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Abstract. This work concerns the representation theory and cohomology

of a finite unipotent supergroup scheme G over a perfect field k of positive
characteristic p ≥ 3. It is proved that an element x in the cohomology of G is

nilpotent if and only if for every extension field K of k and every elementary

sub-supergroup scheme E ⊆ GK , the restriction of xK to E is nilpotent.
It is also shown that a kG-module M is projective if and only if for every

extension field K of k and every elementary sub-supergroup scheme E ⊆ GK ,

the restriction ofMK to E is projective. The statements are motivated by, and
are analogues of, similar results for finite groups and finite group schemes, but

the structure of elementary supergroups schemes necessary for detection is

more complicated than in either of these cases. One application is a detection
theorem for the nilpotence of cohomology, and projectivity of modules, over

finite dimensional Hopf subalgebras of the Steenrod algebra.
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1. Introduction

There has been considerable research, some of recent vintage, aimed at un-
derstanding representations of finite group schemes through the lens of their sup-
port varieties; see [3, 4, 43, 44, 8, 10, 9, 26, 27]. The paradigm for these devel-
opments is the work on the modular representation theory of finite groups due
to Alperin and Evens [1], Avrunin and Scott [2], Chouinard [17], Carlson [15],
Dade [18], Quillen [38], among others. This paper is part of a project aimed at
finding analogues of some of these results and techniques for finite supergroup
schemes. The first step in this direction was taken by Drupieski [20, 21], who
proved finite generation of cohomology for finite supergroup schemes, generalising
the theorem of Friedlander and Suslin for finite group schemes [28]. Drupieski and
Kujawa [22, 23, 24] have initiated a study of support varieties for restricted Lie
superalgebras.

A starting point for any theory of support varieties is the identification of a
family of subgroups that detect nilpotence of cohomology classes and projectivity
of representations. Once again, finite groups provide a model: Quillen [38] proved
that a class in mod p cohomology of a finite group G is nilpotent if (and only if) its
restriction to any elementary abelian p-subgroup E < G is nilpotent in H∗(E,Fp);
see also Quillen and Venkov [39]. This detection theorem is a key ingredient in
the proof of Quillen’s stratification theorem that gives a complete description of
the Zariski spectrum of H∗(G,Fp). Around the same time, Chouinard [17] proved
that a representation M of G is projective if (and only if) the restriction of M to
any elementary abelian p-subgroups E < G is projective.

In this work we establish analogues of the results of Quillen and Chouinard for
finite supergroup schemes. Throughout we fix a perfect field k of positive charac-
teristic p ≥ 3. A finite supergroup scheme over k may be viewed either as a functor
on the category of Z/2-graded commutative k-algebras with values in finite groups,
or a finite dimensional Z/2-graded cocommutative Hopf algebra; see Section 2 for
details. The focus will be on unipotent supergroup schemes, though some of the
preliminary results apply more generally. Each finite supergroup scheme has an
even part which is a finite group scheme. In turn any finite group or group scheme
furnishes an example of a supergroup scheme, but there are many more. Notably,
the odd version of the additive group Ga, denoted G−a and defined as a functor by
G−a (R) = R+

1 , the additive group on the odd part of R. The corresponding Hopf
algebra is k[σ]/(σ2), where σ is in odd degree and a primitive element.

2



The notion of an “elementary” supergroup scheme is a lot more involved
than in the case of finite groups. To begin with, we construct a two-parameter
family of finite supergroup schemes related to the Witt vectors, denoted E−m,n,

with m ≥ 2, n ≥ 1; see Construction 8.5. For example, E−m,1 can be realised as an

extension of G−a by Wm,1, the first Frobenius kernel of Witt vectors of length m,
recalled in Appendix A. Also E−1,n ∼= Ga(n)×G−a , where Ga(n) is the nth Frobenius
kernel of Ga.

Definition 1.1. A finite supergroup scheme E over k is elementary if it is iso-
morphic to a quotient of some E−m,n × (Z/p)×s.

A special role is played by the quotients of E−m,n by an even subgroup scheme;
these are the Witt elementary supergroup schemes, and described completely in
Theorem 8.13. Besides the E−m,n themselves, one has also finite supergroup schemes

that we denote E−m,n,µ, involving an element µ in k×/(k×)p
m+n−1. The Hopf al-

gebra corresponding to E−m,n,µ is described in (8.10). Any elementary supergroup

scheme is of the form E ∼= E0 × (Z/p)×s where E0 is isomorphic to either Ga(r)
or a Witt elementary supergroup scheme.

The group algebra kE of an elementary finite supergroup scheme E is iso-
morphic to a tensor product of algebras of the form

(i) k[s]/(sp)
(ii) k[σ]/(σ2), and
(iii) k[s, σ]/(sp

n

, σ2 − sp), where n ≥ 1,

with |s| even and |σ| odd, and no more than one factor of types (ii) and (iii)
combined is present. In particular, there is at most one generator of odd degree,
and as an ungraded algebra kE is a commutative complete intersection, even
though case (iii) is not graded commutative.

Our main detection theorem is proved in Section 11.

Theorem 1.2. Let G be a finite unipotent supergroup scheme over a field k of
positive characteristic p ≥ 3. Then the following hold.

(i) An element x ∈ H∗,∗(G, k) is nilpotent if and only if for every extension
field K of k and every elementary sub-supergroup scheme E of GK , the
restriction of xK ∈ H∗,∗(GK ,K) to H∗,∗(E,K) is nilpotent.

(ii) A kG-module M is projective if and only if for every extension field K of
k and every elementary sub-supergroup scheme E of GK , the restriction
of MK to E is projective.

We also prove two versions of (i) for arbitrary coefficients. Theorem 11.1(i)
proves the detection of nilpotents for H∗,∗(G,M) for any G-module M where
nilpotents are understood in the sense of Definition 6.1. Theorem 11.2, which
generalises a theorem of Bendel [3] for unipotent group schemes, gives detection
of nilpotents for H∗,∗(G,Λ) with coefficients in a unital G-algebra Λ.
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We also formulate and prove Z-graded versions of our theorems, and apply
them to finite dimensional subalgebras of the Steenrod algebra over Fp. The struc-
ture of the Steenrod algebra is well understood and the detection theorem in that
case takes on a particularly simple form; see Theorem 12.9.

Looking ahead. Our results only cover unipotent supergroup schemes, and it
would be interesting to understand what more needs to be done in order to cover
the general case. Unlike the case of finite group schemes, for a general finite super-
group scheme it is not true that cohomology modulo nilpotents and projectivity of
modules are detected on unipotent sub-supergroup schemes. Conversations with
Chris Drupieski lead us to suspect that there is a mild generalisation of the Witt
elementaries that are not unipotent, but which leads to a suitable detection family
in this context.

In a different direction, the detection theorems are only the first steps towards
developing a theory of support varieties. Again we turn to groups to show us the
way: While Chouinard’s work highlights the role of elementary abelian groups,
Dade [18] proved that to detect projectivity of a representation of an elementary
abelian p-group E, one can restrict further to all cyclic shifted subgroups of the
group algebra kE, which then becomes purely a problem in linear algebra. This
detection theorem, now known as “Dade’s lemma”, is the foundation for the theory
of rank varieties for modules for finite groups pioneered by Carlson [15], and further
developed by Benson, Carlson, and Rickard [7]. Their work was absorbed and
generalised to the theory of π-points for finite groups schemes by Friedlander and
Pevtsova [26, 27].

Theorem 1.2 opens up the road to a theory of π-points for finite unipotent
supergroup schemes. We take this up in follow up papers [11, 12], where it is used
to establish a stratification theorem for the stable module category, akin to the
one in [9].

Structure of the paper. The strategy of the proof of Theorem 1.2 is quite
intricate and we found it expedient to divide the paper into two parts. Before
delving into a summary of the parts we present a roadmap of the proof; it follows
the one for finite unipotent group schemes given in [3], but a number of extra
complications arise. We refer the reader also to the flowchart on page 5.

The simplest scenario is that there is a surjective map from G to either
G−a × G−a or Ga(1) × Ga(1), for then the argument in [3, Theorem 8.1] applies.
Otherwise one reduces to the case where there is a surjective map f : G→ Ga(r)×
(G−a )ε× (Z/p)s with r, s ≥ 0 and ε = 0 or 1, such that H1,∗(f) is an isomorphism.
It is easy to tackle the case when f is itself an isomorphism. When it is not an
isomorphism, a standard argument yields that H2,∗(f) has a kernel. The situation
when this kernel contains an element of odd degree, that is to say, when H2,1(f) is
not one-to-one, is dealt with in [13]. The difficulty arises when the kernel of H2,∗(f)
is concentrated in even degrees. Even here there are two cases, as elaborated on
further below. The first one allows us to drop to proper subgroups and is easy to
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Does G surject
to Ga(1) ×Ga(1)
or to G−a ×G−a ?

Theorem 7.2,
proper sub-
groups detect

f : G→ G ∼= Ga(r) × (G−a )ε × (Z/p)s iso in H1,∗

Is ε = 0?
Lemma 3.4,
G is a group

scheme

Is f∗ inj in H2,∗?
Lemma 3.5,
G = G

∃ kernel in H2,1? Theorem 4.4

ζ2p
i+2 or

ζ2p
i

βP0(y) in
kernel?

Theorem 7.2,
proper sub-
groups detect

ζ2 + γxr
in kernel

Theorem 10.3,
G is elementary

no

yes

yes

no, so ε = 1

yes

no

yes

no

yes

no

Figure 1. This flowchart for Theorem 1.2 may help in reading
Sections 10 and 11.
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handle. The second one leads to elementary supergroup schemes. This is where
the major deviation from [3] occurs, and requires the bulk of the work. It occupies
Part II of this paper.

Here is a more detailed description of the paper: Part I, comprising Sections 2
to 7, provides background material on finite supergroup schemes and extensions
of a number of techniques used in other contexts. Section 2 starts things off with
main definitions, examples, and basic properties of supergroup schemes. Section 3
records some key facts on low degree cohomology modules. Section 4 describes
the action of Steenrod operations on the cohomology of finite supergroup schemes.
The central calculation there is Theorem 4.3 that establishes that a homogeneous
ideal in H∗,∗(Ga(r) ×G−a × (Z/p)×s, k) stable under the Steenrod operations and

containing an element from H2,0 must have an element of a specific form. The proof
follows closely the proofs of the analogous result for (Z/p)×s, due to Serre [40],
for Ga(r), due to Bendel, Friedlander, and Suslin [44], and for Ga(r)× (Z/p)×s due
to Bendel [3], but the conclusion is different. Whereas for finite group schemes,
such an ideal always has an element that is a product of Bocksteins of elements
in degree 1, in the super case we get either a product of appropriate degree two
elements, or a mysterious element ζ2 + γxr with |ζ| = (1, 1), |xr| = (2, 0), γ ∈ k.
This element is responsible for the work we have to do in Part II.

Part I culminates in Theorem 7.2 that asserts that if a finite unipotent su-
pergroup satisfies certain conditions, laid out in Hypothesis 7.1, nilpotence (of
cohomology elements) and projectivity (of modules) are detected on proper sub-
supergroup schemes after field extensions. For finite group schemes (not super
ones) the calculation with the Steenrod operations in Section 4 would then yield
that any unipotent group scheme that is not isomorphic to Ga(r) × (Z/p)×s sat-
isfies Hypothesis 7.1. And this is precisely the argument in Bendel [3]. Thus, up
to the end of Part I we are mostly mimicking the techniques existing in the lit-
erature. Life in the super world turns out to be more complicated, all because
of the cohomology class ζ2 + γxr that cannot be eliminated with the help of the
Steenrod operations. The task of the second part of the paper is to show that if a
finite unipotent supergroup scheme does not satisfy Hypothesis 7.1, then, in fact,
it must be elementary.

Part II begins in Section 8 with the construction of the elementary super-
group schemes featuring in the statement of Theorem 1.2. Their cohomology rings
are calculated in Section 9. These calculations feed into the proof of Theorem 10.3
that is a cohomological criterion for recognising elementary supergroup schemes.
Theorem 1.2 is proved as Theorem 11.1. Its consequences for the Steenrod alge-
bra are described in Section 12. Appendix A provides background on Dieudonné
modules needed to describe elementary supergroup schemes.

Acknowledgements. We gratefully acknowledge the support and hospitality of
the Mathematical Sciences Research Institute in Berkeley, California where we
were in residence during the semester on “Group Representation Theory and Appli-
cations” in the Spring of 2018. The American Institute of Mathematics in San Jose,

6



California gave us a fantastic opportunity to carry out part of this project during
intensive research periods supported by their “Research in Squares” program; our
thanks to them for that. Dave Benson thanks Pacific Institute for Mathematical
Science for its support during his research visit to the University of Washington
in the Summer of 2016 as a distinguished visitor of the Collaborative Research
Group in Geometric and Cohomological Methods in Algebra. Dave Benson and
Julia Pevtsova have enjoyed the hospitality of City University while working on
this project in the summers of 2017 and 2018. We are grateful to Chris Drupieski
and Jon Kujawa for useful and informative conversations and their interest in our
work. We thank the anonymous referee for the careful reading of our work and
very helpful comments.

Part 1. Recollections

2. Finite supergroup schemes

We give a compressed introduction to the terminology we shall employ in the
paper referring the reader to a number of excellent sources on super vector spaces,
super algebras and super groups schemes, such as, for example, a survey paper by
A. Masuoka [34] or [23].

Throughout this manuscript k will be a field of positive characteristic p ≥ 3.
We assume k is perfect since some of the structural results for supergroup schemes
require that condition. It is clear that the main theorem holds for an arbitrary field
k of characteristic p once it is proved for a perfect field of the same characteristic.

An affine supergroup scheme over k is a covariant functor from Z/2-graded
commutative k-algebras (in the sense that yx = (−1)|x||y|xy) to groups, whose
underlying functor to sets is representable. If G is a supergroup scheme then its
coordinate ring k[G] is the representing object. By applying Yoneda’s lemma to
the group multiplication and inverse maps, it is a Z/2-graded commutative Hopf
algebra. We denote the comultiplication on k[G] by ∆: k[G]→ k[G]⊗k[G] and the
counit map by ε : k[G]→ k with I = ker ε being the augmentation ideal and note
that these are degree-preserving (equivalently, even) algebra homomorphisms. The
correspondence between affine supergroup schemes and their coordinate algebras
gives a contravariant equivalence of categories between affine supergroup schemes
and Z/2-graded commutative Hopf algebras.

A finite supergroup scheme G is an affine supergroup scheme whose coor-
dinate ring is finite dimensional. In this case, the dual kG = Homk(k[G], k) is a
finite dimensional Z/2-graded cocommutative Hopf algebra called the group ring
of G. This gives a covariant equivalence of categories between finite supergroup
schemes and finite dimensional Z/2-graded (equivalently, “super”) cocommutative
Hopf algebras.

(2.1)

{
finite super-

group schemes

}
∼

{
finite dimensional super-

cocommutative Hopf algebras

}
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We employ the notation V = V0 ⊕ V1 for Z/2-graded (equivalently, “super”)
vector spaces, where V0 are the even degree elements, and V1 are the odd degree
elements. A kG-module is a Z/2-graded k-vector space on which kG acts respect-
ing the grading in the usual way. As in the ungraded setting, a kG-module has
an equivalent description as a rational representation of the supergroup G on the
category of super vector spaces. We consider all modules including infinite di-
mensional ones. The trivial module k is the trivial one dimensional representation
concentrated in the even degree.

If K is a field extension of k, and G is an affine supergroup scheme, we write
K[G] for K ⊗k k[G], which is a graded commutative Hopf algebra over K. This
defines a supergroup scheme over K denoted GK , and when G is finite we have a
natural isomorphism of Hopf superalgebras KGK ∼= K ⊗k kG.

For each kG-module M , we set

MK := K ⊗kM and MK := Homk(K,M),

viewed as KGK-modules.
The even part Gev of an affine supergroup scheme G is the largest sub-

supergroup scheme whose coordinate ring contains no odd degree elements (see
[34]). It may be regarded as an affine group scheme. Its coordinate ring k[Gev] is
the quotient of k[G] by the ideal generated by the odd degree elements. This ideal
is automatically a Hopf ideal, since the coproduct ∆ applied to an odd degree
element is necessarily a linear combination of tensors a ⊗ b where either a or b is
odd. An even subgroup scheme of G is a subgroup scheme of Gev.

Example 2.1. Any affine group scheme G may be thought of as an affine super-
group scheme with G = Gev.

Another way to look at the assignment G 7→ Gev is that it gives the right
adjoint to the inclusion functor from the affine group schemes to affine supergroups
schemes.

Definition 2.2. If G is an affine supergroup scheme, let G(1) be the base change
of G via the Frobenius map x 7→ xp on k, and F : G → G(1) the Frobenius map;
see, for example, [28, §1]. The rth Frobenius kernel G(r) of G is defined to be the

kernel of the iterate F r : G→ G(r).

Convention 2.3. By G(0) we always mean the trivial group scheme.

