
What to Expect from Code Review Bots on GitHub? A Survey
with OSS Maintainers

Mairieli Wessel
mairieli@ime.usp.br

University of São Paulo

Alexander Serebrenik
a.serebrenik@tue.nl

Eindhoven University of Technology

Igor Wiese
igor@utfpr.edu.br

Universidade Tecnológica Federal do
Paraná

Igor Steinmacher
igor.steinmacher@nau.edu
Northern Arizona University

Marco A. Gerosa
marco.gerosa@nau.edu

Northern Arizona University

ABSTRACT
Software bots are used by Open Source Software (OSS) projects to
streamline the code review process. Interfacing between developers
and automated services, code review bots report continuous inte-
gration failures, code quality checks, and code coverage. However,
the impact of such bots on maintenance tasks is still neglected.
In this paper, we study how project maintainers experience code
review bots. We surveyed 127 maintainers and asked about their ex-
pectations and perception of changes incurred by code review bots.
Our findings reveal that the most frequent expectations include
enhancing the feedback bots provide to developers, reducing the
maintenance burden for developers, and enforcing code coverage.
While maintainers report that bots satisfied their expectations, they
also perceived unexpected effects, such as communication noise
and newcomers’ dropout. Based on these results, we provide a se-
ries of implications for bot developers, as well as insights for future
research.

CCS CONCEPTS
•Human-centered computing→Open source software; • Soft-
ware and its engineering→ Software creation and management.

KEYWORDS
software bots, pull-based model, open source software, code review
ACM Reference Format:
MairieliWessel, Alexander Serebrenik, IgorWiese, Igor Steinmacher, andMarco
A. Gerosa. 2020. What to Expect from Code Review Bots on GitHub? A
Survey with OSS Maintainers. In 34th Brazilian Symposium on Software
Engineering (SBES ’20), October 21–23, 2020, Natal, Brazil. ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3422392.3422459

1 INTRODUCTION
Code review is a software quality assurance practice [8] common
in Open Source Software (OSS) projects [3]. Since open source

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SBES ’20, October 21–23, 2020, Natal, Brazil
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8753-8/20/09. . . $15.00
https://doi.org/10.1145/3422392.3422459

development involves a community of geographically dispersed
developers [23], projects are often hosted on social coding platforms,
such as GitHub [7]. To receive external contributions, repositories
are shared by fork, and modified by pull requests. In the pull-based
development model, project maintainers spend a non-negligible
time inspecting code changes and engaging in discussion with
contributors to understand and improve the modifications before
integrating them into the codebase [15, 33]

Open source software communities use software bots to assist
and streamline the code review process [9, 29]. In short, bots are
software applications that integrate with human tasks, serving
as interfaces that connect developers and other tools [26], and
providing additional value to human users [12]. Accomplishing
tasks that were previously performed solely by human developers,
and interacting in the same communication channels as their human
counterparts, bots have become new voices in the code review
conversation [17]. According to Wessel et al. [29], code review bots
differ from other bots by guiding contributors to provide necessary
information beforemaintainers review the pull requests. OnGitHub,
these bots are responsible for leaving comments on pull requests,
reporting continuous integration failures, code quality checks, and
code coverage.

In theory, the automation provided by these bots should save
maintainers effort and time [25], and lead them to focus on higher
priority aspects of code review [2]. Nevertheless, the adoption of a
code review bot, similar to any technological adoption, can bring
unexpected consequences. Since, according to Mulder et al. [18],
many effects are not directly caused by the new technology itself,
but by the changes in human behavior that it provokes, it is impor-
tant to assess and discuss the effects of new technology. In the case
of the effect of software bots on project maintainers, this is often
neglected.

In this paper, we aim to understand why open source maintainers
integrate code review bots into the pull request workflow and how
they perceive the changes these bots induce. In short, we answer
the following research questions:

RQ1. What motivates maintainers to adopt code review bots?
RQ2. How do maintainers perceive the changes code review bots

introduce to the software process?

To achieve our goal, we conducted a survey with 127 maintainers
of OSS projects hosted on GitHub that adopted code review bots.We
investigate the maintainers’ perceptions on whether project activity
indicators change after bot adoption, such as the number of pull

457

https://doi.org/10.1145/3422392.3422459
https://doi.org/10.1145/3422392.3422459

SBES ’20, October 21–23, 2020, Natal, Brazil Wessel et al.

requests received, merged, and non-merged, number of comments,
and the time to close pull requests.

Analyzing the survey results, we found that maintainers were
predominantly motivated by reducing their effort on tedious tasks
to allow them to focus on more interesting ones, and enhancing
the feedback communicated to developers. Regarding the changes
introduced by the bot, we noted that less manual effort was required
after adoption, a high-quality code was enforced, and pull request
review sped up. However, four maintainers also reported unex-
pected aspects of bot adoption, including communication noise,
more time spent on tests, newcomers’ dropout, and bots imperson-
ating maintainers, which stressed out contributors.

