of electrostatic blobs in
polyelectrolyte solutions. Their effect on chains’ dynamics is
reduced to renormalization of the effective monomeric friction
coefficient and monomer relaxation time such that the chains
follow ideal chain dynamics with renormalized monomeric
properties.25,26

However, despite a general understanding of the properties
of charged polymers outlined above, the complete picture of
concentrated solutions of oppositely charged polyelectrolytes
with different chain DPs and polyelectrolyte solutions with
univalent counterions is still missing. To fill this void, we use
coarse-grained molecular dynamics simulations to study chain
conformations, scattering function, and chains’ reptation
dynamics. The scattering results are analyzed using the static
structure factor calculated in the framework of the random
phase approximation (RPA) approach by considering a neutral
system as a reference state. The chains’ dynamics is analyzed
by monitoring the mean-square displacement of the central
monomers on the polymer backbone and the chain’s center of
mass to determine the effect of constraint release on the
chains’ dynamics as DP asymmetry between polyelectrolytes
increases. We begin our discussion with a brief overview of the
coarse-grained model used in molecular dynamics simulations.

■ MODEL AND SIMULATION DETAILS
We performed molecular dynamics simulations of polyelec-
trolytes and mixtures of oppositely charged polyelectrolytes in
the concentrated solution regime and in a melt. In our
simulations, polyelectrolytes were modeled as bead-spring
chains consisting of 400, 200, 100, 50, 20, and 10 beads
(monomers) and each carrying either a positive or negative
unit charge (see Figure 1). Counterions are represented by
beads with diameter σ. The beads interacted through a

truncated-shifted Lennard-Jones (LJ) potential with the
interaction parameter ε and Coulomb potential with the
Bjerrum length lB = 1.0σ. The connectivity of monomers into
chains was maintained by the combination of the finite
extensible nonlinear elastic (FENE) and truncated-shifted LJ
potentials.27 The FENE potential spring constant was set to 30
ε/σ2 and maximum bond length Rmax = 1.5σ. In addition, an
angular potential was introduced between neighboring back-
bone bonds with the bending constant kθ = 1.5ε to reduce the
degree of polymerization between entanglements. In all
simulations, the temperature was set to T = ε/kB (kB is the
Boltzmann constant, and T is the absolute temperature).
Simulations of polyelectrolyte solutions and mixtures of
positively and negatively charged chains with degrees of
polymerization N+ and N− were performed at total bead
(monomer) densities ρσ3 = 0.85 and 0.26 by following the
procedure described in the Supporting Information. Note that
these two different bead densities correspond to melt and
concentrated solution, respectively. The lower bead concen-
tration ρσ3 = 0.26 corresponds to a high density branch of the
phase coexistence curve for a symmetric system with N+ = N−
= 400 obtained by setting the system pressure to P = 0 kBT/σ

3.
The following systems consisting of (N+, N−) pairs with equal
densities of each type of monomers were studied: (400, 400),
(400, 200), (400, 100), (400, 50), (400, 20), (400, 10), and
(400, 1). A system with (400, 1) represents a polyelectrolyte
solution.

■ RESULTS AND DISCUSSION
Chain Size and Kuhn Length.We begin our discussion of

solution properties with an analysis of chain conformations.
Figure 2 shows simulation results for the mean-square end-to-
end distance of a section of the chain with s bonds, ⟨Re

2(s)⟩.
The two plots look almost identical with a larger spread of the
data and a larger chain size for systems at a lower density. This
should not be surprising since, at low bead concentrations, the
correlation blobs describing screening of the electrostatic
interactions are larger in size. Furthermore, we see two
characteristic regimes in chain size s dependence. At short
distances along the polymer backbone, the mean-square end-
to-end distance increases quadratically with the number of
bonds in a section of the chain, ⟨Re

2(s)⟩ ∝ s2. This takes place
at distances smaller than the chain Kuhn length. This regime is
followed by the ⟨Re