Definition 2.4. A finite supergroup scheme G over k is said to be unipotent if k
is the unique irreducible kG-module, which may be either in even or odd degree.
A supergroup scheme G is connected if k[G] is local.

If G is a finite connected supergroup scheme then for some r ≥ 0 we have
G = G(r). The least such value of r is called the height of G. Note that G has
height zero if and only if G is the trivial supergroup scheme.

Lemma 2.5. Any finite supergroup scheme G is a semidirect product G0 oπ0(G)
with G0 connected and π0(G) the finite group of connected components.
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Proof. See Lemma 5.3.1 of Drupieski [20]. The proof uses the fact that k is perfect
and has odd prime characteristic. �

Theorem 2.6. Let G be a connected finite supergroup scheme. Then there exist
odd degree elements y1, . . . , yn ∈ k[G] such that we have an isomorphism of Z/2-
graded k-algebras

k[G] ∼= k[Gev]⊗ Λ(y1, . . . , yn).

In particular, if Gev is non-trivial then G has the same height as Gev.

Proof. Let I be the augmentation ideal of k[G]. Pick odd elements {y1, . . . , yn}
such that their residues give a basis of the odd part of the super vector space
I/I2. Then the ideal (y1, . . . , yn) is a Hopf ideal, and we have an isomorphism
k[G]/(y1, . . . , yn) ∼= k[Gev]. Since k[Gev] is a connected finite group scheme, we
can find algebraic generators x′1, . . . , x

′
m ∈ k[Gev] such that k[Gev] is a truncated

polynomial algebra on these generators ([45, 14.4]). Let x1, . . . , xm ∈ I be even
liftings of x′1, . . . , x

′
m to k[G], and let B be the (even) subalgebra of k[G] generated

by x1, . . . , xm. By construction {x1, . . . , xm} give a basis of the even part of I/I2.
Moreover, the odd elements y1, . . . , yn square to zero and (super) commute, hence,
generate a copy of Λ(y1, . . . , yn) in k[G]. We therefore have a surjective map

f : B ⊗ Λ(y1, . . . , yn)→ k[G]

We wish to show that this map is an isomorphism of algebras. By construction,
it restricts to a map of augmentation ideals on both sides and hence it suffices to
show that the induced map of associated graded algebras is an isomorphism. Note
that gr k[G] ∼=

⊕
Ii/Ii+1 inherits the structure of a Hopf algebra.

If f is not an isomorphism, its kernel contains a nonzero polynomial involving
both xi and yi. Choose one which involves the minimal number of the variables
yi, let r be the maximal index such that this polynomial involves yr, and write it
in the form

a+ byr = 0

where a and b only involve B and y1, . . . , yr−1. Apply the coproduct map ∆ to
obtain

∆(a) + ∆(b)(yr ⊗ 1 + 1⊗ yr) = 0 .

Since ∆(b) = b⊗1+1⊗b+I⊗I ([30, I.2], there is a term b⊗yr in the sum which must
vanish. We conclude that b = 0 and, hence, a = 0, contradicting the minimality
of r. This proves that f is an isomorphism. In particular, B does not intersect the
ideal (y1, . . . , yn), and so the projection map k[G] → k[G]/(y1, . . . , yn) ∼= k[Gev]
induces an isomorphism B ∼= k[Gev]. �

Remark 2.7. (1) Masuoka [33, Theorem 4.5] proves, without the finiteness
hypothesis, that there is counital algebra isomorphism k[G] ∼= k[Gev] ⊗
Λ((LieG)#odd), where # denotes vector space dual.

(2) Since k[π0(G)] sits in even degree, Lemma 2.5 implies that the tensor
decomposition of Theorem 2.6 holds for any finite supergroup scheme.
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(3) The structure of the coordinate ring of an ungraded finite connected group
scheme is known ([45, Theorem 14.4]). Putting it together with Theo-
rem 2.6, we conclude that for any finite connected supergroup scheme G
there exists a k-algebra isomorphism

k[G] ∼= k[x1, . . . , xn]/(xp
i1

1 , . . . , xp
in

n )⊗ Λ(y1, . . . , ym)

where xi are even and yj are odd.

(4) The Frobenius map F : k[G(1)]→ k[G] kills k[G(1)]odd since odd elements
square to 0 by supercommutativity. Hence, the image of F lands in k[Gev],
that is, the composite k[G/G(1)]→ k[G]→ k[Gev] is injective.

Corollary 2.8. If G is a finite supergroup scheme then G = GevG(1).

Proof. It follows from Lemma 2.5 that Gev = G0
evoπ0(G). So we may assume that

G is connected. It then follows from Theorem 2.6 (see By Remark 2.7 the composite
k[G/G(1)] → k[G] → k[Gev] is injective. Since this is an injective map of Hopf
algebras, is it faithfully flat (see, for example, [45, Theorem 14.1]) and, therefore,
the corresponding map on group schemes Gev → G→ G/G(1) is surjective. Hence,
G = GevG(1). �

Warning 2.9. The subgroup G(1) is normal in G, but Gev need not be normal.

Example 2.10. The additive (super)group scheme Ga is a purely even group
scheme, given by the assignment

Ga(R) = R+
0 ,

where R+
0 is the additive group on the even part of a superalgebra R. We have

k[Ga] = k[t] with t primitive in even degree. The Frobenius kernels Ga(r) are purely

even connected finite unipotent supergroup schemes with k[Ga(r)] = k[t]/(tp
r

), and
t primitive.

Example 2.11. We denote by G−a the finite supergroup scheme such that kG−a =
k[σ]/(σ2) with σ primitive in odd degree. Then G−a is connected and unipotent.
As a functor, G−a is defined by G−a (R) = R+

1 , the additive group on the odd part
of a superalgebra R.

More generally, let V be a finite-dimensional vector space, and let Λ∗(V ) be
the Z/2-graded exterior algebra on V where the elements of V are primitive of odd
degree. With this convention, Λ∗(V ) becomes a supercommutative Hopf algebra
and, hence, is isomorphic to a group algebra of a product of copies of G−a , and
hence corresponds to a connected unipotent finite supergroup scheme.

Example 2.12. Let W−1,1 be the finite supergroup scheme such that kW−1,1 =

k[σ]/(σ2p) with σ primitive in odd degree. Then W−1,1 has height 1 and sits in a
nonsplit short exact sequence

(2.2) 1→ Ga(1) →W−1,1 → G−a → 1.
10



More generally, let W−m,1 be the finite supergroup scheme with kW−m,1 =

k[σ]/(σ2pm) where σ is primitive in odd degree and m ≥ 1. Then W−m,1 has height
one, and it sits in a nonsplit short exact sequence

(2.3) 1→Wm,1 →W−m,1 → G−a → 1

where Wm,1 denotes the Witt vectors of length m and height one as described in

Appendix A, whose group algebra is kWm,1 = k[s]/(sp
m

), and s = σ2 is primitive
in even degree.

Example 2.13. A p-restricted Lie superalgebra g = g0 ⊕ g1 is a Z/2-graded Lie
algebra with a p-restriction map on the even part, and such that the odd part is a
p-restricted module over the even part. The p-restricted enveloping algebra U [p](g)
is the group algebra of a connected finite supergroup scheme which is unipotent if
and only if g is nilpotent.

Lemma 2.14. Let G be a finite supergroup scheme. Then the primitive elements
in kG form a p-restricted Lie superalgebra g = Lie(G) over k with Lie bracket
given by commutator and p-restriction map given by the p-power map in kG. The
natural map U [p](g)→ kG induces an isomorphism U [p](g)→ kG(1).

Proof. See Lemma 4.4.2 of Drupieski [20]. �

Example 2.15. Example 2.12 has height one, so is of the form U [p](g). The p-
restricted Lie superalgebra g is generated by an element σ in odd degree with
relation [σ, σ][p

m] = 0.

Remark 2.16. If G is a finite connected supergroup scheme of height 1 with the cor-
responding Lie algebra g, then g0 is an even (restricted) Lie algebra corresponding
to Gev, that is, U [p](g0) ∼= kGev.

Lemma 2.17. A finite unipotent supergroup scheme G with G0
ev = 1 is isomorphic

to (G−a )×r o π0(G).

Proof. The assumption G0
ev = 1 implies that G0 has height 1, and, hence, cor-

responds to a Lie superalgebra g. By Remark 2.16, g0 = 0, therefore, U [p](g) =
Λ∗(g1), and, hence,G0 = (G−a )× dim g1 . The statement follows from Lemma 2.5. �

For sub-supergroup schemes H,H ′ 6 G, the commutator sub-supergroup
scheme is defined as in [19, II.5.4.8] as a representable functor. We need an analogue
of the following standard result in group theory.

Lemma 2.18. Let G be a finite supergroup scheme, and H,H ′ E G be normal
sub-supergroup schemes. Then [H,H ′] is normal in G.

Proof. It suffices to check pointwise that for a ∈ H(R), b ∈ H ′(R) and c ∈ G(R),
we have that [a, b]c ∈ [H(R), H ′(R)], where the latter commutator is as discrete
groups. This follows from the obvious identity

c(aba−1b−1)c−1 = cac−1cbc−1ca−1c−1cb−1c−1. �
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3. Low degree cohomology

The cohomology H∗,∗(G, k) of a finite supergroup scheme G is isomorphic
to Ext∗,∗kG(k, k). The first index is homological, and the second is the internal Z/2-
grading. Drupieski [20, 21] has proved that H∗,∗(G, k) is a finitely generated k-
algebra, which is graded commutative in the sense that if x ∈ Hm,α(G, k) and
y ∈ Hn,β(G, k) then

yx = (−1)mn(−1)αβxy.

We start by identifying the first cohomology group of G. For notation, we
use HomGr/k to denote group scheme homomorphisms, and HomsGr/k to denote
supergroup scheme homomorphisms. If a group scheme G acts on a vector space
V , we write V G for the G-invariants.

Lemma 3.1. Let G be a finite supergroup scheme with the group of connected
components π. Then we have

H1,0(G, k) ∼= HomGr/k(G,Ga),

H1,1(G, k) ∼= HomsGr/k(G0,G−a )π.

Moreover, HomsGr/k(G,Ga) ∼= HomsGr/k(G0,Ga)π ×HomGr/k(π,Ga).

Proof. Identification of H1,∗ with Hom follows from the standard cobar resolution
used to compute cohomology H∗,∗(G, k). The last statement is proved as in [3,
Lemma 5.1]. �

Lemma 3.2. If G is a non-trivial unipotent finite supergroup scheme then there
is a non-trivial homomorphism from G to either Ga(1) or G−a or Z/p.

Proof. Since G is unipotent, the group of connected components π is a p-group.
If there are no non-trivial maps to Z/p, then π is trivial and G is connected. For
a finite connected supergroup scheme, if there are no non-trivial homomorphisms
from G to Ga(1) then there are also none to Ga. So if there are also no non-trivial

homomorphisms from G to G−a , Lemma 3.1 yields Ext1,∗kG(k, k) = 0. As kG is a
local ring this implies G is trivial. �

If f : G → G′ is a group homomorphism then f∗ : H∗,∗(G′, k) → H∗,∗(G, k)
preserves both the homological and the internal degree, and commutes with the
Steenrod operations (to be discussed in Section 4). If N is a normal sub-supergroup
scheme of G then there is the Lyndon–Hochschild–Serre spectral sequence

H∗,∗(G/N,H∗,∗(N, k))⇒ H∗,∗(G, k)

in which the internal degrees are carried along, and preserved by all the differen-
tials. The spectral sequence also gives the five-term exact sequence:

1 // H1(G/N, k) // H1(G, k) // H1(N, k)G/N
d2 // H2(G/N, k) // H2(G, k).

Lemma 3.3. Let L′ ⊂ L be Lie superalgebras such that L′ is odd and central in
L and L/L′ is even. Then L ' L′ × L/L′.

12



Proof. Let Lev be the p-restricted Lie sub-superalgebra of even elements in L.
The assumption implies that it is normal and isomorphic to L/L′; hence, L '
L′ × Lev. �

Lemma 3.4. If a unipotent finite supergroup scheme G has H1,1(G, k) = 0, then
G = Gev.

Proof. Since G/G(1) is even by Corollary 2.8, the Lyndon–Hochschild–Serre spec-
tral sequence applied to the supergroup extension 1 → G(1) → G → G/G(1) → 1

implies that H∗,1(G, k) = H∗,1(G(1), k). Hence, the assumption together with

Lemma 3.1 imply that there are no non-trivial maps from G(1) to G−a . We need to
show that G(1) is purely even.

Let L be the unipotent Lie superalgebra associated with G(1). Since L is
unipotent, we can choose a central series

L1 ⊂ L0 ⊂ L
such that L/L0 is purely even and L0/L1 ' LieG−a . By Lemma 3.3, we get that
L/L1 has LieG−a as a direct factor, so there is a surjective map from G(1) to G−a ,
a contradiction. �

The five-term exact sequence can be used in exactly the same way as in the
proof of [43, Lemma 1.2], to prove the following analogue.

Lemma 3.5. Let f : G → G be a surjective homomorphism of unipotent super-
group schemes. If the induced map f∗ : H1,∗(G, k)→ H1,∗(G, k) is an isomorphism
and f∗ : H2,∗(G, k)→ H2,∗(G, k) is injective then f is an isomorphism. �

Remark 3.6. Lemma 3.1 implies that the condition that f∗ : H1,∗(G, k)→ H1,∗(G, k)
is an isomorphism guarantees that any homomorphism from G to Ga(1), G−a and

Z/p factors through G.

4. Steenrod operations

The Steenrod algebra acts on the cohomology of any Z-graded cocommutative
Hopf algebra, and hence also on the cohomology of any affine supergroup scheme
([35, Theorem 11.8], [46]). We recall how the Steenrod operations act using the
re-indexing introduced in [13]. In order to make the indexing work for Z/2-graded
algebra, we index with half-integers.

For p odd, there are natural operations

Pi : Hs,t(G, k)→ Hs+2i(p−1),pt(G, k)

βPi : Hs,t(G, k)→ Hs+1+2i(p−1),pt(G, k),

defined in the following cases: when t is even, then i ∈ Z, and if t is odd, then
i ∈ Z + 1

2 . Note that since p is odd, pt is congruent to t mod 2, so the operations
preserve internal degree as elements of Z/2.

The Steenrod operations satisfy the following properties:
13



(i) Pi = 0 if either i < 0 or i > s/2,
βPi = 0 if either i < 0 or i ≥ s/2;

(ii) Semi-linearity: Pi(ax) = apPi(x) for a ∈ k;
(iii) Pi(x) = xp if i = s/2;
(iv) Cartan formula:

Pj(xy) =
∑
i P

i(x)Pj−i(y),
βPj(xy) =

∑
i(βPi(x)Pj−i(y) + Pi(x)βPj−i(y));

(v) The Pi and βPi satisfy the Adem relations.

We record its action on H∗,∗(G−a , k) (see [13, Proposition 3.1]).

Proposition 4.1. One has H∗,∗(G−a , k) ∼= k[ζ], a polynomial ring on ζ in degree

(1, 1). The action of the Steenrod operations on H∗,∗(G−a , k) are given by P
1
2 (ζ) =

ζp, βP
1
2 (ζ) = 0. �

Next, we describe the analogue of Proposition 3.6 of [3] for G = Ga(r) ×
(G−a )ε × (Z/p)×s with r, s ≥ 0, ε = 0 or 1. If ε = 1 we have

H∗,∗(G, k) = k[x1, . . . , xr]⊗ Λ(λ1, . . . , λr)⊗ k[ζ]⊗ k[z1, . . . , zs]⊗ Λ(y1, . . . , ys)

while if ε = 0 the term k[ζ] is missing. Here, the element

λ1 ∈ H1,0(Ga(r), k) ∼= HomGr/k(Ga(r),Ga)

corresponds to the inclusion Ga(r) → Ga, λi is then defined inductively for 2 ≤
i ≤ r by λi = P0λi−1, and xi is defined for 1 ≤ i ≤ r by xi = −βP0(λi). The
element

ζ ∈ H1,1(G−a , k) ∼= HomsGr/k(G−a ,G−a )

corresponds to the identity map on G−a . The elements

yi ∈ H1,0((Z/p)×s, k) ∼= HomGr/k((Z/p)×s, k)

for 1 ≤ i ≤ s are dual to a basis for (Z/p)×s, and zi = βP0(yi). The degrees
and action of the Steenrod algebra are thus as described in Table 1. We use the
convention that λr+1 = 0 = xr+1, that is, P0 kills λr and xr.

degree P0 βP0 P
1
2 βP

1
2 P1 Pi βPi

(i ≥ 2) (i ≥ 1)
λi (1, 0) λi+1 −xi 0 0 0
yi (1, 0) yi zi 0 0 0
ζ (1, 1) ζp 0
xi (2, 0) xi+1 0 xpi 0 0
zi (2, 0) zi 0 zpi 0 0

Table 1. Steenrod operations

We recall the following theorem of Serre [40] which is a prototype for both
Proposition 3.6 of [3] and Theorem 4.3 and will be used in the proof. The precise
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result we quote is a special case of Proposition 3.2 of [42]; it differs slightly from
Serre’s original formulation since we need to consider arbitrary coefficients, not
just Fp.