Our contributions are twofold: (i) a set of maintainers’ motiva-
tions for using a bot to assist the code review process; and (ii) a
discussion of how maintainers see the impact of bot introduction
and support. These contributions may help maintainers anticipate
bots’ effects on a project, and guide bot developers to consider the
implications of new bots as they design them. Our findings, while
preliminary, can suggest research hypotheses on the impact of code
review bots on the code review process in open source projects,
which follow-up studies can support or refute.

2 BACKGROUND AND RELATEDWORK
Software bots have been designed to assist with the technical and
social aspects of software development activities [13], including
communication and decision-making [25]. Basically, these bots act
as a conduit between software developers and other tools [25]. Wes-
sel et al. have shown that bot adoption is indeed widespread in
OSS projects hosted on GitHub [29]. GitHub bots have been devel-
oped to be integrated into the pull request workflow to perform
a variety of tasks beyond code review support [31]. These tasks
include repairing bugs [17, 27, 28], refactoring the code [32], recom-
mending tools [4], detecting duplicated development [20], updating
dependencies [16], and fixing static analysis violations [5].

Despite their increasing popularity, understanding the effects of
bots is a major challenge. Storey and Zagalsky [25] and Paikari and
van der Hoek [19] highlight that the potential negative impact of
task automation through bot technology is still neglected. While
bots are often used to avoid interruptions to developers’ work,
they may lead to other, less obvious distractions [25]. Additionally,
Liu et al. [14] claim that bots may have negative impacts on the
user experience of open source contributors, since the needs and
preferences of maintainers and contributors are not the same.While
previous studies provide recommendations on how to evaluate bots’
capabilities and performance [1, 4], they do not draw attention to
the impact of bot adoption on software development or on how
software engineers perceive the bots’ effects.

Wessel et al. [29] investigated the usage and impact of software
bots to support contributors and maintainers with pull requests.
After identifying bots on popular GitHub repositories, the authors
classified these bots into 13 categories according to the tasks they
perform. The third most frequently used bots are code review bots.
Wessel et al. [30] also employed a regression discontinuity design on
OSS projects, revealing that the bot adoption increases the number
of monthly merged pull requests, decreases monthly non-merged
pull requests, and decreases communication among developers.

Prior work has also investigated the impact of continuous inte-
gration (CI) and code review tools on GitHub projects [6, 11, 34].
While Zhao et al. [34] and Cassee et al. [6] investigated the impact of
the Travis CI tool’s introduction on development practices, Kavaler
et al. [11] turned to the impact of linters, dependency managers,
and coverage reporter tools. Our work extends the literature by pro-
viding an understanding of why code review bots are being adopted
and the effects of such adoption, focusing on the perceptions of
open source maintainers

3 STUDY METHODOLOGY
We conducted a survey to obtain insights on how open source
maintainers perceive the impact of using code review bots on pull
requests and the effects of these bots on the project activities.

3.1 Survey Design
We first identified OSS projects hosted on GitHub that at some
point had adopted at least one code review bot [29]. To find these
projects, we queried the GHTorrent dataset [10], searching for
projects that had received comments on pull requests from any
of the code review bots identified by Wessel et al. [29]. For each
project, we determinedwhen a bot was introduced based on the date
of the bot’s first comment. Afterwards, we contacted maintainers
who merged more than one pull request before and after the bot
adoption. To avoid duplicate invitations, we kept only the first
record of maintainers who appeared in more than one project. Our
initial target population comprised 1, 960 maintainers of projects
that adopted code review bots and made their e-mail addresses
publicly available via the GitHub API.

To increase survey participation, we followed the best practices
described by Smith et al. [21], such as sending personalized invita-
tions and allowing participants to remain anonymous. The survey
was set up as an online questionnaire, and it was sent on September
18, 2019. We received answers for 3 months and sent a reminder
on October 2019. Participation was voluntary, and the estimated
time to complete the survey was 10 minutes. We received answers
from 127 maintainers, while the delivery of 26 messages failed. For
this survey, we had a response rate of ≃ 6.55%, which is consistent
with other studies in software engineering [22].

Our maintainers’ survey had three main questions, which we
made publicly available.1 In summary, we asked maintainers about
their expectations and perception of changes caused by the adop-
tion of a code review bot. Regarding the changes in the software
process level, we asked maintainers about the same activity indica-
tors studied by Wessel et al. [29]: the number of opened, merged,
and non-merged pull requests, number of comments, and the time
to close pull requests.

