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Summary: A prominent threat to causal inference about peer effects in social science studies is the presence of

homophily bias, that is, social influence between friends and families is entangled with common characteristics or

underlying similarities that form close connections. Analysis of social study data has suggested that certain health

conditions such as obesity and psychological states including happiness and loneliness can spread between friends and

relatives. However, such analyses of peer effects or contagion effects have come under criticism because homophily bias

may compromise the causal statement. We develop a regression-based approach which leverages a negative control

exposure for identification and estimation of contagion effects on additive or multiplicative scales, in the presence of

homophily bias. We apply our methods to evaluate the peer effect of obesity in Framingham Offspring Study.
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1. Introduction

In social studies, it is of great interest to assess the causal contagion effect of one individual

on their social contacts. Historically, causal inference was primarily developed within the

potential outcome framework to explicitly allow for interference. Recently, causal inference

research has extended the classical potential outcome framework to allow for interference, i.e.,

that an individual’s outcome may be affected by another’s exposure (Sobel, 2006; Hudgens

and Halloran, 2008; VanderWeele and Tchetgen Tchetgen, 2011; Tchetgen Tchetgen and

VanderWeele, 2012; Liu and Hudgens, 2014; Liu et al., 2016). However, inferring causation

from social studies remains challenging because correlation in outcomes between individuals

with social ties may not only be due to social influence, but also to latent factors that

influence social relation formation. The phenomenon that individuals tend to associate and

bond with persons that they have most in common with is known as homophily (Shalizi and

Thomas, 2011).

Different types of experimental designs and analytic methods have been developed to

study social relationship formation or to adjust for homophily bias. For example, Camargo et

al. (2010) investigated friendship formation among randomly assigned roommates in college

and concluded that randomly assigned roommates of different races are as likely to become

friends as of the same race. In observational studies, Christakis and Fowler (2007) explored

the spread of obesity to one individual (ego) from their friend or spouse (alter). Specifically,

they included in a regression model for ego’s BMI, a time-lagged measurement of ego’s obesity

status, the obesity status of alter, a time-lagged measurement of alter’s obesity status and

some observed covariates. They found evidence suggesting that obesity spreads through

social ties. Using the same approach, Christakis and Fowler examined the evidence of social

influence for smoking, happiness, loneliness, depression, drug use, and alcohol consumption

(Christakis and Fowler 2007, 2008; Fowler and Christakis 2008; Christakis and Fowler 2013).
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In recent years, published analyses by Christakis and Fowler have come under critical

scrutiny. For instance, Shalizi and Thomas (2011) argued that controlling for alter’s lagged

obesity status may at best only partially account for homophily bias. They pointed out that

if the latent factor influencing friendship formation affects current obesity status even after

controlling for past obesity status, one may still observe an association between ego’s and

alter’s obesity status using classical regression methods even if alter has no social influence on

ego’s obesity status. Cohen-Cole and Fletcher (2009) argued that using the same method as

Christakis and Fowler’s on traits unlikely to be transmitted among social relationships such

as height, acne and headaches led to the same conclusion that they spread among friends

and relatives. To account for both unmeasured confounding and homophily, O’Malley et al.

(2014) leveraged multiple genes in an instrumental variables (IV) approach to identify peer

effects under a linear model for the outcome and exposure. They assume that the causal

relationship is non-directional and found a positive causal peer effect of BMI between ego

and alter using this IV approach. However, the IV approach requires the exclusion restriction

that none of the genes used to define the IV has a causal effect on any of the unmeasured

factors that give rise to formation of social ties, an assumption which may be difficult to

justify in social relationship problems (Fowler et al., 2009).

In this paper, we are also interested in evaluating the person-to-person spread of traits in a

social study. We develop an alternative regression-based approach that explicitly accounts for

the presence of homophily bias without requiring a valid IV or relying on linear exposure and

outcome regression models. Instead of an IV approach, we consider a negative control design

that one observes a variable associated with the unmeasured factor inducing homophily, and

that such a variable is independent of the outcome conditional on the unmeasured factor

inducing homophily. Such a variable is formally called a negative control exposure variable.

Negative control variables have primarily been used in epidemiological applications to
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detect and sometimes correct for unmeasured confounding (Lipsitch et al., 2010; Tchet-

gen Tchetgen, 2013; Sofer et al., 2016; Miao et al., 2018; Shi et al., 2020). Elwert and

Christakis (2008) recently used a negative control exposure to detect homophily bias in the

analysis of dyadic data, i.e., data with pairs of two individuals. Specifically, they used the

death of an ex-wife as a negative control variable to investigate the “widowhood effect”,

i.e., the effect of the death of a spouse on the mortality of a widow. However, they do

not provide a formal counterfactual approach for inference leveraging a negative control

outcome to completely account for homophily bias. Partly inspired by this work, we develop

theoretical grounds for the use of negative control exposures in peer influence settings. In

order to illustrate our approach, we reconsider as running example the analysis performed

by Christakis and Fowler (2007) to evaluate the contagion effect of obesity using dyadic

data from the Framingham Study. In the Framingham study, we consider as negative control

exposure, the alter’s BMI measurement from the subsequent visit. In contrast to the IV

assumption which rules out any dependence between the IV and the unmeasured factor

implicated in homophily mechanism, our method requires and leverages such dependence.