Theorem 4.2. Let I be a homogeneous ideal in H∗((Z/p)×s, k) stable under the
Steenrod operations. If I contains a nonzero element of degree two, then there exists
a finite family {ui} ⊂ H2((Z/p)×s, k), each of which is a non-trivial linear combi-
nation of {zj} with coefficients in Fp such that the product

∏
ui ∈ H∗((Z/p)×s, k)

lies in I. �

Let f : G→ G ∼= Ga(r)×(G−a )ε×(Z/p)×s, (r, s ≥ 0, ε = 0 or 1) be a surjective
map of finite unipotent supergroup schemes. The proof of Theorem 11.1 uses in
an essential way the description of the kernel of the induced map on degree 2
cohomology

(4.1) f∗ : H2,∗(G, k)→ H2,∗(G, k)

under the assumption that

f∗ : H1,∗(G, k)
∼→ H1,∗(G, k)

is an isomorphism. There are two scenarios: Theorem 4.3 deals with the case when
the kernel I = ker f∗ has an element of degree (2, 0) whereas Theorem 4.4 considers
the case of degree (2, 1). We use extensively the observation that I is stable under
the Steenrod operations.

The following theorem includes the case G = (G−a )ε × (Z/p)×s in disguise; it
corresponds to r = 0 per our convention that Ga(0) = 1.

Theorem 4.3. Let G = Ga(r) × (G−a )ε × (Z/p)×s, with r, s ≥ 0, ε = 0 or 1.

Let I ⊆ H∗,∗(G, k) be a homogeneous ideal stable with respect to the action of the
Steenrod operations. Suppose I contains a nonzero element of degree (2, 0). Then
one of the following holds:

(i) Some element of the form xnr βP0(v1) . . . βP0(vm) (with n and m not both
zero) lies in I, where v1, . . . , vm are nonzero elements of H1((Z/p)×s,Fp) ⊆
H1,0(G, k), or

(ii) I ∩ H2,0(G, k) is one dimensional, spanned by an element of the form
ζ2 + γxr with γ ∈ k.

Proof. We follow, for the most part, the notation and proof in Proposition 3.6 of
[3], with adjustments as appropriate to deal with the extra factor, (G−a )ε.

Any nonzero element u in I ∩H2,0(G, k) has the form

u = αζ2+
∑

1≤i<j≤r
ai,jλiλj+

∑
1≤j≤r

bjxj+
∑

1≤i≤r,
1≤j≤s

ci,jλiyj+
∑

1≤i<j≤s
di,jyiyj+

∑
1≤j≤s

ejzj

for scalars α, ai,j , bj , ci,j , di,j , ej which are not all zero, and the term αζ2 only
occurs if ε = 1.

First suppose that each such u has α 6= 0. In this case I ∩H2,0(G, k) is one
dimensional and ε = 1. Furthermore, u has to be sent to a multiple of itself by
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P0. The Cartan formula implies ζ2 is killed by P0, and so is u. The condition
P0(u) = 0 forces u to be of the form

(4.2) u = ζ2 +
∑

1≤i<r
ai,rλiλr + brxr +

∑
1≤j≤s

cr,jλryj .

Assume on the other hand that there exists a u with α = 0. Repeated ap-

plication of P0 to such a u results in an element of the form
∑

1≤i<j≤s d
p`

i,jyiyj +∑
1≤j≤s e

p`

j zj . So if at least one of the di,j or ej is nonzero, we may apply Theo-

rem 4.2, and this puts us in case (i) with m > 0 and n = 0. So we may assume

u =
∑

1≤i<j≤r
ai,jλiλj +

∑
1≤j≤r

bjxj +
∑

1≤i≤r,1≤j≤s
ci,jλiyj .

Repeatedly applying P0 and stopping just before we get zero, we can assume u
has the form

(4.3) u =
∑

1≤i<r
ai,rλiλr + brxr +

∑
1≤j≤s

cr,jλryj .

So we are now in a situation where u has either the form (4.2) or (4.3), and
in the first case I ∩ H2,0(G, k) is one dimensional. In either case, if some cr,j is
nonzero, we apply βP0 to get

βP0(u) =
∑

1≤i<r
api,rλi+1xr −

∑
1≤j≤s

cpr,jxryj ∈ I.

Applying βP1, we get

βP1βP0(u) = −
∑

1≤i<r
ap

2

i,rxi+1x
p
r −

∑
1≤j≤s

cp
2

r,jx
p
rzj ∈ I.

Now apply Pp to get

PpβP1βP0(u) = −
∑

1≤i<r
ap

3

i,rxi+2x
p2

r −
∑

1≤j≤s
cp

3

r,jx
p2

r zj ∈ I.

Successively applying Pp2 , Pp3 , . . . , we eventually conclude that I contains an

element of the form
∑
j c
pt

r,jx
pt−1

r zj = xp
t−1

r (
∑
j c
pt

r,jzj). The set of all such elements

in I is stable under the Frobenius map (raising all the coefficients to the pth power),
and therefore there is a nonzero element with coefficients in Fp. This puts us in
case (i) with m = 1.

If every cr,j = 0 but some ai,r is nonzero, then

βP1βP0(u) = −
∑

1≤i<r
ap

2

i,rxi+1x
p
r .

Now we apply Pp, then Pp2 , and so on, and just before we get zero, we get a
multiple of a power of xr. This gives case (i) with m = 0 and n > 1.
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It remains to consider the case when all cr,j and all ai,r are zero. Then, if u
has form (4.2) we are in case (ii), and if u has form (4.3) we are in case (i) with
m = 0 and n = 1. �

To complete the description of the kernel of (4.1), we quote a result from
[13] which describes what happens when the kernel of the map f∗ : H2,∗(G, k)→
H2,∗(G, k) has an element of degree (2, 1). Note that in this case we necessarily
have ε = 1.

Theorem 4.4. Let G be a finite unipotent supergroup scheme and N a nor-
mal sub-supergroup scheme with G/N ∼= G−a × Ga(r) × (Z/p)×s. If the inflation

H1,∗(G/N, k) → H1,∗(G, k) is an isomorphism and H2,1(G/N, k) → H2,1(G, k)
is not injective then there exists a nonzero element ξ ∈ H1,1(G, k) such that

βP0(u)ξp
r+s−1(p−1) = 0 for all u ∈ H1,0(G, k). �

5. Super Quillen–Venkov

We require an analogue of the Quillen–Venkov lemma ([39]). The proof in
[39], and its later variants carry over to the present context; we adapt a purely
representation–theoretic approach due to Kroll [32].

Remark 5.1. If H ≤ G is a maximal sub-supergroup scheme with G = G0 o π
unipotent, then there are three possibilities for G/H, namely Ga(1), Z/p, and G−a .

• If G/H ∼= Ga(1) then there is an element λ ∈ H1,0(G0, k)π ⊆ H1,0(G, k)
corresponding to the homomorphism G→ Ga(1) as in Lemma 3.1, and an

associated element x = −βP0(λ) ∈ H2,0(G, k).
• If G/H ∼= Z/p then there is an element y ∈ H1,0(π,Fp) ⊆ H1,0(G, k)

corresponding to the homomorphism G → Z/p as in Lemma 3.1, and an
associated element z = βP0(y) ∈ H2,0(G, k).

• If G/H ∼= G−a then there is an element ζ ∈ H1,1(G, k) ∼= HomsGr/k(G,G−a )

corresponding to the homomorphism G→ G−a as in Lemma 3.1.

For H < G, we denote by

indGH : ModH → ModG

the induction functor which is the right adjoint to the restriction functor

resGH : ModG→ ModH

(following the group scheme terminology here, as introduced, for example, in [30,
I.3]). There is also the coinduction functor

coindGH : ModH → ModG

which is left adjoint to the restriction. In the unipotent case induction and coin-
duction are canonically isomorphic (see [30, I.3]) which we use implicitly in the
proof below. If H ≤ G is a subgroup and M is a kH-module, then the kernel
of the canonical map coindGH(resGHM) → M is the relative syzygy ΩG/H(M). In
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particular, if H = 1 we write Ω(M) for ΩG/1(M), the usual syzygy functor. Sim-

ilarly, Ω−1G/H(M) is the cokernel of the canonical map M → indGH(resGHM) and

Ω−1(M) = Ω−1G/1(M). We write Ω2
G/H(M) for ΩG/H(ΩG/H(M)), and so on.

Recall that if M and N are kG-modules then the stable homomorphisms
HomkG(M,N) are the module homomorphisms HomkG(M,N) modulo those that
factor through a projective kG-module. The stable module category StMod(kG)
has as objects the kG-modules and as arrows the stable homomorphisms, and
stmod(kG) is the full subcategory of finitely generated kG-modules and stable
homomorphisms. These are tensor triangulated categories. The relationship with
Tate cohomology is that ÊxtnkG(M,N) ∼= HomkG(Ωn(M), N), and in particular,

(5.1) Ĥn(G,M) = ÊxtnkG(k,M) ∼= HomkG(Ωn(k),M).

For n > 0, Tate cohomology and group cohomology coincide: Ĥn(G,M) ∼= Hn(G,M).
The identity map on the trivial representation k induces a map

(5.2) η : Ω(k)→ ΩG/H(k)

Similarly, we have a map

η′ : Ω−1G/H(k)→ Ω−1(k).

We employ the same notation η′ for the shifts of this map.

Lemma 5.2. Let H ≤ G be a normal sub-supergroup scheme of a finite unipo-
tent group scheme G with G/H isomorphic to Z/p or Ga(1). Then z = βP0(y),

respectively x = −βP0(λ) ∈ H2,0(G, k) (cf. Remark 5.1), is represented by the
composite

Ω(k)
η
// ΩG/H(k)

∼= // Ω−1G/H(k)
η′
// Ω−1(k) .

Proof. We prove this in the case where G/H ∼= Z/p. The case G/H ∼= Ga(1) is
proved by replacing z by x everywhere.

The cohomology class z = βP0(y) ∈ Ext2G(k, k) is represented by the exten-
sion

(5.3) 0 // k // indGH k // indGH k // k // 0.

This follows from the fact that indGH k
∼= kG/H = kZ/p, and this sequence is the

inflation of the extension

0 // k // kZ/p // kZ/p // k // 0

for Z/p representing the corresponding cohomology class (see, for example, [5,
I.3.4.2]).
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Next consider the following commutative diagram with exact rows.

0 // Ω2(k) //

z

��

P1
//

))

��

P0
//

��

k //

1

��

0

Ω(k)

55

��

ΩG/H(k)

((∼=

��

0 // k //

1

��

indGH k

66

//

((

��

indGH k //

��

k //

z

��

0

Ω−1G/H(k)

66

��

Ω−1(k)

))
0 // k // P−1 //

55

P−2 // Ω−2(k) // 0

By (5.3) the sequence in the middle row represents z. So comparing with a pro-
jective resolution as in the top row, the comparison map Ω2(k)→ k represents z.
Dually, comparing with an injective resolution as in the bottom row, the compar-
ison map k → Ω−2(k) also represents z. Therefore the vertical composite map in
the middle of the diagram also represents z. �

Given ξ ∈ Hs,t(G,M), for each n ≥ 0 we write ξn for the class ξ⊗n ∈
Hns,nt(G,M⊗n).

Proposition 5.3. Let H be a maximal sub-supergroup scheme of a finite super-
group scheme G, and let M be a G-module. Suppose that ξ ∈ H∗,∗(G,M) restricts
to zero on H. Then

(i) if G/H ∼= Z/p then ξ2 is divisible by the element z = βP0(y) ∈ H2,0(G, k),
(ii) if G/H ∼= Ga(1) then ξ2 is divisible by the element x = −βP0(λ) ∈

H2,0(G, k),
(iii) if G/H ∼= G−a then ξ is divisible by the element ζ ∈ H1,1(G, k).

Proof. We shall start by proving (ii). Let ξ ∈ Hn,∗(G,M), and choose a map
Ωn(k) → M representing ξ; by abuse of notation we call this map ξ. We also use
ξ to denote any shift of this map, as a map from Ωn+i(k) to Ωi(M) for i ∈ Z.

The exact sequence k
ε′ // indGH k // Ω−1G/H(k) induces a triangle in stmod(G)

M ⊗ Ω(Ω−1G/H(k))
1⊗η′−−−→M

1⊗ε′−−−→M ⊗ indGH k →M ⊗ Ω−1G/H(k).

The assumption that ξ restricts to zero onH means that the restriction of ξ : Ωn(k)→
M to H factors through a projective. Hence, so does the adjoint map

Ωn(k)→ indGHM = M ⊗ indGH k.
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This adjoint factors as the composite of ξ with 1 ⊗ ε′. The fact that this compo-
sition factors through a projective implies that there exists a lifting ρ′ : Ωn(k) →
Ω(Ω−1G/H(k)) making the following diagram commute:

Ωn(k)

ρ′

ww

ξ

�� %%

M ⊗ Ω(Ω−1G/H(k))
1⊗η′

// M
1⊗ε′

// M ⊗ indGH k // M ⊗ Ω−1G/H(k).

Shifting by Ω−1, we get a commutative diagram

(5.4) Ωn−1(k)

ρ′

ww

ξ

��

M ⊗ Ω−1G/H(k)
1⊗η′

// M ⊗ Ω−1(k).

Similarly, we can factor ξ : Ω(k) → M ⊗ Ω−n+1(k) to obtain a commutative
diagram

Ω(k)
η

//

ξ

��

ΩG/H(k)

ρ
ww

M ⊗ Ω−n+1(k)

Tensoring with M , we get a commutative diagram

(5.5) M ⊗ Ω(k)
1⊗η

//

1⊗ξ
��

M ⊗ ΩG/H(k)

1⊗ρ
uu

M ⊗M ⊗ Ω−n+1(k)

Putting (5.4) and (5.5) together, we get the following diagram, where the
composite of the maps in the middle row is 1⊗ x by Lemma (5.2):

Ωn−1(k)

ρ′

ww

ξ

��

M ⊗ Ω(k)

1⊗x

))
1⊗η

//

1⊗ξ
��

M ⊗ ΩG/H(k)
∼= //

1⊗ρ
uu

M ⊗ Ω−1G/H(k)
1⊗η′

// M ⊗ Ω−1(k)

M ⊗M ⊗ Ω−n+1(k)
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Completing the diagram, we see that ξ2 = (1⊗ ξ) ◦ ξ factors through x either on
the left or on the right.

Ωn+1(k)

ξ
��

x // Ωn−1(k)
ρ′

tt
ξ
��

M ⊗ Ω(k)
1⊗η

//

1⊗ξ
��

M ⊗ ΩG/H(k)
∼= //

1⊗ρtt

M ⊗ Ω−1G/H(k)
1⊗η′

// M ⊗ Ω−1(k)

1⊗ξ
��

M ⊗M ⊗ Ω−n+1(k)
1⊗1⊗x

// M ⊗M ⊗ Ω−n−1(k).

The same argument works for part (i). Part (iii) is similar but easier. Namely,
we have a short exact sequence of kG-modules

0→ k → indGH k
ε−→ k → 0.

We have failed to distinguish whether k is in even or odd degree, but the two ends
are in opposite degrees. The connecting map for this in stmod(kG) is ζ, so we have
a triangle

k → indGH k
ε−→ k

ζ−→ Ω−1(k).

If ξ : k → Ω−n(M) restricts to the zero class on H then the composite with

indGH k
ε−→ k is zero, and so ξ factors through ζ. �

6. Nilpotence and projectivity

We introduce the notion of nilpotence for cohomology classes and discuss its
detection. This is closely related to the detection of projectivity.

Definition 6.1. Let G be a finite supergroup scheme and M be a G-module.
We say that a class ξ ∈ Hj,∗(G,M) is nilpotent if there exists n ≥ 1 such that
ξn ∈ Hjn,∗(G,M⊗n) is zero.

In the remainder of the paper we employ the following terminology. Let G be
a finite supergroup scheme, and letH be a family of subgroups after field extension,
namely a family of pairs (H,K) where K is an extension field of k and H is a sub
supergroup scheme of GK . Note that the embeddings of H in GK need not be
defined over the ground field k. If M is a kG-module, we write MK , respectively
MK , for the KGK-modules K ⊗kM and Homk(K,M) respectively.

We say that nilpotence of cohomology elements is detected on the family H
if for any G-module M and cohomology class ξ ∈ H>0,∗(G,M), we have that ξ is

nilpotent if and only if resGKH (ξK) ∈ H∗,∗(H,MK) is nilpotent for every (H,K) ∈
H.

Similarly, we say that projectivity of modules is detected on the family H if
for any G-module M , we have that M is projective if and only if resGKH (MK) is
projective as an H-module for every (H,K) ∈ H.

In particular, we say that nilpotence and projectivity are detected on proper
subgroups of G after field extensions if the family H can be taken to be the family
of all pairs (H,K) where K runs over all field extensions of k and H runs over
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all proper subgroups of GK . In practice, it always suffices to take K to be an
algebraically closed field of large enough finite transcendence degree over k.