3.2 Data analysis
We used a card sorting approach [35] to qualitatively analyze the
answers to the open-ended questions Q1 and Q3. Two researchers
conducted card sorting in two steps. In the first step, each researcher
analyzed the answers (cards) independently and applied codes to
each answer, sorting them into meaningful groups. This step was
followed by a discussion meeting until reaching a consensus on the
1https://zenodo.org/record/3992379#.Xz1_iSlKg3E

458

https://zenodo.org/record/3992379#.Xz1_iSlKg3E

What to Expect from Code Review Bots on GitHub? A Survey with OSS Maintainers SBES ’20, October 21–23, 2020, Natal, Brazil

Table 1: Reasons for adoption of code review bots

Reasons # of answers (%)
Enhance feedback to developers 31 (24.4%)
Reduce maintainers effort 30 (23.6%)
Enforce high code coverage 22 (17.3%)
Automate routine tasks 20 (15.7%)
Ensure high-quality standards 20 (15.7%)
Detect change effects 7 (5.5%)
Curiosity 5 (3.9%)
Improve interpersonal communication 5 (3.9%)
Lack of available tools 5 (3.9%)
Outside contributor’s suggestion 2 (1.6%)

code names and categorization of each item. At the end of this pro-
cess, the answers were sorted into high-level groups. In the second
step, the researchers analyzed the categories, aiming to refine the
classification and group-related codes into more significant, higher-
level categories and themes. We used open card sorting, meaning we
had no predefined codes or groups; the codes emerged and evolved
during the analysis process. In addition, we quantitatively analyzed
closed-ended question (Q2) to understand developers’ perceptions
of the impact of bots on pull requests.

4 RESULTS
In this section, we report our main findings.

4.1 Maintainers’ Motivations to Adopt a Code
Review Bot

We asked maintainers what made them decide to start using bots
to support code review activities. Four participants (3.15%) did
not report any reason. The other answers were grouped into 10
categories, as can be seen in Table 1.

From the maintainers’ perspective, the most recurrent motiva-
tion relates to enhancing the feedback to developers (31 men-
tions). This category includes cases in which the respondents’ de-
sired to see both code review metrics and additional information “in
a pretty and automated fashion” and “without having to go to another
tool.” Several respondents recognized the value of bot feedback for
both reviewers and contributors: “bots write useful information as
comments and you can analyze it without switching the context.” In
addition, other respondents pointed out the importance of “giv-
ing uniform feedback to all contributors” and “let[ting] contributors
see how they affect the code.” Another two respondents mentioned
that this kind of feedback might also increase contributors’ public
accountability, giving reviewers “confidence that the author cares
about testing” and about the quality of the code contribution.

Another recurrent reason regards reducing maintainers’ ef-
fort (30 mentions). Several maintainers were motivated by the
necessity to save time and reduce their own effort during the code
review process. Most of them said that reducing maintainers’ effort
on trivial tasks, such as finding syntax errors and checking code
style and coverage requirements, allows them to “spend more time
on the important parts.” Moreover, the feedback provided by a code

review bot helps maintainers avoid “repeating the same comments
for each pull request.”

With 22 mentions, enforcing high code coverage during the
code review process was the third most common reason. In gen-
eral, respondents mentioned that code review bots were adopted
to help detect and prevent reduction in code coverage. They also
mentioned that these bots “ensure good coverage to allow changes
on the code base with high confidence that the project will continue to
function as expected” since they “don’t want to drop (significantly)
in coverage.” Respondents (20) also reported another related rea-
son: ensure high-quality standards. Respondents said that using
code review bots for “automating repetitive tasks ensures they get
done, increasing code quality” and “reduce[s] the risk of bugs being
missed by reviewers.”

Several maintainers (20) were also motivated by automating
routine tasks that previously were manually performed. Respon-
dents mentioned the desire to automate routine tasks in order to
structure the process of code review and “make the process more
repeatable”. The routine tasks include tracking the coverage and
”automatically upload[ing] code coverage results to a 3rd-party ser-
vice.” Others provided more generic answers, briefly mentioning
“automation.”

maintainers were also motivated by curiosity to test a new tech-
nological tool and by a suggestion of an outside contributor. In
the other five cases, our respondents were motivated by improving
interpersonal communication, since “an automatic answer by a
bot isn’t taken personally” and ”it is a friendly way to ensure quality.”
Moreover, a code review bot “improves interpersonal communication
on pull requests and thus may reduce the chance a pull request is
abandoned by the author.”

Answer toRQ1.Maintainers reported 10 reasons for using code
review bots. We found that several maintainers were motivated
by enhancing the feedback to developers (24.4%), reducing their
own efforts (23.6%), and enforcing high code coverage (17.3%).