We provide sufficient conditions under which our negative control exposure can be used to

detect and account for homophily bias in order to recover the causal effect of primary interest.

Moreover, it is worth noting that the proposed method accommodates both directional and

mutual nameship in social influences.

The paper is organized as follows. In Section 2, we introduce notation. We propose a

general regression-based framework to adjust for homophily bias with a negative control

exposure variable in Section 3. We evaluate our methods in a simulated study in Section

4. Next, we illustrate our methods in estimating the spread of obesity in the Framingham

Offspring Study in Section 5. We conclude with a discussion in Section 6.
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2. Preliminaries

In the dyadic analysis terminology, the key subjects of interest are called “egos” and any

subjects to whom egos are linked are called “alters.” The roles of ego and alter are exchange-

able depending on which person’s outcome is of interest. To simplify the problem, we only

consider data where the study population can be partitioned into pairs, or “dyads”. Although

the approach equally applies to overlapping dyads but requires appropriately accounting for

dependence across dyads as discussed in VanderWeele et al. (2012). Following the notation

of O’Malley et al. (2014), we use subscript 1 to denote alter and 2 to denote ego for any

given dyad. We focus on the spread of a trait between two time points. That is, we take

the perspective of individual 2 and the goal is to estimate the effect of individual 1’s trait

at baseline on the trait of individual 2 at follow-up. For example, in Framingham Offspring

Study, we are interested in the effect of having an obese person as alter at baseline on ego’s

BMI status at a subsequent study visit. Such information is important for clinical and public

health interventions (Christakis and Fowler, 2007).

We consider a study design where the dyads are based on nameship. As in Framingham

Offspring Study, each study participant is required to name a single person of contact in an

effort to mitigate loss to follow-up. A dyad is formed between two persons if at least one

person names the second. Let R1 = 1 if alter names ego as their contact person at baseline

and otherwise R1 = 0. Similarly, let R2 denote whether ego names alter as their contact at

baseline. We restrict nameship variables R1 and R2 within a dyad. Because both R1 and R2

are binary variables, there are four different nameship types, which we encode with S: (a)

null naming S = 0 if (R1, R2) = (0, 0); (b) active naming S = 1 if (R1, R2) = (0, 1); (c)

passive naming S = 2 if (R1, R2) = (1, 0) and (d) mutual naming S = 3 if (R1, R2) = (1, 1).

Active naming indicates ego names alter while the alter does not name the ego. Passive

naming indicates alter names the ego while the ego does not name the alter. Null naming
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indicates neither individual names the other while mutual naming indicates both individuals

name the other. Because dyad formation requires at lease one person naming another, S > 1

in the observed sample of dyads.

Let Y b
i and Y 1

i denote the observed traits of individual i at baseline and at follow-up

i = 1, 2. The outcome of interest is ego’s trait at follow-up, i.e., Y 1
2 . For clarity sake, subscripts

and superscripts are sometime suppressed, such as Y = Y 1
2 . Let A denote ego’s exposure

value, i.e., that is, the indicator of alter’s trait at baseline. For example, in the case where

obesity defines the trait of interest, A is alter’s obesity status, i.e., A = 1(alter’s BMI > 30).

Our methods apply more generally, whether A is binary, continuous, polytomous or a count

exposure. Let a be a possible realization of A (e.g., a = 1 for obese and a = 0 for no obese),

and Y (a) denote an ego’s potential outcome if her exposure were hypothetically set to a.

Throughout, we make the consistency assumption that the observed outcome is Y = Y (a)

almost surely, when A = a.

Let C denote covariates for alter and ego. Let U1 denote an unmeasured factor that affects

not only past and current traits of the alter (Y b
1 , Y 1

1 ), but also the nameship variable R1.

Define U2 similarly. The corresponding directed acyclic graph is given in Figure 1 (Shalizi

and Thomas, 2011). The parameter of interest is γs,c = E{Y (1) − Y (0)|S = s, C = c} for

s = 1, 2, 3, which corresponds to the average treatment effect of the alter’s baseline trait on

ego’s trait at the follow-up visit, given that the dyad is of type s and covariates C = c.

Because for all observed dyads, S > 1, the DAG in Figure 1 represents the conditional

distribution of (Y,A,C) conditional on S > 1. Because S is a descendant of both U1 and U2,

in the terminology of graph theory, S is called a collider (Conditioning on collider S or its

descendant unblocks a back-door path A−U1−R1−S−R2−U2− Y ) (Pearl, 2009, Shalizi

and Thomas, 2011). A direct consequence of this graphical structure is that a standard

regression model for Y conditional on S, C and A, which fails to condition on either U1
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or U2 will generally be subject to collider bias so that it may reveal a non-null association

between A and Y even when A fails to cause Y and there is no unmeasured confounding

of the effects of A on Y in the underlying population (see Figure 1). This specific type of

collider bias is called homophily bias. Because U1 and U2 are unobserved and S is always

conditioned on, homophily bias (Shalizi and Thomas, 2011) cannot be accounted for without

an additional assumption. Next we consider leveraging a negative control exposure to both

detect and correct for collider bias.