The following lemma is the analogue for the stable module category of Lemma 5.1.5
of [29]; see also Lemma 2.3 of [6].

Lemma 6.2. Let G be a finite supergroup scheme, M a G-module, and fix an
element ξ ∈ Hj,∗(G,M) with j > 0. With ξ : k → Ω−j(M) denoting also the
corresponding map on modules, let X be the colimit

X = colim{ k ξ
// Ω−j(M)

1⊗ξ
// Ω−2j(M⊗2)

1⊗1⊗ξ
// Ω−3j(M⊗3) // · · · }

Then ξ is nilpotent if and only if X is projective.

Proof. The cohomology class ξn corresponds to the composition of any n consec-
utive maps in the system defining X via the isomorphism (5.1). Hence, ξn = 0
implies that such a composition factors through a projective module, and so X is
projective. Conversely, if X is projective, then the map k → X factors through
a projective module. Since k is finite dimensional, it factors through a finite di-
mensional projective module, and hence a finite composite of maps in the defining
system factors through a projective module. Again using (5.1), this implies that
the corresponding power of ξ is zero. �

Lemma 6.2 immediately implies the following result.

Theorem 6.3. Let G be a finite supergroup scheme. If a family H of proper sub
supergroup schemes after field extensions detects projectivity of G-modules, then it
also detects nilpotence of cohomology elements.

Proof. Let M be a G-module and ξ ∈ Hj,∗(G,M) an element with j > 0. Repre-
sent it by a map ξ : k → Ω−j(M), and consider the colimit X = colim Ω−jn(M⊗n)
as in Lemma 6.2.

Our assumption is that ξK↓H is nilpotent for each (H,K) ∈ H. That is, for
some n depending on (H,K), the element (ξK↓H)⊗n ∈ Hjn,∗(H,M⊗nK ) is zero.
Equivalently, the map K → · · · → Ω−jn(M⊗n) factors through a projective upon
restriction to H. Hence, XK↓H is projective. Since we assumed that projectivity
is detected on the family H, we conclude that X is a projective G-module. The
statement now follows by Lemma 6.2. �

We omit the proof of the following lemma since the proof is similar to [9,
Lemma 3.5] if one replaces π-support with the cohomological support. See also
[14].

Lemma 6.4. Let G be a finite supergroup scheme, and M be a G-module. The
following are equivalent:

(a) M is projective,

(b) any class ξ ∈ Ext>0,∗
G (M,M) is nilpotent. �

Here is a partial converse to Theorem 6.3.
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Proposition 6.5. Let G be a finite supergroup scheme. Suppose that nilpotence
in cohomology of G-modules is detected on a family H of proper subgroups of G
without field extension (i.e., each pair (H,K) ∈ H has K = k). Then projectivity
of modules is also detected on H.

Proof. Let N be a G-module such that N↓H is projective for all H ∈ H. Then Λ =
Endk(N) is projective upon restriction to each H ∈ H so that for any cohomology
class ξ ∈ H∗,∗(G,Λ), we have ξ↓H = 0. Since nilpotency is detected on H we

deduce that all elements ξ ∈ H>0,∗(G,Λ) ∼= Ext>0,∗
G (N,N) are nilpotent. Now

apply Lemma 6.4. �

Remark 6.6. It is not true, even for finite p-groups, that if every element of
H>0(G,M) is nilpotent then M is projective. For example, take G to be the
Klein four group Z/2 × Z/2, p = 2, and let 0 6= x ∈ H1(G,F2) ⊆ H1(G, k).
Choose representing cocycles x̂ : Ω−nk → Ω−n−1k and let N be the colimit of

k
x̂−→ Ω−1k

x̂−→ Ω−2k
x̂−→ · · · . Let M be the cokernel of the map from the initial ob-

ject in this filtered system, so that we have a short exact sequence 0→ k → N →
M → 0. Then it can be checked that every product of elements of H>0(G,M) is
zero in H∗(G,M ⊗M), and in particular, every element is nilpotent, but M is not
projective. This is closely related to the examples in Proposition 5.1 of [6].

7. Inductive detection theorem

We finish the first part of the paper with the inductive detection theorem.
The point of Theorem 7.2 is to cover the cases of the detection that are straightfor-
ward, leaving the task of showing that the finite unipotent supergroup schemes not
covered by Hypotheses 7.1 are precisely the elementary supergroup schemes from
Definition 1.1; see Theorem 11.1. It is in the preparation work for that theorem
that the degree 2 cohomology element of Theorem 4.3 becomes relevant.

We separate out the hypotheses since these will appear again in Section 11.

Hypothesis 7.1. The finite supergroup scheme G is unipotent and satisfies at
least one of the following:

(a) There is a surjective map G→ Ga(1) ×Ga(1).
(b) There is a surjective map G→ G−a ×G−a .
(c) There are nonzero elements

λ1, . . . λn ∈ H1,0(G0, k)π ⊆ H1,0(G, k)

y1, . . . , ys ∈ H1,0(π,Fp) ⊆ H1,0(G, k)

ζ1, . . . , ζm ∈ H1,1(G, k) ∼= Hom(G,G−a )

such that
∏
βP0(λi)

∏
βP0(yj)

∏
ζ` = 0.

Theorem 7.2. If Hypothesis 7.1 hold for G, then

(i) nilpotence of elements of H∗,∗(G,M) and
(ii) projectivity of kG-modules
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are detected on proper sub-supergroup schemes after field extension.

Proof. The argument that ifG satisfies either condition (a) or (b), then projectivity
of modules is detected on proper sub-supergroup schemes goes exactly as in the
case 3(b) of the proof of [3, Theorem 8.1]; so we will not reproduce it here. The
main ingredient of the proof is the Kronecker quiver lemma, see [7, Lemma 4.1].
Once we know detection of projectivity, the detection of nilpotents is implied by
Theorem 6.3.

We now show that (c) implies detection of nilpotents in H∗,∗(G,M) on sub-
supergroup schemes, without any field extensions. Let ξ ∈ Hn,∗(G,M) be a co-
homology class which restricts nilpotently to all proper subgroups of G, and let∏
βP0(λi)

∏
βP0(yj)

∏
ζ` = 0. Each of the elements λi, yj , ζ` corresponds to a

map from G to Z/p, Ga(1) or G−a , with ξ restricting nilpotently to the kernel of

the corresponding map. Proposition 5.3 implies that ξ2i+2j+` is then divisible by∏
βP0(λi)

∏
βP0(yj)

∏
ζ`, and is therefore zero.

Finally, since the case (c) does not involve field extensions, Proposition 6.5
implies that we also have detection of projectivity in this case. �

Part 2. The detection theorem

8. Witt elementary supergroup schemes

In this section we introduce the family of Witt elementary supergroup schemes
that plays an essential role in our main detection theorem. These are the elemen-
tary supergroup schemes of Definition 1.1 that are connected. They are the quo-
tients of finite supergroup schemes E−m,n that we describe below by even subgroup
schemes, see Definition 8.6.

Notation 8.1. We shall make an extensive use of diagrams to depict many of
the unipotent connected supergroup schemes to be introduced in this section. In
these diagrams, ◦ denotes a composition factor isomorphic to Ga(1) and • denotes

a composition factor isomorphic to G−a . A single bond represents an extension of
Ga(1) by Ga(1) to make Ga(2) and the double bond represents an extension of Ga(1)
by Ga(1) to make W2,1. The dashed link denotes an extension of G−a by Ga(1) to

make the supergroup scheme W−1,1 discussed in Example 2.12.

◦ ◦ •

◦ ◦ ◦

Ga(2) W2,1 W−1,1

Example 8.2. Let g be the p-restricted Lie superalgebra described in Exam-
ple 5.3.3 of Drupieski and Kujawa [23]. This is generated by an odd degree ele-
ment σ and an even degree element s satisfying [σ, σ] = 2s[p]. This is unipotent
if and only if some s[p

m] is zero. If m is minimal with this property then g has a
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basis consisting of σ, s, s[p], . . . , s[p
m−1]. The restricted enveloping algebra of g is

the group algebra of the finite supergroup scheme denoted E−m,1 with

kE−m,1 = k[s, σ]/(sp
m

, σ2 − sp)
where s and σ are primitive. Note that (E−m,1)ev ∼= Wm,1, the first Frobenius kernel
of length m Witt vectors as introduced in Appendix A, so we have a short exact
sequence

(8.1) 1→Wm,1 → E−m,1 → G−a → 1.

For m ≥ 2, there are also short exact sequences

1→W−m−1,1 → E−m,1 → Ga(1) → 1,

where kW−m−1,1 = k[σ]/σ2pm−1

(see Example 2.12), and

1→Wm−1,1 → E−m,1 → Ga(1) ×G−a → 1

where the group algebra of Wm−1,1 is generated by sp = σ2. Using Notation 8.1,
E−m,1 is represented with the following diagram.

E−m,1 :

• ◦

◦

◦

◦

◦
As another example, we draw a diagram for W−m,1 of Example 2.12.

•

◦

◦

◦

◦

◦
Lemma 8.3. If G is a finite supergroup scheme which sits in a short exact sequence

1→ Ga(1) ×Ga(1) → G→ G−a → 1

then there is a non-trivial homomorphism G→ Ga(1).
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Proof. By Corollary 2.8, the height of G is one so it is of the form U [p](g) with
g = Lie(G). Then g has a two dimensional even part with trivial commutator and
p-restriction map, and a one dimensional odd part. There is therefore a non-trivial
homomorphism from g to the one dimensional trivial Lie algebra Lie(Ga(1)), and
this induces a non-trivial homomorphism from G to Ga(1). �

Next we classify all extensions of G−a by Wm,1 complementing examples (2.3)
and (8.1).

Lemma 8.4. Let G be a finite supergroup scheme fitting in an extension

1→Wm,1 → G→ G−a → 1.

Then

kG ∼= k[s, σ]/(sp
m

, σ2 − spj )
for some 0 ≤ j ≤ m− 1, where σ is odd, s is even, and both are primitive. Hence,
G can be represented by the following picture:

s◦

◦

σ• ◦

◦s[p]j

◦

◦
s[p]m−1

Proof. By assumption, Gev = Wm,1. Hence, G has height 1 by Theorem 2.6. By

Lemma 2.14, there is a Lie superalgebra g such that U [p](g) ∼= kG. Let σ be a
lifting to g of the generator of kG−a , and let s be an algebraic generator of kWm,1,

that is, s, s[p], . . . , s[p]
m−1

be a basis of the Lie algebra corresponding to Wm,1.
Then we have

1
2 [σ, σ] =

m−1∑
0

ais
[p]i .

Let j be the minimal index such that aj 6= 0 and set s′ =
m−1∑
j

ais
[p]i−j . The

generators σ, s′ give the asserted presentation of U [p](g) ∼= kG. �

Construction 8.5 (E−m,n). There is a homomorphism E−m,1 → Ga(1) given by

factoring out the ideal of kE−m,1 generated by σ. There is also a surjective map
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Ga(n) → Ga(1) given by the (n−1)st power of the Frobenius map. We define E−m,n
to be the kernel of the map from the product to Ga(1), so that there is a short
exact sequence

1→ E−m,n → E−m,1 ×Ga(n) → Ga(1) → 1.

Its group ring is given by

kE−m,n = k[s1, . . . , sn−1, sn, σ]/(sp1, . . . , s
p
n−1, s

pm

n , σ2 − spn)

where s1, . . . , sn are in even degree and σ is in odd degree. The comultiplication
is given by

∆(si) = Si−1(s1 ⊗ 1, . . . , si ⊗ 1, 1⊗ s1, . . . , 1⊗ si) (i ≥ 1)

∆(σ) = σ ⊗ 1 + 1⊗ σ
where the Si are as defined in Appendix A, and come from the comultiplication
in Dist(Ga).

E−m,n :

σ• sn◦

◦ ◦sn−1

◦ ◦

◦ ◦s1

◦
sp
m−1
n

We define

Em,n : = (Em,n)−ev
and observe that there is an isomorphism

Em,n ∼= Wm,n/Wm−1.n−1.

Definition 8.6. A finite supergroup scheme is Witt elementary if it is isomorphic
to a quotient of E−m,n by an even subgroup scheme.

Remark 8.7. For m = 1, E−m,n splits as a direct product:

E−1,n ∼= Ga(n) ×G−a
Lemma 8.8. Let G be a finite supergroup scheme with the connected component
G0 and the group of connected components π = π(G) which is a p-group. If G0 is
an extension

1→ Ga(1) → G0 → G−a → 1

then G = G0 × π.
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Proof. Since G0 has height, it corresponds to a 2-dimensional Lie superalgebra
g = g0⊕ g1 by Lemma 2.14. Each part is 1-dimensional and must be stabilised by
π. Since π is a p-group, it centralises both G−a and Ga(1); hence, centralises G. �

Lemma 8.9. If G0 = Ga(r) ×G−a , and π(G) is a p-group, then the subgroup G−a
is centralised by π(G).

Proof. We must have that G(1) = Ga(1) × G−a is centralised by π. Now apply
Lemma 8.8. �

Construction 8.10 (E−m,n,µ). The group algebra of E−m+1,n+1 is described in
Construction 8.5 except that we shift the indexing on the even generators si down
by 1. With that shift, it has the form

kE−m+1,n+1 = k[s0, s1, . . . , sn−1, sn, σ]/(sp0, s
p
1, . . . , s

p
n−1, s

pm+1

n , σ2 − spn).

Let kGa(1) = k[s]/sp with s primitive in even degree. For µ ∈ k, define the su-

pergroup scheme E−m,n,µ to be the quotient of E−m+1,n+1 given by the embedding

Ga(1) → E−m,n,µ which sends s to s0−msp
m

n . Thus, there is a short exact sequence

(8.2) 1→ Ga(1) → E−m+1,n+1 → E−m,n,µ → 1.

In the language of Dieudonné modules introduced in Appendix A, E−m,n,µ is quo-

tient of E−m+1,n+1 by the subgroup scheme of (E−m+1,n+1)ev ∼= ψ(Dk/(V
m+1, Fn+1, p))

given by applying ψ to the submodule of Dk/(V
m+1, Fn+1, p) spanned by Fn −

µV m. Explicitly, the group ring kE−m,n,µ is given by

kE−m,n,µ = k[s1, . . . , sn−1, sn, σ]/(sp1, . . . , s
p
n−1, s

pm+1

n , σ2 − spn)

where s1, . . . , sn are in even degree and σ is in odd degree. The comultiplication
is given by

∆(si) = Si(µs
pm

n ⊗ 1, s1 ⊗ 1, . . . , si ⊗ 1, 1⊗ µspmn , 1⊗ s1, . . . , 1⊗ si)
∆(σ) = σ ⊗ 1 + 1⊗ σ.

E−4,3,µ :

σ• s3◦

◦ ◦s2

◦

◦ ◦s1
µ

◦
sp

4

3

We define
Em,n,µ := (E−m,n,µ)ev.

28



Lemma 8.11. Let G be a finite unipotent supergroup scheme.

(1) If for some n ≥ 2, there is an extension

1→ Em,n → G→ G−a → 1,

then kG ∼= k[s1, . . . , sn−1, sn, σ]/(sp1, . . . , s
p
n−1, s

pm

n , σ2− spin −αs1) for some
1 ≤ i ≤ m − 1 and α ∈ k, where s1, . . . , sn are in even degree, σ is in odd
degree, and comultiplication is given by the formulas in (8.5). Hence, G can
be represented as follows:

G :

sn◦

σ• ◦ ◦sn−1

sp
i

n◦ ◦

◦ ◦s1

◦
sp
m−1
n

(2) If G fits in the extension

1→ Em,n,µ → G→ G−a → 1,

then kG = k[s1, . . . , sn−1, sn, σ]/(sp1, . . . , s
p
n−1, s

pm+1

n , σ2−spin ) for some 1 ≤
i ≤ m− 1 and degrees and comultiplication as in (8.10).

Proof. We handle only the first case; the second one is similar. We have (Em,n)(1) =
Wm−1,1 ×Ga(1), and hence G(1) fits into a short exact sequence:

1→Wm−1,1 ×Ga(1) → G(1) → G−a → 1.

Let g = Lie(G), so that by Lemma 2.14 we have kG(1)
∼= U [p](g). Let σ be

a lift to g of a generator for Lie(G−a ). Then σ has odd degree, and 1
2 [σ, σ] is some

element of Lie(Wm−1,1 ×Ga(1)), which is the linear span of the elements

s[p]n , s
[p]2

n , . . . , s[p]
m−1

n , s1 ∈ Lie(Em,r).

Arguing exactly as in the proof of Lemma 8.4, we can change the generator sn so

that 1
2 [σ, σ] = s

[p]i

n + αs1 without changing the comultiplication on kEm,n. �

Remark 8.12. The finite supergroup schemes E−m,n and E−m,n,µ also appear in the
work of Drupieski and Kujawa [22], where they are denoted Mn;m and Mn+1;m,−µ
respectively.
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We also record the structure of the coordinate rings k[E−m,n] and k[E−m,n,µ].