2(s)⟩ ∝ s regime describing a random walk.
This occurs for the number of bonds s > 10.
To quantify the effect of the local chain stiffening, we study

the decay of the orientational correlations between unit bond
vectors ni and ni + s pointing along chain bonds and separated
by s bonds defined as

Figure 1. Snapshots of the simulation box and positively charged
chains with the degree of polymerization N+ = 400 and negatively
charged chains (counterions) of different degrees of polymerization
N−.
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G s
n s

n n( )
1

i

n s

i i s
b 1

b

∑=
−

⟨ · ⟩
=

−

+
(1)

where nb = Nj − 1 is the number of bonds in the
polyelectrolyte chain and the brackets ⟨...⟩ denote averaging
over chain configurations. The end effects are eliminated by
omitting contributions from 20 bonds on each chain end in
calculations of the bond−bond correlation function (eq 1).

Figure 3 illustrates a typical bond−bond correlation function

obtained in our simulations. In charged polymer systems, there

are two effects that contribute to the local chain stiffening:

chain tension and bending deformation mode.28 To account

for these effects, the bond−bond correlation function is

approximated by the double-exponential function of the

following form28,29

Figure 2. Dependence of the mean-square end-to-end distance of the section of the polyelectrolyte chain (N+ = N− = 400) with s bonds for systems
with bead densities ρσ3 = 0.85 (a) and ρσ3 = 0.26 (b).

Figure 3. (a) Bond−bond correlation function for polymer systems with bead concentration ρσ3 = 0.26. The solid line is the best fit to eq 2. (b)
Dependence of the normalized chain size ⟨Re

2(s)⟩/b2 on the number of Kuhn segments per chain segment sl/b. Symbol notations for each system
are given in Table 1.

Table 1. Parameters for Charged Systems with N+ = 400
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G s( ) (1 )e es s/ /1 2α α= − +λ λ−| | −| | (2)

where α, λ1, and λ2 are fitting parameters. The two mechanisms
of chain deformation are represented by correlation lengths λ1
and λ2. With the given bond−bond correlation function, the
mean-square end-to-end distance of a chain section with s
bonds is written as

R s
N s

l

l g s g s

n( )
1

((1 ) ( , ) ( , ))

i

N s

j i

i s

je
2

1

2
1

2

2
1 2

∑ ∑

α λ α λ

⟨ ⟩ =
−

= − +

=

−

=

+ −

(3)

where l is the bond length and function g(λ,s) is defined as

g s s( , )
1 e
1 e

2e
1 e

(1 e )

s1/

1/
1/

/

1/ 2λ = +
−

− −
−

λ

λ
λ

λ

λ

−

−
−

−

− (4)

The Kuhn length b is calculated from the fitting parameters
of the bond−bond correlation function

b
R s
sl

l h h
( )

((1 ) ( ) ( ))
s

e
2

1 2α λ α λ= ⟨ ⟩ = − +
→∞ (5)

where function h(λ) is

h( )
1 e
1 e

1/

1/λ = +
−

λ

λ

−

− (6)

Figure 3a represents the bond−bond correlation function for
systems with different degrees of polymerization N−. The
Kuhn lengths obtained from the analysis of the fitting results
are summarized in Table 1 for bead concentrations ρσ3 = 0.85
and 0.26. Calculated values of the Kuhn length in charged
systems appear to be larger than those for solutions of neutral
polymers at the same bead density (see the Supporting
Information). For comparison, the bare Kuhn length in
noninteracting systems is equal to b = 2.46σ. This points out
that electrostatic interactions between charges stiffen polymer
chains. We can use these values of the Kuhn lengths to
represent data in terms of the number of Kuhn segments per
chain section by plotting ⟨Re

2(s)⟩/b2 as a function of sl/b (see
Figure 3b). It follows from this plot that the crossover between

the two different scaling laws of chain size dependence occurs
at sl ∼ b, as expected.