Let Z denote a negative control exposure variable that satisfies the following assumptions:

Assumption 1: Z ⊥6⊥ S|A,C;

Assumption 2: Y (a, z) = Y (a) almost surely;

Assumption 3: Z ⊥⊥ Y (a, z)|A,C, S, U2,

where ⊥⊥ denotes independence between variables and ⊥6⊥ denotes dependence. Assumption

1 states that Z must be associated with S given A and C. This assumption is represented

in the DAG of Figure 1, provided that the arrow between U1 and Z is known to be present.

The assumption would also hold if Z were a direct cause of R1 even if Z were independent of

U1. Assumption 2 is a form of exclusion restriction of no direct causal effect of Z on Y upon

setting A to a. Assumption 3 is an assumption of no unmeasured confounding between Z

and Y conditional on A, C, S, and U2. Thus, the association between Z and Y given A,C, S

can be attributed completely to homophily bias. Hereafter, a negative control exposure for

homophily bias control is a variable known to satisfy Assumptions 1–3.

Furthermore, we assume that the exposure variable is not subject to unmeasured con-

founding given (C, S, U2) as illustrated in the DAG in Figure 1:

Assumption 4: A ⊥⊥ Y (a)|C, S, U2.
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Assumption 4 rules out residual confounding of the causal effect of A on Y upon conditioning

on C, U2 and nameship type S. However, A is not independent of Y (a) given C and S only

and therefore, homophily may be interpreted as inducing a violation of changeability upon

conditioning on S, even though U2 is not a common cause of A and Y in the overall population

(i.e., upon marginalizing over S).

The following two examples provide choices of negative control exposures that have been

considered in social studies.

Example 1: Elwert and Christakis (2008) investigated the potential presence of ho-

mogamy bias (homophily bias due to spousal similarity) in making inference about the

widowhood effect. Specifically, they proposed to use the potential death of an ex-wife as a

negative control exposure of the widowhood effect on the mortality of their ex-husband to test

for homogamy bias. They found a significant effect of a current wife’s death on her husband’s

mortality but no significant effect of an ex-wife’s death on her ex-husband’s mortality. These

results support the existence of a causal widowhood effect, which cannot be explained away

by homogamy bias.

Example 2: Cohen-Cole and Fletcher (2009) applied the regression methods in Chris-

takis and Fowler (2007) and Christakis and Fowler (2008) to traits that are unlikely to

be transmitted via social connections including acne, headaches, and height. They found

that these traits are significantly associated among friends and thus conclude the existence

of homophily bias of such social studies in the literature. Technically, these analyses may

be viewed as double negative control analyses as they incorporate both negative control

exposure and outcome variables (Miao and Tchetgen Tchetgen, 2017; Miao et al., 2018).

We reanalyze the Framingham data considered by Christakis and Fowler (2007) using our

proposed methodology taking as negative control exposure variable, the ego’s BMI measure

at follow-up Z = Y 1
1 . Ego and alter’s contemporaneous BMI measures cannot be causally
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related, therefore fullfilling Assumption 2. Furthermore, it is clear that such a choice of Z

is guaranteed to satisfy Assumption 1 because any unmeasured cause of ego’s baseline BMI

(and S) is likely also a cause of his or hers BMI at follow-up. In Section 3, we provide

conditions under which Assumption 3 is also credible for this choice of negative control

exposure.

3. Regression Based Approach

3.1 Identification

We first discuss the case where Y is continuous. Suppose the data generating mechanism

satisfies

E(Y |S = s, A,C, Z, U2) = U2 + bs(A,C) + τ s(C), (1)

where bs(0, C) = 0, bs(A,C) and τ s(C) are otherwise unrestricted. The outcome regression

model (1) assumes that the effect of U2 on ego’s trait does not interact with A. Under

Assumptions 2–3 encoded in the model, the right-hand side of Model (1) does not depend on

Z. Furthermore, under Assumption 4, The conditional causal effect of interest under Model

(1) is E{Y (1) − Y (0)|S = s, U2, C, Z} = E{Y (1) − Y (0)|S = s, C} = bs(1, C) − bs(0, C).

For example, in Framingham Offspring Study, the parameter of interest can be interpreted

as the contagion effect in nameship s of alter’s obesity status at baseline on ego’s BMI at

the follow-up visit within levels of C. A detailed derivation of the causal contagion effect is

given in the Appendix. The standard linear structural model is a special case corresponding

to bs(A,C; βsa) = βsaA, τ s(C; βsc ) = βsc
TC, where T denotes matrix transpose.

However, because U2 is unobserved, an additional assumption is needed for identification.