4.2 Maintainers’ Perceptions of Bots Effects
We also asked maintainers about their perspective on the potential
changes to their projects that the code review bot introduced. The
answers followed a 5-point Likert scale with neutral, ranging from
“Strongly disagree” to “Strongly agree.” In Figure 1, we observe that
most of the respondents did not agree with the expected impact of
bot adoption on pull requests, considering the five studied activities
indicators: number of pull requests received, merged, and non-
merged; number of comments; and the time to close pull requests.

Most of the respondents claimed that there is no relation be-
tween the number of pull requests and the presence of the bot;
they stated that the amount of opened pull requests “depends on
bugs or features for the software.” However, one respondent claimed
that it could lead to an increase in the number of pull requests, and
“a better experience for everyone involved (which might eventually
lead to repeat contributors).” Regarding merged and non-merged
pull requests, maintainers claimed that these trends are typically
“human factors” unrelated to bot adoption. One maintainer believed
that the ability to filter out contributions that reduce code quality
also reduces the merge rates of pull requests.

459

SBES ’20, October 21–23, 2020, Natal, Brazil Wessel et al.

31%

31%

33%

34%

40%

41%

36%

28%

25%

12%

28%

33%

39%

41%

48%

Q5. The time to close pull requests decreased
after the bot adoption

Q4. I could see that the number of comments made
to the pull request increased

Q3. There was an increase in the number of pull
requests merged after the bot adoption

Q2. The number of non−merged pull requests
decreased after the bot adoption

Q1. The number of opened pull requests increased
after the bot adoption

100 50 0 50 100
Percentage

Response Strongly disagree Disagree Neutral Agree Strongly agree

Figure 1: Maintainers’ perspectives on the effects of bot adoption on pull requests activities

Respondents (36%) perceived an increase in the number of com-
ments made to pull requests after bot adoption. One respondent
claimed that this increase occurs because contributions that drasti-
cally reduce the coverage stimulate the exchange of comments be-
tween maintainers and contributors. Another maintainer explained
that the number of comments increased because maintainers and
“contributors started discussing how to best test something.”

Maintainers believe (41% of them) that the code review bot helped
decrease the time-to-close pull requests. One respondent did not
agree with the statement, and left a comment telling us that the
code review bot actually increased the time to merge pull requests,
due to the need for additional time to write tests and obtain a stable
code. Another maintainer commented that the bot increases the
time to merge the contributions, though to them “it is not perceived
as a bad thing.”

We also openly asked maintainers about the changes introduced
by the adoption of code review bots on the maintenance process and
in the project itself. Twenty-three participants (18.1%) did not report
any change. The other responses were grouped into 13 categories,
as can be seen in Table 2.

The most recurrent reported change is that the adoption of code
review bots requires less manual labor from maintainers (33
mentions). In general, respondents mentioned that the maintenance
process is easier when they have fewer manual tasks to perform,
because they “need to spend less time on it.” The maintainers also
suggest that bots could help reduce the number of human resources
necessary to complete a task, which makes “it easier by reducing the
number of review comments, general feedback and manual quality
assurance required for a successful merge.” Nevertheless, maintainers
are also aware of the implications that “automation like this is always
prone to non-fatal error.”

Several maintainers (20) noticed changes in the quality of the
contributions received, reporting that the bot helps to enforce high-
quality code. In one example, a respondent mentioned that “the
introduction of bots increased the quality of the code seen by main-
tainers in the initial review since contributors got timely (a few min-
utes) feedback about parts that failed basic quality standards such
as missing tests, missing documentation, incorrect style, or broken

Table 2: Changes to the maintenance process introduced by
code review bot adoption

Changes # of answers (%)
Less manual labor required from maintainers 33 (25.9%)
Bots enforce high-quality code 20 (15.7%)
Bots increase code coverage 16 (12.6%)
Faster pull request review 16 (12.6%)
Bots help identify missing tests 10 (7.8%)
Bots help with standardization 8 (6.3%)
Bots improve the quality of code review 7 (5.5%)
Bots provide consistent and immediate 7 (5.5%)feedback
Bots reduce communication barriers 5 (3.9%)
Newcomers feel intimidated 2 (1.5%)
Bots impersonate human developers 1 (0.7%)
Bots introduce communication noise 1 (0.7%)
Testing starts to require more time than 1 (0.7%)development

functionality.” Another 6 respondents also realized positive effects
on the quality of the code review process, which “translate in a
more efficient code review and more robust codebase in the long term.”