Structure Factor. The static structure factor S(q) is
defined as

S q
V

f f iq R R( )
1

exp ( )
i

N

j

N

i j i j
1 1

b b

∑∑= ⟨ [− · − ]⟩
= = (7)

where q is the scattering vector and f i is the form factor of the
ith bead located at a point with the radius vector Ri. The
summation in eq 7 is performed over all beads Nb in a system,
and brackets ⟨⟩ denote the ensemble averaging. To calculate
the structure factor of polyelectrolyte solutions, the monomer
form factors were set to f+ = 1.0 for positively charged beads
and f− = 0 for negatively charged beads.
Figure 4a,b shows the structure factor S(q) for polyelec-

trolyte solutions calculated by using a hybrid of the fast Fourier
transform (FFT)-based approach developed in ref 28 and
direct calculations of S(q) for monomer distances r < rcut =
2πσ. There are two characteristic peaks in the structure factor
S(q). The intermediate q-peak corresponds to the charged
density fluctuations. Its location remains unchanged for N−
varying between 10 and 400 with q*σ ≈ 1.96 and 3.0 for
systems with bead concentrations ρσ3 = 0.26 and 0.85,
respectively. For polyelectrolyte solutions (N− = 1), the
corresponding peak locations are q*σ ≈ 1.87 and 3.26. The
second peak located at 2π/l corresponds to correlated
scattering from neighboring beads along the chain separated
by bonds with lengths l ≈ 0.96σ and 0.97σ for bead
concentrations ρσ3 = 0.85 and 0.26, respectively. The
saturation of structure factor S(q) at a small q represents the
suppression of bead density fluctuations due to electro-
neutrality requirements. For polyelectrolyte solutions with
N− = 1, S(0) ≈ 0.0075σ−3, while for the mixtures of
polyelectrolytes, we see the saturation at S(0) ≈ 0.009σ−3 for
N− > 10 and bead concentration ρσ3 = 0.85. The larger values,
S(0) ≈ 0.13σ−3 for N− > 10 and S(0) ≈ 0.035σ−3 for N− = 1,
are observed for ρσ3 = 0.26, indicating a higher degree of the
system compressibility.
To explain this peculiar behavior of the structure factor S(q),

we use random phase approximation (RPA)4,11,30−33 to
describe bead density fluctuations. In this approximation, the
matrix G(q) of the pair correlation functions is written in terms

Figure 4. Structure factor S(q) for systems of polyelectrolyte chains with bead concentrations ρσ3 = 0.85 (a) and ρσ3 = 0.26 (b). Lines of different
colors represent systems with counterions or solvent chains having DPs equal to 400 (red), 200 (light blue), 100 (orange), 50 (green), 20 (blue),
10 (pink), and 1 (purple). The dashed lines correspond to eq 14 using the bond length l and Kuhn length b obtained from neutral system analysis
with value v(δ+ − δ−)

2 as fitting parameters that are equal to 10.5σ3 and 25.3σ3 in panels (a, b), respectively. The color dashed lines show the best
fit to eq 17 with values of the fitting parameters (C, B, v(δ+ − δ−)

2) equal to (0.9σ5, 58.2σ, 11.8σ3) for ρσ3 = 0.85 and (1.0σ5, 13.5σ, 2.9σ3) for ρσ3 =
0.26.
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of the matrix of structural correlation functions g(q) describing
the arrangement of beads into polymer chains, the matrix of
electrostatic interactions V(q), and the matrix of the direct
correlation functions C(q) representing short-range interac-
tions between beads30−33

V Cq q q qG g( ) ( ) ( ) ( )1 1= + −− −
(8)