We consider the following generalized polytomous logit model for S|A,C, Z and U2
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log
Pr(S = s|A,C, Z, U2)

Pr(S = 0|A,C, Z, U2)
= αs(C)U2 + γs(A,C, Z), (2)

where αs(0) = 0 and γs(A,C, Z) = log Pr(S = s|A,U2 = 0, C, Z)/Pr(S = 0|A,U2 = 0, C, Z)

is the baseline log odds function of S = s when U2 is set to its reference value 0. Equation

(2) specifies a log linear odds ratio association between U2 and S conditional on A, C and Z

while leaving αs(C) and γs(A,C, Z) unrestricted. An important example within this class of

models we will primarily focus on is given by a multinomial logistic regression log{Pr(S =

s|A,C, Z, U2)/Pr(S = 0|A,C, Z, U2)} = αsU2 + γs1A+ γs2C + γs3Z.

Additionally, we assume that in the population, U2 and (A,Z) are mean independent

conditional on C:

E(U2|A,C, Z) = E(U2|C). (3)

Equation (3) is consistent with the causal diagram in Figure 1 because U2 and A,Z are

marginally independent for any pair of individuals in the underlying population, i.e. in

absence of collider bias induced by conditioning on S.

Finally, we assume that

∆s ⊥⊥ (A,Z)|S,C, (4)

where ∆s = U2−E(U2|S = s, A,C, Z). Equation (4) states that conditional on C and S, the

association between U2 and (A,Z) is entirely due to a location shift. This assumption would

hold if U2 were normally distributed with homoscedastic error, conditional on S = s, A,C, Z.

In principle, as apparent in proving our main results, equation (4) only needs to hold for

S = 0, and therefore selection bias may in fact be more severe for dyads with S 6= 0 so that

association between ∆s and (A,C) may manifest itself beyond the mean in these dyads, e.g.,

with the shape and spread of U2.
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Assumptions (1)–(4) are not testable without an additional restriction. The following

example illustrates a familiar shared random effect model under which equations (1)–(4)

hold.

Example 3: Suppose that E(Y |S = s, A,C, Z, U2) = U2 + βsa(C)A+ βsTC,

log
Pr(S = s|A,C, Z, U2)

Pr(S = 0|A,C, Z, U2)
= αsU2 + γs1A+ γs2

TC + γs3Z

and U2 is the random effect shared between models for Y and S to encode a latent association

between them with U2|S = s, A,C, Z ∼ N(ηTC, σ2), s = 0, . . . , 3, then Assumptions (1)–(4)

hold.

We now give our main identification result under Model (1).

Proposition 1: Under Model (1), Assumptions 1–4 and equations (2)–(4), we have

that

E(Y |A,C, Z, S = s) =
∑
s̃ 6=s

βss̃(C) Pr(S = s̃|A,C, Z) + bs(A,C) + τ̄ s(C), (5)

where τ̄ s(C) is an unrestricted function of C, βss̃(C) = E(U2|A,C, Z, S = s)−E(U2|A,C, Z, S =

s̃)

We provide a detailed proof in the Appendix. Comparing (5) with (1), we note that the

left hand-side of (5) is by iterated expectation equal to E{E(Y |A,C, U2, S = s)|A,C, Z, S =

s} = E(U2|A,C, S = s, Z)+bs(A,C)+τ s(C), and therefore the proof of Proposition 1 hinges

on establishing that under our assumptions E(U2|A,C, S = s, Z) =
∑

s̃ 6=s β
ss̃(C) Pr(S =

s̃|A,C, Z)+ τ̄ s(C)−τ s(C). Equation (5) highlights the important role of the negative control

variable Z which appears on the right hand side of the equation only through its association

with S in Pr(S = s̃|A,C, Z). Note that equation (5) would continue to hold even if Z were

not conditioned on (or the edge from Z to U1 were removed in Figure 1, such that Z were

independent of U1 given A,C, S), with Pr(S = s̃|A,C) in for Pr(S = s̃|A,C, Z). In this case

it would generally not be possible to tease apart this latter term which captures selection
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bias from structural part of the equation bs(A,C) as both are unrestricted function of (A,C),

thus rendering the causal effect non-identified. Identification of the causal contagion effect

now depends on identification of Pr(S = s̃|A,C, Z) given dyadic study design. Below, we

provide sufficient conditions under which such identification is possible.

According to Proposition 1, the coefficient βss̃(C) = E(U2|A,C, Z, S = s)−E(U2|A,C, Z, S =

s̃). Hence, βss̃(C) encodes the association between S and U2 and therefore is zero if either

U2 does not predict S, i.e., αs(C) is the same for all s, or if U2 is degenerate in the sense

that it does not predict Y . In the Gaussian case of Example 3, we show in the Appendix

that βss̃(C) = σ2{αs(C) − αs̃(C)} making explicit the aforementioned interpretation. An

important advantage of the proposed approach is that it provides a framework to formally

test the null hypothesis of no homophily bias as a test of the null hypothesis that βss̃ = 0

for all s, s̃.

Proposition 1 presumes the identity link function is specified for the outcome model.