Since one of the most common reasons to adopt a code review
bot is to enforce code coverage, unsurprisingly, 16 respondents
mentioned the increase in the code coverage after adoption. Most
of the respondents reported that these bots help to “encourage to add
more tests” when “the coverage is not good enough.” One respondent
stated the importance of the awareness of code coverage: “the effects
are visible to the contributors, and they will generally resolve any
decreased coverage in the pull request.” Additionally, one respondent
claimed that the bot feedback also “spurred further pull requests to
increase coverage.”

Another bot adoption effect is that reviewing pull requests
became faster, which was reported by 16 maintainers. Three re-
spondents mentioned that faster reviews lead to faster merging. A
respondent stated that high-quality pull requests were more quickly
identified since “the human review step was always started with a

460

What to Expect from Code Review Bots on GitHub? A Survey with OSS Maintainers SBES ’20, October 21–23, 2020, Natal, Brazil

baseline level of quality” and thus merged faster. In addition, an-
other maintainer reinforced the efficiency of this process: “some of
the bots do it so well, that we can merge pull requests immediately
after opening it.” In addition, 7 maintainers also reported that the
quality of the code review process improved.

Other categories, although less recurrent, called our attention to
the negative effects reportedly caused by bot adoption. One respon-
dent said that bots intimidate newcomers, since some newcomers
close their pull requests after a bot comment. Another believes that,
for a newcomer, receiving an assessment “you let coverage go down,”
instead of a “thanks for your contribution,” “can be a little daunting.”
Respondents also mentioned that after adoption testing started to
require more time than development and the bot’s comments
introduced noise. Another respondent said that a bot can imper-
sonate human developers due to bots’ strict rules, which stressed
out contributors.

Answer to RQ2. Among the positive changes incurred from
code review bots, maintainers reported that less manual labor
was required after bot adoption (25.9%) and bots enforced high-
quality code (15.7%). The negative effects include communica-
tion noise, more time spent with tests, newcomers’ dropout, and
bots impersonating maintainers.

5 DISCUSSION AND IMPLICATIONS
Adding a code review bot to a project can represent the desire to bet-
ter communicate with developers, helping contributors and main-
tainers be more effective, and achieving improved interpersonal
communication, as already discussed by Storey and Zagalsky [25].
In fact, our results reveal that the predominant reason for using a
code review bot is to improve the feedback communicated to de-
velopers. Moreover, maintainers are also interested in automating
code review tasks to reduce the maintenance burden and enforce
high code coverage.

Most of the maintainers’ perceptions of how bots impact on
maintenance are in line with the reported motivations. Indeed,
maintainers started to spend less effort on trivial tasks, allowing
them to focus on more important aspects of code review. Further-
more, code review bots guide contributors toward detecting change
effects before maintainers triage the pull requests [29], ensuring
high-quality standards and a faster code review. Bots’ feedback
provides an immediate and clear sense of what contributors need
to do to have their contribution reviewed. Maintainers also noted
that contributors’ confidence increased when a code review bot
provided situational awareness [25], indicating standards, language
issues, and coverage to contributors.

On the one hand, adopting a bot save maintainers’ costs, time,
and effort during the code review activities. On the other hand,
our study also reports four unexpected and negative effects of
adopting a bot to assist the code review process. Such effects include
communication noise,more time spent with tests, newcomers’ dropout,
and bots impersonating maintainers. Although less recurrent, these
effects are non-negligible to the OSS community.

Previous work by Wessel et al. [29] has already mentioned the
support for newcomer onboarding both in terms of challenges and
as a feature maintainers desire. In our survey, maintainers claim it

is easier for newcomers to submit a high-quality pull request with
only the intervention of bots. However, another maintainer pointed
out that when newcomers and casual contributors receive feedback
from the bot, it can lead to rework, discussions, and ultimately
dropping out from contributing.

Our study suggests practical implications for practitioners as
well as insights and suggestions for researchers.

Awareness of bot effects. Indeed, the maintenance activities
changed following the adoption of code review bots. This change
can directly affect contributors’ and maintainers’ work. Hence,
understanding how the code review bot adoption affects a project
is important for practitioners, mainly to avoid unexpected or even
undesired effects. Awareness of unexpected bot effects can lead
maintainers to take countermeasures and/or decide whether or not
to use a code review bot.

Improving bots’ design. Anyone who wants to develop a bot
to support the code review process needs to consider the impact the
bot may have on both technical and social contexts. Based on our
results, further bot improvements can be envisioned. For example,
in order to prevent bots from introducing communication noise, bot
developers should know when and to what extent the bot should
interrupt a human [14, 24].

Improving newcomers support. As aforementioned, previous
literature on bots already mentioned a lack of support for newcom-
ers [29]. It is reasonable to expect that newcomers who receive
friendly feedback will have a higher engagement level and thus sus-
tain their participation on the project. Hence, future research can
help bot designers by providing guidelines and insights to support
new contributors.