Matrix g(q) is a diagonal matrix, gα(q)δαβ, with functions
gα(q) for chains with N ≠ 1 given by the Debye function

q N q R q Rg ( ) 2 (e 1)/( )q R 2 2 2 2 22 2
ρ= + −α α α α α

− α
(9)

where Rα
2 ≡ lbNα/6. In the case of N = 1, the function gα(q) =

ρα. The matrix of electrostatic interactions has the following
form

V z zq l q( ) 4 /T
B

2π= (10)

where the charge valence vector z = (1, − 1) and zT is its
transpose.
The elements of the matrix of the direct correlation

functions describe correlations in a reference monomeric
system

C q v c e e( ) ( )T Tδ δ ρ= + (11)

where vector e = (1,1), eT is its transpose, vector δ = (δ+, δ−)
with the corresponding transpose vector δT, and v is the
monomer excluded volume. The values of parameters δi
account for asymmetry in the packing of monomers and
counterions as well as renormalization of the short-range
interactions due to charge density fluctuations. This effect is
well known in the block copolymer systems where fluctuation
corrections renormalize the Flory−Huggins χ-parameter
shifting the microphase separation transition to lower temper-
atures.34−36 In the framework of the lattice model for a
reference monomeric system of beads, c(ρ) describes the
repulsive part of interaction potential with the excluded
volume v and can be approximated as33,37

c
v

v
( )

1
ρ

ρ
= −

− (12)

The calculations of the structure factor S(q) with scattering
amplitudes f+ = 1 and f− = 0 are reduced to calculations of the
element G++(q) of the matrix G(q)

S q G q( ) ( )= ++ (13)

The inversion of the matrix G−1(q) is described in the
Supporting Information. Below, we present the results for two
limiting cases q ≈ q* and q → 0. To establish the dependence
of the peak location q* on the system parameters, we assume
that ρv ≈ 1, which corresponds to incompressible mixtures. In
this case, density fluctuations of positively and negatively
charged monomers are interrelated, δρ+(q) = − δρ−(q), and
the function G++(q) reduces to

G q q q
l

q
v( ) g ( ) g ( )

16
( )1 1 B

2
2

1π δ δ≈ + + − −++ +
−

−
−

+ −

−

(14)

For systems with N− ≠ 1, near the peak position qRα ≫ 1,
which results in g+

−1(q) ≈ g−
−1(q) ≈ q2lb/6ρ. Taking this into

account, the peak location corresponds to the minimum of the
function

G q
q lb l

q
v( )

3
16

( )1
2

B
2

2

ρ
π δ δ≈ + − −++

−
+ −

(15)

and is estimated to be

q l lb(48 / )B
1/4π ρ* ≈ (16)

In the case of monovalent counterions (N− = 1), the term
g−
−1(q) = ρ−

−1 in eq 15 is q-independent. This shifts the location
of q* for incompressible systems to the right by a factor of 21/4,
keeping the q* dependence on the system parameters
unchanged. The position of the peak obtained using eq 15
shows better agreement with simulation results for systems
with lower bead density ρσ3 = 0.26, while for higher bead
density ρσ3 = 0.85, there is a difference in peak locations (see
Figure 4b). The appearance of the non-zero term v(δ+ − δ−)

2

reflects the renormalization of short-range interactions by the
charge density fluctuations coupled through the third- and
fourth-order terms in the free energy expansion in a power
series of bead density fluctuations. However, even this
correction cannot fully account for the renormalization of
system parameters due to the strong coupling between density
fluctuations. To highlight this effect, we use the phenomeno-
logical form of the correlation function close to the minimum

G q Cq
B
q

v( ) ( )1 2
2

2δ δ≈ + − −++
−

+ −
(17)

and consider C, B, and v(δ+ − δ−)
2 as fitting parameters. The

best fits to this function are shown by the colored dashed lines
in Figure 4. To derive relationships between these fitting
parameters and bare charged polymer properties, one has to go
beyond the RPA and apply the formalism developed in ref 38
based on the Brazovskii−Fredrickson−Helfand approxima-
tion.34,39 This will be addressed in future publications.
The plateau value of the structure factor at q → 0 and

neglecting the δ-term is estimated as

S N N v v(0)
2
(( ) 2 /(1 ))1 1 1ρ ρ ρ≈ + + −+

−
−
− −

(18)

According to this expression, there is a monotonic decrease
in the plateau values with decreasing the degree of polymer-
ization N− of negatively charged chains consistent with the
trends observed in Figure 4.