For k[E−m,n] we have generators w, x1, . . . , xpm−1, y with y odd and the remain-

ing generators even. We have relations wp
n−1

= x1, xixj =
(
i+j
j

)
xi+j , y

2 = 0;

which implies that as an algebra it is a truncated polynomial ring generated by
w, xp, xp2 , . . . , xpm−1 , y with relations wp

n

, xpp, x
p
p2 , . . . , x

p
pm−1 , y

2.

For the coalgebra structure, the elements w and y are primitive, while

∆(x`) =
∑
i+j=`

xi ⊗ xj +
∑

i+j+p=`

xiy ⊗ xjy.

The antipode negates w and y, and sends xi to (−1)ixi.
The coordinate ring k[E−m,n,µ] is the subalgebra of k[E−m+1,n+1] generated by

the elements w−µxpm , xp, xp2 , . . . , xpm−1 , y with the restriction of the comultipli-
cation and antipode.

Theorem 8.13. Every Witt elementary supergroup scheme is isomorphic to one
of the following:

(i) G−a ,
(ii) E−m,n with m,n ≥ 1,

(iii) E−m,n,µ with m,n ≥ 1 and 0 6= µ ∈ k.

The only isomorphisms between these are given by E−m,n,µ ∼= E−m,n,µ′ if and only if

µ/µ′ = ap
m+n−1 for some a ∈ k.

Note that E−1,n is isomorphic to Ga(n) ×G−a for n ≥ 1.

Proof. The quotient of E−m,n by its entire even part is covered in part (i). The

quotient by a proper subgroup of (E−m,n)ev uses Theorem A.3, and gives parts (ii)
and (iii). �

We recall Definition 1.1 from the Introduction: a finite supergroup scheme is
elementary if it is isomorphic to a quotient of E−m,n × (Z/p)×s.

Remark 8.14. An elementary finite supergroup scheme is isomorphic to one of the
following:

(i) Ga(n) × (Z/p)×s with n, s ≥ 0,

(ii) Ga(n) ×G−a × (Z/p)×s with n, s ≥ 0,

(iii) E−m,n × (Z/p)×s with m ≥ 1, n ≥ 2, s ≥ 0, or

(iv) E−m,n,µ × (Z/p)×s with m,n ≥ 1, 0 6= µ ∈ k and s ≥ 0.

Definition 8.15. The rank of an elementary finite supergroup scheme is defined
to be n+ s in case (i), and n+ s+ 1 in cases (ii)–(iv) of the above remark.

9. Cohomological calculations

This section is dedicated to computing the cohomology rings of the super-
group schemes introduced in Section 8, and other preparatory results for use in
the sequel.
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Proposition 9.1. If G is a semidirect product (Ga(1) × Ga(1)) o (Z/p)×s with

non-trivial action then there is an element 0 6= y ∈ H1((Z/p)×s, k) ⊆ H1,0(G, k)
whose product with 0 6= λ ∈ H1(Ga(1), k) ⊆ H1,0(G, k) is zero in H2,0(G, k).

Proof. The non-triviality of the product of a pair of elements in H1(G, k) ∼=
Ext1kG(k, k) is the obstruction to producing a three dimensional module using
these two extensions. So the proposition follows from the fact that G has a repre-
sentation of the form 1 (Z/p)×s Ga(1)

0 1 Ga(1)
0 0 1

 . �

We next discuss cohomology of abelian connected unipotent finite group
schemes. Recall from Appendix A that as an augmented algebra, kG is isomorphic
to a tensor product of algebras of the form kWm,1 = k[s]/(sp

m

). Since cohomology
of a finite group scheme G in general only depends on the algebra structure of kG,
not on the comultiplication, we get the following description of the cohomology
ring.

Theorem 9.2. Let G be an abelian connected unipotent finite group scheme. The
cohomology ring H∗(G, k) is a tensor product of algebras of the form

H∗(Wm,1, k) = k[xm]⊗ Λ(λm)

where λm has degree one and xm has degree two.
The surjective map Wm,1 →Wm−1,1 induces an inflation map

H∗(Wm−1,1, k)→ H∗(Wm,1, k)

sending xm−1 to zero and λm−1 to λm. On the other hand, the injective map
Wm−1,1 →Wm,1 induces a restriction map

H∗(Wm,1, k)→ H∗(Wm−1,1, k)

sending xm to xm−1 and λm to zero.

Proof. The cohomology of the algebra k[s]/(sp
m

) and the restriction and inflation
maps are well known from the cohomology theory of finite groups. See for example
Chapter XII of Cartan and Eilenberg [16]. �

Proposition 9.3. The cohomology of the supergroup scheme W−m,1 of Exam-
ple 2.12 is given by

H∗,∗(W−m,1, k) = k[xm, ζm]/(ζ2m)

with |xm| = (2, 0) and |ζm| = (1, 1).
For m ≥ 2 the surjective map W−m,1 →W−m−1,1 induces an inflation map

H∗,∗(W−m−1,1, k)→ H∗,∗(W−m,1, k)

sending xm−1 to zero and ζm−1 to ζm.
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Proof. The E2 page of the spectral sequence

H∗,∗(G−a , H∗,∗(Wm,1, k))⇒ H∗,∗(G, k)

has a polynomial generator ζm on the base in degree (1, 1), an exterior generator
λm on the fibre in degree (1, 0) and a polynomial generator xm on the fibre in
degree (2, 0). The only differential is d2, and this is determined by d2(λm) = ζ2m,
d2(xm) = 0. The inflation maps follow from Theorem 9.2. �

Proposition 9.4. If G is a nonsplit extension

1→ Ga(r) → G→ G−a → 1

with r ≥ 1 then the inflation of ζ ∈ H1,1(G−a , k) to G squares to zero in H2,0(G, k).

Proof. By Corollary 2.8, we have a nonsplit extension

1→ Ga(1) → G(1) → G−a → 1.

Hence, G(1)
∼= W−1,1 by Lemma 8.3. This implies that ignoring the comultiplication,

we have kG ∼= kGa(r−1) ⊗ kW−1,1. The result follows from the case m = 1 of
Proposition 9.3. �

Lemma 9.5. If G is an extension

1→W2,2 → G→ G−a → 1,

then there exists a surjective map G→W2,1.

Proof. Since G = G(1)Gev by Corollary 2.8, taking the first Frobenius kernels, we
get an extension

1→W2,1 → G(1) → G−a → 1.

Hence, G/G(1)
∼= W2,2/W2,1

∼= W2,1. �

Lemma 9.6. Let G be a unipotent finite supergroup scheme, and f : G → G =
Ga(r) ×G−a × (Z/p)×s a surjective map of supergroup schemes. Assume that

(a) f∗ : H1,∗(G, k)→ H1,∗(G, k) is an isomorphism, and
(b) f∗ is one-to-one restricted to H2((Z/p)×s, k) ⊂ H2,0(G, k)

Then π0(G), the group of connected components of G, is isomorphic to (Z/p)×s.

Proof. Set π = π0(G) and let π be the Frattini quotient for π, that is, the maximal
quotient isomorphic to an elementary abelian p-group. Then the map f factors
through G0 o π and we have a commutative diagram

G0 o π //

����

π

����

G0 o π //

����

π

G // (Z/p)×s
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If π → π is not an isomorphism, Lemma 3.5 implies that there exists an element
u in H2(π, k) = H2((Z/p)×s, k) which pulls back to zero in H2(π, k) and, hence,
in H2,0(G, k). Inflating the class u to H2,0(G, k), we get an element in Ker f∗ ∩
H2((Z/p)×s, k) contradicting assumption (b). Hence, π ∼= (Z/p)×s. �

The result below is a denouement of the preceding developments. Its import
is that, in the situation of Theorem 4.3(ii), various finite (super)group schemes
cannot be quotients of G, G0 and G0

ev. Theorem 9.7 together with Theorem 4.4
are the major inputs in the proof of the detection Theorem 11.1.

Theorem 9.7. Let G be a unipotent finite supergroup scheme, and f : G → G =
Ga(r) ×G−a × (Z/p)×s a surjective map of supergroup schemes. Assume that

(a) f∗ : H1,∗(G, k)→ H1,∗(G, k) is an isomorphism, and
(b) I = Ker{f∗ : H2,∗(G, k)→ H2,∗(G, k)} is one dimensional, spanned by an

element of the form ζ2 + γxr with 0 6= γ ∈ k.

Then the following statements hold.

(I) G cannot have as a quotient the following supergroup schemes:
(i) (Ga(1) ×Ga(1)) o (Z/p)×s,
(ii) (G−a ×G−a ) o (Z/p)×s.

(II) The restriction f0 = f↓G0 : G0 → G
0

satisfies the following cohomological
conditions:

(a0) f∗0 : H1,∗(G
0
, k)→ H1,∗(G0, k) is an isomorphism,

(b0) Ker f∗0 ∩H2,0(G
0
, k) is one dimensional, spanned by ζ2 + γxr.

(III) The following connected supergroup schemes cannot be quotients of G0:
(i) H given by a nonsplit extension 1→ Ga(r) → H → G−a → 1,

(ii) W−m,1,

(iii) W2,1.
(IV) G0

ev cannot have W2,2 as a quotient.

Proof. (I). Let ρ : G → H be a surjective map of unipotent group schemes, and
suppose that H surjects further on a group scheme H ′ which is isomorphic to
Ga(1), G−a or Z/p. By Remark 3.6, we have a commutative diagram

(9.1) G
f
// //

ρ

����

G

ρ
����

H
χ
// // H ′

Lemma 3.1 implies that ρ : G → H ′ induces an injective map on H1,∗.
Moreover, the explicit calculation of cohomology for G further implies that the
map H∗,∗(H ′, k)→ H∗,∗(G, k) is injective. Since H ′ = Ga(1),G−a or Z/p, we have

that H1,∗(H ′, k) is a 1-dimensional vector space. Let α ∈ H1,∗(H ′, k) be a linear
generator. Then the assumption (a) together with the commutativity of (9.1) imply
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that

0 6= (ρ ◦ f)∗(α) = (χ ◦ ρ)∗(α) ∈ H1,∗(G, k).

In Case (I.i), assume that there is a surjective map G → H where H = (Ga(1) ×
Ga(1)) o (Z/p)×s. There are maps χ : H → H ′ with H ′ = Ga(1),Z/p. By Proposi-
tion 9.1, taking for α the elements y and λ, we obtain a relation

f∗(ρ∗(y)ρ∗(λ)) = ρ∗(χ∗(y)χ∗(λ)) = 0.

Hence, 0 6= ρ∗(y)ρ∗(λ) is in I which contradicts the assumption (b) completing the
proof in that case.

In Case (I.ii), we assume there is a surjective map G → H where H =
(G−a × G−a ) o (Z/p)×s. Cohomology of H is computed explicitly in [13]; there
exist non trivial elements λ1 ∈ H1,0(H, k) and ζ ∈ H1,1(H, k) such that λ1ζ = 0.
Arguing as in (I.i), we get a contradiction with the assumption (b) again.

(II.a0). Let π = π0(G) be the group of connected components of G. By
Lemma 9.6, we have π ∼= (Z/p)×s, which is the same as π = π0(G). The map
f : G→ G induces a commutative diagram of five-term sequences:

H1,∗(π, k) // H1,∗(G, k) // H1,∗(G0, k)π // H2,∗(π, k) // H2,∗(G, k)

H1,∗(π, k) // H1,∗(G, k) //

f∗

OO

H1,∗(G
0
, k)

f∗0

OO

0 // H2,∗(π, k) // H2,∗(G, k)

f∗

OO

Since f∗ is an iso onH1,∗, we conclude that it induces an isomorphismH1,∗(G
0
, k) ∼=

H1,∗(G0, k)π. It remains to show that π acts trivially on H1,∗(G0, k). giving rise
to a central By Lemma 3.1, we have

H1,∗(G0, k) ∼= H1,0(G0, k)⊕H1,1(G0, k),(9.2)

H1,0(G0, k) ∼= Hom(G0,Ga),(9.3)

H1,1(G0, k) ∼= Hom(G0,G−a )(9.4)

with the action of π fixing the even and odd parts in the first isomorphism.
The assumption that f∗ is an isomorphism on H1 together with Lemma 3.1

imply that

dim Hom(G0,G−a )π = 1(9.5)

Hom(G0,Ga)π = Hom(Ga(r),Ga(r)).(9.6)

Hence, to show that π acts trivially on H1,∗(G0, k), we need to show the same two
equalities for Hom(G0,G−a ) and Hom(G0,Ga).

We first show that dimk Hom(G0,G−a ) = 1. Suppose dimk Hom(G0,G−a ) ≥
2. Since π is a p-group, there exists a two-dimensional π-invariant subspace of
Hom(G0,G−a ) and, hence, a π-invariant quotient of the form G−a × G−a . But this
implies that G has a quotient of the form H = (G−a × G−a ) o (Z/p)×s which is
disallowed by (I.ii). Hence, dimk Hom(G0,G−a ) = 1.
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We now consider Hom(G0,Ga). First, since G0 is finite, there exists a number
n such that Hom(G0,Ga) = Hom(G0,Ga(n)). Pick the maximal n so that the map

G0 → Ga(n) is surjective. The standard projection Ga(n))→ Ga(1) induces a map

on Hom spaces Hom(G0,Ga(n))→ Hom(G0,Ga(1)); the action of π descends along

this map since the Frobenius map is π-equivariant. If dimk Hom(G0,Ga(1)) > 1,

then arguing just as in the case of G−a we deduce a contradiction with (I.i). Hence,
Hom(G0,Ga(1)) = 1. Therefore,

Hom(G0,Ga(n)) ∼= Hom(Ga(n),Ga(n))

It remains to show that n = r. Note that Hom(Ga(n),Ga(n)) ' G×na as a group

scheme, with the action of π preserving the group scheme structure. Since G×na is
connected, the action of π must be trivial, hence, r = n.

(II.b0). The projection f : G→ G induces a map on spectral sequences making
the following diagram commute:
(9.7)

H*,*(π,H*,*(G0, k)) +3 H*,*(G, k)

H*,*(Z/p×s, k)⊗H*,*(G
0
, k)

∼ // H*,*(π,H*,*(G
0
, k))

OO

+3 H*,*(G, k)

f∗

OO

Here, the star for the internal degree is preserved by the spectral sequence. The
bottom sequence collapses at the E2 page giving an isomorphism H*,*(Z/p×s, k)⊗
H*,*(G

0
, k) ∼= H*,*(G, k). Since ζ2 + γxr ∈ H2,0(G

0
, k) = H2,0(Ga(r) × G−a , k),

we conclude that it belongs to the kernel of f∗0 . It remains to show that this class
generates the kernel of f∗0 on H2,0.

Let

(9.8) H2,0(G, k) F 1H2,0(G, k)? _oo

≡
��

F 0H2,0(G, k)? _oo

≡
��

F 1H2,0(G, k) F 0H2,0(G, k)? _oo

be the filtration on H2,0 with subquotients giving the E∞ term of the spectral
sequences.

We consider another diagram induced by f :

(9.9) H2,0(G
0
, k)

f∗0 //
� _

ρ

��

H2,0(G0, k)π

H2,0(G, k)

OO

f∗
// H2,0(G, k)

i

OO

The left vertical map induced by the embedding G
0
< G splits since

H2,0(G, k) ∼= H2(π, k)⊕H1(π,H1,0(G
0
, k))⊕H2,0(G

0
, k).
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The left vertical map ρ : H2,0(G
0
, k) ↪→ H2,0(G, k) is the identification ofH2,0(G

0
, k)

with the last direct summand.
The right vertical map i : H2,0(G, k) → H2,0(G0, k)π is the edge homomor-

phism of the top row spectral sequence in (9.7), hence,

(9.10) Ker i = F 1H2,0(G, k).

Let α ∈ H2,0(G
0
, k) be a class in the kernel of f∗0 . Then f∗0 (α) = if∗ρ(α) = 0

implies that f∗ρ(α) ∈ Ker i = F 1H2,0(G, k). Since F 1H2,0(G, k) ∼= F 1H2,0(G, k)

by (9.8), there exists β ∈ F 1H2,0(G, k) = H2(π, k)⊕H1(π,H1,0(G
0
, k)), such that

f∗(ρ(α)) = f∗(β), that is,

f∗(ρ(α)− β) = 0.

Assumption (b) now implies that ρ(α) − β is a multiple of ζ2 + γxr and, hence,
ρ(α) − β ∈ Im ρ. Therefore, β ∈ Im ρ. This implies that β = 0 since Im ρ ∩
F 1H2,0(G, k) = 0. We conclude that f∗(ρ(α)) = 0, and, hence, α is a multiple of
ζ2 + γxr. Hence the kernel is one-dimensional.

(III). We apply the same argument as in Case (I) but to f0 : G0 → G
0
. Once

again, we have a commutative diagram of surjective maps:

G0 f0 // //

ρ

����

G
0

ρ

����

H
χ
// // H ′

For (III.i), Proposition 9.4 gives an element ζ ∈ H1,1(H ′, k) such that χ∗(ζ)2 =
0. Hence, commutativity of the diagram above implies that 0 6= (ρ∗(ζ))2 is in the
kernel of f∗0 contradicting the assumption II(b0), and completing the proof in this
case.