6 THREATS TO VALIDITY
Since we leverage qualitative research methods to categorize the
open-ended questions asked in our survey, we may have introduced
categorization bias. To mitigate this bias, we conducted this process
in pairs and carefully discussed categorization among the authors.
Regarding our survey, the order that we presented the questions
to the respondents may have influenced the way they answered
them. In addition, we cannot guarantee that maintainers correctly
understood sentences 4 and 5. We tried to order the questions based
on the natural sequence of actions to help respondents understand
the questions’ context.

7 FINAL CONSIDERATIONS
In this work, we conducted a preliminary investigation into main-
tainers’ perceptions of the effects of adopting bots to support the
code review process on pull requests. The most frequently men-
tioned motivations for using bots including automating repetitive
tasks, improving tools’ feedback to developers and reducing main-
tenance effort (RQ1). Moreover, maintainers cite several benefits
of bots, such as decreasing the time to close pull requests and re-
ducing the workload with laborious and repetitive tasks. However,
maintainers also stated negative effects, including the introduction
of noise and (RQ2). Based on these preliminary findings, future
research can focus on better supporting and understanding bots’
influences on social interactions in the context of OSS projects.

461

SBES ’20, October 21–23, 2020, Natal, Brazil Wessel et al.

Moreover, future work can investigate the effects of adopting a bot
and the expansion of our analysis for other types of bots, activity
indicators, and social coding platforms.

ACKNOWLEDGMENTS
We thank all the participants of this study, who volunteered to
support our research. This work was partially supported by the
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior –
Brasil (CAPES) – Finance Code 001, CNPq (grant 141222/2018-2),
and National Science Foundation (grants 1815503 and 1900903).

REFERENCES
[1] Ahmad Abdellatif and Emad Shihab. 2020. MSRBot: Using Bots to Answer

Questions from Software Repositories. Empirical Software Engineering (EMSE) 25
(2020), 1834–1863. https://doi.org/10.1007/s10664-019-09788-5

[2] Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes, and chal-
lenges of modern code review. In 2013 35th International Conference on Software
Engineering (ICSE). IEEE, 712–721.

[3] Olga Baysal, Oleksii Kononenko, Reid Holmes, and Michael W Godfrey. 2016.
Investigating technical and non-technical factors influencingmodern code review.
Empirical Software Engineering 21, 3 (2016), 932–959.

[4] Chris Brown and Chris Parnin. 2019. Sorry to Bother You: Designing Bots for
Effective Recommendations. In Proceedings of the 1st International Workshop on
Bots in Software Engineering (Montreal, Quebec, Canada) (BotSE ’19). IEEE Press,
Piscataway, NJ, USA, 54–58. https://doi.org/10.1109/BotSE.2019.00021

[5] A. Carvalho, W. Luz, D. Marcílio, R. Bonifácio, G. Pinto, and E. Dias Canedo. 2020.
C-3PR: A Bot for Fixing Static Analysis Violations via Pull Requests. In 2020 IEEE
27th International Conference on Software Analysis, Evolution and Reengineering
(SANER). 161–171.

[6] Nathan Cassee, Bogdan Vasilescu, and Alexander Serebrenik. 2020. The silent
helper: the impact of continuous integration on code reviews. In 27th IEEE In-
ternational Conference on Software Analysis, Evolution and Reengineering. IEEE
Computer Society.

[7] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social Coding
in GitHub: Transparency and Collaboration in an Open Software Repository. In
CSCW. ACM, New York, NY, USA, 1277–1286.

[8] Felipe Ebert, Fernando Castor, Nicole Novielli, and Alexander Serebrenik. 2019.
Confusion in code reviews: Reasons, impacts, and coping strategies. In 2019 IEEE
26th International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 49–60.

[9] Linda Erlenhov, Francisco Gomes de Oliveira Neto, Riccardo Scandariato, and
Philipp Leitner. 2019. Current and Future Bots in Software Development. In
Proceedings of the 1st International Workshop on Bots in Software Engineering
(Montreal, Quebec, Canada) (BotSE ’19). IEEE Press, Piscataway, NJ, USA, 7–11.
https://doi.org/10.1109/BotSE.2019.00009

[10] Georgios Gousios and Diomidis Spinellis. 2012. GHTorrent: GitHub’s data from
a firehose. In 2012 9th IEEE Working Conference on Mining Software Repositories
(MSR). IEEE, 12–21.

[11] David Kavaler, Asher Trockman, Bogdan Vasilescu, and Vladimir Filkov. 2019.
Tool choice matters: JavaScript quality assurance tools and usage outcomes in
GitHub projects. In Proceedings of the 41st International Conference on Software
Engineering. IEEE Press, 476–487.