Entanglements and System Dynamics. In concentrated
solutions of chains with two different degrees of polymer-
ization, there are two different types of entanglements: (i)
entanglements formed between longer positively charged
chains Ne,+ forming a super tube that is renewed on time
scales on the order of

N N N( )( / )L e, e,
3τ τ≈ + + + (19)

with τ(Ne,+) being the relaxation time of the polymer strand
of the longer chains with DP = Ne,+ and (ii) entanglements
formed by all chains with a degree of polymerization of a
strand between entanglements DP = Ne that are renewed on
the time scale on the order of relaxation time of the short
chains

N N/S 0
3

eτ τ≈ − (20)

with τ0 being the characteristic monomeric time scale.40−44

These two different types of entanglements define two
different tube relaxation mechanisms: constraint release
controlled by the relaxation time of the short chains and
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renewal of the super tube confining motion of the longer
chains.
For short chains with degrees of polymerization N− ≥ Ne,+,

relaxation time τ(Ne,+) ≤ τS and long chains reptate within a
tube with the entanglement degree of polymerization Ne. For
the intermediate range of the degrees of polymerization of
short chains, Ne ≤ N− < Ne,+, the confining tube formed by
short chains restricting long-chain motion is renewed on the
time scale on the order of reptation time of the short chains
such that τS < τ(Ne,+). In this case, the relaxation time of the
polymer strand with DP = Ne,+ belonging to the long chains
can be estimated as that of a Rouse chain of Ne,+/N− blobs
with blob relaxation time τS, τ(Ne,+) ≈ τS(Ne,+/N−)

2. Taking
this into account, we obtain the following expression for the
reptation time of long chains

N N NN/L 0
3

e e,τ τ≈ − + + (21)

Thus, for systems consisting of short chains with a degree of
polymerization N− ≈ Ne, constraints imposed by the short
chains on the long-chain motion disappear and the relaxation
time of the longer chains is a reptation time in the super tube.
For even smaller degrees of polymerization N− < Ne, short
chains play the role of solvent diluting entanglements forming
a super tube.
For polymer solutions of chains, the relationship between

the degree of polymerization of the entangled strand Ne, bond
length l, Kuhn length b, and bead number density ρ is obtained
from the Kavassalis−Noolandi conjecture.45−47 In particular,
one calculates the number of entangled strands, Pe, with the
degree of polymerization Ne within a confinement (tube)
volume dT

3 . Taking into account that strands within a confining
volume are ideal with size d blNT e≈ , the number of

overlapping entangled strands inside the volume, dT
3 , (packing

number) is estimated as

P d N bl N/ ( )Te
3

e
3/2

e
1/2ρ ρ≈ ≈ (22)

where ρ is the total bead density.
The degree of polymerization between entanglements, Ne,+,

associated only with the longer chains, N+ = 400, forming a
super tube, is different from Ne since these chains have a bead
density ρ+. Substituting the density of monomers belonging to
longer (positively charged) chains ρ+ in eq 22 and assuming
that the packing number remains the same, we arrive at the
following expression for Ne,+

N N( / )e,
2

eρ ρ≈+ + (23)

Thus, for the equal composition mixture of long and short
chains, we should expect that Ne,+ ≈ 4Ne.
In our simulations, the primitive path analysis (PPA)48,49

(see the Supporting Information for details) is used for
calculations of Ne and Ne,+. Since, for some systems, there are
only a few entanglements per chain, Ne was obtained from
analysis of the dependence of the mean-square end-to-end
distance ⟨Re

2(s)⟩ of the primitive path chain with the bond
length lpp as a function of the number of bonds s. In particular,
we calculated Ne from the primitive path Kuhn length, Ne =
bpp/lpp. Figure 5 shows the dependence of ⟨Re