Case (III.ii) follows from Proposition 9.3 in a similar fashion taking H ′ = G1
a

and α = ζm.
If G0 has a quotient W2,1, then βP0(λ2), where λ2 is a degree (1, 0) coho-

mology generator of H∗,∗(W2,1, k), is in the kernel of f∗0 , contradicting II(b0).
Finally, Case (IV) follows from Lemma 9.5 and case (II.iii). �

Corollary 9.8. Let G be a unipotent finite supergroup scheme satisfying the as-
sumptions of Theorem 9.7. Let A = G/[Gev, Gev]. Then A0

ev is isomorphic to a
quotient of Em,n = (E−m,n)ev for some m,n > 0.

Proof. First we claim that dimk HomGr/k(Aev,Ga(1)) = 1. This is because if this

dimension is two or greater then G, and, hence, G0, has a quotient which is a
nonsplit extension of G−a by Ga(1), which is not allowed by Theorem 9.7.

Next, we claim that dimk HomGr/k(A0
ev,Ga(1)) = 1. This is because if this

dimension is two or greater then G has a quotient which is a semidirect product
(Ga(1)×Ga(1))o (Z/p)×s with non-trivial action. This is once again disallowed by
Theorem 9.7.
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By Theorem 9.7(III), A0
ev does not have W2,2 as a quotient. Together with

the condition dimk HomGr/k(A0
ev,Ga(1)) = 1 this allows us to apply Lemma A.2,

concluding that A0
ev is isomorphic to a quotient of the group scheme Em,n. �

Now for the promised computation of cohomology of Witt elementary super-
group schemes.

Theorem 9.9. The cohomology of the group E−m,n (as defined in (8.5)) (m ≥
2, n ≥ 1) is given by

H∗,∗(E−m,n, k) = k[xm,1, . . . , xm,n, ζm]⊗ Λ(λm,1, . . . , λm,n)

with |xm,i| = (2, 0), |ζm| = (1, 1) and |λm,i| = (1, 0).
For m ≥ 3, the surjective map E−m,n → E−m−1,n induces an inflation map

H∗,∗(E−m−1,n, k)→ H∗,∗(E−m,n, k)

sending xm−1,i to xm,i (1 ≤ i ≤ n− 1), xm−1,n to zero, ζm−1 to ζm and λm−1,i to
λm,i (1 ≤ i ≤ n).

The surjective map E−2,n → E−1,n = Ga(n) × G−a induces an inflation map

sending xi to x2,i (1 ≤ i ≤ n− 1), xn to ζ2, ζ2 to ζ and λi to λ2,i. In particular,
the kernel of

H2,0(Ga(n) ×G−a , k)→ H2,0(E−2,n, k)

is one dimensional, spanned by ζ2 − xn.

Proof. Again, we use the fact that the cohomology only depends on the algebra
structure of the group algebra and not on the comultplication. The algebra struc-
ture is described in Definition 8.6, and is a tensor product kGa(n−1)⊗ kE−m,1. The
first factor gives the generators λm,1, . . . , λm,n−1, xm,1 . . . , xm,n−1, so we need to
compute H∗,∗(E−m,1, k). We do this using the spectral sequence

H∗,∗(G−a , H∗,∗(Wm,1, k))⇒ H∗,∗(E−m,1, k).

This has the same E2 page as the spectral sequence in the proof of Proposition 9.3,
but all the differentials are zero. This accounts for the generators xm,n, ζm and
λm,n. The inflation maps again follow from Theorem 9.2. �

Theorem 9.10. The cohomology of the group E−m,n,µ of (8.10) is given by

H∗,∗(E−m,n,µ, k) = k[xm,1,µ, . . . , xm,n,µ, ζm,µ]⊗ Λ(λm,1,µ, . . . , λm,n,µ)

with |xm,i,µ| = (2, 0), |ζm,µ| = (1, 1) and |λm,i,µ| = (1, 0).
The surjective map E−m+1,n+1 → E−m,n,µ induces an inflation map

H∗,∗(E−m,n,µ, k)→ H∗,∗(E−m,n, k)

sending each element to the corresponding element without the subscript µ, except
that it sends xm,n,µ to zero.

Proof. The proof is essentially the same as for Theorem 9.9. �
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Remark 9.11. The computation in Theorem 9.9 also appears in Proposition 3.2.1 (1)
and (3) and Lemma 3.2.4 of Drupieski and Kujawa [22]. Similarly, Theorem 9.10
should be compared with Proposition 3.2.1 (4) and (5) of [22] and Lemma 3.1.1 (3)
and Remark 2.2.3 (1) of [24].

Remark 9.12. We tabulate the action of the Steenrod operations on H∗,∗(E−m,n, k),

for use in the proof of Theorem 10.3. The table for H∗,∗(E−m,n,µ, k) looks exactly
the same after adding µ to all the indices; cf. Table 1.

degree P0 βP0 P
1
2 βP

1
2 P1 Pi βPi

(i ≥ 2) (i ≥ 1)
λm,i (1, 0) λm,i+1 −xm,i 0 0 0 1 ≤ i < n
λm,n (1, 0) 0 −ζ2m 0 0 0
ζm (1, 1) ζpm 0
xm,i (2, 0) xm,i+1 0 xpi 0 0 1 ≤ i < n
xm,n (2, 0) 0 0 0 0 0

10. Cohomological characterisation of elementary supergroups

The purpose of this section is to show that elementary supergroups as in-
troduced in Definition 1.1 can be characterised cohomologically. Recall that for
G = Ga(r) × G−a × (Z/p)×s, we employ the following notation for the standard
generators in cohomology, see Section 4:

H∗,∗(G, k) = k[x1, . . . , xr]⊗ Λ(λ1, . . . , λr)⊗ k[ζ]⊗ k[z1, . . . , zs]⊗ Λ(y1, . . . , ys)

Theorems 9.9 and 9.10 show that ifG is an elementary supergroup scheme equipped
with a surjection G→ G which induces an isomorphism on H1,∗, then either f is
an isomorphism or Ker f∗ falls under the case (ii) of Theorem 4.3. Theorem 10.3
proves a partial converse to this statement, and is the key step in the proof of
Theorem 1.2.

Lemma 10.1. Let 1→ Z
f−→ G

ψ−→ A→ 1 be a central extension of group schemes
with Z ∼= Ga(1) and A abelian. If the connecting homomorphism d2 : H1(Z, k) →
H2(A, k) is zero then G is abelian.

Proof. The five-term sequence of the central extension shows that there is an
element ũ ∈ H1(G, k) whose restriction is f∗(ũ) = u ∈ H1(Z, k). Applying
Lemma 3.1, we see that there is a homomorphism φ : G → Ga whose compos-
ite with Z → G is nonzero. Then (ψ, φ) : G→ A×Ga is an embedding, and G is
a subgroup scheme of an abelian group scheme, hence abelian. �

The following proposition, which is the key observation necessary for the
proof of Theorem 10.3, gives a cohomological criterion to establish that certain
extensions of abelian finite group schemes are abelian themselves.

Proposition 10.2. Let 1 → Z → G → A → 1 be a central extension of group
schemes with Z ∼= Ga(1) and A abelian. The following are equivalent:
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(i) G is abelian.
(ii) There exists an abelian finite group scheme A′ and a surjective map A′ →

A such that the composition H1(Z, k)
d2 // H2(A, k) // H2(A′, k) is

zero. The induced map in cohomology sends d2(λ) ∈ H2(A, k) to zero in
H2(A′, k) for all 0 6= λ ∈ H1(Z, k).

Proof. (i) ⇒ (ii): Take A′ = G and use the five-term sequence.
(ii) ⇒ (i): Let 1→ A′′ → A′ → A→ 1 be the short exact sequence given by

the surjection A′ → A. Form the pullback X of G→ A and A′ → A:

1

��

1

��

Z

��

Z

��

1 // A′′ // X //

��

G //

��

1

1 // A′′ // A′ //

��

A //

��

1

1 1

If d2(λ) goes to zero in H2(A′, k) then the sequence

1→ Z → X → A′ → 1

satisfies the conditions of Lemma 10.1, and so X is abelian. Since G is a quotient
of X, it follows that G is abelian. �

Theorem 10.3. Let G be a unipotent finite supergroup scheme, and f : G→ G =
Ga(r) ×G−a × (Z/p)×s a surjective map of supergroup schemes. Assume that

(1) f∗ : H1,∗(G, k)→ H1,∗(G, k) is an isomorphism;
(2) Ker(f∗)∩H2,0(G, k) is one dimensional, spanned by an element of the form

ζ2 + γxr with 0 6= γ ∈ k;
(3) Ker(f∗) ∩H2,1(G, k) = 0;
(4) There does not exist i ∈ Z≥0 and y ∈ H1((Z/p)×s,Fp) ⊂ H1,0(G, k) such

that ζ2p
i

βP0(y) or ζ2p
i+2 lie in Ker{f∗ : H∗,∗(G, k)→ H∗,∗(G, k)}.

Then G is isomorphic to E−m,r × (Z/p)×s or E−m,r+1,µ × (Z/p)×s for some m ≥ 1,
µ ∈ k.

Proof. The proof has three essential reduction steps:

Step (1) The first step is to show that Gev is normal in G, and G/Gev
∼= G−a .

Step (2) Let A = G/[Gev, Gev]. The second step is to show that A is isomorphic
to either E−m,r×(Z/p)×s or E−m,r+1,µ×(Z/p)×s for some m ≥ 1, µ ∈ k.
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Step (3) Finally, we show that G ∼= A.

Step (1):
By Lemma 9.6, π ∼= (Z/p)×s.
Let ψ : G → G−a be the projection map, and let H = Ker{ψ ◦ f : G → G →

G−a }. We now show that H = Gev, proving Step (1).
We have the five-term sequence associated with the extension 1→ H → G→

G−a → 1 of which we only need the odd internal degree part:

0 // H1,1(G−a , k)
∼

(ψ◦f)∗
// H1,1(G, k)

res

=0
// H1,1(H, k)G

−
a

d2

=0
// H2,1(G−a , k) �

�

f∗
// H2,1(G, k).

The first map is an isomorphism since f∗ is an isomorphism by assumption (1), and
ψ∗ is an isomorphism on H1,1 since we know cohomology of G and G−a explicitly.

Assumption (3) implies that the last map is an embedding. Hence, H1,1(H, k)G
−
a =

0 and, therefore, H1,1(H, k) = 0 since G−a is unipotent. We conclude that H is
even by Lemma 3.4. Since G/H ∼= G−a , H is the largest even subgroup scheme;
hence, H = Gev which proves the claim.

Assumption (1) implies that r is maximal such that there is a surjective π-
invariant map G0 → Ga(r) since any π-invariant surjection G0 → Ga(s) induces

an embedding in cohomology H1(Ga(s), k) ↪→ H1,0(G, k) by Lemma 3.1. We claim
that r is also maximal subject to the existence of a π-invariant surjective map
G0

ev → Ga(r). Suppose, to the contrary, that there is a π-invariant surjective map

G0
ev → Ga(r+1), and let N be the kernel. Since G0

ev = G0 ∩ Gev, we have that

G0/G0
ev
∼= G/Gev

∼= G−a . We have a commutative diagram of π-invariant homo-
morphisms:

N

��

N

��

1 // G0
ev

//

��

G0 //

��

G−a // 1

1 // Ga(r+1)
// G

0
= G0/N // G−a // 1

If the extension on the bottom row splits, then it π-splits by Lemma 8.9. Hence,
there is a π-invariant surjective map G0 → Ga(r+1) which contradicts the maxi-
mality of r. On the other hand, if the map does not split, then the inflation of ζ ∈
H1,1(G−a , k) to G

0
is a non trivial cohomology class in H1,1(G

0
, k) which squares to

zero in H2,0(G, k) by Proposition 9.4. Inflating ζ further to G0 via the projection

G0 → G
0
, we get a non trivial π-invariant cohomology class in H1,1(G0, k) which

squares to 0. Hence ζ2 is in the kernel of the map f∗ : H2,0(G, k) → H2,0(G, k)
which contradicts assumption (2). We therefore conclude that r is maximal such
that there is a surjective map G0

ev → Ga(r) as claimed.
40



Step (2):
SinceGevEG is a normal subgroup scheme, Lemma 2.18 implies that [Gev, Gev]E

G. Let A = G/[Gev, Gev], so that Aev is the abelianisation of Gev.

Claim 10.3.1. We have that A is isomorphic to E−m,r × (Z/p)×s or E−m,r+1,µ ×
(Z/p)×s for some m ≥ 1.

Proof of the Claim. Corollary 9.8 implies that A0
ev is isomorphic to a quotient of

Em,n for some m,n ≥ 1. By Theorem 8.13, this implies that A0
ev is isomorphic

either to Em,n or to Em,n,µ for some 0 6= µ ∈ k. We divide into two cases according
to these two possibilities. Looking at homomorphisms from these to Ga(r), we see
that in the first case n = r, while in the second case n = r + 1.

Case I: A0
ev
∼= Em,r. This case splits further into two subcases.

(1) r = 1. Since Em,1 = Wm,1, we have that A0 = A0
(1) fits in the extension

1→Wm,1 → A0 → G−a → 1,

and, hence, is described by Lemma 8.4. The cohomological restriction in
the assumption (2) implies that the only allowed possibility is A0 ∼= E−m,1
since in any other case A0, and, hence, G0, will have a quotient isomor-
phic to W2,1 or W−1,1 which are disallowed by Theorem 9.7.III(iii). Hence,

A ∼= E−m,1 × (Z/p)×s. In terms of the diagrams for the possibilities for A0

as in Lemma 8.4, the only way to attach the node σ to avoid quotients
isomorphic to W2,1 and W−1,1 is to the node marked with s[p].

(2) r > 1. In this case, kA0 is described by Lemma 8.11(1). The coefficient

α in the relation σ2 − s[p]
i − αs1 must be zero since G0, and, hence,

A0, has a quotient isomorphic to Ga(r). The parameter i must be 1 since
for i > 1 there will be a quotient isomorphic to W2,1. In terms of the
picture in Lemma 8.11, the node σ can be connected only to the node
s[p], for otherwise the top two nodes on the left arm will form a quotient
isomorphic W2,1. Hence, A0 ∼= E−m,r. Since Aev is abelian, the group of

connected components of A acts trivially on A0
ev. Since (Z/p)×s is a p-

group, it also acts trivially on the quotient A0/A0
ev
∼= G−a . Therefore,

A ∼= E−m,r × (Z/p)×s.
Case II: A0

ev
∼= Em,r+1,µ. This case is similar. The possibilities for kA0 are

given by Lemma 8.11(ii). All of them but one are disallowed by Theorem 9.7.III(iii).
We conclude that A0 ∼= E−m,r+1,µ, and, therefore, we can identify A with E−m,r+1,µ×
(Z/p)×s. �

Step (3):
Now that we have identified A = G/[Gev, Gev], it remains to show that

G = A, that is [Gev, Gev] = 1. We prove this by contradiction. Assume that
G 6= A.

Note that [Gev, Gev] ⊆ [G,G] ⊆ G0 since the group of connected compo-
nents of G is abelian. Hence, [Gev, Gev] is a connected unipotent finite group
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scheme. Therefore, there exists a maximal proper subgroup N of [Gev, Gev] such
that [Gev, Gev]/N ∼= Ga(1) giving rise to a central extension

(10.1) 1→ Ga(1) → G/N → A→ 1.

Let ψ : G→ A, φ : A→ G be the projection maps; we factor ψ as G
ψ2 // G/N

ψ1 // A.

The map f : G→ G then factors as follows:

f : G
ψ2 // G/N

ψ1 // A
φ
// G = Ga(r) ×G−a × (Z/p)×s

Since φ, ψ are surjective, the induced maps on H1 are injective. Since the compo-
sition

f : H1,∗(G, k) �
� φ∗

// H1,∗(A, k) �
� ψ∗

// H1,∗(G, k)

is an isomorphism, we conclude that

ψ∗ : H1,∗(A, k)
∼ // H1,∗(G, k)

is also an isomorphism.
We again consider two cases: A ∼= E−m,r × (Z/p)×s and A ∼= E−m,r+1,µ ×

(Z/p)×s.
Case I: A ∼= E−m,r × (Z/p)×s. Assume that m ≥ 2. By Theorem 9.9,

(1) H∗,∗(A, k) ∼= k[xm,1, . . . , xm,n, ζm] ⊗ Λ(λm,1, . . . , λm,n) ⊗ k[z1, . . . , zs] ⊗
Λ(y1, . . . , ys),

(2) φ∗ : H1,∗(G, k)→ H1,∗(A, k) is an isomorphism,
(3) Ker{φ∗ : H2,∗(G, k)→ H2,∗(A, k)} = k〈ζ2 + γxr〉.

In particular, φ∗ and f∗ have the same kernel on H2,∗(G, k). Therefore, the map
ψ∗1 : H2,∗(A, k)→ H2,∗(G/N, k) is one-to-one restricted to φ∗(H2,∗(G, k)).