Similar results can be obtained for a multiplicative model (i.e. log link) which may be more

appropriate for binary or count outcomes. For instance, when the response is binary, the

following conditional causal risk ratio may be of interest P{Y (1) = 1|S,C}/P{Y (0) =

1|S,C} for s = 1, 2, 3. To ground ideas, suppose that

logE(Y |S = s, A,C, Z, U2; βs) = U2 + bs(A,C) + τ̄ s(C). (6)

Because U2 is conditioned on in (6), suppose Assumption 4 holds, exp{bs(1, C) − bs(0, C)}

can be interpreted as the causal contagion effect of alter on ego on the multiplicative scale,

e.g. on the risk ratio scale for binary Y . A similar effect can be defined when the treatment A

is continuous. We have the following result for the multiplicative model, the proof of which

is given in the Appendix. With a slight abuse of notation, we use the same notation for

parameters as in the case of the additive model.
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Proposition 2: Under Model (6), Assumptions 1–4 and equations (2)–(4), we have

logE(Y |S = s, A,C, Z; βss̃(C)) =
∑
s̃ 6=s

βss̃(C) Pr(S = s̃|A,C, Z) + bs(A,C) + τ̄ s(C), (7)

where τ̄ s(C) is an unrestricted function of C.

Propositions 1 and 2 are only useful to the extent that one can identify the selection

mechanism Pr(S|A,C, Z) from observed dyadic sample. Because the sample implicitly con-

ditions on S > 1, nonparametric identification is in general not an option, and therefore

one must impose a restriction in order to make progress. In this vein, we propose to posit a

model of form Pr(S|A,C, Z; θ) with finite dimensional unknown parameter θ.

3.2 Estimation and Inference

Consider under the assumed model given above, a dyad’s contribution to the likelihood

function of R1, R2|A,C, Z in the underlying population

P (R1, R2|A,C, Z) ∝ exp{R1(θT1 C̃1)}
1 + exp(θT1 C̃1)

exp{R2(θT2 C̃2)}
1 + exp(θT2 C̃2)

exp(δR1R2), (8)

where C̃1 is a user specified function of (A,C, Z), e.g., C̃1 = (1, A, C, Z)T . Because the

observed sample space conditions on R1 + R2 > 1, the corresponding contribution of the

observed likelihood function for a given dyad is:

Pr(R1, R2|R1 +R2 > 1, A, C, Z; θ) =
exp(θT1 C̃1R1 + θT2 C̃2R2 + δR1R2)

exp(θT1 C̃1) + exp(θT2 C̃2) + exp(θT1 C̃1 + θT2 C̃2 + δ)
.

Because according to Proposition 1, the propensity score P (R1, R2|A,C, Z) is also involved

in the outcome model, one obtain an MLE for all unknown parameters by maximizing a joint

likelihood of f(Y, S|S > 1, A, C, Z) = f(Y |S,A,C, Z)P (S|S > 1, A, C, Z) for a given dyad.

For example, although unnecessary, it is convenient to specify a normal working model for

the outcome Y giving rise to following likelihood for any specific dyad using Proposition 1,
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f(Y |S > 1, A, C, Z; β, θ)P (S|S > 1, A, C, Z; θ)

∝ 1

σ
exp

{
− 1

2σ2

(
Y −

∑
s̃ 6=s

βss̃(C) Pr(S = s̃|A,C, Z; θ)− bs(A,C; β)− τ̄ s(C; β)

)2}
exp(θT1 C̃1R1 + θT2 C̃2R2 + δR1R2)

exp(θT1 C̃1) + exp(θT2 C̃2) + exp(θT1 C̃1 + θT2 C̃2 + δ)
.

Let ρ = (θ, β, σ2) denote the vector of the parameters in the nameship mechanism and the

outcome regression. The log likelihood is therefore

l(ρ) = −J log σ − 1

2σ2

J∑
j=1

(
Yj −

∑
s̃6=s

βss̃(Cj) Pr(Sj = s̃|Aj, Cj, Zj; θ)− bs(Aj, Cj; β)− τ̄ s(Cj; β)

)2

+
J∑
j=1

θT1 C̃j11(Sj = 1) + θT2 C̃j21(Sj = 2) + (δ + θT1 C̃j1 + θT2 C̃j2)1(Sj = 3)

− log{exp(θT1 C̃j1) + exp(θT2 C̃j2) + exp(θT1 C̃j1 + θ2C̃j2 + δ)}+ constant,

where j = 1, . . . , J is the index for dyad and J is the total number of dyads in the study.

The maximum likelihood estimator ρ̂ for ρ is defined as ρ̂ = argmaxρl(ρ).

The asymptotic distribution of the contagion effect estimator follows from the standard

likelihood theory. We assume dyads are non-overlapping and people from different dyads are

independent.

Proposition 3: Under Model (1), suppose that Assumptions 1–4 hold and that equa-

tions (2)–(4) hold, and additionally assume the likelihood of f(Y, S|S > 1, A, C, Z; ρ) is

correctly specified, then n1/2(ρ̂ − ρ)
d−→ N(0,Σs

ρ) as n → ∞, where Σs
ρ = H−1, H =

−E{∂2l(Oi; ρ)/∂Tρ∂ρ} is the Fisher information matrix.