2(s)⟩/slpp
2 as a

function of the number of bonds s in a primitive path segment.
First, there is a linear increase with the number of bonds s
followed by saturation at larger s values. The saturation
corresponds to a crossover to the random walk regime of the
primitive path. The plateau value is equal to the ratio of bpp/lpp
and thus defines the degree of polymerization of the
entanglement strand. The analysis of the statistics of the

Figure 5. Dependence of the normalized mean-square end-to-end distance of the section of the primitive path chain with s bonds, ⟨Re
2(s)⟩/lpp

2 s,
obtained for charged polymer systems with bead densities ρσ3 = 0.85 (a) and ρσ3 = 0.26 (b). Super tube parameters: normalized mean-square end-
to-end distance of the section of the N+ primitive path chain with s bonds, ⟨Re

2(s)⟩/lpp
2 s, obtained for charged polymer systems with bead densities

ρσ3 = 0.85 (c) and ρσ3 = 0.26 (d). See Table 1 for symbol notations. Left-filled symbols correspond to super tube data.
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primitive path is quantified by fitting the simulation results to
the following function50

R s sl
A
A

A
s

A
A

( )
1
1

2 1
(1 )

s

e
2

pp
2

2⟨ ⟩ = +
−

− −
− (24)

where parameter A = ⟨cos θ⟩ is the average value of the bond
angle between neighboring monomers along the primitive
path. Note that, for this chain model, the ratio bpp/lpp = (1 +
A)/(1 − A), and in the limit Ne ≫ 1, eq 24 reduces to the
expression for ⟨Re

2(s)⟩ of a semiflexible chain.50 This can be
shown by substituting A ≈ 1 − 2/Ne in eq 24. The results of
this analysis are presented in Table 1 for all studied charged
systems with N+ = 400 and in the Supporting Information for
neutral systems. The degree of polymerization between
entanglements Ne increases with decreasing the bead
concentration and decreases with increasing the chain Kuhn
length.48,51,52 The observed trend is consistent with the
entanglement dilution as the bead concentration decreases.
These values of Ne are used to calculate the packing number Pe
in accordance with eq 22. The obtained values for the packing
number are between 16.7 and 19.5 (see Table 1), which are
close to the values observed for polymer melts.53

The data in Table 1 for charged polymers and the majority
of data for neutral polymers (see the Supporting Information)
for the entanglement degree of polymerization defining the
tube and super tube follow universal scaling Ne ∼ (ρ(lb)3/2)−2

with an average value of Pe = 18.45 ± 0.93, as shown in Figure
6. However, for the data set of neutral chains with ρσ3 = 0.85,

the degree of polymerization of the entanglement strands of
the super tube was found to be located significantly below the
line Ne ∼ (ρ(lb)3/2)−2. To demonstrate that this super tube
dilution follows the Rubinstein−Colby scaling54 for entangle-
ments in a θ-solvent

P l b l N( ( / ) )e
3 3/4 2/3

e
1/2ρ≈ (25)

we performed simulations of ideal phantom chains with N =
400, 800, and 1200 and the same Kuhn and bond lengths as
neutral chains with interactions (see the Supporting

Information). To introduce entanglements between phantom
chains, after system equilibration, we fixed the locations of the
chains’ ends and increased all interactions between beads from
zero to full strength and at the same time decreased the chain
bending constant to its bare value as those used in simulations
of bimodal chain systems. This procedure fixed the topology of
the chain trajectories, and the entanglements were analyzed by
PPA. The results of this analysis are shown by the gray symbols
in Figure 6. The best fit of the data to eq 25 gives the average
Pe = 6.64 ± 0.19. Thus, in analyzing super tubes in mixtures of
bimodal chains, it is important to consider the possibility of
different scaling laws for tube dilution depending on the
effective chain Kuhn length and concentration of the chains
forming a super tube.
To highlight different chain’s dynamics regimes, we