Consider the five-term exact sequence induced by (10.1):

H1,∗(A, k) // H1,∗(G/N, k) // H1,∗(Ga(1), k)
d2 // H2,∗(A, k)

ψ∗1 // H2,∗(G/N, k)

Let λ ∈ H1,0(Ga(1), k) be any linear generator. SinceGev/N is non-abelian, d2(λ) ∈
H2,0(A, k) is a nonzero element in the kernel of ψ∗1 by Lemma 10.1, and, hence,
a nonzero element in the kernel of ψ∗. By Theorem 9.9, the only linear generator
of H2,0(A, k) which is not in the image of φ∗, is xm,r. Hence, replacing λ by a
nonzero multiple if necessary, we may assume that

d2(λ) = xm,r + u

where u ∈ φ∗(H2,∗(G, k)).

Claim 10.3.2. u = αζ2 for some α ∈ k.

Proof. We prove the claim by consecutive application of Steenrod operations, sim-
ilarly to Theorem 4.3. Since any element in Ker{ψ∗ : H2,∗(A, k) → H2,∗(G, k)}
must have the form axm,r + v with a 6= 0 and v ∈ φ∗(H2,0(G, k)), we have

dimk Ker{ψ∗ : H2,∗(A, k)→ H2,∗(G, k)} = 1.
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Let

u =αζ2m +
∑

1≤i<j≤r
ai,jλm,iλm,j +

∑
1≤j<r

bjxm,j+∑
1≤i≤r,
1≤j≤s

ci,jλm,iyj +
∑

1≤i<j≤s
di,jyiyj +

∑
1≤j≤s

ejzj

for some constants α, ai,j , bj , ci,j , di,j , ej ∈ k which are not all zero. Since Kerψ∗

is stable under the Steenrod operations and P0(xm,r) = 0, we conclude that
P0(u) = 0, which forces u to be of the form

(10.2) u = αζ2m + λm,r

( ∑
1≤i<r

aiλm,i

)
+ λm,r

( ∑
1≤j≤s

cjyj

)
.

Proposition 4.1 together with the Cartan formula imply (by induction) that

Pi(ζ2im) = ζ2pim

and all other Steenrod operations vanish on ζ2im .
Since βP0(λm,r) = ζ2m, applying βP0 to (10.2), we get

ζ2m

( ∑
1≤i<r

api λm,i+1

)
+ ζ2m

( ∑
1≤j≤s

cpjzj

)
.

Applying βP1, we get

(10.3) ζ2pm

( ∑
1≤i<r−1

ap
2

i λm,i+2

)
+ ζ2p+2

m + ζ2pm

( ∑
1≤j≤s

cp
2

j zj

)
.

If there is a nonzero coefficient cj , then applying Pp,Pp2 , . . . and then taking
invariants under the Frobenius map as in the proof of Theorem 4.3, we eventually
get that the kernel of the map ψ∗ : H2,∗(A, k) → H2,∗(G, k) contains an element

ζ2p
i

m βP0(y) with y ∈ H1((Z/p)×s,Fp) ⊂ H1,0(G, k) ∼= H1,0(A, k). This means

that f∗ vanishes on ζ2p
i

βP0(y), contradicting assumption (4). Hence, we can
assume that all coefficients cj are zero.

Suppose there is a coefficient ai 6= 0. Then (10.3) has the form

ζ2pm

( ∑
1≤i<r−1

ap
2

i λm,i+2

)
+ ζ2p+2

m .

Applying Pp,Pp2 , . . . and stopping right before everything annihilates, we con-

clude that ζ2p
i+2

m ∈ Kerψ∗, once again contradicting assumption (4).
Hence, all coefficients, except for possibly α, are zero. This proves the claim.

�
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Since G/Gev
∼= A/Aev

∼= G−a , the extension (10.1) restricts to an extension
on the even subgroup schemes.

(10.4) 1 // Ga(1) // Gev/N� _

��

// Aev� _

��

// 1

1 // Ga(1) // G/N // A // 1

This gives rise to a commutative diagram of the corresponding 5-term sequences:

H1,∗(A, k) //

��

H1,∗(G/N, k) //

��

H1,∗(Ga(1), k)
d2 // H2,∗(A, k)

res��

ψ∗1 // H2,∗(G/N, k)

��

H1,∗(Aev, k) // H1,∗(Gev/N, k) // H1,∗(Ga(1), k)
dev2 // H2,∗(Aev, k)

ψ∗1,ev
// H2,∗(Gev/N, k)

By Claim 10.3.2, d2(λ) = xm,r + αζ2. Since ζ goes to 0 under the restriction map
H∗,∗(A, k)→ H∗(Aev, k), we get that dev2 (λ) = xm,r ∈ H2(Aev, k) = H2(Em,r, k).

Consider the standard surjection map: Em+1,r× (Z/p)×s → Em,r× (Z/p)×s.
By Theorem 9.9, dev2 (λ) = xm,r vanishes when inflated to H2(Em+1,r, k). Propo-
sition 10.2 now implies that Gev/N is abelian. This contradicts the choice of N ,
and completes the proof that G = A in this case.

It remains to consider the case m = 1, that is, when A ∼= E−1,r×(Z/p)×s = G.

In this case d2(λ) = ζ2 +γxr, and, hence, dev2 (λ) = γxr. Considering the surjective
map E2,r × (Z/p)×s → Ga(r) × (Z/p)×s, we conclude by Proposition 10.2 that
Gev/N is abelian, getting a contradiction again. Hence, G = A in the case m = 1.

Case II: A ∼= E−m,r+1,µ × (Z/p)×s. The proof is very similar, replacing xm,r with
xm,r+1,µ from Theorem 9.10. The corresponding abelian cover which plays the role
of A′ in Proposition 10.2 in this case is the canonical map Em+1,r+2 → Em,r+1,µ,
see (8.2). �

11. The main detection theorem

The proof of the main detection Theorem 1.2 effectively splits into two parts.
The first part covers the case when G satisfies Hypothesis 7.1. The techniques
needed to deal with this case are mostly adaptations of what was done for finite
group schemes (without the grading) and are summarised in Part I of the paper.
The only, but significant, exception is Theorem 4.4 which requires extensive new
calculations for cohomology of supergroup schemes done in [13]. In the ungraded
case the only group schemes which fail Hypotheses 7.1 are the elementary ones,
that is, finite groups schemes isomorphic to Ga(r) × (Z/p)×s, which form the de-
tection family. Hence, the inductive detection Theorem 7.2 gives the full detection
theorem in the ungraded case.

In the super case however we have to deal with case (ii) of Theorem 4.3 when
the kernel of the map on cohomology induced by f : G→ G has an element of the
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form ζ2 + γxr. The new technology developed in Part II culminating in the coho-
mological characterisation of the elementary supergroup schemes in Theorem 10.3
is what we need to deal with this case.

Theorem 1.2 is an immediate consequence of the following theorem. We em-
ploy terminology of a detection family introduced in the beginning of Section 6.

Theorem 11.1. Suppose that G is a finite unipotent supergroup scheme which is
not isomorphic to a quotient of some E−m,n × (Z/p)×s. Then

(i) nilpotence of elements in cohomology of modules and
(ii) projectivity of kG-modules

are detected on proper sub-supergroup schemes after field extension.

Proof. Let G = G0oπ with G0 connected and π finite. Since G is unipotent, so is
G0, and π is a finite p-group. If π is not elementary abelian, then by Theorem 4.2,
G satisfies case (c) of Hypothesis 7.1, and we are done. So we now assume that
π = (Z/p)×s is elementary abelian. By Lemma 3.1,

H1,0(G, k) ∼= HomsGr/k(G0,Ga)π ×Hom(π,Ga)

H1,1(G, k) ∼= HomsGr/k(G0,G−a )π.

We examine the dimensions

δ = dimk HomsGr/k(G0,Ga(1))π

ε = dimk HomsGr/k(G0,G−a )π.

Since π is unipotent, if δ = 0 then we have HomsGr/k(G0,Ga(1)) = 0, and if ε = 0

then HomsGr/k(G0,G−a ) = 0. Thus, if δ = ε = 0, then G0 is trivial by Lemma 3.2,

hence G ∼= (Z/p)×s, and we are done. We may therefore assume that one of them
is nonzero. If either δ or ε is greater than one then we are in case (a) or (b) of
Hypothesis 7.1, and we are done by Theorem 7.2. So each is either zero or one,
and they are not both zero.

The action of the Frobenius map F : Ga → Ga induces a map

F : HomsGr/k(G0,Ga)→ HomsGr/k(G0,Ga)

which commutes with the action of π. A π-invariant map G0 → Ga lands in
Ga(1) ≤ Ga if and only if it is in the kernel of F . So there exists r ≥ 0 and a
surjective map

ξ ∈ HomsGr/k(G0,Ga(r))π

such that ξ, F (ξ), . . . , F r−1(ξ) is a k-basis for HomGr/k(G0,Ga)π. The map ξ ex-
tends to a surjective map

f : G→ G ∼= Ga(r) × (G−a )ε × (Z/p)×s

and f∗ : H1,∗(G, k) → H1,∗(G, k). This construction accounts both for the case
δ = 0 (with r = 0 so that G = G−a ×(Z/p)×s) and ε = 0 (with G = Ga(r)×(Z/p)×s,
r ≥ 1).
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If f is an isomorphism then G ∼= G is isomorphic to a quotient of E−1,r ×
(Z/p)×s contradicting the assumption of the theorem. Otherwise, by Lemma 3.5,

f∗ : H2,∗(G, k)→ H2,∗(G, k)

is not injective. If the kernel contains an element of degree (2, 1), then by The-
orem 4.4 we are in case (c) of Hypothesis 7.1, so we are done by Theorem 7.2.
Therefore, we may assume that the kernel contains an element of degree (2, 0)
and we have two cases according to Theorem 4.3. In the first case, it contains an
element of the form

xnr βP0(v1) . . . βP0(vm),

which again puts us in case (c) of Hypothesis 7.1, and we again apply Theorem 7.2.
In the second case, the kernel is generated by ζ2 +γxr. If γ = 0, then we can apply
Theorem 7.2 once again, since Hypothesis 7.1 is satisfied by the image of ζ2.

The upshot of this is that we may assume that we are in case (ii) of Theo-
rem 4.3 with γ 6= 0 and that f∗ induces an isomorphism on H2,1. Hence, G satisfies
the hypotheses (1), (2) and (3) of Theorem 10.3. If it fails hypothesis (4) of Theo-
rem 10.3, then we are in case (c) of Hypothesis 7.1 one last time. Otherwise, G is
isomorphic to a quotient of E−m,r × (Z/p)×s for some m ≥ 2 by Theorem 10.3. �

There is another notion of nilpotency for elements of H∗,∗(G,Λ) where Λ is
a unital G-algebra. Namely, ξ ∈ Hi,∗(G,Λ) is nilpotent if for some n > 0, the
image of ξ⊗n ∈ Hin,∗(G,Λ⊗n) in Hin,∗(G,Λ) is zero. The following analogue of
Theorem 11.1 for this notion of nilpotents has both a weaker hypothesis and a
weaker conclusion.

Theorem 11.2. Let G be a finite unipotent supergroup scheme over a field k,
and Λ be unital G-algebra. Then an element x ∈ Hi,∗(G,Λ) is nilpotent, that is
xn ∈ Hin,∗(G,Λ) is zero for some n > 0, if and only if for every extension field
K of k and every elementary sub-supergroup scheme E of GK , the restriction
of xK ∈ H∗,∗(GK ,ΛK) to H∗,∗(E,ΛK) is nilpotent, that is some power of xK
vanishes in H∗,∗(E,ΛK).

Proof. First, we claim that the analogue of Theorem 7.2 holds for H∗,∗(G,Λ) with
this notion of nilpotency. Indeed, If we take M = Λ in Proposition 5.3 then the
conclusion clearly holds for ξ2 ∈ H∗,∗(G,Λ). Hence, if G satisfies Hypothesis 7.1(c),
the proof of Theorem 7.2 carries over to this case.

If we assume that Hypotheses 7.1 (a) or (b) hold, then the proof is identical
to that of Case II(b) in [3, Theorem 6.1] (see also [44, Theorem 2.5]) so we will
not reproduce it here.

With these observations, the proof of the analogue of Theorem 11.1 is again
identical to the one we give above. �

In [8], we show that projectivity for modules of finite group schemes is de-
tected on the family of elementary subgroup schemes after coextension of scalars. In
the following theorem we state that this also holds for finite unipotent supergroup
schemes.
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Theorem 11.3. Let G be a finite unipotent supergroup scheme over a field k of
positive characteristic p > 2, and M be a kG-module. Then the following hold.

(i) An element x ∈ H∗,∗(G,M) is nilpotent if and only if for every extension
field K of k and every elementary sub-supergroup scheme E of GK , the
restriction of xK ∈ H∗,∗(GK ,MK) to H∗,∗(E,MK) is nilpotent.

(ii) A kG-module M is projective if and only if for every extension field K of
k and every elementary sub-supergroup scheme E of GK , the restriction
of MK to E is projective.

Proof. The proof of Theorem 11.1 carries over to this case almost without change.
The only difference occurs when G satisfies (a) or (b) of Hypothesis 7.1. Then we
still proceed exactly as in [3, Theorem 8.1] but appeal to [8, Lemma 4.1] for the
main ingredient which is the appropriate version of the Kronecker quiver lemma
for MK . �

12. The Steenrod algebra

An affine Z-graded group scheme over k is a covariant functor from Z-
graded commutative k-algebras (again, the convention is that yx = (−1)|x||y|xy) to
groups, whose underlying functor to sets is representable. If G is an affine Z-graded
group scheme over k then its coordinate ring k[G] is the representing object. It
is a Z-graded commutative Hopf algebra. This gives a contravariant equivalence
of categories between affine Z-graded group schemes and Z-graded commutative
Hopf algebras.

An affine Z-graded group scheme G has finite type if each graded piece of
k[G] is finite dimensional. In this case, the graded dual kGi = Homk(k[G]−i, k)
is a Z-graded cocommutative Hopf algebra of finite type. This gives a covariant
equivalence of categories between Z-graded group schemes of finite type and Z-
graded cocommutative Hopf algebras of finite type.

We are interested in particular in the finite Z-graded group schemes; these
are the ones for which not only is each graded piece finite dimensional, but the
total rank as a k-vector space is finite.

Finite Z-graded group schemes satisfy a detection theorem similar to Theo-
rem 11.1. In order to formulate it we start by observing that elementary supergroup
schemes have natural Z-grading.

Recall that the group algebra of a E−m,n has the following form:

kE−m,n = k[s1, . . . , sn−1, sn, σ]/(sp1, . . . , s
p
n−1, s

pm

n , σ2 − spn).

We give it a Z-grading by assigning degrees to the generators as follows:

(12.1) |σ| = apn, |si| = 2api−1

where a is an odd integer. The Hopf algebra structure is compatible with this
grading and, hence, E−m,n becomes a Z-graded group scheme. We call such a group

scheme a Z-lifting of E−m,n. We write Ẽ−m,n for such a Z-lifting without specifying
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the parameter a. For a finite group π we give its group algebra kπ a Z-grading by
putting it in degree 0.

Definition 12.1. A finite Z-graded group scheme is called elementary if it is a

quotient of Ẽ−m,n × (Z/p)×s where Ẽ−m,n as a Z-lifting of E−m,n.

Remark 12.2. Special cases include Z-liftings of G−a and Ga(r). Even though these
liftings a priori depend on the choice of the degree in which we put the generator
of the coordinate algebra k[G−a ] ∼= k[t]/t2 or k[Ga(r)] ∼= k[T ]/T p

r

, we use the same

notation for the Z-graded version of G−a and Ga(1) suppressing this degree.

We define a folding functor

(12.2) Fold: Z-graded algebras→ Z/2-graded algebras

by sending A =
⊕
i∈Z

Ai to Fold(A) = Ā with Āodd =
⊕
i∈Z

A2i and Āev =
⊕
i∈Z

A2i+1.

For any Z–graded algebra A there is an induced functor

(12.3) Fold: A-mod→ Ā-mod

sending a Z-graded A-module M to a Z/2-graded Ā-module M̄ :

M̄ = M̄ev ⊕ M̄odd, M̄ev =
⊕
i∈Z

M2i, M̄odd =
⊕
i∈Z

M2i+1.

Finally, if A is a Z-graded cocommutative Hopf algebra corresponding to a
group scheme G, we denote by Ḡ the supergroup scheme with the group algebra
Ā.

Example 12.3. Let Ẽ−m,n be a Z-lifting of E−m,n. Then Fold(kẼ−m,n) = kE−m,n
for any Z-lifting Ẽ−m,n of E−m,n as in (12.1). More generally, “folding” a Z-graded
elementary group scheme results in an elementary supergroup scheme.