[12] Carlene Lebeuf, Alexey Zagalsky, Matthieu Foucault, and Margaret-Anne Storey.
2019. Defining and Classifying Software Bots: A Faceted Taxonomy. In Proceedings
of the 1st International Workshop on Bots in Software Engineering (Montreal,
Quebec, Canada) (BotSE ’19). IEEE Press, Piscataway, NJ, USA, 1–6. https:
//doi.org/10.1109/BotSE.2019.00008

[13] Bin Lin, Alexey Zagalsky, Margaret-Anne Storey, and Alexander Serebrenik. 2016.
Why developers are slacking off: Understanding how software teams use slack.
In Proceedings of the 19th ACM Conference on Computer Supported Cooperative
Work and Social Computing Companion. ACM, 333–336.

[14] Dongyu Liu, Micah J. Smith, and Kalyan Veeramachaneni. 2020. Understanding
User-Bot Interactions for Small-Scale Automation in Open-Source Development.
In Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing
Systems (Honolulu, HI, USA) (CHI EA ’20). Association for Computing Machinery,
New York, NY, USA, 1–8. https://doi.org/10.1145/3334480.3382998

[15] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E Hassan. 2014.
The impact of code review coverage and code review participation on software
quality: A case study of the qt, vtk, and itk projects. In Proceedings of the 11th
Working Conference on Mining Software Repositories. 192–201.

[16] SamimMirhosseini and Chris Parnin. 2017. Can Automated Pull Requests Encour-
age Software Developers to Upgrade Out-of-date Dependencies?. In Proceedings

of the 32nd IEEE/ACM International Conference on Automated Software Engineer-
ing (Urbana-Champaign, IL, USA) (ASE 2017). IEEE Press, Piscataway, NJ, USA,
84–94. http://dl.acm.org/citation.cfm?id=3155562.3155577

[17] Martin Monperrus. 2019. Explainable Software Bot Contributions: Case Study
of Automated Bug Fixes. In Proceedings of the 1st International Workshop on
Bots in Software Engineering (Montreal, Quebec, Canada) (BotSE ’19). IEEE Press,
Piscataway, NJ, USA, 12–15. https://doi.org/10.1109/BotSE.2019.00010

[18] KF Mulder. 2013. Impact of new technologies: how to assess the intended and
unintended effects of new technologies. Handb. Sustain. Eng.(2013) (2013).

[19] Elahe Paikari and André van der Hoek. 2018. A Framework for Understanding
Chatbots and Their Future. In Proceedings of the 11th International Workshop on
Cooperative and Human Aspects of Software Engineering (Gothenburg, Sweden)
(CHASE ’18). ACM, New York, NY, USA, 13–16. https://doi.org/10.1145/3195836.
3195859

[20] Luyao Ren, Shurui Zhou, Christian Kästner, and Andrzej Wąsowski. 2019. Identi-
fying Redundancies in Fork-based Development. In 2019 IEEE 26th International
Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
230–241.

[21] Edward Smith, Robert Loftin, Emerson Murphy-Hill, Christian Bird, and Thomas
Zimmermann. 2013. Improving developer participation rates in surveys. In
2013 6th International Workshop on Cooperative and Human Aspects of Software
Engineering (CHASE). IEEE, 89–92.

[22] Igor Steinmacher, Gustavo Pinto, Igor Scaliante Wiese, and Marco A. Gerosa.
2018. Almost There: A Study on Quasi-contributors in Open Source Software
Projects. In Proceedings of the 40th International Conference on Software Engi-
neering (Gothenburg, Sweden) (ICSE ’18). ACM, New York, NY, USA, 256–266.
https://doi.org/10.1145/3180155.3180208

[23] Igor Fábio Steinmacher. 2015. Supporting newcomers to overcome the barriers to
contribute to open source software projects. Ph.D. Dissertation. Universidade de
São Paulo.

[24] Margaret-Anne Storey, Alexander Serebrenik, Carolyn Penstein Rosé, Thomas
Zimmermann, and James D. Herbsleb. 2020. BOTse: Bots in Software Engineering
(Dagstuhl Seminar 19471). Dagstuhl Reports 9, 11 (2020), 84–96.