calculated the mean-square displacement (MSD) of mono-
mers27,54 belonging to positively charged chains with N+ = 400
averaged over 10 central beads

r rt t t tg ( ) ( ) ( )i i1
2= ⟨[ + Δ − Δ ] ⟩ (26)

to suppress fluctuations from the chain ends. Brackets ⟨...⟩ in
eq 26 correspond to the ensemble average over Δt. There are
several scaling regimes of function g1(t). First, the regime with
g1(t) ∼ t corresponds to monomer diffusion at short time
scales for time interval t < τ0 (τ0 is the characteristic monomer
relaxation time that depends on the interactions and
surrounding environment). In the Rouse regime for strand
dynamics between entanglements (τ0 < t < τe), the function
g1(t) ∼ t1/2, and in the chain reptation regime (τe < t < τR), this
function has weaker dependence on time g1(t) ∼ t1/4.54

These different regimes are shown in Figure 7a−d by
plotting normalized g1(t)/t

1/2 as a function of time t for
systems of charged and neutral polymers. Specifically, in this
representation, the crossover to the reptation regime appears as
a decrease in the function g1(t)/t

1/2 as a function of time. All
data sets plotted in Figure 7 show similar trends. In particular,
the function g1(t)/t

1/2
first increases with time then passes

through the maximum and then begins to decrease. For neutral
systems with bead density ρσ3 = 0.26, we observe an increase
in the function at later times, which is indicative of tube
renewal dynamics. An increase in system density has a similar
effect in both charged and neutral systems and is manifested in
the slowdown of chains’ dynamics caused by the renormaliza-
tion of the monomeric friction coefficient due to electrostatic
and excluded volume interactions and decreasing degree of
polymerization of the entangled strands. Increasing the degree
of polymerization of “polymeric counterions” results in
flattening of the function at the intermediate time scales τ0 <
t < τe. For charged chains with N− > 50 and bead density ρσ3 =
0.85, there is a well-developed plateau. This is because the
value of Ne,+ ≈ 80. However, for all other systems, function
g1(t)/t

1/2 passes through the maximum at this time scale.
Therefore, it is problematic to use a crossover between regimes
with g1(t) ∼ t1/2 and g1(t) ∼ t1/4 to accurately determine the
tube diameter required for calculations of the degree of
polymerization between entanglements, Ne. Note that the
general trend in time dependence of the function g1(t)/t

1/2 for
charged systems is consistent with the results of ref 26.
Additional information about system dynamics is obtained

from analysis of the mean-square displacement (MSD) of the
center of mass27,54 (cm) of “counterion” chains with different
degrees of polymerization

Figure 6. Degree of polymerization between entanglements Ne as a
function of the dimensionless bead density ρ(lb)3/2 for charged and
neutral systems. Left-filled symbols correspond to super tubes in
neutral and charged systems, and gray symbols correspond to systems
of entangled ideal chains. Symbol notations are summarized in Table
1 and Tables S1 and S2. The dashed lines correspond to Ne = 353.4 ×
(ρ(lb)3/2)−2 and Ne = 126.3 × (ρ(lb)3/2)−4/3.
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r rt t t tg ( ) ( ) ( )3 cm cm
2= ⟨[ + Δ − Δ ] ⟩ (27)

Note that, for the chain center of mass motion of the
entangled chains with N− = 400, the different time regimes of

the function g1(t) discussed above correspond to the scaling
regimes of function g3(t) ∼ t, t1/2, and t. At time scales longer
than the chain relaxation time, functions g1(t) and g3(t)
converge and increase linearly with time g1(t) ≈ g3(t) ∼ t.54

Figure 7.Mean-square displacement g1(t) averaged over 10 central monomers belonging to chains with N+ = 400 in systems of charged chains with
bead densities ρσ3 = 0.85 (a) and ρσ3 = 0.26 (b) and for systems of neutral chains with bead densities ρσ3 = 0.85 (c) and ρσ3 = 0.26 (d). Symbols
of different color represent systems with polymeric counterions or solvent chains having DPs equal to 400 (red), 200 (light blue), 100 (orange), 50
(green), 20 (blue), 10 (pink), and 1 (purple).