A commutative Z-graded k-algebra is a Z-graded field if every homogeneous
element is invertible. These are field extensions K of k in degree zero, and rings of
Laurent polynomials of the form K[u, u−1] where u has non-zero even degree. Let
k[u±] be the Z-graded field k[u, u−1], where u has degree 2. Over a Z-graded field,
every graded module is free. This means that it is isomorphic to a direct sum of
shifts of k[u±]. For a Z-graded algebra A, let A[u±] = A⊗ k[u±]. If N is a module
over Ā = Fold(A), we define the structure of A[u±]-module on N [u±] = N ⊗k[u±]
as follows. For ai ∈ Ai, and nε ∈ N homogeneous elements with i ∈ Z, ε = 0, 1 let

ai ◦ nε = āinε ⊗ u[ i+ε2 ],

where āi ∈ Ā is the element corresponding to ai ∈ Ai. Extending k[u±]-linearly,
we get the desired action

(A⊗ k[u±])× (N ⊗ k[u±])→ N ⊗ k[u±].
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This defines an unfolding functor:

G : Ā-mod −→ A[u±]-mod(12.4)

N −→ N [u±].

Proposition 12.4. Let A be a finitely generated Z-graded algebra. The functor
G : Ā-mod→ A[u±]-mod of (12.4) is an equivalence of categories. Moreover, it fits
into a commutative diagram:

A-mod

−⊗k[u±]
��

Fold // Ā-mod
G

xx

A[u±]-mod

and takes projective modules to projective modules.

Proof. Commutativity of the diagram amounts to checking that folding and then
unfolding via the functor G is simply extending scalars by the graded field k[u±].
This is a direct calculation. The claim about projective modules follows from the
fact that G is additive and G(Ā) = A[u±].

To show that G is an equivalence, we note that multiplication by the invertible
element u : Mi → Mi+2 is an isomorphism, and, hence, identifies all odd (and,
respectively, all even) homogeneous components of an A[u±]-module M . Hence,
sending M to M0 ⊕M1 gives a functor inverse to G. �

Corollary 12.5. Let A be a finitely generated Z-graded algebra. Then a graded
A-module M is projective if and only if the graded Ā-module M̄ is projective.

Proof. This follows from Proposition 12.4 and the fact that extending scalars to a
graded field does not affect projectivity. �

Theorem 12.6. Let G be a finite Z-graded unipotent group scheme, and M be a
kG-module. Then the following hold.

(i) An element ξ of H∗,∗(G,M) is nilpotent if and only if for every Z-graded
field extension K of k, and every elementary subgroup scheme E of GK ,
the restriction of ξK ∈ H∗,∗(GK ,MK) to H∗,∗(E,MK) is nilpotent.

(ii) A kG-module M is projective if and only if for every Z-graded field ex-
tension K of k, and every elementary subgroup scheme E of GK , the
restriction of MK to E is projective.

Proof. We prove statement (ii). The argument for (i) is similar. Let M be a kG-
module satisfying the condition in (ii). By Corollary 12.5 it suffices to show that
M̄ is a projective kḠ-module.

Let K/k be a (non-graded) field extension and GK be the finite supergroup
scheme with the group algebra KḠ. Let Ē ⊂ ḠK be an elementary sub super-
group scheme. Let E be a Z-graded lifting of Ē. The inclusion Ē ⊂ Ḡ lifts to an
embedding KE[u±] ⊂ KG[u±]. Indeed, to construct such a lifting we first place
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the generator sn of KE into appropriate degree in KG[u±] using the parameter
u and then work along the relations to place σ and sn−1, . . . , s1. By assumption,
the restriction of MK [u±] to KE[u±] is projective. Proposition 12.4 implies that
the restriction of MK to KĒ is projective. Since this holds for any elementary sub
supergroup scheme Ē, Theorem 11.1 implies that M̄ is projective as kḠ-module.
Hence, M is projective. �

Let A denote the Steenrod algebra over Fp. Recall from Milnor [36], Steenrod
and Epstein [41] that for p odd, the graded dual A∗ of A is a tensor product

k[ξ1, ξ2, . . . ]⊗ Λ(τ0, τ1, . . . )

of a polynomial ring in generators ξn of degree 2pn − 2 and an exterior algebra
in generators τn of degree 2pn − 1. We also set ξ0 = 1. With this notation, the
comultiplication is given by

∆(ξn) =
n∑
i=0

ξp
i

n−i ⊗ ξi, ∆(τn) = τn ⊗ 1 +
n∑
i=0

ξp
i

n−i ⊗ τi.

If A is a finite dimensional Hopf subalgebra of A then the graded dual A∗

is a finite dimensional quotient of A∗. Let Ḡ be the finite supergroup scheme
corresponding to the folding of A, so that FpḠ ∼= Ā and Fp[Ḡ] ∼= Ā∗. We use the
same letters ξ, τ to denote the generators in the folded Z/2- graded algebra Ā.
Then Fp[Ḡ(1)] is a quotient of A∗ by a Hopf ideal containing ξp1 , ξ

p
2 , . . . . Letting ξ̄n

and τ̄n be the images of ξn and τn in this quotient, for n ≥ 1 we have

∆(ξ̄n) = ξ̄n ⊗ 1 + 1⊗ ξ̄n, ∆(τ̄n) = τ̄n ⊗ 1 + 1⊗ τ̄n + ξ̄n ⊗ τ̄0
while ∆(τ̄0) = τ̄0 ⊗ 1 + 1 ⊗ τ̄0. In other words, ξ̄n (n ≥ 1) and τ̄0 are primitive,
and τ̄n (n ≥ 1) are primitive modulo τ̄0. Furthermore, ξn is even whereas τ0, τn
are odd.

If we isolate a single n, and dualise these relations for ξ̄n, τ̄n and τ̄0 we get
the restricted universal enveloping algebra of a three dimensional restricted Lie
superalgebra consisting of the matrices 0 ∗ ∗

0 0 ∗
0 0 0


in GL(2|1). The dual elements ξ̄∗n and τ̄∗n to ξ̄n and τ̄n are in the top row, and
the dual element τ̄∗0 to τ̄0 is in the second row. The only non-trivial commutator
relation is [ξ̄∗n, τ̄

∗
0 ] = τ̄∗n.

Dualising, we get a homomorphism Ḡ(1) → G−a , and the kernel is isomorphic

to a subgroup scheme of (Ga(1))×s× (G−a )r. Every subgroup scheme again has this
form, so we have proved the following lemma.

Lemma 12.7. Let A be a finite dimensional Hopf subalgebra of the Steenrod al-
gebra, and let Ḡ be the supergroup scheme corresponding to the Z/2-graded folding
Ā. Then there is a (possibly trivial) homomorphism Ḡ(1) → G−a whose kernel is
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isomorphic to (Ga(1))×s×(G−a )r for some r, s ≥ 0. The subgroup (G−a )r is normal,
and the quotient is commutative. In particular, there is no sub supergroup scheme
isomorphic to W−m,1 for m ≥ 1. �

Conceptually, what we have done amounts to showing that the first Frobenius
kernel of the Steenrod algebra is an extension of G−a by an infinite product of copies
of Ga(1)×G−a , with gradings tending to infinity, in such a way that over each factor
the extension is the one described by a Z-lifting of the above subgroup of GL(2|1).

Proposition 12.8. Let A be a finite dimensional sub Hopf algebra of the Steenrod
algebra A over Fp, and let G be the corresponding finite unipotent connected Z-
graded group scheme. If E is an elementary Z-graded subgroup scheme of G then
E ∼= Ga(n) ×G−a .

Proof. By Theorem 8.13, we have that Ē ∼= E−m,n or Ē ∼= E−m,n,µ. We need to
show that m = 1. But if m ≥ 2, the statement follows from the observation
that (E−m,n)(1) and (E−m,n,µ)(1) both contain W−m−1,1 as a subgroup scheme. But

(Ga(1))×s× (G−a )×r does not, and therefore by Lemma 12.7 neither does Ḡ(1). �

The detection theorem for the finite dimensional subalgebras of the Steenrod
algebra now follows from Theorem 12.6 and Proposition 12.8. Recall from Re-
mark 12.2 that we use the notation Ga(r), G−a for Z-liftings of the corresponding
supergroup schemes.

Theorem 12.9. Let A be a finite dimensional sub Hopf algebra of the Steenrod
algebra A over Fp. Then A is the group algebra of a Z-graded finite group scheme.
The following hold:

(1) For an A-module M , an element ξ in H∗,∗(A,M) is nilpotent if and only if
for every Z-graded field extension K of k, the restriction of ξK ∈ H∗,∗(AK ,MK)
to every subgroup scheme of AK isomorphic to Ga(r), G−a , or Ga(r)×G−a is
nilpotent.

(2) An A-module M is projective if and only if for every Z-graded field extension
K of k, the restriction of MK to every subgroup scheme of AK isomorphic
to Ga(r), G−a , or Ga(r) ×G−a is projective. �

Nakano and Palmieri [37] also considered the problem of finding a detecting
family for the mod p Steenrod algebra. They do not consider field extensions,
and arrive at a larger family of detecting subalgebras, which they call “quasi-
elementary”.

Appendix A. Witt vectors and Dieudonné modules

Recall that finite commutative connected unipotent group schemes form an
abelian category A which is equivalent to an appropriate category of Dieudonné
modules. This is described for example in Fontaine [25], but we give an outline
here. What will interest us is the Dieudonné modules killed by p, which were
classified by Koch [31].
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We begin with a brief recollection concerning the Witt vectors. Define a
polynomial wn in variables Z0, . . . , Zn with integer coefficients by

wn(Z0, . . . , Zn) = pnZn + pn−1Zpn−1 + · · ·+ Zp
n

0 .

Then the polynomials Si and Pi in variables X0, . . . , Xn, Y0, . . . , Yn, again with
integer coefficients, are defined by

wn(S0, . . . , Sn) = wn(X0, . . . , Xn) + wn(Y0, . . . , Yn),

wn(P0, . . . , Pn) = wn(X0, . . . , Xn)wn(Y0, . . . , Yn).

So for example S0 = X0 + Y0, P0 = X0Y0,

S1 = X1 + Y1 +
(X0 + Y0)p −Xp

0 − Y p0
p

, P1 = pX1Y1 +Xp
0Y1 +X1Y

p
0 ,

and so on.
Witt vectors W (k) over k are vectors (a0, a1, . . . ) with ai ∈ k, where Si and

Pi give the coordinates of the sum and product:

(a0, a1, . . . ) + (b0, b1, . . . ) = (S0(a0, b0), S1(a0, a1, b0, b1), . . . )

(a0, a1, . . . )(b0, b1, . . . ) = (P0(a0, b0), P1(a0, a1, b0, b1), . . . ).

Thus for example if k = Fp then W (k) is the ring of p-adic integers Zp. More
generally, W (k) is a local ring of mixed characteristic p. The Frobenius endo-
morphism of k lifts to a ring endomorphism of W (k) denoted σ. It is defined by
(a0, a1 . . . )

σ = (ap0, a
p
1, . . . ).

More generally, if A is a commutative k-algebra then W (A) is the ring of
Witt vectors over A, defined using the same formulae. This defines a functor from
commutative k-algebras to rings. The additive part of this functor defines an affine
group scheme over k denoted W , the additive Witt vectors. If we stop at length m
vectors, we obtain Wm, and we write Wm,n for the nth Frobenius kernel of Wm.

There are two endomorphisms V and F of W of interest to us. These are the
Verschiebung V defined by

V (a0, a1, . . . ) = (0, a0, a1, . . . ),

and the Frobenius F given by

F (a0, a1, . . . ) = (ap0, a
p
1, . . . ).

These commute, and their product corresponds to multiplication by p on Witt
vectors. Multiplication by a Witt vector x ∈W (k) also gives an endomorphism of
W which we shall denote x by abuse of notation. These are related to V and F
by the relations V xσ = xV and Fx = xσF .

We write Wm for the group scheme of Witt vectors of length m, corresponding
to the quotient W (k)/(pm) of W (k). This is a group scheme with a filtration
whose quotients are m copies of the additive group Ga. We write Wm,n for the nth
Frobenius kernel of Wm. This is a finite group scheme with a filtration of length
mn whose quotients are copies of Ga(1).
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The Dieudonné ring Dk is generated over W (k) by two commuting variables
V and F satisfying the following relations:

FV = V F = p, V xσ = xV, Fx = xσF

for x ∈ W (k). Then W is a module over Dk, as are its quotients Wm and their
finite subgroup schemes Wm,n.

Recall that there is a duality on A called Cartier duality, which corresponds
to taking the k-linear dual of the corresponding Hopf algebras. We denote the
Cartier dual of G by G].

Now consider the subcategory Am,n of A consisting of the those group schemes
G in A such that G has height at most n and the Cartier dual G] has height at
most m. Then there is a covariant equivalence of categories between Am,n and
the category mod(Dk/(V

m, Fn)) of finite length modules over the quotient ring
Dk/(V

m, Fn). This equivalence is given by the functor

HomA(Wm,n,−) : Am,n → mod(Dk/(V
m, Fn)).

Write D̂k for the corresponding completion lim
←
Dk/(V

m, Fn) Then every D̂k-

module of finite length is a module for some quotient of the form Dk/(V
m, Fn),

and these equivalences combine to give an equivalence between A and the category
fl(D̂k) of D̂k-modules of finite length. Let us write

ψ : fl(D̂k)→ A

for this equivalence. Thus for example

ψ(Dk/(V
m, Fn)) ∼= Wm,n,

ψ(Dk/(V
m, Fn, p)) ∼= Wm,n/Wm−1,n−1 ∼= Em,n

where the last notation is introduced in Definition 8.6.
Let G = ψ(M) be a finite unipotent abelian group scheme, so that M is a

finite length Dk/(V
m, Fn)-module for some m,n ≥ 1. If we are only interested in

the algebras structure of G, this means that we can ignore the action of F on M
and just look at finite length modules for Dk/(V

m, F ) = W (k)[V ] with xV = V xσ

(x ∈ W (k)). Such modules are always direct sums of cyclic submodules, and the
cyclic modules are just truncations at smaller powers of V . Translating through
the equivalence ψ, we have the following.

Lemma A.1. Let G be a finite unipotent abelian group scheme. Then kG is a
isomorphic to a tensor product of algebras of the form kWm,1 ' k[s]/sp

m

.

Lemma A.2. Let G be a finite unipotent abelian group scheme. Assume that
dimk HomGr/k(G,Ga(1)) = 1. If G does not have W2,2 as a quotient, then G is
isomorphic to a quotient of the group scheme Em,n.

Proof. The condition dimk HomGr/k(G,Ga(1)) = 1 implies that the corresponding
Dieudonné module is cyclic, Gev

∼= ψ(Dk/I) for some ideal I containing V m and
Fn for some m, n. Not having W2,2 as a quotient implies that p = FV kills
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Dk/I, and, hence, G is isomorphic to a quotient Dk/(V
m, Fn, p). But the latter

is precisely Em,n. �

The last thing we need is the classification of the quotients of the group
scheme Em,n. In terms of Dieudonné modules, we have

Em,n = ψ(Dk/(V
m, Fn, p)).

The isomorphism classes of quotients of Dk/(V
m, Fn, p) were classified by Koch

[31]. The main results of that paper may be stated as follows.

Theorem A.3. Every nonzero finite quotient of D̂k/(p) as a left D̂k-module is
isomorphic to either Mm,n = Dk/(V

m, Fn, p) (of length m+ n− 1) or Mm,n,µ =
Dk/(F

n − µV m, p) (of length m+ n) for some m,n ≥ 1 and 0 6= µ ∈ k. The only
isomorphisms among these modules are given by Mm,n,µ

∼= Mm,n,µ′ if and only if

µ/µ′ = ap
m+n−1 for some a ∈ k.

Outline of proof. Let M be a nonzero finite quotient of D̂k/(p), let m be the height
of M ] and n be the height of M . Then M is a finite quotient of Dk/(V

m, Fn, p). So
either M is isomorphic to Dk/(V

m, Fn, p) or the kernel is at least one dimensional.
If the kernel has length one, then it is in the socle, which has length two, and is
the image of V m−1 and Fn−1. By minimality of m and n, the kernel is then
(Fn−1 − µV m−1) for some 0 6= µ ∈ k. If M is equal to this, we have M ∼=
Mm−1,n−1,µ. Otherwise M is a proper quotient of Mm−1,n−1,µ. But the socle of
Mm−1,n−1,µ is one dimensional, spanned by the image of V m−1, so in this case
M is a quotient of Mm−1,n−1, which implies that m and n are not minimal. This
contradiction proves that these are the only isomorphism types.

The dimensions of M/F iM and M/V iM distinguish all isomorphism classes,
with the possible exception of isomorphisms between Mm,n,µ and Mm,n,µ′ . Such an
isomorphism is determined modulo radical endomorphisms by a scalar a ∈ k× ⊆
W (k)×. The equation (Fn − µV m)a = b(Fn − µ′V m) implies that b = aσ

n

and
µa = bσ

m

µ′. Thus

µ/µ′ = aσ
m+n

a−1 = ap
m+n−1. �

Remark A.4. Note that if k = Fp then this condition on µ and µ′ is only satisfied
if µ = µ′, so there are p−1 isomorphism classes of Mm,n,µ. But if k is algebraically
closed then the isomorphism type of Mm,n,µ is independent of µ.
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