Under a multiplicative model (7), one can carry out a likewise estimation in a similar

fashion by maximizing the joint likelihood of Y and S given S > 1, A, C, Z. Asymptotic

distribution of the proposed estimator under model (7) can be obtained as in Proposition 3.
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4. Simulation

We evaluate the proposed estimator for the causal effect of peer effect using simulations. As

a reference, we include a naive estimator which regresses outcome directly on the exposure

without adjusting for homophily bias . The simulation is carried out in the following steps.

Step 1. We first generate a sample of size n = 5000. For each dyad, we generate a covariate

C from a standard normal distribution. We also generate A and Z independently

from a Bernoulli distribution with probability 0.5.

Step 2. Let C̃1 = C̃2 = (A,Z,C). In model (8), we set θ1 = (−0.5, 1.5, 3,−2)T , θ2 =

(−0.6,−1, 2, 1)T and δ = 0.5. We generate the nameship variable R1 and R2 jointly

from probability mass function given in (8). Set β0(C) = 0, β1(C) = −2, β2(C) = 4

and β3(C) = 8 and E(U2|C) = 2. Given A,C, Z, S, we generate the unmeasured

variable U2 from a normal distribution with mean E(U2|A,C, Z, S) from (1) and

standard deviation 0.5.

Step 3. For each individual i, generate Yi identically and independently from normal dis-

tribution with mean 2 + U2 + 3A+ 0.5C and variance 1.5.

Step 4. Calculate our estimator by maximizing the likelihood f(Y, S|S > 1, A, C, Z; ρ). We

also calculate a naive estimator which regresses Y directly on A,C for each nameship

s = 1, 2, 3 without adjusting for homophily bias.

Step 5. Repeat Steps 3–4 100 times.

We verify in the Appendix that equations (2)–(4) are satisfied for the data generating

model. The boxplot of the two estimators for three nameships are given in Figure 2. This

figure appears in color in the electronic version of this article, and any mention of color

refers to that version. The white boxes correspond to our estimator and the gray boxes are

the naive estimator. Our estimator has much smaller MSE than the naive estimator. For

example under nameship S = 1, the MSE of our estimator is 0.04 and that of the naive



Adjustment for Homophily Bias in Peer Effect Analysis 15

estimator is 1.56. A detailed point estimate of all the relevant nuisance parameters of our

proposed methods and their Monte Carlo standard error and the average estimated standard

error are given in Table 1 in the supplementary material. The standard errors are estimated

using the Fisher information matrix. The point estimates and the standard error estimates

are close to their true values, demonstrating that our methods can accurately estimate the

causal effects in the presence of homophily bias.

5. Framingham Offspring Study

The Framingham Offspring Study was initiated in 1971 and the study population consists

of most of the offsprings of the original Framingham Heart Study cohort and the spouses

of the offsprings. Clinical exams were offered every four years. During each clinical exam,

the participants underwent a detailed examination including physical examination, medical

history, laboratory testing, and electrocardiogram. At the end of each exam, each participant

was asked to name a single friend, sibling or spouse, which was likely to be the one with

the most influence. The original purpose of the naming process was to record a person

of contact, but such information also revealed relationship ties and thus has been used to

assess the social influence (Christakis and Fowler, 2007; O’Malley et al., 2014). Among the

relationship ties provided, approximately 50% of the nominated friend contacts were also

participants in the FHS and thus they had the same information, including BMI collected.

Most spouses of FHS participants were also FHS participants.

Therefore, by design, the Framingham Offspring Study population could be partitioned

into dyads. We estimated our model with unique dyads of spousal and nearly disjoint

friendship. Occasional overlap of dyads when the same person was named by multiple

individuals was ignored similar to O’Malley et al. (2014). Because later visits suffered from

severely low attenuation rate, we focused on the spread of obesity between baseline and the

first follow-up.



16 Biometrics, xx 2019

We carried out a peer effect analysis for 4531 distinct dyads for which alters are spouses

(1527 dyads), siblings (2674 dyads), or friends of egos (330 dyads). The status of ego and

alter was randomly assigned. In principle, one can use both assignments in single analysis,

however, that required clustering analysis at the level of dayad to account for correlation

within dyad. For the purpose of illustration, we considered a single contribution per dyad.

Obesity status was defined as a binary variable that takes value 1 if BMI is over 30, and 0

if otherwise. Let A = 1(Y b
1 > 30) denote the exposure of ego, that is, the obesity status of

alter at baseline. We were interested in the causal effect of alter’s obesity status at baseline

on the ego’s BMI at follow-up. Covariates C included age of both ego and alter and ego’s

BMI at baseline. Ages were mostly between 19 to 52 (5% and 95% quantile respectively).

We mean centered age for both ego and alter for numerical stability.

We first carried out a standard regression-based analysis which did not adjust for the

potential homophily bias. More specifically, we first fitted a naive model without distinction

among different nameships E(Y |S = s, A,C; β0, βa, βc) = β0 + βaA + βc
TC to the data.