Figure 8. Normalized mean-square displacement of the center of mass g3(t)/t of chains with different DPs equal to 400 (red), 200 (light blue), 100
(orange), 50 (green), 20 (blue), 10 (pink), and 1 (purple) for systems of charged chains with bead densities ρσ3 = 0.85 (a) and ρσ3 = 0.26 (b) and
for systems of neutral chains with bead densities ρσ3 = 0.85 (c) and ρσ3 = 0.26 (d).
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Figure 8a−d shows the normalized function g3(t)/t as a
function of time for “counterions” with DPs equal to 1, 10, 20,
50, 100, 200, and 400 for charged systems and for solvent
chains with DPs equal to 1, 20, 50, 100, 200, and 400 for
neutral systems. The plateau regime at longer times
corresponds to diffusive motion with the diffusion coefficient
being equal to the plateau value. For polymeric counterions or
solvents, there is a characteristic peak at short time scales
whose location and magnitude depend on the degree of
polymerization. This corresponds to monomer exploration of
the surrounding environment. The decrease in g3(t)/t reflects
contributions from the Rouse modes to the chain center of
mass dynamics at intermediate time scales. One can collapse
different curves by using the locations and magnitudes of the
maxima as normalization factors, as demonstrated in the
Supporting Information. A deviation from the universal curve
at later times is observed for entangled chains in both types of
systems consisting of charged and neutral chains. Note that the
observed plateau values for short chains are not simple
multiples of the DPs due to the chain ends effect.

■ CONCLUSIONS
We study the static and dynamic properties of concentrated
polyelectrolyte solutions and mixtures of oppositely charged
chains. For the studied bead (monomer) concentrations, the
electrostatic interactions are screened, which is manifested in a
relatively weak renormalization of the chain Kuhn length (see
Table 1) and a moderate increase in the chain size in
comparison with the reference system of neutral chains.
However, the presence of electrostatic interactions and
requirements of system electroneutrality at the large length
scale result in the appearance of a peak in the static structure
factor S(q) in which the position moves toward smaller q
values with decreasing bead concentrations, as shown in Figure
4. The value of the plateau at a small q increases with
decreasing bead concentration (increasing system compressi-
bility) and increasing degree of polymerization of negatively
charge chains (“polymeric” counterions). The largest suppres-
sion of fluctuations at q → 0 is observed for polyelectrolyte
solutions with monovalent counterions. Comparison of
simulation results with RPA calculations of the scattering
function points out the strong effect of fluctuations in the
renormalization of the bare system parameters.
Chains’ dynamics in polyelectrolyte solutions and in

mixtures of oppositely charged chains also show subtle
differences. In particular, in polyelectrolyte solutions, the
degree of polymerization between entanglements Ne is about 4
times of that in symmetric mixtures of oppositely charged
chains and is comparable with the values obtained in systems
of neutral chains with monomeric solvents (see Table 1 and
Table S1). The increasing degree of polymerization of the
negatively charged chains increases the concentration of
entanglements per chain due to the decrease in Ne. In the
mixtures of chains with two different degrees of polymer-
ization, in addition to chain reptation, there is a constraint
release (disentanglements of short chains from long ones) that
shortens the longer chain reptation time, as illustrated in
Figures 7 and 8. The observed trends are similar for systems of
both charged and neutral chains. For studied bead concen-
trations, the effect of the electrostatic interactions on chain’s
dynamics can be reduced to renormalization of the monomeric
friction coefficient and Kuhn length that are responsible for
rescaling of the chains’ dynamics.25,26 Our simulation results

could provide the foundation for future development of the
scaling theory of dynamics in solutions of charged
polymers.22,55
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