[25] Margaret-Anne Storey and Alexey Zagalsky. 2016. Disrupting Developer Produc-
tivity One Bot at a Time. In Proceedings of the 2016 24th ACMSIGSOFT International
Symposium on Foundations of Software Engineering (Seattle, WA, USA) (FSE 2016).
ACM, New York, NY, USA, 928–931. https://doi.org/10.1145/2950290.2983989

[26] Margaret-Anne Storey, Alexey Zagalsky, Fernando Figueira Filho, Leif Singer,
and Daniel M. German. 2017. How Social and Communication Channels Shape
and Challenge a Participatory Culture in Software Development. IEEE Trans.
Softw. Eng. 43, 2 (Feb. 2017), 185–204. https://doi.org/10.1109/TSE.2016.2584053

[27] Simon Urli, Zhongxing Yu, Lionel Seinturier, and Martin Monperrus. 2018. How
to Design a Program Repair Bot?: Insights from the Repairnator Project. In
Proceedings of the 40th International Conference on Software Engineering: Software
Engineering in Practice (Gothenburg, Sweden) (ICSE-SEIP ’18). ACM, New York,
NY, USA, 95–104. https://doi.org/10.1145/3183519.3183540

[28] Rijnard van Tonder and Claire Le Goues. 2019. Towards s/Engineer/Bot: Principles
for Program Repair Bots. In Proceedings of the 1st International Workshop on Bots
in Software Engineering (Montreal, Quebec, Canada) (BotSE ’19). IEEE Press,
Piscataway, NJ, USA, 43–47. https://doi.org/10.1109/BotSE.2019.00019

[29] Mairieli Wessel, Bruno Mendes de Souza, Igor Steinmacher, Igor S. Wiese, Ivanil-
ton Polato, Ana Paula Chaves, and Marco A. Gerosa. 2018. The Power of Bots:
Characterizing and Understanding Bots in OSS Projects. Proceedings of the ACM
Conference on Computer Supported Cooperative Work Social Computing 2, CSCW,
Article 182 (Nov. 2018), 19 pages. https://doi.org/10.1145/3274451

[30] Mairieli Wessel, Alexander Serebrenik, Igor Scaliante Wiese, Igor Steinmacher,
andMarco Aurelio Gerosa. 2020. Effects of Adopting Code Review Bots on Pull Re-
quests to OSS Projects. In IEEE International Conference on Software Maintenance
and Evolution. IEEE Computer Society.

[31] Mairieli Wessel and Igor Steinmacher. 2020. The Inconvenient Side of Software
Bots on Pull Requests. In Proceedings of the 2nd International Workshop on Bots in
Software Engineering (BotSE). https://doi.org/10.1145/3387940.3391504

[32] Marvin Wyrich and Justus Bogner. 2019. Towards an Autonomous Bot for Auto-
matic Source Code Refactoring. In Proceedings of the 1st International Workshop
on Bots in Software Engineering (Montreal, Quebec, Canada) (BotSE ’19). IEEE
Press, Piscataway, NJ, USA, 24–28. https://doi.org/10.1109/BotSE.2019.00015

[33] Yue Yu, Huaimin Wang, Vladimir Filkov, Premkumar Devanbu, and Bogdan
Vasilescu. 2015. Wait for It: Determinants of Pull Request Evaluation Latency on
GitHub. In 2015 IEEE/ACM 12th Working Conference on Mining Software Reposito-
ries. 367–371. https://doi.org/10.1109/MSR.2015.42

[34] Yangyang Zhao, Alexander Serebrenik, Yuming Zhou, Vladimir Filkov, and Bog-
dan Vasilescu. 2017. The impact of continuous integration on other software
development practices: a large-scale empirical study. In Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering. IEEE
Press, 60–71.

[35] Thomas Zimmermann. 2016. Card-sorting: From text to themes. In Perspectives
on Data Science for Software Engineering. Elsevier, 137–141.

462

https://doi.org/10.1007/s10664-019-09788-5
https://doi.org/10.1109/BotSE.2019.00021
https://doi.org/10.1109/BotSE.2019.00009
https://doi.org/10.1109/BotSE.2019.00008
https://doi.org/10.1109/BotSE.2019.00008
https://doi.org/10.1145/3334480.3382998
http://dl.acm.org/citation.cfm?id=3155562.3155577
https://doi.org/10.1109/BotSE.2019.00010
https://doi.org/10.1145/3195836.3195859
https://doi.org/10.1145/3195836.3195859
https://doi.org/10.1145/3180155.3180208
https://doi.org/10.1145/2950290.2983989
https://doi.org/10.1109/TSE.2016.2584053
https://doi.org/10.1145/3183519.3183540
https://doi.org/10.1109/BotSE.2019.00019
https://doi.org/10.1145/3274451
https://doi.org/10.1145/3387940.3391504
https://doi.org/10.1109/BotSE.2019.00015
https://doi.org/10.1109/MSR.2015.42

	Abstract
	1 Introduction
	2 Background and related work
	3 Study Methodology
	3.1 Survey Design
	3.2 Data analysis

	4 Results
	4.1 Maintainers' Motivations to Adopt a Code Review Bot
	4.2 Maintainers' Perceptions of Bots Effects

	5 Discussion and Implications
	6 Threats to Validity
	7 Final Considerations
	References