Results are given in Table 1. Ego’s BMI at baseline was significantly associated with ego BMI

at the follow-up. Adjusting for ego and alter’s age, alter’s obesity status had a significant

positively association with the ego’s BMI at follow-up (β̂a = 0.27, with standard error 0.11).

This effect was subject to homophily bias. Next, we fitted a naive model stratifying by

different nameship types, i.e., we fitted E(Y |S = s, A,C; βs0, β
s
a, β

s
c ) = βs0 + βsaA + βsc

TC to

the data. Results are given in Table 2. Alter’s obesity status at baseline had a significant

positive association on ego’s current BMI in a mutual nameship (β̂3
a = 0.34 with standard

error 0.13). Although this model is more informative than the naive model which does not

condition on nameship type, such an effect still may not have causal interpretation due to

possible homophily bias.

Next, we carried out a negative control regression adjustment for homophily bias. We
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selected alter’s BMI at follow-up as a negative control variable, i.e., Z = Y 1
1 . Alter’s follow-up

weight is an appropriate choice of negative control exposure because it cannot be causally

related to ego’s contemporaneous weight, therefore satisfying Assumptions 2–3. Such as-

sumptions presume absence of any feedback in alter and ego weight change between baseline

and follow-up, which is certainly expected under the sharp null of no contagion effect of

weight, but may be violated under the alternative, as discussed in conclusion. Because

U1 is associated with ego’s baseline weight, it may be reasonable to expect that it would

also be associated with ego’s weight at follow-up Z, therefore fulfilling Assumption 1. The

parameter estimates of the nameship process are given in Table 3. Negative control variable,

the alter BMI at follow-up, was significantly associated with nameship process. The odds

ratio parameter δ is also significant in the nameship process, which shows the dependency of

nameship between two individuals. The estimated nameship mechanisms were then included

as predictors in the outcome regression model E(Y |A,C, Z, S = s; βs0, β
s
a, β

s
c , β

ss̃) = βs0 +∑
s̃ 6=s β

ss̃ Pr(S = s̃|A,C, Z)+βsaA+βsc
TC under an assumption that βss̃(C) does not depend

on C. Outcome regression model estimates were given in Table 4. Standard errors were

estimated following Proposition 3. Our analysis provides formal evidence that homophily

bias may be operating in these data. Specifically, a subset of homophily coefficients βss̃ were

marginally significant (for example, β̂3 = 9.46 with standard error 5.41) indicating at least

part of the association between ego and alter’s weight within each dyad may be subject

to homophily bias and therefore not causal. In contrast with the naive analysis result, our

proposed method finds that alter’s obesity status at baseline had a negative association with

ego’s BMI at the follow-up for all three nameships after adjustment for the homophily bias.

6. Discussion

In this paper, we have proposed a simple regression-based adjustment for homophily bias

with a negative control exposure variable Z. The unmeasured variables U1 and U2 could
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in principle also directly affect R2 and R1 respectively, in which case, under our negative

control assumptions the proposed approach still applies. Our method accounts for homophily,

and is not meant to account for unmeasured environment factors that may confounds the

relationship of interest. In this work, we assume U2 to be continuous, which is not a stringent

assumption given the existing literature on continuous latent factors such as random effects

model. Nevertheless, we agree with the reviewer that it is of interest to extend our model to

latent class models where U2 indexes discrete classes.

We leverage the null causal effect of a negative control exposure on the outcome in view

to identify the causal effect accounting for homophily bias. Our framework relies on an ability

to identify relevant negative control exposure, that is a variable known to be associated with

the unmeasured factor inducing homophily. A potential concern not explicitly addressed

in this paper is that a poor choice of negative control exposure may in fact lead to weak

identification analogous to the weak IV problem. We leave exploration of weak negative

controls for future research topics.

A reviewer noted that our choice of negative control exposure in Framingham application,

ego BMI at follow-up is only applicable as a negative control variable if contagion only

occurs at discrete times which are directly observed, i.e. ruling out feedback effects alluded

to in Section 5. To illustrate this, consider a situation where there is an intermediate time

t = 0.5 in between baseline and follow-up (shown in Figure 3). Ego and alter BMI can

affect the other person’s BMI at a follow-up visit. The dashed line denotes effects between

individuals. Although alter BMI at follow-up is unlikely to have a direct causal effect on ego

BMI at follow-up, they are both confounded by ego BMI at the intermediate time, Y 0.5
1 . Such

confounding could potentially invalidate the negative control assumption 3. This point has

also been suggested in Ogburn and VanderWeele (2014): estimation of contagion effects at

multiple time points may be complicated by the feedback issue as the entire evolution history
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need to be considered. The problem of potential uncontrolled confounding may also persist

when we have multiple time points as compared with continuous time points. Because the

Framingham Offspring Study follow-up was at 4 years post baseline, it is possible that causal

contagion effects exist at some intermediate time between the two visits. The assumption of

no unmeasured intermediate time with contagion effects is more plausible in the setting where

individuals only interact during visits not in between, e.g., patients usually interact with their

doctors at clinic visits. It is still notable as suggested in Section 5 that such complication

will not occur even in Framingham Offspring Study under the sharp null hypothesis of no

contagion effect, in which case, our approach would provide a valid test of the sharp null

hypothesis of no contagion within 4 year window between baseline and follow-up.

The method proposed in this paper is only applicable to dyadic data. It is also of interest

to extend our methods to general network data. Identification and estimation is far more

challenging in general network settings. We conjecture that leveraging both negative control

exposure and outcome variables may potentially be useful in such more complex settings,

thus extending result due to Miao et al. (2018) for causal inference of independent identical

distributed data subject to unmeasured confounding. We also plan to explore the settings in

De Giorgi et al. (2010), who considered a network where peer groups do not overlap fully, and

Bramoullé et al. (2009) who considered inference under linear-in-means model where each

individual has his own specific reference group. We leave these extension of our methods to

general network structure as a future research direction.

Acknowledgement

The authors would like to give special thanks to Prof. O’Malley for insightful discussion

and his patience and tremendous help on the data analysis section. The authors also thank

the editor, associate editor and two reviewers for their insightful comments and helpful

suggestions. Lan Liu’s research is supported by NSF DMS 1916013.



20 Biometrics, xx 2019

References
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S > 0R1 R2

U1 U2

Y b
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2

Y 1
1 Y 1
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Z

Figure 1. Causal diagram illustrating homophily bias.

The parameter of interest is the effect of the obesity status of alter (individual 1) at baseline on ego BMI (individual 2) at

follow-up, i.e., A = Y b
1 , Y = Y 1

2 . We use Y b
i and Y 1

i to denote the observed weight information on individual i baseline and

follow-up, Ui is the unmeasured factor that affects both the nameship and the weight of individual i, Ri is the nameship variable

for individual i and S is the summary of nameship type. We omit observed covariates Ci for simplicity. In our empirical example,

we use Y 1
1 as the negative control exposure Z.
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Figure 2. Boxplot of the causal effects using our estimator and a naive regression estimator

in a simulation study. White boxes denote our proposed estimators and gray boxes denote

the naive estimators. This figure appears in color in the electronic version of this article, and

any mention of color refers to that version.

S > 0R1 R2
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Figure 3. Causal diagram illustrating homophily bias for multiple time points.

The parameter of interest is the effect of the obesity status of alter (individual 1) at baseline (A = 1(Y b
1 > 30)) on ego BMI

(individual 2) at time 1 (Y 1
2 ). We use Y 0.5

i to denote the observed weight information on individual i at a time point between

baseline and follow-up. The dashed line denotes causal effects between individuals. We take Z = Y 1
1 as the negative control

exposure variable.
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Est SE p

A 0.27 0.11 0.01

ego’s BMIb 0.92 0.01 <0.01

ego’s age -0.22 0.06 <0.01

alter’s age 0.17 0.06 <0.01

Table 1

Estimates, standard error and p-values of coefficients in a naive analysis without distinction among relationships

S = 1 S = 2 S = 3

Est SE p Est SE p Est SE p

A -0.05 0.25 0.84 0.32 0.29 0.26 0.34 0.13 0.01

ego’s BMIb 0.95 0.02 <0.01 0.92 0.02 <0.01 0.91 0.01 <0.01

ego’s age -0.11 0.15 0.44 -0.34 0.15 0.03 -0.21 0.07 <0.01

alter’s age 0.02 0.14 0.87 0.08 0.16 0.64 0.20 0.07 <0.01

Table 2

Estimates, standard error and p-values of coefficients in a naive analysis across different nameships: active naming

(S = 1), passive naming (S = 2) and mutual naming (S = 3)
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Ego model Alter model

Est SE p Est SE p

A 0.19 0.07 <0.01 -0.22 0.02 <0.01

Z -0.35 0.01 <0.01 0.20 0.01 <0.01

ego’s age 0.04 0.01 <0.01 -0.72 < 0.00 <0.01

alter’s age -0.54 0.01 <0.01 0.19 <0.00 <0.01

δ 2.36 0.17 <0.01

Table 3

Nameship mechanism estimates adjusted for alter’s age gender and Z.

S = 1 S = 2 S = 3

Est SE p Est SE p Est SE p

A -0.84 0.21 <0.01 -0.45 0.22 0.04 -0.47 0.19 0.01

ego’s BMIb 0.95 0.00 <0.01 0.93 <0.01 <0.01 0.91 <0.01 <0.01

ego’s age -1.31 0.14 <0.01 -1.63 0.15 <0.01 -1.45 0.13 <0.01

alter’s age -0.53 0.08 <0.01 -0.39 0.08 <0.01 -0.31 0.06 <0.01

βs -1.58 7.40 0.83 -3.61 8.86 0.68 9.46 5.41 0.08

Table 4

Estimates, sandwich standard error and p-values of coefficients in homophily-adjusted analysis with an negative

control exposure variable Z across different nameships: active naming (S = 1), passive naming (S = 2) and mutual

naming (S = 3)
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